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ABSTRACT This paper proposes a data-driven state feedback controller that enables reference tracking
for nonlinear discrete-time systems. The controller is designed based on the identified inverse model of
the system and a given reference model, assuming that the identification of the inverse model is carried
out using only the system’s state/input measurements. When its results are provided, we present conditions
that guarantee a certain level of reference tracking performance, regardless of the identification method
employed for the inverse model. Specifically, when Gaussian process regression (GPR) is used as the
identification method, we propose sufficient conditions for the required data by applying some lemmas
related to identification errors to the aforementioned conditions, ensuring that the Model Reference-GPR
(MR-GPR) controller can guarantee a certain level of reference tracking performance. Finally, an example
is provided to demonstrate the effectiveness of the MR-GPR controller.

INDEX TERMS Data-driven control, nonlinear system, stability.

I. INTRODUCTION
Gaussian process regression (GPR) [1] is a nonparametric
regression technique commonly used in machine learning
and robotics, owing to its ability to handle large and
complex datasets, integrate prior knowledge, and offer
a probabilistic understanding of uncertainty, making it a
powerful and versatile tool for regression analysis adopted in
both academia and industry [2].

The use of GPR for identifying unknown nonlinear
systems using input/output or state data and then designing
a model-based controller for the identified model has been
extensively studied [3], [4], [5], [6], [7], [8], [9]. Furthermore,
the application of GPR for inverse model identification has
emerged as a promising approach to controlling complex
dynamic systems, such as robotics and mechatronic systems.
The concept behind using GPR for inverse model identi-
fication is to utilize the inverse model that leads from the
current state to the desired next state to learn the control input
through GPR. For instance, [2] and [10] present a detailed
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review of controlling robotic systems using inverse model
GPR. The practical efficacy of using GPR for inverse model
identification in achieving high precision control has been
demonstrated in several studies [11], [12], [13] conducted on
robot arms. Additionally, [14] presents a case of using neural
networks for inverse model identification and control.

The primary emphasis of earlier studies has revolved
around attaining high precision in experimental results and
computational speed in real-time. Nevertheless, despite the
practical effectiveness of these approaches, there is still a
lack of control theoretical understanding of their fundamental
principles. This theoretical gap may result in the absence
of a stability guarantee within the system, thereby creating
the possibility of hazardous scenarios in real-world systems.
As such, it is imperative to address this issue to enhance the
reliability and safety of control systems.

In this paper, we propose the data-driven inverse model-
based controller as a state feedback control by using only
state/input measurements of the plant and identifying the
inverse model using GPR under a given reference model.
We refer to this as model reference Gaussian process
regression (MR-GPR) control as in [15], where the output
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feedback version of MR-GPR controller is firstly proposed
while tracking problem was not studied.

The structure of this paper is as follows. In Section
II, the stability of the closed-loop system is concerned
by employing bounds on the identification performance
necessary for tracking control using arbitrary data-driven
methods. Section III introduces GPR and several lemmas
regarding the posterior variance of the GPR, which can
be utilized to measure the regression error as confidence
information about the regression result. Finally, based on
the proposed lemmas, a stability analysis of the closed-loop
system with MR-GPR is given. In Section IV, we offer an
example to demonstrate the effectiveness of the MR-GPR
controller. Lastly, Section V summarizes the paper.
Notation: For integers n,m, and k , let 0n×m ∈ Rn×m

and Ik ∈ Rk×k be the zero matrix and the identity matrix,
respectively. For column vectors a and b, [a; b] denotes
[aT , bT ]T . For a set A, we define the number of elements in
the set A as |A|. For discrete-time vector sequences y(t) and
z(t), we define a set

{(y(t), z(t))}k+Tt=k := {(y(k), z(k)), · · · , (y(k + T ), z(k + T ))}.

II. SYSTEM DESCRIPTION AND DATA-DRIVEN INVERSE
MODEL-BASED CONTROL
Consider a nonlinear discrete-time system

x(t + 1) = f (x(t), u(t)), (1)

where t ∈ Z is the discrete-time index, x(t) ∈ Rn is the state,
u(t) ∈ U ⊂ Rm is the input with a compact set U , and f :

Rn
× Rm

→ Rn is smooth. Suppose that a reference model
is given by

x(t + 1) = fR(x(t), t), (2)

where fR : Rn
× Z → Rn is smooth in its first argument and

uniformly bounded in the second argument. Our goal is to
construct a (data-driven) state feedback controller with which
the following holds for a given error bound ϵ > 0:

∥x(t) − xR(t)∥ < ϵ, ∀t ≥ 0, (3)

where xR is the solution to the reference model (2) with
xR(0) = x(0). Note that some external inputs to the reference
model are allowed by the time index in the function fR (see
Example 1). The reference model has our desired stability,
performance, robustness and so on, and we suppose that there
is a compact and convex set XR ⊂ Rn, which is an operation
region of (2), such that xR(t) ∈ XR for all t ≥ 0. In addition,
we particularly assume that the reference model is contractive
in the sense of [16] as follows.
Assumption 1: For a given ϵ > 0, there exist a positive

definite matrix 2 ∈ Rn×n and a scalar γ < 1 such that(
∂fR
∂x

(x, t)
)T

2

(
∂fR
∂x

(x, t)
)

≤ γ2, ∀x ∈ X , t ≥ 0,

where X := {x ∈ Rn
: ∃z ∈ XR such that ∥x − z∥ ≤ ϵ}.

If the reference model is a linear system, then Assump-
tion 1 is nothing but the stability of the linear system.

For example, if the reference model is given as fR(x, t) =

Ax(t) for some matrix A ∈ Rn×n and Assumption 1 holds,
then there exists a positive definite matrix 2 and a scalar
γ < 1 such that AT2A ≤ γ2 holds. By the relation
AT2A− 2 ≤ (γ − 1)2, the reference model is stable. Now,
to enable model reference control, we impose the following
assumption.
Assumption 2: System (1) satisfies the following.

(a) For x(t), x(t + 1) ∈ Rn obtained from system (1),
an input u(t) ∈ Rm that satisfies x(t + 1) = f (x(t), u(t))
is unique.

(b) For each x ∈ X and t ≥ 0, there exists u ∈ Rm such that

fR(x, t) = f (x, u).

From Assumption 2-(a), there exists a function c : R2n
→

Rm such that

x(t + 1) = f (x(t), c([x(t); x(t + 1)]))

for all x(t), x(t + 1), and t ≥ 0. Furthermore, if system (1) is
input-affine, i.e., given by

x(t + 1) = f (x(t), u(t)) = a(x(t)) + b(x(t))u(t),

where a : Rn
→ Rn and b : Rn

→ Rn×m are smooth,
and if b(x) has full column rank for all x ∈ Rn, then
Assumption 2-(a) holds with the smooth function c given by

c([x(t); x(t + 1)]) = b†(x(t))(x(t + 1) − a(x(t))), (4)

where b†(x(t)) is a left-inverse of b(x(t)). In addition, if the
reference model fR is chosen to satisfy

fR(x, t) − a(x) ∈ im(b(x)), ∀x ∈ X , t ≥ 0, (5)

where im(b(x)) represents the image of the matrix b(x), then
Assumption 2-(b) also holds.

It is trivial that under Assumption 2, the closed-loop
system (1) with a state feedback control input

u(t) = c([x(t); fR(x(t), t)]) (6)

becomes (2) for all t ≥ 0. However, in order to find a
data-driven construction of feedback controller (6), we need
to identify the function c and design a reference model fR
without the complete knowledge of f . The following example
shows that even if f is not completely known, one can design
a reference model fR such that Assumption 2-(b) holds.
Example 1: Consider a system given in the controller

canonical form [17]:

x+
=


x+

1
x+

2
...

x+

n−1
x+
n

 =


x2
x3
...

xn
an(x)

 +


0
0
...

0
bn(x)

 u,

where x+, x, and u imply x(t+ 1), x(t), and u(t) respectively,
an : Rn

→ R and bn : Rn
→ R are unknown but smooth, and
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u ∈ R. Suppose that bn(x) ̸= 0 for all x ∈ Rn. Then by (4),
Assumption 2-(a) holds with the (unknown) smooth function

c([x; x+]) =
x+
n − an(x)
bn(x)

. (7)

Furthermore, (5) (and thus, Assumption 2-(b)) is satisfied as
long as the reference model has the form:

fR(x, t) =


x2
...

xn
fn(x, t)

 , (8)

where fn(x, t) is an arbitrary smooth function. Although an
and bn are unknown, the smooth function fn(x, t) can be
designed depending on the user’s control goal. For example,
suppose that we want the state x1(t) to asymptotically track
a given signal φ(t) by applying the control input u =

c([x; fR(x, t)]) of (6). Then, one can simply take

fn(x, t) = −

n∑
i=1

ki(xi(t) − φ(t + i− 1)) + φ(t + n)

in which, the state feedback gains ki are chosen such that the
matrix

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

−k1 −k2 −k3 · · · −kn


is Schur stable whose eigenvalues are located to meet the
convergence performance. (One can verify this using x̃i(t) :=

xi(t)− φ(t + i− 1), i = 1, . . . , n, because they yield a stable
linear system x̃+

= Ax̃.) □
Given a reference model that satisfies Assumptions 1

and 2-(b), let ĉ : R2n
→ Rm be a data-driven identification of

the function c. This means that the function ĉ is obtained by
using only available state/input measurements of system (1)
with some identification method on c. Before specifying the
identification method, let us inspect a sufficient condition on
the function ĉ such that the closed-loop system (1) with a
controller u(t) = ĉ([x(t); fR(x(t), t)]) satisfies (3). Let

B := max
x∈X ,t≥0

∥(∂fR)/(∂x)(x, t)∥

which is well-defined becauseX is compact and fR is smooth
in the first argument and uniformly bounded in the second
argument. Also, let λmin and λmax be the minimum and the
maximum eigenvalues of the positive definite matrix 2 in
Assumption 1, respectively. Finally, let Lf be a Lipschitz
constant of f such that

∥f (x, ua) − f (x, ub)∥ ≤ Lf ∥ua − ub∥, ∀x ∈ X , ua, ub ∈ U
which is well-defined due to smoothness of f and compact-
ness of X and U . Defining the set C := X × X , we present
the following theorem.
Theorem 1: Under Assumptions 1 and 2, the closed-loop

system (1) with a controller u(t) = ĉ([x(t); fR(x(t), t)])
satisfies

∥x(t) − xR(t)∥ < ϵ, ∀t ≥ 0

where x(0) ∈ XR and xR is the solution to the reference
model (2) with xR(0) = x(0), if

∥ĉ(ξ ) − c(ξ )∥ ≤ M , ∀ξ ∈ C,

where ĉ(ξ ), c(ξ ) ∈ U , with M > 0 such that

2LfMλmaxBϵ + Lf 2M
2λmax

λmin(1 − γ )
< ϵ2. (9)

Proof: First, leveraging the methodology presented in
[18, Appendix A], we delineate the function g(s), charac-
terized by a variable s ∈ R, as illustrated below:

g(s) : = (fR(x, t) − fR(xR, t))T2

× (fR(sx + (1 − s)xR, t) − fR(xR, t)).

Owing to the continuous differentiability of the function g(s)
within the real domain, we can apply the mean-value theorem
to affirm the existence of a scalar s̄ encompassed in the
interval [0, 1] such that the equation g(1) − g(0) = g′(s̄) is
satisfied. This can further be reformulated to:

(fR(x, t) − fR(xR, t))T2(fR(x, t) − fR(xR, t))

= (fR(x, t) − fR(xR, t))T2

(
∂fR
∂x

(w, t)
)
(x − xR),

where w = s̄x + (1 − s̄)xR. Capitalizing on this relation,
we derive the subsequent inequality:

(fR(x, t) − fR(xR, t))T2(fR(x, t) − fR(xR, t))

≤ (x − xR)T
(

∂fR
∂x

(w, t)
)T

2

(
∂fR
∂x

(w, t)
)
(x − xR).

Now, let

V (x, xR) = (x − xR)T2(x − xR).

Then, since

x+
= f (x, ĉ) = fR(x, t) + [f (x, ĉ) − f (x, c)],

it follows, as long as x ∈ X and xR ∈ XR, that

V+
=

(
fR(x, t) − fR(xR, t) + [f (x, ĉ) − f (x, c)]

)T
2

×
(
fR(x, t) − fR(xR, t) + [f (x, ĉ) − f (x, c)]

)
≤ (x − xR)T

(
∂fR
∂x

(w, t)
)T

2

(
∂fR
∂x

(w, t)
)
(x − xR)

+ 2LfMλmaxB∥x − xR∥ + L2f M
2λmax

≤ γV + 2LfMλmaxB∥x − xR∥ + L2f M
2λmax. (10)

We conclude the proof with mathematical induction. Since
x(0) = xR(0) ∈ XR when t = 0, the above inequality implies
that

∥x(1) − xR(1)∥2 ≤ V (1)/λmin ≤ L2f M
2λmax/λmin < ϵ2

in which, the last inequality follows from (9). Since xR(1) ∈

XR, it also follows that x(1) ∈ X by the definition ofX . Now,
suppose that ∥x(t) − xR(t)∥ < ϵ for t = 0, 1, · · · , k − 1 (so
that x(t) ∈ X for t = 0, 1, . . . , k − 1). With

β := 2LfMλmaxBϵ + L2f M
2λmax

134376 VOLUME 11, 2023



H. Kim, H. Chang: Model Reference GPR: Data-Driven State Feedback Controller

for convenience, we can repeatedly apply (10) to obtain

V (k) ≤ γV (k − 1) + β ≤ γ (γV (k − 2) + β) + β

≤ · · · ≤ γ kV (0) + β
1 − γ k

1 − γ
≤

β

1 − γ
.

Then, we achieve with (9) that

∥x(k) − xR(k)∥2 ≤
V (k)
λmin

≤
β

λmin(1 − γ )
< ϵ2.

As a result, ∥x(k) − xR(k)∥ < ϵ and x(k) ∈ X , which
completes the proof.

Theorem 1 simply shows that if we have sufficiently
accurate identification of the function c, it can directly
be used for designing data-driven version of controller (6)
to guarantee sufficient performance of model reference
control (3). In the next section, we utilize Gaussian process
regression (GPR) as an identification method to obtain ĉ and
present how to collect state/input data to achieve sufficiently
accurate identification result.

III. MODEL REFERENCE-GAUSSIAN
PROCESS REGRESSION
In this section, we propose a controller generated by
GPR using state/input data from system (1). The resulting
data-driven controller can generate control inputs that
emulate those produced by (6).

We use GPR to identify the function c in (6) itself and to
do so, we additionally assume that the function c is infinitely
differentiable in the set C. This approach involves treating
[x(t); x(t + 1)] as input data and u(t) as output data for the
function c, based on the relation u(t) = c([x(t); x(t + 1)])
from Assumption 2-(a). For GPR, we split the function c(·)
as c(·) =: [c1(·); c2(·); · · · ; cm(·)], where ci : R2n

→ R.

To perform the proposal, we first collect state/input data1

of system (1) as

{(xd(t), ud(t))}
N
t=1 (11)

where N is the total number of state/input data. Then we
rearrange the data as the training input

ξd(t) := [xd(t); xd(t + 1)] ∈ R2n

and the training output

ud(t) ∈ Rm,

yielding the training dataset:

DN := {(ξd(t), ud(t))}
N−1
t=1 . (12)

For the training datasetDN ,we define the set of training input
as

IDN := {ξd(t)}
N−1
t=1 ⊂ R2n.

Collecting sufficiently long state/input data as (12) for
an unstable system may present a challenge. In such cases,

1The subscript d is employed to represent the data gathered from the
system during an experiment.

combining state/input data from each short experiment with
varying initial conditions may be more practical. For further
details, refer to [15, Remark 1].
A Gaussian process (GP) is uniquely characterized by a

mean function mi : C → R and a covariance function ki :

C × C → R for i = 1, · · · ,m. To identify each function ci
for i = 1, · · · ,m, we utilize the GP with the zero function for
the mean function and a squared exponential (SE) kernel for
the covariance function:

ki(ξ, ξ ′) = σ 2
i exp

(
−
1
2
(ξ − ξ ′)TH−1

i (ξ − ξ ′)
)

, (13)

where σi and Hi = diag(h2i,1, . . . , h
2
i,2n) are hyperparameters

for i = 1, · · · ,m. The hyperparameters are determined
through marginal likelihood optimization, a technique based
on Bayesian principles [1, Chapter 5].
Remark 1: In this study, regression analyses were per-

formed utilizing the SE kernel. This choice was predicated
on the SE kernel’s generally robust performance, which
is particularly beneficial given our lack of specific infor-
mation regarding the inherent properties of the system
under consideration. However, in circumstances where some
characteristics of the function are known, it might be
more appropriate to employ different kernels tailored to the
situation to achieve more accurate and insightful regression
results.

For instance, the selection of alternative kernels could be
informed by the specific features of the function we wish
to approximate. The periodical kernel could be a choice
when modeling functions with recurring patterns. The linear
kernel might be suitable for approximating functions that
demonstrate a linear trend. In scenarios where the underlying
function exhibits more complex behaviors, the Matern or
rational quadratic kernels, known for their flexibility and
capability to model functions with varying smoothness and
scales, might offer a more refined modeling.

Given the training dataset DN defined in (12), the GP
produces posterior mean and variance functions for a test
input ξ ∈ C as

µi
DN

(ξ ) := kTi (ξ )K
−1
i ui, (14)

σ iDN
(ξ ) := ki(ξ, ξ ) − kTi (ξ )K

−1
i ki(ξ ), (15)

respectively, where

ui := [uid(1); · · · ; uid(N − 1)],

ki(ξ ) := [ki(ξd(1), ξ ); · · · ; ki(ξd(N − 1), ξ )],

Ki :=

 ki(ξd(1), ξd(1)) · · · ki(ξd(1), ξd(N−1))
...

. . .
...

ki(ξd(N−1), ξd(1)) · · · ki(ξd(N−1), ξd(N−1))


for i = 1, · · · ,m, where ud(t) =: [u1d(t); u

2
d(t); · · · ; umd (t)].

It is noted that each posterior mean functionµi
DN

is in fact the
estimation of the function ci using only the state/input data of
system (1). The confidence of this estimation is represented
by the posterior variance function σ iDN

.
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Finally, with the reference model fR, we construct the
model reference GPR (MR-GPR) controller by combining
posterior mean functions µi

DN
to µDN as

u(t) = µDN ([x(t); fR(x(t), t)])

=

µ1
DN

([x(t); fR(x(t), t)])
...

µm
DN

([x(t); fR(x(t), t)])

 (16)

which is a state feedback controller. We also combine the
posterior variance functions σ iDN

to σDN as

σDN ([x(t); fR(x(t), t)]) =

σ 1
DN

([x(t); fR(x(t), t)])
...

σmDN
([x(t); fR(x(t), t)])

 . (17)

The following lemma describes the difference between the
ideal controller c in (6) and the MR-GPR controller µDN

in (16) using the posterior variance function σDN in (17).
Lemma 1: [19, Proposition 2] Under Assumption 2, for

the training dataset DN , it holds that

||µDN (ξ ) − c(ξ )|| ≤ ||c||k · ||σDN (ξ )||, ∀ξ ∈ C,

where ||c||k := max(||c1||k1 , · · · , ||cm||km ) and ||ci||ki
is the RKHS norm [20] of the function ci under the
kernel ki. □
Note that the upper bound of the identification error can

be reduced arbitrarily by sufficiently reducing the posterior
variance σDN (ξ ).

Before going into the next lemma, we define the set of the
training inputs in the closed ball centered at ξ with radius
ρ > 0 as Bρ(ξ ) = {ξ ′

∈ IDN : ||ξ ′
− ξ || ≤ ρ}.

Also, we define a Lipschitz constant of the kernel ki
as Lki .
Lemma 2: [21, Corollary 3.2] Under Assumption 2, for

the training dataset DN as a function of N , if there exists a
function ρ(N ) such that

0 < ρ(N ) ≤ min(
k1(ξ, ξ )
Lk1

, · · · ,
km(ξ, ξ )
Lkm

), ∀N ∈ N

lim
N→∞

ρ(N ) = 0

lim
N→∞

|Bρ(N )(ξ )| = ∞

for all ξ ∈ C, then ||σDN (ξ )|| → 0 as N → ∞ for
every ξ ∈ C. □
The existence of the function ρ may appear to be limited

in Lemma 2, but the method of constructing the dataset DN
to ensure the existence of ρ is described in [21].

By Lemma 2, we can arbitrarily reduce the gap between
the ideal controller c(ξ ) and the MR-GPR controller µDN (ξ )
by using a sufficiently large and dense training input set IDN ,
such that there always exist sufficiently many training inputs
in a ball centered at the point ξ with a radius which
approaches to 0 as N → ∞. Finally, combining Lemmas 1
and 2with Theorem 1, we state the following theoremwithout
proof.

Theorem 2: Under Assumptions 1 and 2, suppose that
the training dataset DN satisfies the sufficient condition
of Lemma 2. Then, given ϵ > 0, there exists N̄ ∈ N, such
that for every N > N̄ , the closed-loop system (1) with the
MR-GPR controller u(t) = µDN ([x(t); fR(x(t), t)]) sastisfies

∥x(t) − xR(t)∥ < ϵ, ∀t ≥ 0

where x(0) ∈ XR and xR is the solution to the reference
model (2) with xR(0) = x(0). □
In practice, noise is unavoidable particularly in state

measurements. Since the MR-GPR controller necessitates
state data of the system as a training input to learn the
function c, we need a GPR which is able to handle the noise
in the training input. In fact, the noise in the training input
of a linear function can exactly be treated as a noise in the
training output as shown in the following example.
Example 2: Let us consider a linear system

x(t + 1) = Ax(t) + Bu(t), (18)

where x ∈ Rn, u ∈ Rm, and B ∈ Rn×m is left invertible. It is
clear that from (4), the function c can be found as

c([x(t); x(t + 1)]) = B†(x(t + 1) − Ax(t)), (19)

where B† is a left-inverse of B. Suppose that we have noisy
measurements

x̃(t) = x(t) + wx(t),

where wx is a white noise such that wx(t) ∼ N (0, σ 2
0 I ) for

every time step t . Then from (18) and (19), we obtain

u(t) = B†(x(t + 1) − Ax(t))

= B†(x̃(t + 1) − Ax̃(t)) − B†(wx(t + 1) − Awx(t))

= c([x̃(t); x̃(t + 1)]) − B†(wx(t + 1) − Awx(t)).

Defining ũ(t) := u(t) + wu(t), where

wu(t) := B†(wx(t + 1) − Awx(t)),

yields

c([x̃(t); x̃(t + 1)]) = ũ(t).

This indicates that the function c can be identified by using
the training input

ξ̃ (t) := [x̃(t); x̃(t + 1)] ∈ R2n

which can be considered as a noise-free data and the
corresponding (noisy) training output

ũ(t) = u(t) + wu(t) ∈ Rm,

where wu(t) ∼ N (0, σ 2
0B

†(I − AA⊤)(B†)⊤). □
Motivated by Example 2, we modify the Gram matrix Ki

of (14) and (15) as if there is an output noise as:

µi
DN

(ξ ) := kTi (ξ )(Ki + σi,nI )−1ui,

σ iDN
(ξ ) := ki(ξ, ξ ) − kTi (ξ )(Ki + σi,nI )−1ki(ξ ),

where σi,n is the additional hyperparameter.
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Remark 2: The idea in Example 2, treating the input as
deterministic and adding a corrective term to the output
noise, can also be applied approximately for nonlinear
regression target as shown in [24] and [25]. For instance,
the authors of [24] utilize a Taylor expansion approximation
to obtain a corrective term in the posterior mean and
variance functions. The corrective term is firstly determined
by using the standard GPR and improved recursively by
re-optimizing hyperparameters based on the (previously
corrected) posterior mean function.
Remark 3: We discuss the performance of the MR-GPR

controller under conditions where Assumption 2 does not
hold.

Firstly, let us consider the scenariowhereAssumption 2-(a)
is violated. This situation implies that the uniqueness of the
control input transitioning from the current state to the next
state is not guaranteed. Under such circumstances, it is hard
to define the inverse model c, thereby theMR-GPR controller
may become inoperative.

Secondly, let us inspect the case where Assumption 2-(a)
holds, but Assumption 2-(b) is not satisfied, that is, when
there is no control input that enables the system to follow
the reference model. In this scenario, the MR-GPR controller
might fail to compute the appropriate control inputs. How-
ever, unlike the case where Assumption 2-(a) is violated,
it is feasible to conduct control operations by seeking another
reference model that satisfies Assumption 2-(b) based on the
confidence level of the GPR. This adaptability underlines
the potential for utilizing alternative reference models to
ensure effective control, even when Assumption 2-(b) is not
fully met.

IV. ILLUSTRATIVE EXAMPLE
In this section, an illustrative example is presented to
describe the utility of the proposed data-driven controller.
Consider an inverted pendulum system discretized by Euler
method [22], [23] as

z1(t + 1) = z2(t),

z2(t + 1) = a(z(t)) +
T 2

ml2
u(t), (20)

where a(z) := z2 +
gT 2

l sin(z1) + (1 −
µT
ml2

)(z2 − z1), and
g is gravitational constant, l is the distance from the base to
the center of mass of the balanced body, µ is the coefficient
of rotational friction, m is the mass to be balanced, and T
is a sampling period. Following Example 1, it is obvious
that

c([z(t); z(t + 1)]) =
ml2

T 2 (z2(t + 1) − a(z(t))) (21)

by (7).With a given reference signal φ(t), the referencemodel
fR is chosen following (8), namely,

fR(z(t), t) =

[
z2(t)

φ(t + 2)

]

TABLE 1. RMS error of each figure with the signal φ(t) = 0.1 sin(0.1t).

and it also satisfies Assumption 1. Now, we design MR-GPR
controller

u(t) = µDN ([z(t); fR(z(t), t)]),

which is expected to make z1(t) track the signal φ(t) under
system parameters g = 9.8,m = l = 0.2, µ = 0.01, and
sampling period T = 0.1.

Let us collect the data for identifying function c in (21).
Instead of using only one trajectory of input and state as (11)
and (12), we use the following training dataset

DN =

{
(ξ id(0), u

i
d(0))

}N−1

i=1
,

where

ξ id(0) = [zd
i(0); zd

i(1)]

is collected by the i-th experiment with a random initial
condition z1,di(0) ∈ [−π, π], z2,di(0) = 0, and a random
input uid(0) ∈ [−1, 1] for i = 1, . . . ,N − 1. In this
simulation, we adopted an alternative definition forDN which
differs from the definition in (12), but can be justified by the
approach presented in [15, Remark 1]. The hyperparameters
of the SE kernel in (13) were determined by optimizing the
marginal likelihood through the GPML toolbox [26] using the
training data DN .

FIGURE 1. State trajectories of the system (20) with ideal controller c
(black line) and MR-GPR controller µDN (green dashed line) designed by
the data of N = 300 experiments without noise from different initial
conditions and different φ(t). The hyperparameters are σ1 = 3.8057 and
h2

1,1 = h2
1,2 = h2

1,3 = h2
1,4 = 0.5688.

The performance of the MR-GPR controller is compared
to that of the ideal controller in the closed-loop system
with two different initial conditions (in all cases, we set
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FIGURE 2. State trajectories of the system (20) with ideal controller c
(black line) and MR-GPR controller µDN (green dashed line) designed by
the data of N = 3000 experiments under the state noise in the state z(t)
from different initial conditions. We only draw 0.15s for the left figures
because they show unstable system. The hyperparameters are
σ1 = 2.8323 and h2

1,1 = h2
1,2 = h2

1,3 = h2
1,4 = 1.0597.

FIGURE 3. State trajectories of the system (20) with ideal controller c
(black line) and MR-GPR controller µDN (green dashed line) designed by
the data of N = 3000 experiments under the state noise treating it as
input noise. The hyperparameters are σ1 = 2.8323,

h2
1,1 = h2

1,2 = h2
1,3 = h2

1,4 = 1.0597, and σ1,2 = 0.3.

the initial conditions of each system to (z1(0), z2(0)) ∈

{(−π, 0), (π/2, 0)}), where the MR-GPR controller is trained
using N = 300 experiments. As shown in Fig. 1, the
performance of the MR-GPR controller pretty well follows
that of the ideal controller. Additionally, the MR-GPR
controller is trained with state data in the presence of additive
white Gaussian noise with a signal-to-noise ratio of 20 dB
for N = 3000 experiments. The result is illustrated in Fig. 2.
The figure reveals that the control performance is
less-effective under measurement noise on the state (which
plays the role of input noise for GPR). Therefore, we imple-
ment the method discussed at the end of the previous section.
By setting the hyperparameter σ1,2 = 0.3, the result is shown
in Fig. 3. It is observed that, in the presence of noise in the

state, the proposed MR-GPR controller obtains better result.
The root mean square (RMS) error of each experiment is
detailed in Table 1 and Table 2.

TABLE 2. RMS error of each figure with the signal φ(t) = −0.2 cos(0.1t).

V. CONCLUSION
In this study, we introduced a data-driven state feedback
controller, referred to as the MR-GPR controller, for
nonlinear discrete-time systems under some assumptions.
The proposed controller was designed based on the GPR,
trained solely on the state/input data of the system, without
requiring any prior knowledge of the system’s underlying
physics or mathematical model. Additionally, the usefulness
of the proposed controller was verified through numerical
experiments.
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