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A B S T R A C T 

We present a new method, called ‘forced-spectrum fitting’, for physically based spectral modelling of radio sources during decon- 
volution. This impro v es upon current common deconvolution fitting methods, which often produce inaccurate spectra. Our method 

uses an y pre-e xisting spectral inde x map to assign spectral indices to each model component cleaned during the multifrequency 

deconvolution of WSCLEAN , where the pre-determined spectrum is fitted. The component magnitude is e v aluated by performing a 
modified weighted linear least-squares fit. We test this method on a simulated LOFAR high-band antenna (HBA) observation of the 
3C 196 QSO and a real LOFAR HBA observation of the 4C + 55.16 FRI galaxy. We compare the results from the forced-spectrum 

fitting with traditional joined-channel deconvolution using polynomial fitting. Because no prior spectral information was available 
for 4C + 55.16, we demonstrate a method for extracting spectral indices in the observ ed frequenc y band using ‘clustering’. The 
models generated by the forced-spectrum fitting are used to impro v e the calibration of the data sets. The final residuals are compa- 
rable to existing multifrequency deconvolution methods, but the output model agrees with the provided spectral index map, em- 
bedding correct spectral information. While forced-spectrum fitting does not solve the determination of the spectral information 

itself, it enables the construction of accurate multifrequency models that can be used for wide-band calibration and subtraction. 

Key words: instrumentation: interferometers – methods: data analysis – methods: observational – techniques: image process- 
ing – techniques: interferometric – radio continuum: general. 

1

M  

l  

w  

n  

s  

a  

h
 

g  

c  

F  

m  

s  

t  

i
(  

S  

�

1

W  

s  

(  

d  

p  

t  

fi  

e
(

 

n  

t  

s  

C  

G  

w  

2  

v  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/525/3/3946/7244707 by R
ijksuniversiteit G

roningen user on 28 January 2024
 I N T RO D U C T I O N  

odern radio interferometers reach high spatial resolutions and have
arge instantaneous bandwidth, allowing the generation of sky images
ith high dynamic range. To achieve this, a meticulous sky model is
eeded to calibrate data, correcting for effects that occur along the
ignal path (e.g. Smirnov 2011 ). This requires accurate modelling of
ll bright radio sources within a wide field of view, many of which
av e comple x spatial and spectral structures. 
Discrete radio sources, such as supernova remnants and radio

alaxies, can be modelled by shapelets, which are basis functions
onstituted by weighted Hermite polynomials that have an analytical
ourier transform (Refregier 2003 ; Yatawatta 2011 ). This property
akes such functions attractive, because radio interferometers mea-

ure visibilities in the Fourier domain – the so-called uv -space – of
he image brightness distribution. Therefore, shapelets are becoming
ncreasingly more common in calibration software, such as SAGECAL 1 

Kazemi et al. 2011 ; Yatawatta 2015 , 2016 ; Yatawatta, Diblen &
preeuw 2017 ) and RTS (Mitchell et al. 2008 ; Riding, Mitchell &
 E-mail: ceccotti@astro.rug.nl 
 https:// github.com/ nlesc-dirac/ sagecal 

2

3

4

Published by Oxford University Press on behalf of Royal Astronomical Socie
Commons Attribution License ( http:// creativecommons.org/ licenses/ by/ 4.0/ ), whi
ebster 2017 ), especially because it is possible to use a single basis
et of functions to efficiently model extended emission in the sky
e.g. Gehlot et al. 2022 ). Ho we ver, to our knowledge, there is no
irect implementation yet of shapelets modelling during the cleaning
rocess of imaging. Such models are often produced afterwards
hrough linear least-squares fitting of the basis functions to the
nal deconvolved image, using software such as SHAMFI 2 (Line
t al. 2020 ), PYBDSF 3 (Mohan & Rafferty 2015 ), or SHAPELET GUI 4 

Yatawatta et al. 2013 ). 
In principle, shapelets can be used in compressive sensing tech-

iques, as pointed out by Dabbech et al. ( 2015 ). These emerging
echniques are based on conv e x optimization algorithms and signal
parsity to reconstruct the sky model (e.g. Wiaux et al. 2009 ; Li,
ornwell & de Hoog 2011 ; Carrillo, McEwen & Wiaux 2012 ;
arsden et al. 2015 ; Birdi, Repetti & Wiaux 2020 ; Terris et al. 2022 ),
here isotropic undecimated wavelets (Starck, Fadili & Murtagh
007 ) are usually used instead of shapelets. Compressive sensing is
ery promising in capturing the finer source details (e.g. Dabbech
 https:// github.com/ JLBLine/ SHAMFI 
 https:// www.astron.nl/ citt/ pybdsf
 https:// github.com/ SarodYatawatta/ shapeletGUI 

© 2023 The Author(s). 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 

provided the original work is properly cited. 

http://orcid.org/0000-0002-3351-5778
http://orcid.org/0000-0003-1840-0312
http://orcid.org/0000-0001-7507-6948
http://orcid.org/0000-0002-3240-9228
http://orcid.org/0000-0003-3802-4289
http://orcid.org/0000-0001-5619-4017
mailto:ceccotti@astro.rug.nl
https://github.com/nlesc-dirac/sagecal
https://github.com/JLBLine/SHAMFI
https://www.astron.nl/citt/pybdsf
https://github.com/SarodYatawatta/shapeletGUI
http://creativecommons.org/licenses/by/4.0/


Physical spectral index modelling 3947 

e  

r

p
(  

(
o
b  

w
i
(
s  

u  

t
l
d  

s
u  

t
s
p
v
2  

b
P
B
s
M  

i  

r
e

i
c
t
M
d
(  

fi
f  

2  

t  

p  

t
p

c
a  

fi  

t
2  

m
f
(  

F
t  

2  

t
s

5

6

e  

2  

s  

2
 

i
f  

a
I  

I  

t
s  

a  

t
h
(  

i  

c  

o  

i  

o  

i
 

fi
i  

p
(  

s
r
t
i  

c
s
i  

i  

o
w
s  

c
w
b  

r

w
e
i
o  

t
d
w  

h
(  

t
e
f  

fl  

E  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/525/3/3946/7244707 by R
ijksuniversiteit G

roningen user on 28 January 2024
t al. 2018 , 2022 ), but at the cost of high computational and memory
equirements. 

One of the most common alternative methods – and less com- 
utationally demanding – is the use of CLEAN -based algorithms 
H ̈ogbom 1974 ; Clark 1980 ; Schwab 1984 ), specifically multiscale
MS) deconvolution, where a source is modelled as a summation 
f components with different scales (Cornwell 2008 ). As shown 
y Offringa & Smirnov ( 2017 ), MS cleaning is particularly efficient
hen Gaussian components are used, because their Fourier transform 

s also Gaussian. The combination of Gaussian and point components 
i.e. delta-functions) allows one to capture the finer structures of 
ky sources, but at the cost of a number of components that is
sually much higher than using shapelets. Line et al. ( 2020 ) show
hat shapelets models leave lower residuals than MS cleaning on the 
arger spatial scales when these methods are applied to simulated 
ata of radio galaxies. Ho we ver, results on real data applications
ho w negligible dif ferences because residuals are dominated by other 
ncertainties, like calibration errors (e.g. Gehlot et al. 2022 ). Fur-
hermore, current implementations of shapelets do not allow varying 
pectral indices across the source, unlike Gaussian and point com- 
onents, where each component can have a different spectral index 
 alue. Some compressi ve sensing-based methods (e.g. Ferrari et al. 
015 ; Abdulaziz, Dabbech & Wiaux 2019 ) and other non CLEAN -
ased techniques, such as maximum entropy methods (Bajkova & 

ushkarev 2011 ) and Bayesian inference techniques (Junklewitz, 
ell & Enßlin 2015 ), can simultaneously model sky-brightness and 

pectral features, but they have only been tested on simple cases. 
oreo v er, these do not have the advantage of separating the model

nto components that can easily be inverted to Fourier space. For this
eason, MS deconvolution is the de facto method when accurate mod- 
lling is required at different frequencies for wide band observations. 

In this conte xt, multifrequenc y (MF) deconvolution algorithms are 
mportant, because they allow fitting polynomial functions during de- 
onvolution to simultaneously infer spectral information and increase 
he deconvolution accuracy (Sault & Wieringa 1994 ). Combining 

S with MF algorithms allows for accurate cleaning of resolved and 
iffuse sources, while simultaneously inferring spectral information 
Rau & Cornwell 2011 ; Offringa & Smirnov 2017 ). However, current
tting methods generate unphysical spectral index values, especially 
or faint and comple x (resolv ed) sources (Rau, Bhatnagar & Owen
016 ). This mainly occurs because real data have systematic errors
hat can cause the fit to diverge, especially at the band edges,
roducing inaccurate spectral indices (e.g. Offringa et al. 2016 ). For
his reason, spectral information is usually extracted after the imaging 
rocess and can be inserted into calibration models afterwards. 
Extracting spectral index maps from in-band observations is 

hallenging. Inaccuracies during calibration, such as flux scale 
lignment (e.g. Shimwell et al. 2022 ), or imaging, such as spectral
tting during MF deconvolution (e.g. Heywood et al. 2016 ), can limit

he reliability of in-band spectral indices, with errors often exceeding 
0 per cent (e.g. Shimwell et al. 2022 ). Furthermore, inaccuracy in
odelling the primary beam can introduce time-dependent spectral 

eatures that are too complex to separate from real source components 
e.g. Bhatnagar et al. 2008 ; Tasse et al. 2013 ; Cotton & Mauch 2021 ).
or these reasons, even the relatively large bandwidth ratio of 2:1 

hat is reached by telescopes such as LOFAR 

5 (van Haarlem et al.
013 ) and the VLA 

6 (Perley et al. 2011 ), is not al w ays enough
o properly model spectral features. None the less, a few in-band 
pectral index analysis have been performed with satisfactory results, 
 Low-Frequency Array, http://www.lofar.org 
 Very Large Array, https:// public.nrao.edu/ telescopes/ vla 

7

/
8

l

specially for strong sources (e.g. McKean et al. 2016 ; Arias et al.
018 ; Fanaroff et al. 2021 ; Baghel et al. 2023 ) and source catalogues,
uch as GLEAM 

7 (Callingham et al. 2017 ; Hurley-Walker et al. 2017 ,
022 ) and LoTSS 

8 (Shimwell et al. 2017 , 2019 , 2022 ). 
The common way to extract a spectral index map is to use different

nstruments, where a single frequenc y-inte grated image is considered 
or each wide band. In this way, any in-band uncertainty is reduced
nd higher signal-to-noise images can be obtained (e.g. de Gasperin, 
ntema & Frail 2018 ; Di Gennaro et al. 2021 ; Fanaroff et al. 2021 ;
gnesti et al. 2022 ; Timmerman et al. 2022a , b ). The downside is
hat the spatial resolution and sensitivity of such different telescopes 
hould be as similar as possible. Applying a baseline cut and/or
pplying some smoothing kernel is always required to make sure that
he same angular scales are sampled by different telescopes, which 
ave a different array layout and operate at different frequencies 
e.g. Vollmer et al. 2005 ). This applies also to the in-band spectral
ndex map. Ho we ver, in such a case, only the change of the uv -
o v erage with frequenc y must be taken into account and the strength
f this correction is usually lower than the one required for multi-
nstruments observ ations. This allo ws in principle for better capture
f the finer structures in the spectral index maps, since the resolution
s not e xcessiv ely downgraded (e.g. Fanaroff et al. 2021 ). 

In this paper, we present a no v el method, called forced-spectrum
tting, to transfer spectral information from pre-existing spectral 

ndex maps into a sky model directly during the deconvolution. This is
erformed with the MF algorithm of the WSCLEAN imaging software 
Offringa et al. 2014 ), which cleans the image at all frequencies
imultaneously, assuming only a single integrated spatial map at a 
eference frequency, where the clean components are defined. During 
his step, the forced-spectrum method assigns a power-law spectral 
ndex, based on an initial spectral index map, to each of the cleaned
omponents, rather than clean per frequency channel and derive the 
pectral index afterwards, since this would be affected by differences 
n, for example, beam, uv -coverage, and flagging. The initial spectral
ndex map could be obtained from a different telescope to start with,
r from in-band observations themselves, for example making a 
eighted average of the sky-brightness within certain regions of the 

ource (a method that we call clustering) to reduce the effect of
alibration and deconvolution errors. The data can then be calibrated 
ith the forced-spectrum output model, the spectral index map could 
e adjusted based on the image residuals, and the process can be
epeated, as in self-calibration. 

The proposed method promises accurate spectral index modelling 
ithout the problems related to common MF fitting, especially for 

xtended sources. In fact, MS–MF deconvolution of these sources 
s less stable than deconvolving point sources, because the degrees 
f freedom are higher. Such degrees of freedom are reduced by
he forced-spectrum method, increasing the stability of the MS–MF 

econvolution. This is particularly important for 21-cm experiments, 
hich aim to detect the redshifted 21-cm line emitted by the neutral
ydrogen during the Epoch of Reionization (EoR) and Cosmic Dawn 
see e.g. Liu & Shaw 2020 , for a re vie w). One of the key aspects of
hese experiments is the separation of the foreground (Galactic and 
xtragalactic) emission from the redshifted 21-cm line. While the 
ormer is expected to be smooth over tens of MHz, the latter rapidly
uctuates o v er MHz-scales (e.g. Shav er et al. 1999 ; Jeli ́c et al. 2008 ).
ven with many different techniques that can remo v e the (residual)
MNRAS 525, 3946–3962 (2023) 

 GaLactic and Extragalactic All-sky Murchison Widefield Array, https: 
/ heasarc.gsfc.nasa.gov/ W3Browse/ all/ gleamegcat.html 
 LOFAR Two-metre Sky Survey , https://repository .surfsara.nl/collection/ 
otss-dr2 

http://www.lofar.org
https://public.nrao.edu/telescopes/vla
https://heasarc.gsfc.nasa.gov/W3Browse/all/gleamegcat.html
https://repository.surfsara.nl/collection/lotss-dr2
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ore ground emission (e.g. P arsons & Backer 2009 ; Chapman et al.
012 ; Bonaldi & Brown 2015 ; Mertens, Ghosh & Koopmans 2018 ;
wall-Wice et al. 2021 ), spectrally accurate models are still required

o impro v e the calibration process, where errors must be lower than
.1 per cent to achieve sufficient dynamic range for measuring the
1-cm power spectrum during the EoR (Mazumder et al. 2022 ). 
In Section 2 , we outline the forced-spectrum method and its

mplementation in the MS and MF deconvolution algorithms of
SCLEAN . In Section 3 , we introduce the simulated and real data that
e use to test our method, whose results are presented in Section 4 .
inally, in Section 5 , we discuss the results and draw conclusions. 

 M E T H O D  

n this section, we describe a new deconvolution technique called
orced-spectrum fitting, which employs a spectral index map to
nsure each clean component has a specific spectral index. By
sing an input spectral index map with physical values, this method
enerates models with physical spectral information directly during
he deconvolution. 9 This approach o v ercomes the limitations of con-
entional fitting methods that can incorporate errors and incomplete
ata, resulting in clean components with unrealistic spectral indices
see further details Section 2.2 ). 

The forced-spectrum method has been implemented in WSCLEAN

s an impro v ement of its multifrequenc y (MF) deconvolution. Before
escribing the forced-spectrum method, we briefly illustrate how the
F deconvolution works, especially in combination with multiscale

MS) deconvolution. 

.1 MS–MF deconvolution in WSCLEAN 

SCLEAN 

10 is a fast wide-field imager that uses the w-stacking
lgorithm to correct the w-term in wide-field radio interferometric
maging (Offringa et al. 2014 ). Its MS and MF algorithms (Offringa &
mirnov 2017 ) allow deep imaging, generating images with a high
ynamic range from which spectral information can be inferred. 
The MS method generates a source model that is a summation of

oint components and basis functions – such as tapered quadratic
r circular Gaussian functions – of different sizes (e.g. Cornwell
008 ). This reduces ne gativ e artefacts around bright resolved sources
nd allows for a better reco v ery of e xtended sources (Rich et al.
008 ). Gaussian functions are often preferred because they have an
nalytically defined Fourier transform. 

The MF deconvolution splits a wide frequency band into output
hannels (i.e. subsets of narrower bandwidth), which are imaged
eparately. These images are combined in a frequenc y-inte grated
ontinuum image, which has a higher dynamic range, where the peak-
nding is performed during the cleaning process. The brightness
f a cleaned component is measured in the output images at each
requency channel at the location of the identified peak, thereby
llowing the components to model spectral variations. In WSCLEAN ,
his approach is called joined-channel deconvolution. 

The quality of the integrated image can be impro v ed by using
he MF weighting, which grids the weights of all output channels
n a single grid to ensure the desired weighting (e.g. uniform) for
he integrated image. Ho we ver, this approach may cause the weights
NRAS 525, 3946–3962 (2023) 

 Throughout this paper, we will use the term ‘physical’ to refer to realistic, 
ot extreme spectral index values that do not defy plasma physics as we 
urrently know. 
0 https:// gitlab.com/ aroffringa/ wsclean 

w  

1

1

1

f individual frequencies to deviate, leading to artificial spectral
tructures due to potentially large deviations in the synthesized
eam o v er frequenc y . 11 Therefore, in this study , we do not use MF
eighting and instead grid the weights of each output channel on

eparate grids, which allows us to obtain the desired weighting (e.g.
niform) for each individual image. 
In MF deconvolution, a polynomial function can be fitted to

he measurements to enforce spectral smoothness. In this case, the
rightness subtracted from each individual output image is given
y the fitted function. WSCLEAN supports two fitting functions, an
rdinary polynomial and a logarithmic polynomial, both requiring
s extra parameter the number of terms n (with n ∈ Z 

+ ) at which the
aylor expansion is truncated, giving a ( n − 1)th-order polynomial.
he ordinary polynomial at frequency ν is given by 

 ( ν) = 

n −1 ∑ 

i= 0 

p i 

(
ν

ν0 
− 1 

)i 

, (1) 

here S is the flux density and ν0 is the reference frequency at which
oefficients p i are evaluated. 12 The −1 within brackets is used to
ake sure that p 0 gives the flux density value S ( ν0 ) at the reference

requency. The logarithmic polynomial of ( n − 1)th-order is given
y 

 ( ν) = 

n −1 ∏ 

i= 0 

10 c i log i 10 ( ν/ν0 ) , (2) 

here c i are the coefficients. Note that, c 0 = log 10 S ( ν0 ) and c 1 =
, where α is the spectral index. When n = 2, equation ( 2 ) can be

ewritten as a power law 

 ( ν) = S( ν0 ) 

(
ν

ν0 

)α

. (3) 

hatever function is used, the fitting parameters are used to estimate
he flux density at the central frequency ν of each output channel
nd the smooth components are added to the model. During decon-
olution, ordinary polynomial functions are generally preferred o v er
ogarithmic polynomials, where ne gativ e artefacts, which could be
icked up by the cleaning, lead to high values at the edge channels,
ausing instability. 

When the fitting is turned on during the MF deconvolution, WS-
LEAN can generate a model catalogue of all the clean components.
he catalogue consists of information such as sky coordinates,
ux density, spectral shapes, etc. for every clean component (see
ppendix A for an example). This means that such a model is not

imited by the image pixel scale, thereby extended components do not
eed to be pixelized and very high resolution models can be obtained
ith fewer components and hence a smaller data volume. The model

atalogue can then be directly used for calibration in software such
s DP3 13 (Default Pre-Processing Pipeline; van Diepen, Dijkema &
ffringa 2018 ) or can be rendered to model images with the preferred

ize and resolution. 

.2 Forced-spectrum fitting 

hereas the spectral fitting in the MF–MS deconvolution is very use-
ul to infer spectral information, it often generates clean components
ith unphysical and inaccurate spectral indices. This can happen
1 https:// wsclean.readthedocs.io/ en/ latest/ mf weighting.html 
2 Here we define 0 0 = 1, as WSCLEAN and PYTHON do. 
3 https://dp3.readthedocs.io 

https://gitlab.com/aroffringa/wsclean
https://wsclean.readthedocs.io/en/latest/mf_weighting.html
https://dp3.readthedocs.io
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ither because the frequency bandwidth is too small or because 
pectral smoothness is forced on data that are non-smooth by some 
ystematic, such as beam sidelobes. Fitting errors propagate through 
he cleaning process, are absorbed into adjacent components, and 
nally lead to incorrect spectral indices. Therefore, analysing the 
pectral information produced in this manner is not recommended. 

Forced-spectrum fitting solves this problem. It allows generating 
odels with accurate and physically moti v ated spectral information 

irectly during the deconvolution. This method uses a pre-existing 
pectral index map to force spectral indices of each clean component 
uring the deconvolution, fitting a first-order ( n = 2) logarithmic 
olynomial function described by equation ( 2 ). Since c 1 (and 
ptionally higher terms) are fully constrained by the input spectral 
ndex map, only c 0 must be fitted. This regulates the fitting and makes
t more stable and faster, reducing the degrees of freedom. 

To fit for the most probable value of c 0 , a (weighted) linear least-
quares fit should be performed. When we define a helper function 
 ( ν) = ( ν/ν0 ) 

c 1 and S 0 = S( ν0 ) = 10 c 0 , the most probable value ˆ S 0 
s given by 

ˆ 
 0 = 

∑ 

i w i s i f ( νi ) ∑ 

i w i f 2 ( νi ) 
. (4) 

ere, the sum is o v er the frequenc y direction of one pix el, with
requencies ν i and weight w i = 1 /σ 2 

i , the inverse variance of
easurement s i . Ho we ver, the use of this function inside joined-

hannel deconvolution leads to instability. The reason for this is that, 
uring peak-finding, the peak is selected that maximizes | ∑ 

i w i s i | .
ecause equation ( 4 ) is not weighted by f ( ν i ), it can happen that
 peak is selected for which the weighted squared difference w i ( s i 

c 0 f ( ν i )) 2 is already minimized, causing the fitted value ˆ S 0 to be
almost) zero. As a consequence, the residual image remains (nearly) 
nchanged after the iteration and the same peak is found in the next
teration. This causes an infinite loop, ultimately resulting in the 
econvolution process becoming stuck. We observe that this situation 
s triggered in almost any reasonably deep deconvolution run (several 
housand iterations) when implementing forced-spectrum fitting as 
n equation ( 4 ). Therefore, this is a problem that is faced in any
pplication in practice. 

One solution to this problem is to simply not weigh the fitting
unction by f ( ν i ), and instead fit ˆ S 0 using 

ˆ 
 0 = 

∑ 

i w i s i ∑ 

i w i f ( νi ) 
. (5) 

f fecti vely, this performs the fit using a modified weight w 

′ 
i =

 i f ( νi ). Because peak-finding now selects the pixel that maximizes
he absolute numerator in this equation, each deconvolution iteration 
elects the pixel that maximizes 

∣∣ ˆ S 0 
∣∣, thereby guaranteeing that 

rogress is made. The downside of this choice is that the fitted
pectrum is not optimally weighted. For example, when decon- 
olving a steep-spectrum source ( c 1 < 0), high frequencies will 
e o v er-weighted, causing its error (caused by noise, sidelobes, and
alibration artefacts) to have a larger effect on ˆ S 0 . This effect would
e strongest when using a large bandwidth with steep or strongly
nverted sources. The effect that sidelobes from other sources have 
s mitigated by the iterative nature of CLEAN -based deconvolution, 
hich involves ‘revisiting’ a pixel in later iterations. This does of

ourse not hold for noise and calibration artefacts. As a consequence, 
he use of forced-spectrum fitting requires a higher sensitivity and 
alibration quality compared to performing the same fit on an image 
ube outside of deconvolution. This is of course not so surprising,
iven that spectral deconvolution has to solve a more complex 
roblem. We will analyse the accuracy of deconvolution in Section 
 . 
To also force higher-order terms, such as spectral curvature, 

unction f in equation ( 5 ) can be changed to have the form of equation
 2 ) divided by 10 c 0 , i.e. 

 ( νi ) = 

n −1 ∏ 

i= 1 

10 c i log i 10 ( ν/ν0 ) , (6) 

here the product is o v er the number of terms, excluding the first
erm c 0 . This is a straightforward extension that will be investigated
n a future paper. 

Any kind of spectral index map can be used as input of the forced-
pectrum method: it can be extracted either from in-band data from
he same telescope, or by combining different bands from different 
nstruments. Moreo v er, smoothing can be applied to increase the
obustness of the spectral index estimates. Each map pixel should 
ave a spectral index value. This means that pixels from empty
egions of the sky need a spectral index value. Because such regions
ill not be cleaned (or at a very low level), an arbitrary value can
e assigned. For our testing purpose in Section 4 , we decide to
ssign α = −0.7, i.e. the typical value for radio sources emitting
y synchrotron radiation, to areas where no spectral index value 
as been extracted, because we still want to assign realistic prior
alues to any faint source that may not have been previously cleaned.
uch assumption is not strict and different observations may require 
if ferent v alues. Spectral information are then transferred from the
nput map to the output models, where each component in the model
atalogue will have the spectral index value of the map pixel where
ts coordinates lay. Such a physical model can be used for self-
alibration (see Section 4.2 ) or even to calibrate different data sets
ith accurate spectral information. 

.2.1 Behaviour of forced-spectrum for overlapping components 

n the forced-spectrum method, the spectral index of a component 
s assigned based on its central position. When MS deconvolution is
sed, extended components, such as Gaussians, will have a constant 
pectrum across their entire shape, determined from their central 
osition. As a consequence, the resulting spectral index of the model
ay not exactly follow the input spectral index map, and particular

rtefacts may arise when components o v erlap. An e xample case is
here one component at position A receives a spectral index αA and

nother nearby component at position B receives a different spectral 
ndex αB . If the shapes of the two components overlap, the model at
hat location becomes a (weighted) combination of the two spectral 
ndices at their centres. 

The result of such o v erlap is shown in Fig. 1 , where we consider
 Gaussian, with its peak at position A and spectral index αA , and a
oint component at position B with spectral index αB . This means
hat the forced-spectrum method assigns αB to the point component, 
ut the spectral index in B extracted by fitting a power law to the
odel images at different frequencies would be a mix of αA and αB .
he total flux density resulting in B is the sum of the contributions
f the Gaussian in that pixel, S G , and of the point component, S P . As
hown in the bottom panel of Fig. 1 , the sum of two power laws with
ifferent spectral indices is not a power law anymore. In Appendix B ,
e derive its expected slope α, which is a function of frequency that,
hen αA > αB , is bound in the range αA � α � αB . 
When component o v erlap occurs, the resulting spectral indices 

n the pixel-based output model images would not agree with the
pectral index map used as input in the forced-spectrum method. If
MNRAS 525, 3946–3962 (2023) 
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Figure 1. Example case of the o v erlap of a Gaussian (blue line), with the 
peak in A and spectral index αA , and a point component (orange line), located 
in B with spectral index αB . The top panel shows such overlap on the image 
space at a reference frequency ν0 , where the flux densities are S G and S P 
for the Gaussian and the point source, respectively. The bottom panel shows 
the spectra of the components in the o v erlapping position B, in a log–log 
space. The sum of the two components is plotted with the red line, which 
asymptotically tends to S P at low frequencies, with a slope α ≈ αB , and to 
S G at high frequencies, with a slope α ≈ αA . Where the single component 
spectra intersect, i.e. in νint , the slope of the sum is α ≈ ( αA + αB )/2. 
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Table 1. Observational details of the datasets. 

Parameter Value 

3C 196 a 4C + 55.16 

Telescope LOFAR HBA LOFAR HBA 

Project code LC14 020 LC14 019 
Antenna configuration HBA Dual Inner HBA Dual Inner 
Number of stations 75 (NL + IS b ) 28 (ST + RS + IS b ) 
Obs. start time (UTC) 2020 Oct 12; 20:30 2020 Nov 9; 23:41 
Phase centre (J2000): 
- Right Ascension 08 h 13 m 36 . s 07 08 h 34 m 54 . s 90 
- Declination + 48 ◦13 ′ 02 . ′′ 58 + 55 ◦34 ′ 21 . ′′ 07 
Duration of observation 8 h 8 h 
Frequency range 110–190 MHz 120–165 MHz 
Time resolution c 20 s 16 s 
Frequency resolution c 195 kHz 0.5 MHz 

a Measurement set into which we predicted 3C 196 simulations. 
b International station PL611 did not participate in this observation. 
c After flagging and averaging. 
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he cleaning is performed using only point components, for example,
sing the Cotton–Schwab algorithm, this issue is not present and
he spectral indices resulting from output models exactly match the
nput map. As we will show in Section 4 , the artefacts related to
 v erlapping components are minor compared to the advantages that
he combination of forced-spectrum and MS deconvolution provides.
n any case, it is important to keep this phenomenon in mind to fully
nderstand our results. 

 DATA  SETS  

n this section, we discuss the data sets used to test the forced-
pectrum method and compare it with traditional polynomial-based
tting. We use a simulated LOFAR high-band antenna (HBA)
bservation of the 3C 196 quasar (QSO) and a real observation of
he FRI radio galaxy 4C + 55.16. 

LOFAR (van Haarlem et al. 2013 ) is a low-frequency radio
nterferometer located in the north of the Netherlands and across
urope. It is constituted by two types of antennas: low-band antennas

LBA), which operate from 10 to 90 MHz, and high-band antennas
HBA), which operate from 110 to 240 MHz. These two antenna
ypes are grouped into stations. Currently, there are 24 core stations
CS; maximum baseline ∼ 4 km ) near the array centre, 14 remote
NRAS 525, 3946–3962 (2023) 
tations (RS; maximum baseline ∼ 120 km ) across the Netherlands,
nd 14 international stations (IS; maximum baseline ∼ 2000 km )
hroughout Europe. The international stations allow for very long
aseline interferometry (VLBI) observations. Each CS consists of
wo HB A sub-stations (HB A0 and HB A1) that can be used as
ndependent stations, increasing the number of short baselines and
onsequently providing a better uv -co v erage. Additionally, all of the
ore stations can be combined into a phased-up super-station (ST)
hat has a much higher sensitivity and a narrower field of view than
ndividual CS. This helps the calibration of international stations and
mpro v es the self-calibration, as well as reducing the data volume by
bout 80 per cent (Morabito et al. 2022 ). 

Both simulations and observations used in this work have been
btained using international stations, reaching sub-arcsecond reso-
ution. The observational details of the two data sets are reported
n Table 1 . All data processing and analysis is performed on the
awn high-performance computing cluster (Pandey et al. 2020 ) at

he University of Groningen. 

.1 Simulations of 3C 196 

o create complex and realistic simulated data, we take a high-
esolution bandwidth-integrated LOFAR model of the 3C 196 QSO
RA 08 h 13 m 36 . s 07, Dec. + 48 ◦13 ′ 02 . ′′ 58 in J2000; Spinrad et al. 1985 ;
 ̂ aris et al. 2014 ) to provide the spatial information, and apply
ifferent spectral indices to different parts of the image. The spectral
nformation is taken from a simple, older 4-component model of
he source, consisting of Gaussians whose position and shape are
eported in Table 2 together with the associated spectral index
t a reference frequency of 150 MHz. Despite the morphological
implicity of this model, its spectral indices are consistent with
he expected synchrotron emission (Lonsdale & Morison 1980 ).
he source has been divided into two hotspots, northern (N) and
outhern (S), and two lobes, eastern (E) and western (W), as shown
ith the dashed contours in Fig. 2 . The high-resolution model was
btained from a joined deconvolution of LOFAR–VLBI HBA-mid
116–171 MHz) and HBA-high (230–244 MHz) observations taken
n 2016, using MS–MF deconvolution. The model consists of 2812
omponents (1369 point components and 1444 Gaussians), each one
ith an unphysical spectral index because of the third-order ordinary
olynomial fitting performed during the MF deconvolution. For this
eason, we replace the spectral indices of the complex model with
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Table 2. Position (RA and Dec. in J2000), spectral index α at 150 MHz, and 
shape (major and minor axes, and position angle) of the Gaussians of the 
4-component model. The position angle (P.A.) is defined relative to the north 
of the image and not relative to the ‘true’ north. 

Component RA Dec α Major axis Minor axis P.A. 
(arcsec) (arcsec) (deg) 

Hotspot S 08 h 13 m 35 . s 925 48 ◦13 ′ 00 . ′′ 061 −0.572 1.476 1.091 135.27 
Lobe W 08 h 13 m 35 . s 772 48 ◦13 ′ 02 . ′′ 507 −0.973 2.738 1.754 93.30 
Hotspot N 08 h 13 m 36 . s 182 48 ◦13 ′ 04 . ′′ 725 −0.557 1.034 0.248 124.03 
Lobe E 08 h 13 m 36 . s 389 48 ◦13 ′ 02 . ′′ 735 −0.840 1.456 2.159 324.58 
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hose from the simple model, by linear interpolation of the spectral 
ndices between the centres of the four Gaussian components. 

We then render the composite model at two different frequencies, 
sing a pixel scale of 30 × 30 mas , to extract a pixel-by-pixel
pectral index map, using equation ( 3 ). During this operation, we
nly consider pixels brighter than 0 . 40 mJy beam 

−1 . Since point 
omponents generate pixel-scale structures in the spectral index map, 
e convolve the rendered model images by a circular Gaussian filter
ith σ = 5 pixels to obtain a smoother map: the resulting spectral 

ndices span a range between αmin = −0.96 and αmax = −0.56. The 
esult is a realistic complex simulated ground-truth model, shown 
n Fig. 2 , which is then used to test our forced-spectrum fitting
pproach. A gradient between the four regions is visible in the pixel-
ased spectral index map (right-hand panel), due to overlapping 
aussians, as explained in Section 2.2.1 . The ground-truth model of
C 196 has been generated in the same way that the forced-spectrum
ethod works, namely assigning spectral indices to each component 

ccording to its central position. 
From the (non-smoothed) ground-truth model, we generate vis- 

bilities. We use a realistic uv -co v erage by predicting the model
atalogue into a LOFAR measurement set, phase-rotated to the 
osition of 3C 196. It is an 8 h HBA observation co v ering 110–
igure 2. Rendered image of the 3C 196 simulated model at 143 MHz (left) and 
mages. The Gaussians of the simple 4-component model are plotted as dashed e
ontours in the right figure indicate the model image after the deconvolution with
tarting at 0 . 40 mJy beam 

−1 . The colour scale of the spectral index map spans in th
90 MHz. All core, remote, and international stations are included 
o achieve the resolution required to resolve the fine structure of
C 196. The time and frequency resolutions are 20 s and 195 kHz,
espectively. The prediction is performed by DP3 . Any flags present
n the original measurement set have been remo v ed to ensure the best
v -co v erage possible. 
Finally, we add white noise to each visibility by using the

adiometer equation (e.g. Thompson, Moran & Swenson 2017 ): 

vis = 

SEFD √ 

2 �t�ν
, (7) 

here SEFD is the system equi v alent flux density, �t = 20 s is
he integration time of a single visibility and �ν = 195 kHz is the
requenc y channel width. F or the sake of simplicity, we assign to
ach visibility an av erage SEFD giv en by a baseline constituted by
nly core stations, i.e. SEFD = 3 . 3 kJy (van Haarlem et al. 2013 ).
his value has been increased by 10 per cent to take into account
rojection effects that can reduce the ef fecti ve collecti ve area of the
ntennas when observing away from the zenith. We then find a per-
isibility noise level of σvis = 1 . 2 Jy . The results of applying the
orced-spectrum method to the simulated data set of 3C 196 will be
iscussed in Section 4.1 . 

.2 4C + 55.16 obser v ations 

n addition to the simulated observation, we use the FRI radio
alaxy 4C + 55.16 (RA 08 h 34 m 54 . s 90, Dec. + 55 ◦34 ′ 21 . ′′ 07 in J2000;
ilkington & Scott 1965 ; Charlot et al. 2020 ), because it has
oth diffuse and compact emission regions in its lobes and core.
e use an 8 h LOFAR–VLBI HBA observation, that have been

rocessed and calibrated by Timmerman et al. ( 2022b ). The data set
o v ers 120–165 MHz, with 16 s and 0.5 MHz of time and frequency
esolutions, respectively. All core stations have been phased-up 
MNRAS 525, 3946–3962 (2023) 

the ground-truth spectral index map (right) as obtained from the smoothed 
llipses in the left image, with sizes and names as reported in Table 2 . The 
 the Gaussian kernel, and they increment in a geometrical progression of 2, 
e range −0.96 ≤ α ≤ −0.56. 
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Figure 3. Inte grated deconvolv ed image of 4C + 55.16 at 143 MHz (left) and forced-spectrum input spectral index map (right). The image noise is σ = 

80 μJy beam 

−1 . Contours in the right figure are drawn from the integrated image and increment with a factor of 2, starting at 20 σ . Spectral index values are 
extracted from a weighted average of the source brightness within four regions: α = 1.74 for the core, α = −0.72 for the lobe S, α = −0.90 for the lobe N, and 
α = −1.02 for the surrounding low-brightness emission. 
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nto a virtual super-station during the calibration of international
tations. This operation reduced the field of view of the array from
2 ◦ to ∼1 . 5 arcmin , which is sufficient because the source is only
18 arcsec in size. 
4C + 55.16 has a total flux density of 8.7 Jy at 143 MHz, dominated

y the diffuse emission from its lobes that accounts for approximately
0 per cent of the the total emission, while the remaining 40 per cent
s concentrated in the core. The core consists of two components
ith an angular separation of 160 mas, both with inverted spectra ( α
 0) in the HBA frequency range, but with different spectral indices

Whyborn et al. 1985 ). This, combined with a steep synchrotron
mission from the lobes, produces an integrated spectral index α =
0.02 between 143 MHz and 1.4 GHz – as observed by the VLA.
he two core components are not completely resolved by LOFAR,
ut the angular separation is comparable to the angular resolution
t the higher frequencies of the observed band. This makes the
hase calibration challenging and less accurate, generating imaging
rtefacts especially when uniform weighting is used. Strong residual
idelobes are observed when MF weighting is not used. To solve
his issue, we performed several self-calibration iterations using
odels from the MS–MF deconvolution of WSCLEAN , fitting a third-

rder ordinary polynomial function through the output channels.
e also normalize the total flux density to the kno wn v alue of

.7 Jy at 143 MHz using a power law with α = −0.02. Images are
ade with a pixel scale of 25 × 25 mas , using uniform weighting
ithout MF weighting, resulting in an integrated synthesized beam
f 254 . 7 × 183 . 6 mas when 92 output channels are used. We refer the
eader to Appendix C for more details about the self-calibration step.

The next step is to extract a spectral index map that we can use
n the forced-spectrum method. We make images to extract the in-
and spectral index map for the forced-spectrum method. We use
he same WSCLEAN settings as before, except we do not use any
ind of fitting because we want the 92 channels to be completely
NRAS 525, 3946–3962 (2023) 
ndependent. Using fewer output channels can speed up the fitting
rocess and lower the noise per channel. However, we are currently
ot limited by computational power and the dynamic range of each
mage is high enough ( > 3000). Therefore, we can image each of
he 92 narrow channels independently. This minimizes any bias
hat would occur during the frequency averaging due to non-linear
pectral curvature o v er the av eraged channel width. In addition, we
pply a circular Gaussian taper with a full width at half-maximum
FWHM) of 250 mas, to make sure that the two core components
re not resolved, and we set a circular beam with a size of 300 mas
or restoring the clean components at the end of the deconvolution,
o have the same resolution over the full bandwidth. Decreasing the
esolution with the Gaussian taper increases the image noise, which
oes from 67 μJy beam 

−1 after the last self-calibration iteration (see
ppendix C ) to 80 μJy beam 

−1 for the obtained integrated image at
43 MHz, shown in the left-hand panel of Fig. 3 . 
As in Section 3.1 , we consider only the brightest emission of the

ource for the spectral index extraction, removing all the pixels less
right than 20 σ . Unfortunately, the uv -co v erage is reduced when
maging the 92 channels of only 0.5 MHz bandwidth, which causes
trong sidelobes. While these sidelobes are not a problem for the
elf-calibration, because we can set a high cleaning thresholds to not
nclude them in the cleaned model, they strongly affect the pixel-
ased in-band spectral indices of low surface brightness regions.
e thus develop a clustering method to generate in-band spectral

ndex maps. This is based on dividing the source into regions (or
lusters) where the emission spectrum is assumed to have the same
lope, and assigning the same spectral index to each pixel within a
ertain re gion. F or 4C + 55.16, we divide the source into three regions:
he core, the northern (N), and the southern (S) lobes. These have
een initially identified by the pixels with brightness higher than
0 σ in the integrated image of Fig. 3 and then shaped with small
djustments made by hand. In this case, we have performed these
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djustments to remo v e a visible sidelobe artefact from the spectral
ndex map area. These changes do not make a significant difference 
n the results, because the intensity of the image is low at the place of
hese changes. As a general procedure, it is probably preferred to not
ake such manual changes, as they may lead to a bias towards what

ne expects. A fourth region is added to represent the surrounding
ow brightness emission between 20 σ and 80 σ . 

We then e v aluate the weighted mean of the brightness I within
ach region and per frequency channel, weighting each value by 
tself, i.e. 

 reg ( ν) = 

∑ 

i I i ( ν) 2 ∑ 

i I i ( ν) 
, (8) 

here the sum is o v er the number of pixels of the given region.
his kind of average combines more information and reduces the 
ontribution from the fainter components that are most affected by 
econvolution artefacts. The spectral indices for each region are 
nally calculated from the non-linear least-squares fitting of equation 
 3 ), where both S ( ν0 ) and α are e v aluated at ν0 = 150 MHz . In our
ase, we can directly use the brightness I (units of Jy beam 

−1 ) instead
f the flux density S (units of Jy) because the beam size is the same
or ν and ν0 . The resulting spectral index map is shown in the right-
and panel of Fig. 3 , where α = 1.74 for the core, α = −0.72 for the
obe S, α = −0.90 for the lobe N, and α = −1.02 for the surrounding
ow brightness emission. This is the map that we use as input of the
orced-spectrum method. 

 RESULTS  

n this section, we test the forced-spectrum method on the simulated 
C 196 and the observed 4C + 55.16 data sets described in Section 3 .

.1 Results from simulated 3C 196 obser v ation 

o be sure that our forced-spectrum method really generates models 
ith physical spectral information, we start testing it with the 

imulated 3C 196 data set for which we have constructed a ground-
ruth spectral index map. We make uniform-weighted images of the 
ata with the same pixel scale and size of the ground-truth spectral
ndex map. We take advantage of both MS and MF deconvolution, 
plitting the full bandwidth into 80 channels, each ∼1 MHz , but 
urning off the MF weighting, similar to Section 3.2 . We generate
our sets of images with different spectral fitting settings: 

(i) first-order ordinary polynomial 
(ii) second-order ordinary polynomial 
(iii) third-order ordinary polynomial 
(iv) forced-spectrum fitting, using the smoothed ground-truth 

pectral index map as input. 

All runs produce an image cube, together with a model and a
esidual image for each of the 80 channels. We extract spectral 
ndex maps from these output models: unlike in Section 3.1 , we
o not smooth the images, because we want to measure the actual
pectral index value that each clean component has – even if it is
ot fully possible when non-point components are used and hence 
 v erlapping occurs, as explained in Section 2.2.1 . The extraction
s performed as usual, fitting each pixel with the power law of
quation ( 3 ) at ν0 = 150 MHz , and considering only pixels within
he 0 . 40 mJy beam 

−1 contour level of Fig. 2 . While the deconvolved
mages look similar, the output spectral index maps and residuals are 
ery different, as shown in Fig. 4 . It is clear that spectral indices
 v aluated from ordinary polynomial-fitted models are inaccurate 
hen compared to the ground-truth spectral index map. Looking 
or instance at hotspot N, we note that Gaussian components in the
entre have much steeper spectra than the initial model. Due to the
ature of the CLEAN algorithm, such errors cause higher spectral 
ndex values for point components in the same region, resulting in
n average value that is ultimately consistent with Table 2 in such
 region. In other words, errors during the deconvolution lead to
ndividual components with extreme spectral indices for which the 
patially integrated flux matches with the data. 

With the forced-spectrum method, the produced spectral index 
ap is much closer to the ground-truth (top-right-hand panel of 
ig. 4 ) – even if they do not exactly match when a pixel-based
omparison is performed. This is also evident in Fig. 5 , where the
ixel distribution of each spectral index map is plotted. The left-hand
anel shows the number of pixels with a given spectral index value,
inned into bins of 0.01 wide; the right-hand panel shows the pixel-
y-pixel difference of ordinary polynomial and forced-spectrum 

pectral indices, labelled α, with the ground-truth ones, labelled αGT , 
inned into bins of 0.02 wide. While the left histograms describe the
eneral trend of the output spectral indices with respect to the ground- 
ruth map, the right plot tells us whether α of a given pixel matches
GT of the same pixel, giving an approximate estimate of the fitting
rror. The ground-truth (grey area in left-hand panel) and the forced-
pectrum counts (red line in both panels) have been divided by five to
ake the comparison with ordinary polynomial-fitted values easier, 

nd all the ordinary polynomial fitting histograms have been averaged 
nto a single distribution in the right-hand panel. The gradient due to
 v erlapping components in the extracted ground-truth map is visible
n the left-hand panel as single-sided lobes in the grey distribution.
urthermore, when many components overlap, as for lobe W, peaks 
f the distribution are shifted with respect to the spectral index values
f the four components of 3C 196, marked by the vertical dashed
ines. These features occur also for ordinary polynomial and forced- 
pectrum fitting histograms. Ordinary polynomial fitting of any order 
enerates spectral indices widely spread outside the expected range 
nd with no clearly defined peak. On the other hand, the forced-
pectrum distribution follows the ground-truth well. 

The minimum and the maximum spectral indices are provided in 
able 3 for each fitting method. Considering the full range of the
istributions, outlier values increase with the order of the ordinary 
olynomial. Examining the 95th percentile of the distribution, we 
otice that forced-spectrum values ( −0.95 ≤ α ≤ −0.57) agree 
ith the ground-truth ones ( −0.96 ≤ α ≤ −0.57), while ordinary 
olynomial-fitted spectral indices are outside the expected range. 
his is confirmed by the right plot of Fig. 5 , where the ordinary
olynomial fitting histogram reaches values of | α − αGT | ≈ 0.4, 
hile, for forced-spectrum, it is confined in the range | α − αGT | �
.1, with a sharper peak around zero. 
Fig. 4 also shows residual images obtained from the cleaning 

t the lower, middle, and higher channels, centred at 110.4, 149.4,
nd 189.5 MHz, respectively. First-order ordinary polynomial fitting 
enerates the largest residuals due to deconvolution errors, with 
trong positive emission at the edges of the frequency band and
e gativ e emission in the middle. This is not surprising because such
ind of fitting models the source spectrum with a straight line, while
t is a power law by simulation. The residual standard deviation as
 function of frequency is shown in the left-hand panel of Fig. 6 ,
here the blue line demonstrate the just described behaviour for the
rst-order ordinary polynomial function: being high at the edges and 

n the middle of the band means that the model does not properly
eproduce the spectral features of the 3C 196 simulation. On the
ther hand, the level of the residuals decreases when higher order
MNRAS 525, 3946–3962 (2023) 
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Figure 4. Results from deconvolution with different fitting methods of simulated data of 3C 196. From left to right: results from first, second, and third-order 
ordinary polynomial fitting, and forced-spectrum fitting. From top to bottom: spectral index maps from output models, and residual images of the lower, middle, 
and higher channels, centred at 110.4, 149.4, and 189.5 MHz, respectively. The colour scale of spectral index maps is based on the smoothed ground-truth values 
to make the comparison easier; ho we ver, v alues from ordinary polynomial fits can be outside that range, as shown in Fig. 5 and in Table 3 . On the other hand, 
spectral indices obtained from the forced-spectrum method are similar to the expected values, with only few outlier pixels. The dashed contours superimposed 
on the residual images indicate the 0 . 40 mJy beam 

−1 contour level of Fig. 2 . 
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rdinary polynomials are used, because curved lines fit a power
aw more accurately. The standard deviation is extracted from the
egion where the source has a brightness higher than 0 . 40 Jy beam 

−1 

superimposed as dashed contour in Fig. 4 ). In Fig. 4 , especially
t 110.4 MHz, we see that second-order ordinary polynomial fitting
eaves high residuals in the hotspots and in lobe E, where many point
omponents are present, while a third-order ordinary polynomial
ore accurately models those components, leaving more uniform

esiduals. The forced-spectrum method (red line) generates the most
niform and lowest residuals, almost hitting the noise level (black
ashed line) at every frequency. Such image noise has been extracted
rom a Stokes V image and has a frequenc y-av eraged value of σ =
 . 65 mJy beam 

−1 . The standard deviation of the forced-spectrum
NRAS 525, 3946–3962 (2023) 
esiduals is on average 1.3 and 1.2 times lower than second and third-
rder ordinary polynomials, respectively, and 2.0 times lower than
rst-order ordinary polynomial (up to 5.7 times lower at 110.4 MHz).

.1.1 Self-calibration with second-order ordinary polynomial and 
orced-spectrum models 

o test the capabilities of the forced-spectrum output model to im-
ro v e calibration, we compare the difference between self-calibration
ith and without the forced spectrum method. The self-calibration is
erformed with settings that are quite common for LOFAR data
ets. In particular, we solve for the diagonal gains of the Jones
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Figure 5. Pixel distributions of the spectral index maps shown in Fig. 4 (left) and of their difference with the non-smoothed ground-truth ( αGT ) map (right). 
First (blue), second (orange), and third-order (green) ordinary polynomial fitting distributions are plotted in comparison with the forced-spectrum (red) and the 
ground-truth (grey area) ones. In the right-hand panel all the polynomial fitting histograms have been averaged into a single distribution (purple). Histograms 
are obtained by binning spectral indices into bins of 0.01 and 0.02 wide in the left- and right-hand panel, respectiv ely. F orced-spectrum and ground-truth values 
have been divided by 5 to make the comparison with polynomial distributions easier. Vertical black dashed lines mark the spectral indices of the four components 
of 3C 196, as reported in Table 2 . 

Table 3. Minimum ( αmin ) and maximum ( αmax ) values of the spectral index 
maps obtained from simulated data of 3C 196 for each of the fitting method 
and for the non-smoothed ground-truth. Both full pixel distribution and 95th 
percentile ranges are provided. Only pixels within the 0 . 40 mJy beam 

−1 

contour level of Fig. 2 are considered. 

Fitting method Full range 95 th percentile 

αmin αmax αmin αmax 

first-order ordinary pol. − 8 .94 12 .01 − 1 .28 − 0 .34 
second-order ordinary pol. − 16 .05 19 .69 − 1 .36 − 0 .39 
third-order ordinary pol. − 25 .30 44 .31 − 1 .37 − 0 .37 
forced-spectrum − 5 .47 4 .08 − 0 .95 − 0 .57 
ground-truth − 8 .80 0 .44 − 0 .96 − 0 .57 
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atrices (i.e. the X and Y gain factors) for each channel and time
ntervals (i.e. one solution every 195 kHz and 20 s), and calibrate
oth phase and amplitude. Without the forced spectrum method, 
he spectral information used for calibration is obtained during the 
econvolution, using second-order ordinary polynomial fitting. The 
alibrated measurement sets are imaged with the same settings as 
efore, and the forced-spectrum fitting is again performed with the 
moothed ground-truth spectral index map of Fig. 2 . 

The results are shown in the right-hand panel of Fig. 6 , where
he standard deviation of the residuals, labelled σ cal , is subtracted 
requenc y-by-frequenc y from the uncalibrated one, labelled σ uncal , 
lotted in the left-hand panel. Whereas σ cal > σ uncal means that the 
alibration degrades the image quality, σ cal < σ uncal does not nec- 
ssarily mean the opposite, because our already-perfectly simulated 
ata can not be impro v ed by calibration. When this happens, it is
ikely that the true sky signal or noise is absorbed into the calibration
ains. 

The second-order ordinary polynomial calibrated data show an 
 v erall de gradation, especially at low frequencies with first-order
rdinary polynomial fitting. Forced-spectrum residuals have σ cal 

 σ uncal because we are fitting a power law to data that follow a
arabolic curve after the self-calibration step. The line for second- 
rder ordinary polynomials oscillates around σ uncal − σ cal = 0: 
orcing spectral behaviour that is not intrinsically in the data increases 
econv olution errors, lea ving such spectral features in the residuals.
his demonstrates the need to calibrate with the best possible model,
hich must be both spatially and spectrally accurate. Using the 

orced-spectrum model for the calibration leaves residuals almost 
naf fected, e ven if some oscillations are visible because some signal
bsorption into gains occurs during the calibration. 

.2 Results from 4C + 55.16 obser v ation 

e test the forced-spectrum method on real observed data to 
nderstand how it works when systematics, such as calibration errors, 
re present. We chose 4C + 55.16 as test case, whose self-calibration
nd spectral index extraction have been described in Section 3.2 .
e make images following the same procedure used for the 3C 196

imulation in the previous section, but split the bandwidth into 92
hannels as we did for the latest self-calibration steps of 4C + 55.16.
e make a set of images with the first, second, and third-order

rdinary polynomial fits, that we compare to the forced-spectrum 

ethod using the spectral index map of Fig. 3 . 
In this section, we will discuss two different results from 

C + 55.16: results before and after an extra self-calibration step.
o distinguish between the earlier self-calibration steps that were 
erformed, we will refer to this step as the ‘final’ self-calibration step.
he final self-calibration step is performed using the model obtained 

rom the forced-spectrum deconvolution. This will therefore also test 
hether the use of a forced-spectrum model may impro v e calibration.

.2.1 Before final self-calibration 

e will start by discussing the results before the final self-calibration.
s explained in Section 2.2.1 , in the model catalogue (an example

rom 4C + 55.16 is provided in Appendix A ), each component has the
 xpected spectral inde x from the input map based on its coordinates,
ecause components are listed with their central position and spectral 
ndex in the model catalogue. Ho we ver, the residuals from the
orced-spectrum method are higher than those from the ordinary 
olynomial fits. The standard deviation of the 92 residual images are
hown in the left-hand panel of Fig. 7 for the four fitting methods,
xtracted from the 20 σ contour level of Fig. 3 after smoothing
MNRAS 525, 3946–3962 (2023) 
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Figure 6. Standard deviation of residuals obtained from deconvolution of initial ( σ uncal ) simulated 3C 196 data (left) and its difference with the standard 
deviation after a self-calibration step ( σ cal ) using different models (right). Different fitting methods have been used: first (blue), second (orange), and third-order 
(green) ordinary polynomial functions, and forced-spectrum fitting (red). In the right-hand panel, the self-calibration has been performed with the second-order 
polynomial (dashed lines) and forced-spectrum (solid lines) models obtained from the deconvolution of the initial data. Image thermal noise is drawn in the 
left-hand panel with a black dashed line. Only residuals within the dashed contours as Fig. 4 are used. 

Figure 7. Standard deviation of smoothed residuals obtained from deconvolution of 4C + 55.16 data before (left) and after (right) the last self-calibration using 
the forced-spectrum model. First (blue), second (orange), and third-order (green) ordinary polynomial functions, and forced-spectrum fitting (red) are shown. 
The hatched areas mark the frequencies excluded from the analysis (we consider the range 125–160 MHz). Only residuals within the 20 σ contour level of Fig. 3 
are used. 
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sing a circular Gaussian kernel with an FWHM of 500 mas. 14 This
educes the contribution of high resolution errors that arise because
he cores are inaccurately modelled; since these are caused by
he fundamental resolving resolution of the instrument and not by
he spectral modelling, we do not want our residual images to be
ominated by those errors. Residuals are higher at the band edges
ecause fitting is less accurate here. For this reason, we will focus
ur analysis only on the range 125–160 MHz. Third-order ordinary
olynomial fitting results in the lowest residuals. This may be caused
y the previous self-calibration steps, where we used models obtained
y fitting ordinary polynomial functions of such order. Ho we ver,
he other ordinary polynomial results show comparable residuals,
NRAS 525, 3946–3962 (2023) 

4 We remo v ed the output channels centred at 136.08, 140.97, and 164.40 MHz 
ecause of bad image quality due to interference at these frequencies. 

M  

g  

f  

b  
specially at frequencies higher than 146 MHz , in contrast to what
e have seen in the simulations (see Fig. 6 ). First-order ordinary
olynomial fitting has the largest residuals, which are on average
.3 times higher than other ordinary polynomial fitting methods, up to
.5 times higher at 139.0 MHz. Such small differences highlight how
igher-order ordinary polynomial fits do not significantly impro v e
esiduals when systematics are present in the data (Offringa et al.
016 ). 
Unlike in our simulations, the forced-spectrum method produces

igher residuals. They are on average 2.1 times higher than third-
rder ordinary polynomial fitting, with differences getting larger
oward both ends of the band, and is 4.2 times higher at 159.5 MHz.

ost of such excess residual power comes from the core re-
ion, which switches from positive to negative residual brightness
rom low to high frequency. The (smoothed) maximum residual
rightness is 6 . 6 mJy beam 

−1 at 125.3 MHz, while the minimum
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s −11 . 1 mJy beam 

−1 at 159.5 MHz. Since α > 0 for the core, this
eans that the spectral index estimated for the core is too high. In the

ange 145–150 MHz, the forced-spectrum is comparable to ordinary 
olynomial fitting. Furthermore, the excess residual power becomes 
tronger at higher frequencies. Part of this might be explained by the
ntrinsic double nature of the core, which we modelled as a single
omponent with a single spectral index value, while we know that 
he two components have different spectral signatures. 

.2.2 After final self-calibration 

e will now discuss the results after the final self-calibration. This
tep is performed using the forced-spectrum output model, solving 
or the diagonal gains of the Jones matrices for each channel and time
ntervals (i.e. one solution every 0.5 MHz and 16 s), and calibrating
oth phase and amplitude. We make new sets of images, still using
he initial input map for the forced-spectrum fitting. 

The final results are summarized in Fig. 8 . The top row shows
he spectral index maps directly extracted (i.e. with no smoothing) 
rom the output models for the four fitting methods, considering 
nly pixels within the 20 σ contour level of Fig. 3 , this time matching
hat we have found from the simulations: forced-spectrum method 
enerates more spectrally accurate models than ordinary polynomial 
ts. Ordinary polynomial-fitted models deviate from the expected 
alues especially at the edges of the source, where the signal to noise
s lower. This happens because images in those regions are dominated 
y calibration and deconvolution artefacts, which can be picked up 
s clean components during deconvolution. The spectral index of 
he core is a combination of point components and Gaussians. For
ome of these Gaussians, their centres fall into the lobes N and S.
he extracted spectral index from this underlying diffuse emission 

s therefore an average between the values of the lobe N and lobe S
or the forced-spectrum output models (see Section 2.2.1 ). 

Pixel distributions of the spectral index maps are shown in Fig. 9 .
he left-hand panel shows the number of pixels with a given spectral

ndex value, whereas the right-hand panel shows the pix el-by-pix el 
ifference of ordinary polynomial and forced-spectrum spectral 
ndices, labelled α, with the input ones, labelled αinput , both binned 
nto bins of 0.04 wide. Input map (grey area in the left-hand panel)
nd forced-spectrum counts (red histograms in both panels) have 
een divided by 4 in the left-hand panel and by 8 in the right-hand
anel, where all the ordinary polynomial fitting histograms have been 
veraged into a single distribution (purple histograms). Furthermore, 
he right-hand panel shows two kind of distributions for each fitting 

ethod: empty histograms represent pixels with S ( ν0 ) > 80 σ (i.e.
ore and lobes regions of Fig. 3 ), while full histograms represent
ixels with 20 σ < S ( ν0 ) < 80 σ (i.e. surrounding low brightness
mission), where σ = 80 μJy beam 

−1 . The forced-spectrum method 
enerates spectral indices that agree well with the input map, while 
rdinary polynomial fits generate values with a larger spread, with | α
αinput | ≈ 0.7 for the core and lobes regions, reaching differences 

igher than 1 for the low brightness emission. Ordinary polynomial 
ts tend to generate α > αinput in low brightness regions, while α < 

input in high brightness ones. This is also visible in Table 4 . 
Modelling the core with only a few point components causes a 

maller peak at the input spectral index value, since most of the core
ixels contains the diffuse emission described above. This generates 
mall gradients in the forced-spectrum histogram between the three 
ain peaks. Ho we ver, such gradients are mainly due to the leaking

f the Gaussian components of the lobes into the surrounding low- 
rightness re gion. Man y pix els from this re gion take the spectral
ndex values of lobe N and lobes S, resulting in a number of pixels
ith those values higher than the input ones. The right-hand panel

learly shows this effect: for fluxes lower than 80 σ , two peaks arise
t α − αinput = 0.12 and 0.30. Since αinput = −1.02 in this region, we
eco v er α = −0.90 and −0.72, which are the input values for lobe N
nd lobes S, respectively. 

Residual images are also shown in Fig. 8 , obtained from a low,
iddle, and high channels, centred at 125.3, 145.8, and 159.5 MHz,

espectively. As before the final self-calibration, we smooth the 
mages with a circular Gaussian filter with an FWHM of 500 mas.
ooking at the residuals within the dashed contour line, representing 

he 20 σ level, it is evident that differences between the four fitting
ethods are negligible in the lobe regions, but not in the core. Resid-

als from the forced-spectrum fitting still show an excess brightness 
hat is positive at low frequency and ne gativ e at high frequency,
ecoming comparable to second and third-order ordinary polynomial 
ttings in the middle of the band. Ho we ver, the self-calibration has
educed the maximum and minimum residual brightness at 125.3 and 
59.5 MHz by a factor of ∼6, which now are 1.2 and −1 . 9 Jy beam 

−1 ,
espectively. Extracting the standard deviation as we did for the left-
and panel of Fig. 7 , we see that the differences are almost negligible
etween all the fitting methods, as shown in the right-hand panel of
ig. 7 . Forced-spectrum residuals are on average only 1.1 times
igher than third-order ordinary polynomial residuals, which are the 
owest o v er most of the band. The strongest dif ference is to ward the
igh-end of the band, and is of the order of 30 per cent. As expected,
rst-order ordinary polynomial fitting generates the highest residuals 

n the middle of the band, because a straight line fails to fit a power
aw. Ho we ver, e ven in this case, the difference is just 24 per cent
ith the third-order ordinary polynomial. In addition, the o v erall

tandard deviation is lower than before the final self-calibration. 
his means that self-calibrating with the models obtained from the 

orced-spectrum fitting impro v es the o v erall data quality, especially
t the low-end of the band. 

 DI SCUSSI ON  A N D  C O N C L U S I O N S  

n this paper, we have presented a novel method – implemented 
n WSCLEAN – for generating sky models with physical spectral 
nformation, by taking advantage of previously created spectral index 

aps. While the method itself does not generate spectral index 
nformation, it allows for the decomposition of convolved data into 
omponents. This produces a model that closely matches the data 
nd can be used for further calibration or source subtraction. The
nput spectral index map is used inside the multifrequency (MF) and

ultiscale (MS) CLEAN algorithm, and constrains the spectral index 
erm of every found component. As a consequence, only a single
caling factor must be calculated through a modified-weighted linear 
east-squares fit (Section 2.2 ). Thus, the forced-spectrum method 
educes inaccuracies that are common in typical MF fitting methods, 
articularly for observations with small bandwidth, and generates 
ccurate spectral models directly during the deconvolution. Any type 
f spectral index map can be used, whether from multi-instrument 
bservations or in-band data, providing flexibility in how the spectral 
nformation that is transferred into the sky model is determined. 
ecause the forced-spectrum method assigns the spectral index to 
ach cleaned component based on its central position, inaccuracies in 
he pixel-based spectral index maps may result when extended (i.e. 
aussian) components o v erlap (Section 2.2.1 ). This spectral inde x
ixing primarily affects the low-brightness parts of a source and 

enerates gradients between regions with different spectral indices. 
he o v erlapping issue can be a v oided using CLEAN algorithms that
MNRAS 525, 3946–3962 (2023) 



3958 E. Ceccotti et al. 

M

Figure 8. Deconvolution results of 4C + 55.16 data with different fitting methods after final self-calibration using forced-spectrum output models. From left 
to right: results from first, second, and third-order ordinary polynomial fitting, and from the forced-spectrum fitting. From top to bottom: spectral index maps 
from output models, and residual images of a low, middle, and high channels, centred at 125.3, 145.8, and 159.5 MHz, respectively, a v oiding the edges of the 
observed band. Residuals images have been smoothed by a circular Gaussian kernel with an FWHM of 500 mas to enhance the strong features. The colour scale 
of spectral index maps is the same of Fig. 3 to make the comparison easier with the forced-spectrum input map; ho we ver, v alues from ordinary polynomial fits 
can be outside that range, as shown in Fig. 9 and in Table 4 . On the other hand, spectral indices obtained from the forced-spectrum method are similar to the 
expected values with only few outlier pixels. The dashed contours superimposed on the residual images indicate the 20 σ level of Fig. 3 . 
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re only based on point components, but the benefits of using the MS
econvolution outweigh this minor issue. 
We also demonstrate a clustering method for extracting spectral

ndices from in-band observations (Section 3.2 ). The use of MF
econvolution in such observations often generates output channel
mages that are dominated by calibration and deconvolution errors,

aking it challenging to determine accurate spectral indices. To
 v ercome this, in the clustering method, we divide the source into
 certain number of regions, calculate the weighted average of the
rightness within each re gion, and e xtract the spectral indices. This
educes the effect of systematics. 
NRAS 525, 3946–3962 (2023) 

s  
Spectrally forced imaging provides a new tool that can be used to
mpro v e generic MF imaging. We have focused our testing on the
maging of individual non-varying sources. We have not yet tested
ide-field imaging or deconvolution of transients and point sources.
he method may impro v e results for those use-cases as well, but it is

ikely that its strength lies in the modelling of individual, persistent,
nd resolved sources that are relatively challenging to model. 

The forced-spectrum method works well in combination with the
F–MS deconvolution of WSCLEAN when a model catalogue is also

enerated. Since such a model is not limited by the pixel scale,
t can be used to save high-resolution models of calibrators and
trong sources that could be used by different experiments, reducing
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Figure 9. Pixel distributions of the spectral index maps shown in Fig. 8 (left) and of their difference with the input ( αinput ) map (right). First (blue), second 
(orange), and third-order (green) ordinary polynomial fitting distributions are plotted in comparison with the forced-spectrum (red) and the input map (grey 
area) ones. In the right-hand panel, all the polynomial fitting histogram have been averaged into a single distribution (purple). Here, empty and filled histograms 
respecti vely sho w distributions of pixels with flux density higher and lower than the 80 σ level of Fig. 3 . The histograms are obtained by binning spectral indices 
into bins of 0.04 wide in both panels. Forced-spectrum and input map values have been divided by 4 in the left-hand panel and by 8 in the right-hand panel, to 
make the comparison with polynomial distributions easier. 

Table 4. Minimum ( αmin ) and maximum ( αmax ) values of the spectral index 
maps obtained from the final self-calibrated data of 4C + 55.16 for each of 
the fitting methods. Both full pixel distribution and 95th percentile ranges are 
provided. Only pixels within the 20 σ contour level of Fig. 3 are considered. 

Fitting method Full range 95 th percentile 

αmin αmax αmin αmax 

first-order ordinary pol. − 12 .27 24 .64 − 1 .82 − 0 .11 
second-order ordinary pol. − 24 .26 49 .38 − 1 .70 − 0 .31 
third-order ordinary pol. − 29 .48 54 .34 − 1 .96 0 .21 
forced-spectrum − 1 .20 2 .92 − 0 .99 − 0 .72 
input map − 1 .02 1 .74 − 1 .02 − 0 .72 
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he required data volume. Providing well-moti v ated external spectral 
nformation into such models is crucial for high-resolution and wide- 
eld interferometers operating at low-frequencies, such as LOFAR 

nd the upcoming SKA-Low 

15 (Dewdney et al. 2009 ; Braun et al.
019 ), which have the capability to generate images ∼100 000 pixels
n size. 

Results from both simulations (Section 4.1 ) and real observations 
Section 4.2 ) have shown an impro v ement with respect to typical
rdinary polynomial fitting methods, which generate inaccurate 
pectral indices, especially for faint sources. Promising results are 
lso observed in the residual images, which appear more uniform 

nd lower in magnitude in the simulations. On the other hand, real
bservations are dominated by other systematics, such as calibration 
nd deconvolution errors. These can be o v erfitted and absorbed by
igh-order ordinary polynomial fits – into incorrect spectral indices –
nd eventually produce better residuals than forced-spectrum fitting, 
hich does not allow the same freedom and such systematic spectral 

eatures are visible in the residual images. Despite this, we have 
hown that more accurate models are obtained and that they can be
sed for calibration, ultimately improving the overall data quality, 
esulting in residuals that are similar to those obtained with ordinary 
olynomial fits. The models generated by forced spectral fitting can 
lso be more easily extrapolated to different frequencies. This may 
ro v e to be useful for sharing models between instruments. 
5 Square Kilometers Array, https:// www.skao.int/ en/ explore/ telescopes 

(
N  

(

An interesting other application of the forced-spectrum method 
ould be to determine how well a spectral index map matches the
ata, by looking at the residuals after forced-spectrum deconvolution. 
mage residuals may also be used to adjust the input spectral index
ap, especially if it has been made with the clustering method.
 or e xample, if the residual brightness of pix els or re gions go from
ositiv e (ne gativ e) at low frequency to negati ve (positi ve) at high
requency, the spectral indices of those components should be steeper 
flatter) than the input ones. The adjusted spectral index map better
atches the data and can be used to output a model that can then be

sed to self-calibrate the data set. 
These results are highly rele v ant for improving upper limits on the

1-cm power spectrum from the Epoch of Reionization and Cosmic 
awn. With calibration errors below 0.1 per cent being critical for

chieving the high dynamic range needed to measure the 21-cm 

ower spectrum during these cosmic eras (Mazumder et al. 2022 ),
he sky models derived from forced-spectrum fitting hold significant 
romise for enhancing the accuracy of such measurements. 

C K N OW L E D G E M E N T S  

C, ARO, and LVEK would like to acknowledge support from the
entre for Data Science and Systems Complexity (DSSC), Faculty of 
cience and Engineering at the University of Groningen. LVEK and 
KG acknowledge the financial support from the European Research 
ouncil (ERC) under the European Union’s Horizon 2020 research 
nd innovation programme (grant agreement no. 884760, ‘ CODEX ’). 
GM acknowledges support from a PSL Fellowship. RT and RJVW 

cknowledge support from the ERC Starting grant no. 804208, 
 CLUSTERWEB ’. LOFAR, the Low Frequency Array designed and 
onstructed by ASTRON, has facilities in several countries, that are 
 wned by v arious parties (each with their o wn funding sources), and
hat are collectively operated by the International LOFAR Telescope 
ILT) foundation under a joint scientific policy. 

In this work, we made use of the KVIS (Gooch 1996 ) and DS9
Joye & Mandel 2003 ) FITS file image viewers, and the ASTROPY

Astropy Collaboration et al. 2022 ), MATPLOTLIB (Hunter 2007 ), 
UMPY (Harris et al. 2020 ), PANDAS (McKinney 2010 ), SCIPY

Virtanen et al. 2020 ) PYTHON packages. 
MNRAS 525, 3946–3962 (2023) 

https://www.skao.int/en/explore/telescopes


3960 E. Ceccotti et al. 

M

D

T  

t

R

A
A
A
A
B  

B
B
B
B
B  

C
C
C
C
C
C
C
D  

D  

D  

D  

D
E
F
F  

G
G
G  

 

H
H
H
H
H
H
I
J
J  

 

J
K  

L
L
L
L
M  

M
M  

M
M  

 

M  

M
O
O
O
P  

 

 

P
P
P  

P
R
R
R
R  

R  

 

 

S
S
S  

S
S
S
S
S
S  

T  

T
T  

T
T  

V
V  

W  

W  

Y  

Y
Y  

Y
Y  

 

Y
d
v  

 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/525/3/3946/7244707 by R
ijksuniversiteit G

roningen user on 28 January 2024
ATA  AVA ILA BILITY  

he data underlying this article will be shared on reasonable request
o the corresponding author. 

E FEREN C ES  

bdulaziz A. , Dabbech A., Wiaux Y., 2019, MNRAS , 489, 1230 
rias M. et al., 2018, A&A , 612, A110 
rras P. , Reinecke M., Westermann R., Enßin T. A., 2021, A&A , 646, A58 
stropy Collaboration et al., 2022, ApJ , 935, 167 
aghel J. , Kharb P., Silpa, Ho L. C., Harrison C. M., 2023, MNRAS , 519,

2773 
ajkova A. T. , Pushkarev A. B., 2011, MNRAS , 417, 434 
hatnagar S. , Cornwell T. J., Golap K., Uson J. M., 2008, A&A , 487, 419 
irdi J. , Repetti A., Wiaux Y., 2020, MNRAS , 492, 3509 
onaldi A. , Brown M. L., 2015, MNRAS , 447, 1973 
raun R. , Bonaldi A., Bourke T., Keane E., Wagg J., 2019, preprint

( arXiv:1912.12699 ) 
allingham J. R. et al., 2017, ApJ , 836, 174 
arrillo R. E. , McEwen J. D., Wiaux Y., 2012, MNRAS , 426, 1223 
hapman E. et al., 2012, MNRAS , 423, 2518 
harlot P. et al., 2020, A&A , 644, A159 
lark B. G. , 1980, A&A, 89, 377 
ornwell T. J. , 2008, IEEE J. Sel. Top. Signal Processing , 2, 793 
otton W. D. , Mauch T., 2021, PASP , 133, 104502 
abbech A. , Ferrari C., Mary D., Slezak E., Smirnov O., Kenyon J. S., 2015,

A&A , 576, A7 
abbech A. , Onose A., Abdulaziz A., Perley R. A., Smirnov O. M., Wiaux

Y., 2018, MNRAS , 476, 2853 
abbech A. , Terris M., Jackson A., Ramatsoku M., Smirnov O. M., Wiaux

Y., 2022, ApJ , 939, L4 
ewdney P. E. , Hall P. J., Schilizzi R. T., Lazio T. J. L. W., 2009, IEEE Proc. ,

97, 1482 
i Gennaro G. et al., 2021, A&A , 654, A166 
wall-Wice A. et al., 2021, MNRAS , 500, 5195 
anaroff B. et al., 2021, MNRAS , 505, 6003 
errari A. , Deguignet J., Ferrari C., Mary D., Schutz A., Smirnov O., 2015,

preprint ( arXiv:1504.06847 ) 
arsden H. et al., 2015, A&A , 575, A90 
ehlot B. K. et al., 2022, A&A , 662, A97 
ooch R. , 1996, in Jacoby G. H., Barnes J., eds, 101, ASP Conf. Ser. Vol.101,

Astronomical Data Analysis Software and Systems V. Asron. Soc. Pac.,
San Francisco, p. 80 

arris C. R. et al., 2020, Nature , 585, 357 
eywood I. et al., 2016, MNRAS , 460, 4433 
 ̈ogbom J. A. , 1974, A&AS, 15, 417 
unter J. D. , 2007, Comput. Sci. Eng. , 9, 90 
urley-Walker N. et al., 2017, MNRAS , 464, 1146 
urley-Walker N. et al., 2022, PASA , 39, e035 

gnesti A. et al., 2022, ApJ , 924, 64 
eli ́c V. et al., 2008, MNRAS , 389, 1319 
oye W. A. , Mandel E., 2003, in Payne H. E., Jedrzejewski R. I., Hook R. N.,

eds, ASP Conf. Ser. Vol.295, Astronomical Data Analysis Software and
Systems XII. Astron. Soc. Pac., San Francisco, p. 489 

unklewitz H. , Bell M. R., Enßlin T., 2015, A&A , 581, A59 
azemi S. , Yatawatta S., Zaroubi S., Lampropoulos P., de Bruyn A. G.,

Koopmans L. V. E., Noordam J., 2011, MNRAS , 414, 1656 
i F. , Cornwell T. J., de Hoog F., 2011, A&A , 528, A31 
ine J. L. B. et al., 2020, PASA , 37, e027 
iu A. , Shaw J. R., 2020, PASP , 132, 062001 
onsdale C. J. , Morison I., 1980, Nature , 288, 66 
azumder A. , Datta A., Chakraborty A., Majumdar S., 2022, MNRAS , 515,

4020 
cKean J. P. et al., 2016, MNRAS , 463, 3143 
cKinney W. , 2010, in van der Walt S., Millman J., eds, Proceedings of the

9th Python in Science Conference. SciPy 2010, Austin, p. 56 
NRAS 525, 3946–3962 (2023) 
ertens F. G. , Ghosh A., Koopmans L. V. E., 2018, MNRAS , 478, 3640 
itchell D. A. , Greenhill L. J., Wayth R. B., Sault R. J., Lonsdale C. J.,

Cappallo R. J., Morales M. F., Ord S. M., 2008, IEEE J. Sel. Top. Signal
Process. , 2, 707 

ohan N. , Rafferty D., 2015, PyBDSF: Python Blob Detection and Source
Finder, Astrophysics Source Code Library, preprint(ascl:1502.007) 

orabito L. K. et al., 2022, A&A , 658, A1 
ffringa A. R. , Smirnov O. M., 2017, MNRAS , 471, 301 
ffringa A. R. et al., 2014, MNRAS , 444, 606 
ffringa A. R. et al., 2016, MNRAS , 458, 1057 
 ande y V. N. , Koopmans L. V. E., Tiesinga E., Albers W., Koers H. U. A.,

2020, in Pizzo R., Deul E. R., Mol J. D., de Plaa J., Verkouter H., eds, ASP
Conf. Ser. Vol.527, Astronomical Data Analysis Software and Systems
XXIX. Astron. Soc. Pac., San Francisco, p. 473 

 ̂ aris I. et al., 2014, A&A , 563, A54 
arsons A. R. , Backer D. C., 2009, AJ , 138, 219 
erley R. A. , Chandler C. J., Butler B. J., Wrobel J. M., 2011, ApJ , 739,

L1 
ilkington J. D. H. , Scott J. F., 1965, MmRAS, 69, 183 
au U. , Cornwell T. J., 2011, A&A , 532, A71 
au U. , Bhatnagar S., Owen F. N., 2016, AJ , 152, 124 
efregier A. , 2003, MNRAS , 338, 35 
ich J. W. , de Blok W. J. G., Cornwell T. J., Brinks E., Walter F., Bagetakos

I., Kennicutt R. C., J., 2008, AJ , 136, 2897 
iding J. L. , Mitchell D. A., Webster R. L., 2017, in Lorente N. P. F.,

Shortridge K., Wayth R., eds, ASP Conf. Ser. Vol.512, Astronomical Data
Analysis Software and Systems XXV, Astron. Soc. Pac., San Francisco,
p. 257 

ault R. J. , Wieringa M. H., 1994, A&AS, 108, 585 
chwab F. R. , 1984, AJ , 89, 1076 
haver P. A. , Windhorst R. A., Madau P., de Bruyn A. G., 1999, A&A , 345,

380 
himwell T. W. et al., 2017, A&A , 598, A104 
himwell T. W. et al., 2019, A&A , 622, A1 
himwell T. W. et al., 2022, A&A , 659, A1 
mirnov O. M. , 2011, A&A , 527, A106 
pinrad H. , Djorgovski S., Marr J., Aguilar L., 1985, PASP , 97, 932 
tarck J.-L. , Fadili J., Murtagh F., 2007, IEEE Trans. Image Process. , 16,

297 
asse C. , van der Tol S., van Zwieten J., van Diepen G., Bhatnagar S., 2013,

A&A , 553, A105 
erris M. , Dabbech A., Tang C., Wiaux Y., 2022, MNRAS, 518, 604 
hompson A. R. , Moran J. M., Swenson G. W. J., 2017, Interferometry and

Synthesis in Radio Astronomy, 3rdedn. Springer, Berlin 
immerman R. et al., 2022a, A&A , 658, A5 
immerman R. , van Weeren R. J., Botteon A., R ̈ottgering H. J. A., McNamara

B. R., Sweijen F., B ̂ ırzan L., Morabito L. K., 2022b, A&A , 668, A65 
irtanen P. et al., 2020, Nat. Methods, 17, 261 
ollmer B. , Da v oust E., Dubois P., Genova F ., Ochsenbein F ., van Driel W.,

2005, A&A , 431, 1177 
hyborn N. D. , Browne I. W. A., Wilkinson P. N., Porcas R. W., Spinrad H.,

1985, MNRAS , 214, 55 
iaux Y. , Jacques L., Puy G., Scaife A. M. M., Vandergheynst P., 2009,

MNRAS , 395, 1733 
atawatta S. , 2011, in 2011 XXXth URSI General Assembly and Scientific

Symposium . IEEE, Piscataway, p. 1–4 
atawatta S. , 2015, MNRAS , 449, 4506 
atawatta S. , 2016, in Proceedings of the 24th European Signal Processing

Conference (EUSIPCO-2016) . IEEE, Piscataway, p. 265–269 
atawatta S. et al., 2013, A&A , 550, A136 
atawatta S. , Diblen F., Spreeuw H., 2017, in 2017 IEEE 7th International

Workshop on Computational Advances in Multi-Sensor Adaptive Pro-
cessing (CAMSAP). IEEE, Piscataway, p. 1–5 

e H. , Gull S. F., Tan S. M., Nikolic B., 2022, MNRAS , 510, 4110 
e Gasperin F. , Intema H. T., Frail D. A., 2018, MNRAS , 474, 5008 
an Diepen G. , Dijkema T. J., Offringa A., 2018, DPPP: De-

fault Pre-Processing Pipeline, Astrophysics Source Code Library,
preprint(ascl:1804.003) 

http://dx.doi.org/10.1093/mnras/stz2117
http://dx.doi.org/10.1051/0004-6361/201732411
http://dx.doi.org/10.1051/0004-6361/202039723
http://dx.doi.org/10.3847/1538-4357/ac7c74
http://dx.doi.org/10.1093/mnras/stac3691
http://dx.doi.org/10.1111/j.1365-2966.2011.19280.x
http://dx.doi.org/10.1051/0004-6361:20079284
http://dx.doi.org/10.1093/mnras/stz3555
http://dx.doi.org/10.1093/mnras/stu2601
http://arxiv.org/abs/1912.12699
http://dx.doi.org/10.3847/1538-4357/836/2/174
http://dx.doi.org/10.1111/j.1365-2966.2012.21605.x
http://dx.doi.org/10.1111/j.1365-2966.2012.21065.x
http://dx.doi.org/10.1051/0004-6361/202038368
http://dx.doi.org/10.1109/JSTSP.2008.2006388
http://dx.doi.org/10.1088/1538-3873/ac2351
http://dx.doi.org/10.1051/0004-6361/201424602
http://dx.doi.org/10.1093/mnras/sty372
http://dx.doi.org/10.3847/2041-8213/ac98af
http://dx.doi.org/10.1109/JPROC.2009.2021005
http://dx.doi.org/10.1051/0004-6361/202141510
http://dx.doi.org/10.1093/mnras/staa3293
http://dx.doi.org/10.1093/mnras/stab1540
http://arxiv.org/abs/1504.06847
http://dx.doi.org/10.1051/0004-6361/201424504
http://dx.doi.org/10.1051/0004-6361/202142939
http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1093/mnras/stw1250
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1093/mnras/stw2337
http://dx.doi.org/10.1017/pasa.2022.17
http://dx.doi.org/10.3847/1538-4357/ac32ce
http://dx.doi.org/10.1111/j.1365-2966.2008.13634.x
http://dx.doi.org/10.1051/0004-6361/201423465
http://dx.doi.org/10.1111/j.1365-2966.2011.18506.x
http://dx.doi.org/10.1051/0004-6361/201015045
http://dx.doi.org/10.1017/pasa.2020.18
http://dx.doi.org/10.1088/1538-3873/ab5bfd
http://dx.doi.org/10.1038/288066a0
http://dx.doi.org/10.1093/mnras/stac1994
http://dx.doi.org/10.1093/mnras/stw2105
http://dx.doi.org/10.1093/mnras/sty1207
http://dx.doi.org/10.1109/JSTSP.2008.2005327
http://dx.doi.org/10.1051/0004-6361/202140649
http://dx.doi.org/10.1093/mnras/stx1547
http://dx.doi.org/10.1093/mnras/stu1368
http://dx.doi.org/10.1093/mnras/stw310
http://dx.doi.org/10.1051/0004-6361/201322691
http://dx.doi.org/10.1088/0004-6256/138/1/219
http://dx.doi.org/10.1088/2041-8205/739/1/L1
http://dx.doi.org/10.1051/0004-6361/201117104
http://dx.doi.org/10.3847/0004-6256/152/5/124
http://dx.doi.org/10.1046/j.1365-8711.2003.05901.x
http://dx.doi.org/10.1088/0004-6256/136/6/2897
http://dx.doi.org/10.1086/113605
http://dx.doi.org/10.48550/arXiv.astro-ph/9901320
http://dx.doi.org/10.1051/0004-6361/201629313
http://dx.doi.org/10.1051/0004-6361/201833559
http://dx.doi.org/10.1051/0004-6361/202142484
http://dx.doi.org/10.1051/0004-6361/201016082
http://dx.doi.org/10.1086/131647
http://dx.doi.org/10.1109/TIP.2006.887733
http://dx.doi.org/10.1051/0004-6361/201220882
http://dx.doi.org/10.1051/0004-6361/202140880
http://dx.doi.org/10.1051/0004-6361/202243936
http://dx.doi.org/10.1051/0004-6361:20040562
http://dx.doi.org/10.1093/mnras/214.1.55
http://dx.doi.org/10.1111/j.1365-2966.2009.14665.x
http://dx.doi.org/10.1109/URSIGASS.2011.6051224.
http://dx.doi.org/10.1093/mnras/stv596
http://dx.doi.org/10.48550/arXiv.1605.09219
http://dx.doi.org/10.1051/0004-6361/201220874
http://dx.doi.org/10.1093/mnras/stab3548
http://dx.doi.org/10.1093/mnras/stx3125


Physical spectral index modelling 3961 

Table A1. Four lines from the clean component list file after the first forced-spectrum fitting. From top to bottom: point component from the core region, and 
Gaussian components from lobe S, lobe N, and from the surrounding regions. The original file provided also the reference frequency at which the flux density I 
(i.e. S with the notation adopted in this paper) is estimated, which is 144.30 MHz for all the components, and the orientation of the Gaussians, which is al w ays 
zero because only circular Gaussians are modelled by the MS deconvolution. 

Name Type RA Dec I Spectral index Major axis Minor axis Orientation 
(Jy) (arcsec) (arcsec) (deg) 

0c1069 POINT 08 h 34 m 54 . s 906 55 ◦34 ′ 20 . ′′ 950 0.293 1 .738 – – –
s3c41 GAUSSIAN 08 h 34 m 54 . s 971 55 ◦34 ′ 18 . ′′ 750 0.010 − 0 .724 1.373 1.373 0 
s4c30 GAUSSIAN 08 h 34 m 54 . s 567 55 ◦34 ′ 24 . ′′ 950 0.149 − 0 .897 2.746 2.746 0 
s1c0 GAUSSIAN 08 h 34 m 55 . s 080 55 ◦34 ′ 12 . ′′ 375 0.002 − 1 .018 0.343 0.343 0 
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PPEN D IX  A :  WSCLEAN  M O D E L  C ATA L O G U E  

n Table A1 , we report four example components from the clean
omponent list file that WSCLEAN produces, one line for each of the
egions into which we have divided 4C + 55.16 (see Section 3.2 ).

ore details about this file format can be found at https://wsclean.re 
dthedocs.io/en/latest /component list.ht ml . 

PPEN D IX  B:  SPECTRAL  I N D I C E S  OBSERV ED  

N  PIXEL-BA SED  M O D E L S  

ere, we derive the spectral index that is observed in a model image
hen components o v erlap. The situation is described in Fig. 1 . We

onsider a Gaussian component with the peak in position A and a
oint component in position B, whose spectra are described by a 
ower law, with spectral indices αA and αB , respectively, constant 
 v er their full shape. The flux density of the Gaussian is 

 G ( ν) = S G ( ν0 ) 

(
ν

ν0 

)αA 

, (B1) 

here ν0 is the reference frequency at which the normalization is 
 v aluated, and similarly for the point source S P , with spectral index
B . Since αA 	= αB , there is a frequency ν int where the two spectra

ntersect; without loss of generality, we can choose to normalize the 
ux density at ν0 = ν int , so that S G ( ν0 ) = S P ( ν0 ) in B, where the
omponents coincide. 

When the spectral index of the resulting (gridded) model image 
s observed, the resulting flux density in B is the sum of S G ( ν) and
 P ( ν), such that 

 ( ν) = S P ( ν0 ) 

[(
ν

ν0 

)αA 

+ 

(
ν

ν0 

)αB 
]

, (B2) 

hich is not a power law, as shown in the bottom panel of Fig. 1 .
o we ver, when we analyse the produced spectral indices (as in the
rst row of Fig. 4 ), we fit a power law pixel-by-pixel: in this case,

he resulting spectral index α is a combination of αA and αB and 
hanges with the frequency range over which the fit is performed. 

To better understand what is the expected α in B, we move to a
og–log space, so that the flux density is now defined as 

log [ S ( ν)] = log [ S P ( ν0 )] + log 

[(
ν

ν0 

)αA 

+ 

(
ν

ν0 

)αB 
]

. (B3) 

hen, the spectral index – or the slope – of S ( ν) can be calculated by
he deri v ati ve of log S with respect to log ν

( ν) = 

d log S 

d log ν
= 

αA ν
αB 
0 ναA + αB ν

αA 
0 ναB 

ν
αB 
0 ναA + ν

αA 
0 ναB 

, (B4) 

hich is a function of ν, as expected. 
With αA > αB , we can consider three special cases: (1) if ν 
 ν0 ,
e can rewrite equation ( B4 ) as 

( ν) = 

αA ( ν/ν0 ) 
αA −αB + αB 

( ν/ν0 ) 
αA −αB + 1 

, (B5) 

rom which, we find α ≈ αB ; (2) if ν � ν0 , we can rewrite equation
 B4 ) as 

( ν) = 

αA + αB ( ν/ν0 ) 
αB −αA 

( ν/ν0 ) 
αB −αA + 1 

, (B6) 

rom which we find α ≈ αA ; (3) if ν ≈ ν0 , we obtain 

≈ αA + αB 

2 
. (B7) 

his demonstrates that the slope of the sum of two power laws is αB 

 α( ν) � αA . 

PPENDI X  C :  SELF-CALI BRATI ON  O F  

C  + 5 5 . 1 6  DATA  

ere, we provide a more detailed description of the self-calibration 
rocess that was performed to impro v e the quality of the 4C + 55.16
ata, in order to meet the requirements for testing the forced-spectrum
ethod. The models used for this operation are obtained from 

maging the data with WSCLEAN . 
We start splitting the full bandwidth of 45 MHz into 12 output

hannels, each ∼4 MHz wide, which are jointly cleaned with no 
F weighting. Using uniform weighting results in an integrated 

ynthesized beam with an FWHM of 207 × 143 mas . The smallest
ynthesized beam is achieved for the image in the frequency range
61–165 MHz, with an FWHM of 128 × 184 mas . To produce
hallow Stokes I images, we use a pixel scale of 25 × 25 mas and
he W-gridding algorithm, which is more accurate and – in our case

faster than the standard W-stacking method of WSCLEAN (Arras 
t al. 2021 ; Ye et al. 2022 ). We clean down to an initial threshold of
0 σ and a final threshold of 10 σ , where σ = 90 μJy beam 

−1 for
he frequenc y-inte grated image. The automasking algorithm was 
sed to generate scale-dependent masks that were used to constrain 
he cleaning. Using such high thresholds ensures that no artefacts 
re included in the models and that visibilities are calibrated by
eal components only. The obtained model is directly saved in the
easurement set file of the data. 
The calibration step is then performed with DP3 . We use the output
odels within the gaincal algorithm to solve only the diagonal 

hases of the Jones matrix (i.e. a 2 × 2 complex matrix for every
tation) for each channel and 4 time intervals (i.e. one solution every
4 s). These solutions are then applied to the data and a new imaging
tep is started. 

In the next self-calibration iterations, we gradually decrease the 
maging thresholds, reaching 12 σ and 3 σ for the initial and the
MNRAS 525, 3946–3962 (2023) 
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nal thresholds. This is possible because the image quality impro v es
fter each iteration, going from an initial image dynamic range of
3 000 to 30 000 after the last iteration, where we obtain the deepest
ntegrated image, with a noise of 67 μJy beam 

−1 . Both the image
oise and the dynamic range are al w ays e v aluated from imaging 12
utput channels with an initial threshold of 8 σ and a final threshold
f 3 σ through all the self-calibration step, to make the comparison
s fair as possible. In addition to decreasing the cleaning thresholds,
lso the solution interval is reduced from 4 time-steps to 2 during
he second self-calibration iteration, and then to 1 (i.e. one solution
very 16 s) from the third iteration to the end. Ho we ver, solving with a
odel every 4 MHz does not completely solve the phase problem that

auses artefacts around the core, because a single solution is applied
o all the channels within that frequency range. In fact, issues are still
resent when ev ery frequenc y channel is imaged. For this reason,
t a certain iteration of the self-calibration, we start imaging every
NRAS 525, 3946–3962 (2023) 
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hannel individually, obtaining 92 output images. Using 92 channels
ith no MF weighting degrades the synthesized beam: the integrated

mage now has a beam with an FWHM of 255 × 184 mas , while the
est synthesized beam is achieved in the range 163 − 163 . 5 MHz
ith an FWHM of 166 × 225 mas . 
After having solved the calibration issue in the core structure, we

erform a couple more iterations solving diagonal gains (i.e. both
mplitude and phase in the diagonal of the Jones matrix), to make
ure that the spatially integrated spectrum of the source follows the
xpected slope. To do this, we rescale the output models to a flux
ensity of 8.66 Jy at 142.67 MHz using a power law with α = −0.02
see Section 3.2 ). This model is then predicted into the measurement
et file and used to e v aluate the gains. 
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