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1 Introduction

Recently, there has been considerable interest in Non-Lorentzian (NL) gravity theories
and their underlying NL geometries in different fields ranging from high-energy physics,
hydrodynamics to condensed matter physics. For some reviews, see [1–5]. Some of these NL
gravity theories have arisen in the context of non-relativistic string theory [6–8], where they
describe the low-energy string dynamics provided the spacetime curvature is small. This has
been supported by several beta-function calculations from the worldsheet perspective [9–12].
In the case of non-relativistic superstring theory, one naturally considers the supersymmetric
extension of the associated NL gravity theory. This leads to the concept of NL supergravity.

It is known that the bosonic sigma model describing non-relativistic string theory can
be obtained as a critical Kalb-Ramond B-field limit of the relativistic Polyakov sigma
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model, where there is a cancellation of infinities arising from the kinetic and Kalb-Ramond
term [7]. We refer to such a critical B-field limit as the non-relativistic string limit, which
has been generalized to arbitrary bosonic background fields [13–15] including the Ramond-
Ramond (RR) potentials [16]. Therefore, one also expects that the same is true for the
corresponding supergravity theories in the target space. Indeed, it was shown that the
non-relativistic string limit naturally generalizes to 10D N = 1 supergravity theory, where
a crucial cancellation of infinities takes place between the Einstein-Hilbert action and the
terms containing the Kalb-Ramond potential [17, 18].

In view of future application to NL holography, it is motivating to study the non-
relativistic string limit of IIB supergravity. This formal development will provide an exciting
arena for top-down constructions of holographic duals between quantum field theories (QFTs)
and gravity theories enjoying NL spacetime symmetries (see, e.g., [19]). In particular, the
dual QFTs on the boundary are expected to enjoy certain Galilei-like boost symmetries.
These QFTs are intimately related to interesting NL QFTs and quantum mechanical systems
that are already explored in the literature, such as the fractional quantum Hall states [20],
the Spin Matrix Theory [21–23], and NL QFTs with SU(1 , n) spacetime symmetries [24, 25].
The study of NL IIB supergravity should enable us to investigate interesting gravitational
solutions, such as black hole-like objects, with potential applications to holography. Before
exploring any of these applications in holography, it is important to first understand the
formal aspects of the NL IIB theory.

In particular, IIB supergravity famously realizes a global SL(2 , R) symmetry [26], which
is broken to SL(2 , Z) when lifted to IIB superstring theory [27, 28]. This duality maps
between weakly and strongly coupled regimes in string theory and provides an important
access to M-theory in 11D. A thorough understanding of the SL(2 , R) duality in NL
IIB supergravity and its SL(2 , Z) counterpart in non-relativistic IIB superstring theory is
essential for mapping out the duality web in this NL corner of string theory, which may
eventually provide new insights into Matrix string/membrane theory. This is supported by
the now well-established relation between the Discrete Light-Cone Quantization (DLCQ)
of string theory and non-relativistic string theory, which also has a natural lift to M-
theory [7, 8, 16, 29–32]. The DLCQ is important for non-perturbative approaches to
quantum chromodynamics in field theory and Matrix theory in string/M-theory [33–36].

In this paper, we will start with the somewhat expected result that the non-relativistic
string limit is also well-defined for the bosonic sector of IIB supergravity. This is the
first step towards the full supergravity theory including the fermionic sector. Surprisingly,
formulating the bosonic sector of NL IIB supergravity already leads us to uncover a series
of intriguing novelties brought by its NL nature. We summarize the advances in this
work below.

Emergence of a New Field in Non-Lorentzian IIB. We will derive an action principle
of NL IIB supergravity (see eqs. (2.26) and (2.25)) and show that it incorporates a new field
content imposing a duality constraint on the RR fluxes (see eqs. (2.22) and (2.19)). We
briefly summarize the reason why this new field content emerges below. The non-relativistic
string limit of the Lorentzian IIB supergravity action leads to additional divergences in

– 2 –



J
H
E
P
1
2
(
2
0
2
3
)
0
2
2

the RR sector that a priori do not cancel. However, we will show that this superficial
divergence leads to constraints in the system instead of any pathology. We approach
this by rewriting the divergent part via the Hubbard-Stratonovich formalism, where an
auxiliary field is introduced such that the non-relativistic string limit becomes non-singular.
This method is in part inspired by the worldsheet technique that leads to the Polyakov
formalism of non-relativistic string theory [7]. After taking the limit, the auxiliary field
gives rise to the new field content in NL IIB supergravity and plays the role of a Lagrange
multiplier imposing the duality constraint on the RR three- and five-form fluxes. This
constraint is analogous to the self-duality condition on the RR five-form flux in Lorentzian
IIB supergravity. See section 2.2.

Branched SL(2 , R). We also highlight that the SL(2 , R) transformations in NL IIB
theory exhibit a branching structure. In our previous work [37], we have focused on the
interplay between string/brane objects in NL IIB superstring theory and the SL(2 , R) duality,
which is broken to SL(2 , Z) due to the quantization of the (p , q) strings [28]. Here, p and
q are co-prime with (p , q) = (1 , 0) representing the fundamental string and (p , q) = (0, 1)
representing the D-string. We demonstrated in [37] that the SL(2 , Z) transformations
develop a branching structure, i.e., the transformation rules crucially depend on the sign of
a quantity containing both the background RR zero-form C(0)(x) and group parameters
(see eq. (2.31)). Moreover, this branching is made physically manifest in the (p , q) space
and is characterized also by the value of C(0) , through the sign of the quantity p− q C(0)(x) .
Such a branching divides the (p , q) space into two halves and is related to the fact that
there is an ambiguity in what one defines to be a string or an anti-string. Both the branches
are required in order to realize the full SL(2 , Z) group. In contrast, we will show in the
current work that there is only one and the same NL IIB supergravity action realizing the
full SL(2 , R) group, which does not exhibit any branching structure at the level of the
action anymore. This is because supergravity has an extra Z2 symmetry, which is absent
when coupled to strings. However, the SL(2 , R) transformations themselves still have a
branched structure, which we will show in this paper corresponds to different branches of a
complexified dilaton field (see section 2.4).

Polynomial Realization of SL(2 , R) and Invariant Theory. We will demonstrate
that the SL(2 , R) duality of NL IIB supergravity is realized in a way that is fundamentally
different from the Lorentzian case: the SL(2 , R) transformations in NL IIB supergravity
appear non-linearly as certain finite-order polynomials of a quantity κ containing both the
background scalar fields and group parameters (see eqs. (3.4) and (4.9)). This motivates
us to formulate an unconventional polynomial realization (3.22) of the SL(2 , R) duality.
We will show that there exists a simple connection between this polynomial realization
and invariant theory in abstract algebra [38], which deals with group actions on binary
forms that are homogeneous polynomials in two variables, or, more generically, algebraic
varieties [39]. In particular, we will show in eq. (4.1) that all the NL IIB data, including
the new field content that we previously mentioned, and their SL(2 , R) transformations
are elegantly packaged into a quadratic and quartic binary form, which we generalize to
incorporate the field strengths in IIB supergravity that are differential forms (instead of real

– 3 –



J
H
E
P
1
2
(
2
0
2
3
)
0
2
2

or complex numbers). In a companion paper [40], an M-theory origin of this polynomial
realization will be revealed, where the quantity κ , in terms of which the polynomials are
formed, will have a geometric interpretation as the Galilei boost velocity on the anisotropic
torus1 over which non-relativistic M-theory is compactified. See section 3.

Towards a Non-Lorentzian Bootstrap. Finally, we will apply this novel polynomial
realization of global SL(2 , R) to classify all the bosonic invariants in NL IIB supergravity
(see eqs. (4.15), (4.16), and (4.17)). Focusing on the lowest-order Lagrangian terms that
are quadratic in spacetime derivatives, and combined with the other bosonic symmetries
that, most importantly, contain the a local Galilei-like boost symmetry and an emergent
dilatation symmetry (see section 2.3), we show that the resulting effective action in eq. (4.23)
only has a single free coupling that is the gravitational constant. Fascinatingly, this bosonic
effective action precisely reproduces the NL IIB action we derive from the non-relativistic
string limit. In this sense, we are able to build the action of the bosonic sector of NL IIB
supergravity from the polynomial realization of SL(2 , R), without explicitly referring to
fermions or supersymmetry. Moreover, we will argue that the bosonic part of the Lorentzian
IIB supergravity including the self-duality condition can be recovered by tracing back
the limiting procedure. This success opens up the possibility of constructing higher-order
terms in Lorentzian IIB supergravity from the NL corner coupled to non-relativistic strings
using bosonic symmetries, which is essentially an “NL bootstrap” in the sense that we use
the smaller NL theory to constrain the couplings in the parent Lorentzian theory. See
section 4.4.

This work is organized as follows. In section 2, we derive the bosonic action (2.26) and
symmetries of NL IIB supergravity by taking the non-relativistic string limit of Lorentzian
IIB supergravity. In section 3, we first develop a general polynomial realization (3.22)
of SL(2 , R) in NL theories. Then, in section 3.3, we generalize classical invariant theory
and study its application to the polynomial realization of SL(2 , R). In preparation for the
application to NL IIB theory, we classify the quadratic invariants in section 3.3.2. Finally,
in section 4, we apply the formalism developed in section 3 to build the bosonic sector of
NL IIB supergravity from symmetry principles. We first recast the NL IIB data into two
binary forms in eq. (4.1) and derive their SL(2 , R) transformations in eq. (4.9) using the
polynomial realization. Then, in section 4.3, we classify all possible SL(2 , R) invariants that
are quadratic in spacetime derivatives. Finally, we demonstrate how the NL IIB gravity
action uniquely follows as a bosonic effective field theory in section 4.4 using all the bosonic
symmetries including the SL(2 , R) and propose the concept of NL bootstrap. We give our
outlook in section 5. Three appendices have been added to explain some of the details of
our calculations.

2 Non-relativistic string limit in IIB supergravity

In this section, we derive the Non-Lorentzian (NL) IIB supergravity action from the non-
relativistic string limit of the well-known Lorentzian IIB supergravity action. We will see

1The topology of this anisotropic torus is that of a pinched torus [41, 42].
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that this leads us to extend the field content by an additional five-form field. This field
appears as a Lagrange multiplier imposing a constraint on the RR fluxes. What is more, we
will study the symmetries of the new NL action, highlighting the unconventional realization
of SL(2 , R) symmetry in the NL system. We will discuss the subtleties associated with the
branched structure of the SL(2 , R) transformations, where, unlike in the Lorentzian case,
important sign changes are present.

2.1 Review of Lorentzian IIB supergravity

We begin with a review of the manifestly SL(2 , R)-invariant2 formulation of Lorentzian IIB
supergravity theory, using the Einstein frame. In this work, we focus only on the bosonic
sector by setting all of the fermions to zero. In the following, we use hatted notation in
Lorentzian supergravity and unhatted notation in non-Lorentzian supergravity. The action
is given by [28]

Ŝ = 1
16πGN

∫
d10x Ê

[
R̂ + 1

4 tr
(
∂µM̂ ∂µM̂−1

)
− 1

12 Ĥ⊺
µνρ M̂ Ĥµνρ

]

+ 1
16πGN

∫ 1
4

(
F̂ (5) ∧ ⋆F̂ (5) − Ĉ(4) ∧ Ĥ(3)⊺ ∧ ϵ Ĥ(3)

)
,

(2.1)

where GN is Newton’s gravitational constant and ϵ is the 2D Levi-Civita symbol. Further-
more, Êµ

Â is the Vielbein field in the Einstein frame, where µ = 0, . . . , 9 are the spacetime
indices and Â = 0, . . . , 9 are the frame indices. In addition, Ê = det Êµ

Â and R̂ is the Ricci
scalar. We also introduce the dilaton field Φ̂, the Kalb-Ramond two-form field B̂(2), and
the RR zero-, two-, and four-form potentials Ĉ(0), Ĉ(2), and Ĉ(4). We define these RR
potentials to be the ones that naturally couple to the D-branes via the Chern-Simons action
but in general transform non-trivially under the SL(2 , R) group action. In supergravity, it
is convenient to define a calligraphic four-form field C(4) to be

Ĉ(4) = Ĉ(4) + 1
2B̂(2) ∧ Ĉ(2) , (2.2)

which is invariant under the SL(2 , R) group action. The fields M̂, Ĥ, and F̂ (5) in eq. (2.1)
are derived quantities given in terms of the fundamental fields as follows:

M̂ = eΦ̂

(Ĉ(0))2 + e−2Φ̂ Ĉ(0)

Ĉ(0) 1

 , (2.3a)

Ĥ(3) = dΣ̂(2) where Σ̂(2) =
(

B̂(2)

Ĉ(2)

)
, (2.3b)

F̂ (5) = dĈ(4) + 1
2 Ĥ(3)⊺ ∧ ϵ Σ̂(2) . (2.3c)

A nontrivial feature of the action (2.1) is that it does not give the correct equations of motion
unless we impose the following self-duality condition by hand after varying the action:

F̂ (5) = ⋆F̂ (5) . (2.4)

For this reason, eq. (2.1) is sometimes called a pseudo-action.
2In type IIB superstring theory, the continuous SL(2 , R) symmetry group of IIB supergravity becomes

quantized and is broken to SL(2 , Z) [28].
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Under an SL(2 , R) transformation generated by the matrix

Λ =
(

α β

γ δ

)
, α , β , γ , δ ∈ R , α δ − β γ = 1 , (2.5)

the various fields transform as follows:

Êµ
Â → Êµ

Â , Ĉ(4) → Ĉ(4) , F̂ (5) → F̂ (5) , (2.6a)

and

Ĥ(3) →
(
Λ−1)⊺ Ĥ(3) , M̂ → ΛM̂Λ⊺ , (2.6b)

from which it is easy to see that the action (2.1) is indeed SL(2 , R)-invariant. In fact, each
individual term in eq. (2.1) is manifestly SL(2 , R) invariant on its own.

The IIB fields we have introduced above transform under coordinate transformations
x → x′(x) in the usual way (i.e., as tensors): each spacetime index being multiplied by the
Jacobian for the change of coordinates or its inverse. Similarly, under the local Lorentz
transformations, each frame space index is multiplied by the Lorentz transformation matrix.

The action is also gauge-invariant under the infinitesimal transformations generated by
a one-form ξ̂(1), and a collection of p-forms ζ̂(p):

δB̂(2) = dξ̂(1) , δĈ(q) = dζ̂(q−1) + Ĥ(3) ∧ ζ̂(q−3) , (2.7)

where q = 0, 2, 4 . We take it for granted that ζ̂(p) vanishes for negative p . Moreover, Ĥ(3)

is the Kalb-Ramond field strength,

Ĥ(3) = dB̂(2) . (2.8)

We emphasize that the calligraphic Ĉ(4) is indeed invariant under SL(2 , R) in eq. (2.6),
which is why it is convenient to introduce it in the first place. On the other hand, in order
to have a nice unified notation for the gauge transformations, we have written them using
Ĉ(4) instead of Ĉ(4) in eq. (2.7). Thus, we will keep both for the convenience of discussions.

2.2 Non-relativistic string limit

We now discuss how to derive NL IIB supergravity from Lorentzian IIB supergravity that
we have discussed above. Analogous to how Lorentzian supergravity arises from relativistic
string theory, NL supergravity arises from non-relativistic string theory, which is a unitary
and ultra-violet complete string theory that has been studied from first principles using
worldsheet techniques [7] (see [2] for a recent review). It is also known that this string
theory can be embedded within the framework of relativistic string theory via the so-called
non-relativistic string limit. We now perform the non-relativistic string limit of the bosonic
sector of the Lorentzian IIB supergravity action following the prescriptions in [14, 16]. The
resulting NL supergravity naturally couples to non-relativistic string theory.

In practice, we will first reparametrize the relativistic IIB supergravity action (2.1) by
performing an invertible redefinition of fields that involves a dimensionless parameter ω. For
the RR q-form potentials, we use the results of [16], where the probe D-branes were used to
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derive the appropriate reparametrizations. Then, we will discuss how to take a consistent
ω → ∞ limit of the IIB action. The consistent non-relativistic limit of the Neveu-Schwarz
action, which is a truncation of IIB supergravity in which the RR fields are set to zero, was
previously obtained in [18].

We begin by splitting the range of the frame index Â = 0 , . . . , 9 into a 2D longitudinal
sector with A = 0 , 1 and an 8D transverse sector with A′ = 2 , . . . , 9 . This leads to a
natural split of the Lorentzian Vielbein Êµ

Â into longitudinal τµ
A and transverse Eµ

A′

components. Then, we make the ω-dependent reparametrizations of the NS-NS fields, 3

Êµ
A = ω3/4 τµ

A , Φ̂ = Φ + lnω , (2.9a)

Êµ
A′ = ω−1/4 Eµ

A′
, B̂(2) = −ω2 eΦ/2 ℓ(2) + B(2) , (2.9b)

together with the reparametrizations of the Ramond-Ramond potentials,

Ĉ(q) = ω2 eΦ/2 ℓ(2) ∧ C(q−2) + C(q) , (2.9c)

where ℓ(2) is the worldsheet volume 2-form with components defined by

ℓµν = τµ
Aτν

BϵAB . (2.10)

Note that the ω2 term in eq. (2.9c) is understood to vanish when q = 0 .
Before performing the ω → ∞ limit in the Lorentzian IIB action (2.1), we first collect

some necessary definitions. We define the inverse Vielbeine fields via the orthonormality
condition of Êµ

Â , which now breaks up into the following conditions:

τµ
A τµ

B = δA
B , τµ

A τν
A + Eµ

A′
Eν

A′ = δν
µ ,

Eµ
A′

Eµ
B′ = δA′

B′ , τµ
A Eµ

A′ = τµ
A Eµ

A′ = 0 .
(2.11)

In the rest of the paper, we will often replace spacetime indices with frame indices. This
means that the spacetime index has been contracted with a Vielbein component, either τµ

A

or Eµ
A′ or their inverses depending on whether the frame index is longitudinal or transverse

and raised or lowered. For example,

F A = τµ
AF µ , GA′ = Eµ

A′Gµ . (2.12)

We define the determinant E , q-form field strengths F (q) , and the four-form field C(4) in
the non-Lorentzian IIB theory after the ω → ∞ limit to be

E = det
(
τµ

A, Eµ
A′)

, C(4) = C(4) + 1
2B(2) ∧ C(2) , (2.13a)

H(3) = dB(2) , F (q) = dC(q−1) + C(q−3) ∧ dB(2) , (2.13b)

for q = 1, 3, 5 and where it is understood that C(q) = 0 for negative q.
3The powers of ω here are appropriate for the Einstein frame. The string frame Vielbeine are simply

eΦ/4τµ
A and eΦ/4Eµ

A′
. The other fields are identical in both frames.
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We also define the quantity
τµν

A = ∂[µτν]
A (2.14)

for convenience. This enters into dℓ(2) as follows:

dℓ(2) = ϵAB τµν
A τρ

B dxµ ∧ dxν ∧ dxρ . (2.15)

In the rest of the paper, it is useful to remember that the wedge product of two or more
ℓ(2)’s or an ℓ(2) with dℓ(2) vanishes. A priori, we will not impose any condition on τµν

A (or
dℓ(2)), though, like all fields, it will be constrained by the equations of motion. Nevertheless,
one can see that the condition that dℓ(2) = 0 is the worldsheet analog of “absolute time”
(dτ = 0) for the particle [43]. Moreover, extra constraints on τµν

A usually arise once
the supersymmetry transformations are concerned [18] or further bosonic symmetries are
imposed [13, 29, 44]. In order to decide the necessary supersymmetric constraints on τµν

A ,
a thorough analysis of the full NL IIB supergravity including the fermionic sector has to be
performed, which is beyond the scope of this paper.

Plugging the above redefinitions eq. (2.9) into the IIB supergravity action (2.1) results
in an expansion of the action with respect to large ω of the form

Ŝ = ω2 (2)
S +

(0)
S +ω−2(−2)

S +O(ω−4) . (2.16)

Ultimately, we are interested in the finite part
(0)
S , but first we must deal with the ω2 terms

in
(2)
S , which lead to a superficial quadratic divergence in the infinite ω limit. We will show

that this superficial divergence can be tamed into a finite contribution in the resulting NL
IIB supergravity action.

Quadratic Divergence. The ω2 terms in eq. (2.16) are given by (up to boundary terms) 4

ω2 (2)
S = ω2

16π GN

∫ (
Ω(3) ∧ ℓ(2)) ∧ ⋆

(
Ω(3) ∧ ℓ(2)) , (2.18)

where we have defined the three-form

Ω(3) = 1
2
[
⋆
(
F (5) ∧ ℓ(2))− eΦ/2F (3)

]
. (2.19)

See eq. (B.4) in appendix B for details of the computation of eq. (2.18). Now, we can perform
a Hubbard-Stratonovich transformation by introducing an auxiliary five-form field A(5) :

ω2 (2)
S → 1

16πGN

∫ [
A(5) ∧ ⋆

(
Ω(3) ∧ ℓ(2))− 1

4ω2 A(5) ∧ ⋆A(5)
]

. (2.20)

4We remind the reader that the Hodge star operation maps p-forms to (10 − p)-forms and is defined via
its action on an orthonormal basis ea , a = 0 , 1 , · · · , 9 as follows [45]:

⋆
(

ea1 ∧ · · · ∧ eap

)
= 1

(10 − p)! eap+1 ∧ · · · ∧ ea10 ϵa
p+1···a10

a1···ap . (2.17)

This definition is independent of the local symmetries and is thus valid for both the Lorentz structure with
frame fields {ea} = {ÊÂ} and the Galilei structure with frame fields {ea} = {τA, EA′

}.
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Using this auxiliary field trick, we have traded the O(ω2) term with an O(ω0) and an O(ω−2)
term, thereby effectively removing the divergent O(ω2) term altogether. The equation of
motion from varying A(5) in eq. (2.20) is

A(5) = 2ω2 Ω(3) ∧ ℓ(2) . (2.21)

Indeed, if we plug this back into eq. (2.20), we get back the original quadratic divergence
eq. (2.18).

If we now take the ω → ∞ limit in eq. (2.20), then there is no longer any quadratic
divergence and A(5) becomes a Lagrange multiplier imposing the constraint

Ω(3) ∧ ℓ(2) = 0 . (2.22)

In components of the frame indices, eq. (2.22) is equivalent to ΩA′B′C′ = 0 . Using eq. (2.19),
we find

FA′
1···A

′
5
= −eΦ/2

3! ϵA′
1···A

′
8

F A′
6A′

7A′
8 . (2.23)

In fact, this is one of the two classes of the equation that one derives from the non-relativistic
limit of the self-duality condition F̂ (5) = ⋆F̂ (5), the other one being

FAA′
1···A

′
4
= 1

4! ϵAB ϵA′
1···A

′
4B′

1···B
′
4

F BB′
1···B

′
4 . (2.24)

Thus, the original self-duality condition, which was imposed by hand, does not arise as an
equation of motion. However, in the non-relativistic string limit, it splits into two equations,
one of which is the constraint being imposed by the Lagrange multiplier.

Finite Terms. Now, we collect the O(ω0) terms in the action (2.16):

(0)
S = 1

16πGN

∫
d10xE

[
R+τA′A

A
(
2τA′B

B+∂A′Φ
)
− 3

8 ∂A′Φ∂A′Φ− 1
2·3! e−ΦHA′B′C′HA′B′C′

+e−Φ/2 ϵAB τA′B′
A HA′B′B− 1

2 e2Φ FA F A− 1
2 e3Φ/2 F A′

FA′AB ϵAB

− 1
4 eΦ FA′B′A F A′B′A− 1

4! eΦ/2 FA′B′C′ F A′B′C′AB ϵAB− 1
4·4! FA′

1···A
′
4A F A′

1···A
′
4A
]

− 1
32πGN

∫
C(4)∧H(3)∧F (3) , (2.25)

where R is the O(ω1/2) term in R̂. In appendix B, we show more details on deriving
eq. (2.25) from the Lorentzian action (2.1). In appendix A, we give the explicit expression
and some properties of the scalar curvature R . Combining the O(ω0) terms in eq. (2.20)
and eq. (2.25), we find that the final bosonic part of the NL IIB supergravity action is
given by

S =
(0)
S + 1

16πGN

∫
A(5) ∧ ⋆

(
Ω(3) ∧ ℓ(2)) , (2.26)

where the first term is given by eq. (2.25) and Ω(3) in eq. (2.26) is defined in eq. (2.19).
Unlike the Lorentzian supergravity action (2.1), the NL action (2.26) that we obtained

via performing the non-relativistic string limit appears to be rather complicated. In
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particular, the SL(2 , R) symmetry is not as manifest as in the original Lorentzian action (2.1)
anymore. In section 3, we will discover a more natural way of parametrizing the differential
forms in NL IIB supergravity that is distinct from the Lorentzian theory. In this new basis
of differential forms, the SL(2 , R) symmetry also becomes manifest in the NL corner. To
start with, we first discuss the symmetries of the action (2.26) in the next subsection, which
will motivate the formalism in section 3 that we will refer to as a polynomial realization
of SL(2 , R).

2.3 Symmetries in non-Lorentzian IIB supergravity

In this section, we investigate the symmetries of the NL IIB action (2.26). We will first
discuss the counterparts of the symmetries that already exist in Lorentzian IIB supergravity,
including the higher-form gauge symmetries, spacetime diffeomorphism, rotation, and boost
symmetries, and, finally, the global SL(2 , R) symmetries. In addition, NL IIB supergravity
is also invariant under a local dilatation symmetry that requires special attention.

Higher-Form Gauge Symmetries. We first deal with the higher-form gauge symmetries,
which take on the same form as in Lorentzian IIB supergravity and act on the B-field and
Ramond-Ramond potentials as

δξB(2) = dξ(1) , δζC(q) = dζ(q−1) + dB(2) ∧ ζ(q−3) . (2.27)

It is understood that ζ(q) vanishes when q < 0 .

Spacetime Gauge Symmetries. Next, we consider the geometric data in NL IIB
supergravity, which are encoded by the NS-NS fields, including the longitudinal Vielbein
τµ

A , transverse Vielbein Eµ
A′ , Kalb-Ramond field Bµν , and dilaton Φ . These fields form

the so-called torsional string Newton-Cartan geometry [15, 18, 44], which is characterized
not only by curvature but also intrinsic torsion associated with τµ

A [43].5 However, when
the spacetime symmetry transformations of the IIB data are concerned, it is sufficient
for us to focus on the string Galilei algebra, which consists of generators associated with
longitudinal and transverse translations, longitudinal SO(1 , 1) Lorentz boost, transverse
SO(8) rotations, and string Galilei boosts between the longitudinal and transverse sectors.
We collect the spacetime symmetries below:

(1) Diffeomorphisms, which are manifestly preserved by appropriately contracting the
curved spacetime Greek indices such as µ .

(2) Local SO(1 , 1)× SO(8) rotations, which act infinitesimally on the Vielbeine fields as

δRτµ
A = λA

B τµ
B , δREµ

A′ = λA′
B′ Eµ

B′
. (2.28)

This symmetry is manifestly preserved by appropriately contracting the frame Latin
indices such as A and A′ in the longitudinal and transverse sector, respectively.

5The underlying spacetime symmetry algebra is known to be the fundamental string Galilei algebra [15],
the gauging of which gives rise to all the NS-NS fields in non-Lorentzian IIB theory.
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(3) Local string Galilei boosts, which act on the NS-NS fields as

δGτµ
A = 0 , δGEµ

A′ = −λA
A′

τµ
A , δGB(2) = ϵAB λB

A′ eΦ/2 τA ∧ EA′
.

(2.29a)

From the first two boost transformations in (2.29a), we find that the inverse Vielbeine
fields transform as δGτµ

A = λA
A′

Eµ
A′ and δG Eµ

A′ = 0 . Note that the string Galilei
boost also acts non-trivially on the RR fields C(q), with

δGC(q) = −ϵAB λB
A′ eΦ/2 τA ∧ EA′ ∧ C(q−2) . (2.29b)

It is understood that δGC(0) = 0 . Finally, performing the ω → ∞ limit of the
string Galilei boost transformation of eq. (2.21) with λA

A′ = ω ΛA
A′ , we find that the

infinitesimal boost transformation of the auxiliary field A(5) appearing in eq. (2.26) is

δG A(5) = 2 ϵAB λA
A′ EA′ ∧ τB ∧ Ω(3) , (2.29c)

where Ω(3) is defined in eq. (2.19) and satisfies Ω(3) ∧ ℓ(2) = 0 as in eq. (2.22). The
above boost transformations are also valid for finite λA

A′ , as long as “δ” is interpreted
as the finite difference between the transformed and original fields.
Note that the NL self-duality conditions transform under Galilei boosts as follows:

δGFA′
1···A

′
5
= 0 , δGFAA′

1···A
′
4
= λA

A′
5 FA′

1···A
′
5
− 4 eϕ/2 ϵAB λB

[A′
1

FA′
2 A′

3 A′
4] ,

(2.30)
i.e., eq. (2.23) is invariant, whereas eq. (2.24) transforms to eq. (2.23).

Global SL(2 , R) Symmetry. Let us now turn to the SL(2 , R) symmetry of the NL IIB
action (2.26). As shown in [37], the set of SL(2 , R) tranformations in NL IIB theory contains
a branching factor that depends on the sign of γ C(0) + δ and take the following form:6

τµ
A → τµ

A , Eµ
A′ → Eµ

A′
, (2.31a)

C(0) → α C(0) + β

γ C(0) + δ
, Φ → Φ+ 2 ln |γ C(0) + δ| , (2.31b)

(
B(2)

C(2)

)
→ sgn

(
γ C(0) + δ

)[(
Λ−1)⊺ (B(2)

C(2)

)
+W

]
, (2.31c)

C(4) → C(4) − κ

2
[
e−Φ/2B(2) − κ

2 eΦ/2(C(2) + C(0) B(2))] ∧ ℓ(2) , (2.31d)

where Λ is the matrix of SL(2 , R) parameters α, β, γ, δ as given in (2.5), and

κ= γ e−Φ

γ C(0)+δ
, W =− γ

γ C(0)+δ

[(
Λ−1)⊺+ 1

γ C(0)+δ

]( 0
1
2 ℓ(2) e−3Φ/2

)
. (2.32)

6In [37], we worked with string-frame fields, which explains the different powers of the dilaton in the
expressions given here. Moreover, we worked with SL(2 , Z) instead of SL(2 , R) there, which does not change
the form of the transformation rules. Finally, the SL(2 , Z) transformations are written for C(4) in [37]. Here,
we will instead write the SL(2 , R) transformation for C(4) in eq. (2.13a).
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At this point, κ and W are merely useful combinations of fields and parameters. We will
see in the next section that these combinations actually play a fundamental role when a
systematic examination of the realization of SL(2 , R) in the NL supergravity is concerned.
Moreover, we will also introduce a new basis of fields in terms of which the SL(2 , R)
transformation rules in eq. (2.31) significantly simplify. Note that we have used C(4) rather
than C(4). The transformation rule for C(4) is more complicated and can be found by
using the definition of C(4) in eq. (2.13a) (see also [37]). The SL(2 , R) transformation of
the Lagrange multiplier A(5) can be found by performing the SL(2 , R) transformation of
eq. (2.21), followed by taking the ω → ∞ limit. This gives

A(5) → A(5) −
(
κ e−

Φ
2 H(3) − 1

2 κ2 e
Φ
2 F (3)

)
∧ ℓ(2) . (2.33)

Note that the above expressions of SL(2 , R) transformations are only valid if γC(0)+δ ̸=0 .
In the case where γ C(0) + δ = 0 , NL IIB supergravity is mapped to the “one-brane limit” of
Lorentzian IIB supergravity. In the associated type IIB superstring theory, this one-brane
limit is defined by fine-tuning the RR two-form to cancel the D1-brane tension. This
limit should be distinguished from the nonrelativistic string limit, where the Kalb-Ramond
two-form is fine-tuned to cancel the fundamental string tension. Therefore, the SL(2 , Z)
transformations satisfying γ C(0) + δ = 0 map nonrelativistic type IIB superstring theory
to the one-brane limit of IIB string theory. The one-brane limit of D1-branes is closely
related to Matrix string theory [46–48]. See [40, 49] for further details. T-dualities between
more general p-brane limits associated with various critical RR fields have been discussed
in [8, 50] and will be further explored in [41, 49], where a duality web unifying a zoo of
decoupling limits of string/M-theory, including Matrix (gauge) theories, will be uncovered.

Local Anisotropic Dilatation Symmetry. NL IIB supergravity also enjoys an emergent
local dilatation symmetry parametrized by λD that has no counterpart in the parent
Lorentzian theory. Such local dilatation acts on an operator O as

O → e∆(O) λD O , (2.34)

where ∆(O) is the dilatation weight associated with the operator O . These weights can be
conveniently determined by the exponent in the factor ω∆ in front of each operator in the
reparametrization (2.9), with

∆
(
τµ

A) = −∆
(
τA

µ) = 3
4 , ∆

(
B(2)) = ∆

(
C(q)) = 0 , (2.35a)

∆
(
Eµ

A′) = −∆
(
EA′µ

)
= −1

4 , ∆
(
A(5)) = 0 , ∆

(
eΦ) = 1 . (2.35b)

The associated fields then transform under the dilatation according to eq. (2.34). The
existence of the dilatation symmetry is a profound property of NL supergravity, as the
number of independent fields decreases by one (e.g., one may fix the dilatation gauge by
setting eΦ to a constant). This introduces an additional Noether identity compared to the
Lorentzian case and effectively removes the Poisson equation that encodes the instantaneous
Newton-like gravitational interaction. In this sense, the NL IIB supergravity action is a
pseudo-action. However, the complete list of target-space equations of motion can still be
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derived by taking the ω → ∞ limit of the Lorentzian equations of motion [14, 44], or, from
first principles via evaluating the beta-functions of the worldsheet theory [9–11]. We will
give more discussions on this in section 5.

It is a straightforward but tedious procedure to check that the NL IIB action (2.26) is
invariant under the above symmetries. In particular, it is a rather involved exercise to verify
that eq. (2.26) is invariant under the global SL(2 , R) transformations in eq. (2.31). This is
not very satisfactory, especially because SL(2 , R) is a simple group and there must be a
more transparent way to understand its group action. Quite surprisingly, the resolution of
this apparent conundrum leads to a simple polynomial realization of SL(2 , R), where all
the fundamental fields 7 and their associated field strengths in NL IIB supergravity, which
turn out to be in a rather different basis from the ones that we have been working with so
far, transform as a polynomial in κ as defined in eq. (2.32). We will devote the rest of the
paper to developing this highly unconventional SL(2 , R) realization.

Another bona fide surprise comes from the fact that the bosonic sector of NL IIB
supergravity can be uniquely determined using the aforementioned bosonic symmetries,
without referring to the fermionic sector. See more in section 4.4.

2.4 Branched SL(2 , R) and dilaton complexification

Before we develop the polynomial realization of SL(2 , R) in NL IIB supergravity, we first
introduce a trick to simplify the SL(2 , R) transformations of the two-form fields in eq. (2.31c)
by relocating the branching factor sgn

(
γ C(0) + δ

)
to the transformation of the dilaton field

Φ . This simplification will allow us to focus on the polynomial realization of SL(2 , R) in
the next section, instead of dragging along various branching factors.

We start by complexifying the dilaton field Φ such that its range becomes R + 2πi Z .
Note that this complexification does not affect the real-valuedness of the non-relativistic
string coupling gs = e⟨Φ⟩ . We then modify the SL(2 , R) transformation of Φ in eq. (2.31b)
to be

Φ → Φ+ 2 ln
(
γ C(0) + δ

)
= Φ+ 2 ln

∣∣γ C(0) + δ
∣∣+ πi

[
1− sgn

(
γ C(0) + δ

)]
.

(2.36)

Note that we have chosen a fixed argument of the log such that it only depends on the sign
of γ C(0) + δ . The dilaton Φ gains a shift of 2πi when γ C(0) + δ < 0 . This procedure allows
us to effectively absorb all the branching dependence into the SL(2 , R) transformation of Φ .
Requiring the consistency of the SL(2 , R) transformations demands that the group action
on the two-forms in eq. (2.31c) be modified. In particular, the associativity of the group
action requires the two-form fields transform as(

B(2)

C(2)

)
→
(
Λ−1)⊺ (B(2)

C(2)

)
+W , (2.37)

where the dependence on sgn(γ C(0) + δ) is eliminated and W was defined in (2.32).
7Except for the scalars Φ and C(0) , which form an SL(2 , R) doublet in eq. (3.3b) and transform linearly

under the group action.
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The importance of the branching behavior of the SL(2 , Z) 8 transformations in non-
relativistic IIB superstring theory has been emphasized in [37]. In particular, under the
original set of SL(2 , Z) transformations in eq. (2.31), where Φ is strictly a real field, the
(p , q)-string action in non-relativistic string theory takes the form,

Sstring =− 1
2

∫
d2σ eΦ/2 ∣∣p − q C(0)∣∣√−τ ταβ Eαβ

−
∫

sgn
(
p − q C(0))(p B(2) + q C(2) + 1

2
q2 e−3Φ/2 ℓ(2)

p − q C(0)

)
,

(2.38)

where σα , α = 0 , 1 are the worldsheet coordinates and

ταβ = ∂αXµ ∂βXν τµ
A τν

B ηAB , Eαβ = ∂αXµ ∂βXν Eµ
A′

Eν
B′

δA′B′ (2.39)

are pull-backs from the target-space to the worldsheet. Moreover, τ = det ταβ and ταβ is
the inverse of ταβ . We have set the string tension to one. Note that the (p , q)-string action
contains two different branches: it takes different forms depending on the sign of p − q C(0) .
Both of these branches are required in order for the full SL(2 , Z) symmetry to be realized.
In contrast, the NL IIB supergravity action (2.26) has a single action that is independent of
the sign of p− q C(0), just like the D3-brane case in [37]. This is expected: the supergravity
theory should not be sensitive to which (p , q)-string is coupled to it.

Intriguingly, using the trick of complexifying the dilaton field and the new set of
SL(2 , Z) transformations, where we have eqs. (2.36) and (2.37) replacing the corresponding
ones in eq. (2.31), the branching factor in the non-relativsitic (p , q)-string action is also
removed. Now, by imposing invariance under the new set of SL(2 , Z) transformations with
a complexified Φ , eq. (2.38) is replaced with

Sstring=−1
2

∫
d2σ eΦ/2(p − q C(0))√−τ ταβ Eαβ −

∫ [
p B(2) + q C(2) + q2 e−3Φ/2 ℓ(2)

2
(
p − q C(0))

]
,

(2.40)
while the NL versions of both the D3-brane and IIB supergravity action remain unbranched.
In this way, all the branching behavior of non-relativistic IIB superstring theory is now
located in the branching structure of SL(2 , Z) transformation (2.36) of the dilaton field
Φ .9 We will stick to this new parametrization of the SL(2 , R) transformations throughout
the rest of the paper. Note, however, that the original formulation (2.38) is arguably
more physical since it makes manifest the underlying branching between strings satisfying
p − q C(0) > 0 and their anti-strings satisfying p − q C(0) < 0 .

3 Polynomial realization of SL(2 , R) and invariant theory

In section 2.3, we derived the NL IIB supergravity action by performing the non-relativistic
string limit of its Lorentzian counterpart and classified its underlying symmetries, where

8Recall that, in string theory, the SL(2 , R) is restricted to SL(2 , Z) due to the quantization of the charges.
9Note that only the sign of eΦ/2 (and not eΦ, which is associated to the string coupling) depends on the

choice of branch.
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the non-trivial ones include the dilatation, string Galilei boost, and SL(2 , R) symmetries.
However, the SL(2 , R) invariance of the IIB action (2.26) is far from manifest. This is
partly due to the fact that the SL(2 , R) transformations of the higher-form gauge fields take
a rather complicated form. For example, the Kalb-Ramond field B̂(2) and Ramond-Ramond
two-form field Ĉ(2) form an SL(2 , R) doublet

Σ̂ =
(

B̂(2)

Ĉ(2)

)
(3.1)

in Lorentzian IIB theory and transform linearly as

Σ̂ →
(
Λ−1)⊺ Σ̂ , (3.2)

where Λ is the SL(2 , R) matrix defined in eq. (2.5). However, after reparametrizing as in
eq. (2.9) and then taking the ω → ∞ limit, we find that eq. (3.2) induces the much more
complicated transformation rules in eq. (2.31c) for the two-form fields B(2) and C(2) in NL
IIB theory. In other words, these two-form fields in the IIB theory do not form any SL(2 , R)
doublet anymore. This is not surprising: the transformation of the O(ω2) terms in B̂(2) and
Ĉ(2) themselves have a subleading O(ω0) piece, which leads to the complicated non-linear
and inhomogenous second term in eq. (2.31c). This is a generic property originating from
the interplay between the Lorentzian SL(2 , R) transformations and the ω → ∞ limit. In
the following subsection, we will formulate this observation in a more general way, which
will prove to be very useful for later use.

Intriguingly, the somewhat complicated SL(2 , R) transformations in eq. (2.31c) simplify
drastically upon the changes of variables,

B(2) = e−Φ/2B(2) , C(2) = eΦ/2
(
C(2) + C(0) B(2)

)
. (3.3a)

Note that the forms of the new definitions B(2) and C(2) already appeared in the SL(2 , R)
transformation (2.31d) of C(4) . Moreover, following [37], it is useful to define 10e1

e2

 = eΦ/2

C(0)

1

 . (3.3b)

In this new basis, and in terms of the complexified dilaton Φ introduced in section 2.4, we
find that the SL(2 , R) transformations in eq. (2.31) now becomee1

e2

→ Λ

e1

e2

 , (3.4a)

and

B(2) → B(2) − κ C(2) + 1
2 κ2 ℓ(2) , (3.4b)

C(2) → C(2) − κ ℓ(2) , (3.4c)

C(4) → C(4) − 1
2 κB(2) ∧ ℓ(2) + 1

4 κ2 C(2) ∧ ℓ(2) . (3.4d)
10In [40], we will see that the quantity (3.3b) is a Vielbein field on the anisotropic torus over which

non-relativistic M-theory is compactified.
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We have replaced the Φ transformation in eq. (2.31b) with eq. (2.36) and replaced eq. (2.31c)
with eq. (2.37). Here,

κ = γ e−Φ

γ C(0) + δ
. (3.5)

has previously appeared in eq. (2.32). Together with the transformation rule of the
Lagrange multiplier A(5) in (2.33), we find that the full SL(2 , R) transformations are now
expressed in terms of polynomials in κ as in eq. (3.4). As we will demonstrate later in this
section, similar reparametrizations exist for all the associated field strengths, such that the
reparametrized field strengths also transform under the SL(2 , R) action as a polynomial in κ .
We reemphasize that the formalism we are developing here is only valid for γ C(0) + δ ̸= 0 .
See the comments below eq. (2.33).

It is tempting to ask whether there is any profound mathematical structure underlying
the above observation. We will answer this question through this section and discover a
polynomial realization of the SL(2 , R) transformations. We will also show that this novel
realization of the SL(2 , R) action is closely related to a natural generalization of the classical
invariant theory of polynomial equations and binary forms (homogeneous polynomials in
two variables) [38]. Later in section 4, we will show how the SL(2 , R) invariants in NL IIB
supergravity can be constructed from two simple binary forms. These results match the
expressions from performing the ω → ∞ limit in Lorentzian IIB supergravity, but have the
benefit of making the SL(2 , R) invariance of the NL supergravity action manifest.

Finally, we note that the polynomial realization of SL(2 , R) to be developed in this
section acquires an elegant geometric interpretation in the context of non-relativistic M-
theory that uplifts non-relativistic superstring theory to eleven dimensions. We refer the
interested readers to the upcoming paper [40].

3.1 Global symmetries in non-Lorentzian theories

We start by extracting the general concept behind how the more complicated SL(2 , R)
transformations such as eq. (2.31c) in NL IIB theory arise from the ω → ∞ limit of the
linear transformations in Lorentzian IIB theory. This abstraction will reveal the underlying
mathematical structure of the SL(2 , R) invariants in NL IIB supergravity. We start with a
heuristic argument to motivate our central expression (3.12), which will play an essential
role in our later construction of the polynomial realization of SL(2 , R) in section 3.2.

Consider a Lorentzian system and denote the space of all its operators by Ô . We
assume that all operators in Ô are covariant under Lorentz transformations. Furthermore,
we require that this physical system be invariant under the action of a global group G ,
which acts linearly on a certain operator Ô ∈ Ô as

Ô → g · Ô , g ∈ G . (3.6)

In general, the group action “·” can have nonlinear dependence on other operators in Ô .
For simplicity, we will restrict to the subspace of Ô on which the above group action is
linear in all of the operators. In the example we considered at the beginning of this section,
we have G = SL(2 , R) and eq. (3.6) becomes Ô → (Λ−1)⊺ Ô as in eq. (3.2), with Ô being
identified with the SL(2 , R) doublet Σ̂ in eq. (3.1).
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Next, we consider a reparametrization of the fundamental fields that form all the
operators in Ô , which takes the form of 11

Ô = ω2 O0 +O . (3.7)

Note that the reparametrizations in eq. (2.9) provide an explicit realization of eq. (3.7).
We require such a reparametrization of the operator space to be invertible. It is important
that the reparametrizations like eq. (3.7) contain a term divergent at infinite ω . This is
key to the breaking of Lorentzian symmetries in the ω → ∞ limit, under the condition that
the Vielbeine fields encoding the spacetime geometry are also rescaled by ω anisotropically
in space and time. After the ω → ∞ limit is performed, we denote the resulting operator
space by O . Note that the unhatted operators O0 and O are both elements in O .

Expanding the group action (3.6) with respect to a large ω using the reparametriza-
tion (3.7), we find

O0 → g · O0 + O(ω−2) , O → g · O +K(g , O) + O(ω−2) . (3.8)

The shift K(g , O) in eq. (3.8) is a function of both group parameters and operators in the
NL theory, and it arises due to the fact that the subleading group transformation in O0 is
generically nonzero and that the group action itself may depend on ω . In the ω → ∞ limit,
we find

O0 → g · O0 , O → g · O +K(g , O) . (3.9)

In the above heuristic way, which is already sufficient for the purpose of this paper, we
conclude that the group action of interest on the operators in the resulting NL system take
the following form:

g ◦ O = g · O +K(g , O) , (3.10)

where both g ◦ O and g · O are group actions and satisfy the consistency conditions

Identity : 1 ◦ O = O , 1 · O = O , (3.11a)

Compatibility : g′ ◦
(
g ◦ O

)
=
(
g′g
)
◦ O , g′ ·

(
g · O

)
=
(
g′g
)
· O , (3.11b)

with 1 the identity in G . The above conditions imply that K satisfies

K
(
1 , O

)
= 0 , K

(
g′ g , O

)
= K

(
g′, g ◦ O

)
+ g′ · K

(
g , O

)
. (3.12)

These conditions on K will turn out to be crucial to formulating our polynomial realization
of SL(2 , R).

As an example, we rewrite the SL(2 , R) transformations in eq. (2.31c) in terms of the
two group actions as in eq. (3.10). In this case,

O =
(

B(2)

C(2)

)
, g · O =

(
Λ−1)⊺ (B(2)

C(2)

)
, g ◦ O = g · O +W , (3.13)

11More general Ansätze of eq. (3.7) may be considered (e.g., a reparametrization of the operators containing
higher powers of ω). However, it is sufficient to stick to eq. (3.7) for our purpose. Moreover, one may even
consider an expansion of all the operators with respect to a large ω such that subleading orders in ω are
also included in eq. (3.7) (see, e.g., [51, 52]). Nevertheless, since we will be taking an ω → ∞ limit, it is
sufficient that we redefine the finite piece in the expansion to absorb all the subleading-order terms.
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with K
(
g , O

)
= W and W is defined in eq. (2.32). Note that O is an SL(2 , R) doublet with

respect to the group action g · O and g′ · W =
(
Λ′−1)⊺W . 12

3.2 A polynomial realization of SL(2, R)

Eventually, we will consider the application of the formalism motivated in section 3.1 to the
SL(2 , R) duality in NL IIB supergravity. For this purpose, we will show later in section 4
that it essentially suffices to consider operators that are SL(2 , R) singlets with respect
to the group action g · O , except for the transformations of C(0) and Φ (see eqs. (3.4a)
and (3.3b)). 13 We thus simplify eq. (3.10) to be

g ◦ O = O +K(g , O) , (3.14)

and simplify the associated consistency conditions (3.12) to be

K
(
1 , O

)
= 0 , K

(
g′ g , O

)
= K

(
g′, g ◦ O

)
+K

(
g , O

)
. (3.15)

In order to develop a non-trivial realization of SL(2 , R) in this form, it is key to construct a
function K satisfying eq. (3.15).

The quantity κ in eq. (3.5) forms a desired singlet under the “·” group action and
satisfies the consistency conditions in eq. (3.15): 14 using eqs. (3.3b) and (3.4a), we find

κ
(
1 , O

)
= 0 , κ

(
g′ g , O

)
= κ

(
g′, g ◦ O

)
+ κ

(
g , O

)
, (3.16)

which is precisely eq. (3.15). This κ plays an essential role in the polynomial realization of
SL(2 , R). In fact, we will realize a basis of the operator space such that all the SL(2 , R)
transformations are polynomials in κ .

Note that the self-consistency conditions in eq. (3.16) are equivalent to the linear
transformation (3.4a) up to a sign. We already showed that eq. (3.4a) implies eq. (3.16).
Now, we show that eq. (3.4a) can also be recovered from eq. (3.16). While the first condition
in eq. (3.16) is automatically satisfied by κ in eq. (3.5), as γ = 0 when Λ = 1 , plugging
eqs. (3.3b) and (3.5) into the second condition in eq. (3.16) gives[(

αe1+β e2)(γ e1+δ e2)−(g◦e1)(g◦e2)]γ′+
[(

γ e1+δ e2)2−(g◦e2)2]δ′=0 , (3.17)

which has to hold for any γ′ and δ′ . This implies that both the coefficients in front of γ′

and δ′ have to vanish individually, which are solved by

g ◦

e1

e2

 = ±Λ

e1

e2

 . (3.18)

12Note that W contains C(0) and Φ , for which the group action ◦ is strictly speaking not defined. But it
is induced by the linear SL(2 , R) group action on

(
e1, e2)⊺ in eq. (3.4a).

13Even though the two-form fields in eq. (3.13) transform as a doublet with respect to the group action
g · O , the new variables B(2) and C(2) introduced in eq. (3.3) are singlets with respect to this group action.

14There is a slightly more general expression that also satisfies eq. (3.15),

κ
(
g ,O

)
= c1

β

e1
(
α e1 + β e2

) + c2
γ

e2
(
γ e1 + δ e2

) ,

where c1 and c1 are constants. When c1 = 0 and c2 = 1 , this expression reduces to eq. (3.5). It would be
interesting to understand whether this is the unique solution to the consistency conditions (3.15).
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The transformations in eq. (3.18) with either choice of the sign gives the desired SL(2 , R)
rule in eq. (3.4a) (up to a redefinition of the group parameters). This implies that eq. (3.16)
faithfully realizes PSL(2 , R). In our later application to NL IIB supergravity, we will have
to include the transformations (3.4) of C(0) and Φ , which means that the underlying global
symmetry is still SL(2 , R) .

An N -dimensional polynomial realization of the group SL(2 , R) can be constructed by
requiring that K in eq. (3.14) be a degree-N polynomial of κ , with

K =
N∑

m=0

(−κ)m

m! sN−m(O) . (3.19)

Note that K has to satisfy the conditions in eq. (3.15). Since κ(1 , O) = 0 , the first condition
from eq. (3.15), i.e., K(1 , O) = 0 , is automatically satisfied. The second condition from
eq. (3.15) gives

0= g◦sN +
N∑

m=1

1
m!

{
g◦sN−m−

N∑
ℓ=m

[
−κ(g ,O)

]ℓ−m

(ℓ−m)! sN−ℓ

}[
−κ
(
g′, g◦O

)]m
. (3.20)

Since g′ ∈ G is arbitrary, each coefficient in front of κm(g′ , g ◦ O) , m = 0, · · · , N has to
vanish identically. This implies sN = 0 because g ◦ sN = 0 for all g ∈ SL(2 , R) , and

g ◦ sm =
m∑

ℓ=0

(−κ)ℓ

ℓ! sm−ℓ , m = 0 , , · · · , N − 1 , (3.21)

i.e.,
g ◦ SN = UN SN , (3.22)

where

SN =



s0

s1

s2
...

sN−1


, UN =



1 0 0 · · · 0
−κ 1 0 · · · 0
κ2

2 −κ 1 · · · 0
...

...
...

. . .
...

(−κ)N−1

(N−1)!
(−κ)N−2

(N−2)!
(−κ)N−3

(N−3)! · · · 1


. (3.23)

The vector SN forms an N -dimensional realization of SL(2 , R) . Since the group transfor-
mation of sm is a degree-m polynomial in κ , we refer to SN as a polynomial realization of
SL(2 , R) .

We have already seen an example of the polynomial realization (3.22) in eq. (3.4). Since
ℓ(2) is invariant under SL(2 , R), the transformations in eq. (3.4) can be rewritten as

g ◦


ℓ(2)

C(2)

B(2)

 =


1 0 0
−κ 1 0
1
2 κ2 −κ 1




ℓ(2)

C(2)

B(2)

 . (3.24)

Here,
(
ℓ(2) , C(2) , B(2))⊺ is a three-dimensional polynomial realization of SL(2 , R). For the

precise connection to IIB supergravity, we refer to section 4.
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Before diving deeper into the mathematical structure of the polynomial realizations,
we provide a simple application to the formalism of the (p , q)-string action (2.40) in non-
relativistic IIB superstring theory. A generic (p , q)-string state is labeled by two relatively
co-prime integers p and q that form a doublet under the SL(2 , Z) action, with(

p

q

)
→ Λ

(
p

q

)
. (3.25)

Note that the group parameters in Λ are taken to be integers for SL(2 , Z) . Together with
the doublet (e1 , e2)⊺ defined in eq. (3.3b), we form the SL(2 , Z) invariant

p e2 − q e1 = eΦ/2(p − q C(0)) . (3.26)

Furthermore, we define

χ = − q e−Φ

p − q C(0) , (3.27)

which transforms as χ → χ − κ under SL(2 , Z) . The somewhat exotic quantity χ that we
introduced in (3.27) will find a natural M-theory interpretation in [40]: it is associated
with the auxiliary vector field used to impose the self-duality condition of the three-form
gauge potential in the M5-brane action. Together with the three-dimensional realization in
eq. (3.24), we form the following SL(2 , Z) invariant:

B(2) − χ C(2) + 1
2 χ2 ℓ(2) . (3.28)

In terms of the SL(2 , Z) invariants in eqs. (3.26) and (3.28), we find that the CS term of
the (p , q)-string action (2.40) in non-relativistic string theory is now recast to be

SCS
string =

∫ (
p e2 − q e1

)(
B(2) − χ C(2) + 1

2 χ2 ℓ(2)
)

. (3.29)

where it is understood that the two-forms have been pulled back from the target space
to the (p , q)-string worldsheet. The reformulation of the manifestly SL(2 , Z) invariant
D3-brane action in non-relativistic string theory in terms of our new basis, and its origin
from non-relativistic M-theory, can be found in [40].

3.3 Generalized invariant theory of binary forms

The polynomial realization of SL(2 , R) in section 3.2 is intimately related to the mathematics
of classical invariant theory that studies the geometric properties of polynomials (see,
e.g., [38] for a pedagogical introduction). These geometric properties are, by definition,
unaffected by certain changes of variables. For example, multiplicities of the roots of a
polynomial are geometric but the explicit values of the roots are not. A systematic study
of these geometric properties requires finding a set of variables such that the polynomials
have a simple, canonical form. This is essentially a problem of equivalence: how do
polynomials transform into each other without changing their geometric properties? In
order to understand these fundamental questions, it is extremely useful to classify invariants
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(and covariants) formed by the coefficients in the polynomials: such objects characterize
the underlying intrinsic properties of a polynomial.

The simplest example of invariant theory concerns a quadratic binary form that is a
homogeneous polynomial P(x , y) in two variables x and y ,

P(x , y) = p0 x2 + 2 p1 x y + p2 y2 . (3.30)

We focus on the case with real coefficients pm ∈ R . The general transformations preserving
the quadratic form are the invertible linear changes of variables,(

x

y

)
→
(

α β

γ δ

)(
x

y

)
, α δ − β γ ̸= 0 , (3.31)

which form the group GL(2 , R) . Further imposing the unimodularity condition α δ−β γ = 1 ,
this group reduces to SL(2 , R) . Requiring that the quadratic binary (3.30) be invariant
under the SL(2 , R) transformation induces a group action on the coefficients p0 , p1 , and
p2 , which form a three-dimensional representation of SL(2 , R). Any SL(2 , R) invariant
formed by p0 , p1 , and p2 can be written as a polynomial of a single fundamental invariant,
which is the discriminant ∆ = p2

1 − p0 p2 of the quadratic binary. One major task of
invariant theory concerns the classification of the basis of invariants for systems of binary or
multi-variable forms at higher degrees. Many fascinating methods for such a classification
have been developed in the 19th century, which eventually led to its grand finale marked by
Hilbert’s proof of the finiteness theorem [53]. This theorem shows that any finite system of
homogeneous polynomials has a finite basis for its invariants. In the last century, based on
the work by Hilbert [54], invariant theory was further advanced by Mumford, which led to
geometric invariant theory [39]. This more advanced subject focuses on group actions on an
algebraic variety and involves techniques from algebraic geometry. In contrast to classical
invariant theory, geometric invariant theory is capable of studying the relations between
invariants without knowing the complete basis.

3.3.1 Polynomial realization of SL(2 , R) revisited

We now develop a generalization of classical invariant theory and show how the polynomial
realization (3.21) of SL(2 , R) can be reproduced. We focus on the degree-(N−1) binary form,

P(x , y) =
N−1∑
m=0

N − 1
m

 pm xm yN−m−1 . (3.32)

We require that (x , y)⊺ be a two-dimensional polynomial realization of SL(2 , R) ,

g ◦

x

y

 =
(

1 0
−κ 1

)(
x

y

)
, (3.33)

where κ is given by eq. (3.5). In order to build an N -dimensional polynomial realization
(p0 , · · · , pN−1)⊺ of SL(2 , R) , we demand(

g ◦ P
)(

x , y
)
= P

(
g ◦ x , g ◦ y

)
, (3.34)
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which implies

g ◦ pm =
m∑

ℓ=0

(
m

ℓ

)
pℓ (−κ)m−ℓ , m = 0 , · · · , N − 1 . (3.35)

Here, g ◦ P means the group action is on the coefficients pm . Setting

pm = m! sm , (3.36)

we find that eq. (3.35) coincides with eq. (3.21), i.e., the polynomial realization of SL(2 , R)
is recovered. We note a major distinction between this construction and the standard
classical invariant theory of binary forms: we are interested in the group action (3.33) on
the variables x and y that depend nonlinearly on the background fields via κ , instead of the
linear changes of variables in eq. (3.31). However, as far as the classification of invariants
is concerned, κ in eq. (3.33) can be effectively replaced with an arbitrary real parameter
k ∈ R . From this perspective, the group (3.33) spanned by

N =

 1 0
−k 1

 , k ∈ R (3.37)

is the unipotent subgroup of SL(2 , R) in the Iwasawa decomposition [55]. 15 As a result,
the invariants under the group action (3.33) in general proliferate compared to the ones
under the linear changes of variables (3.31). Another distinction is that the variables x , y

and the coefficients p0 , · · · , pN−1 are supposed to be elements of a field, which in invariant
theory is usually taken to be real or complex numbers. However, for our applications in NL
IIB supergravity, these quantities are supposed to be differential forms.

3.3.2 Classification of quadratic invariants

Ultimately, in section 4.3, we are interested in constructing the SL(2 , R) invariants in the NL
IIB action that are quadratic in spacetime derivatives. In this special case, components in a
vector SN will be identified with various differential forms representing the field strengths.
As far as an N -dimensional representation of SL(2 , R) is concerned, this boils down to
the classification of expressions quadratic in sm , m = 0 , · · · , N − 1 that are invariant
under the transformation (3.22) (or, equivalently, eq. (3.35) in terms of pm). Since these
coefficients sm are differential forms in NL IIB supergravity, we are required to introduce
an inner product ⟨sℓ , sm⟩ . The space of the quadratic invariants is spanned by the basis of
SL(2 , R) invariants

Ir =
2r∑

m=0
(−1)m

〈
sm , s2r−m

〉
, r = 0 , 1 , · · · , ⌊1

2
(
N − 1

)
⌋ , (3.38)

where ⌊· · · ⌋ is the floor function. Any SL(2 , R) invariant quadratic in sm can be written as
a linear combination of the basis elements in eq. (3.38). The invariance g ◦ Ir = Ir can be
seen by noting that

Ir =
〈
S⊺

2r+1 , Ar S2r+1

〉
, (3.39)

15We would like thank Niels Obers for pointing out this connection to the Iwasawa decomposition.
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where (m , n = 0 , 1 , · · · , 2r)

(
Ar

)
mn

= (−1)m δm , 2r−n , i.e., Ar =



0 · · · 0 0 1
0 · · · 0 −1 0
0 · · · 1 0 0
... . .

. ...
...

...

(−1)2r · · · 0 0 0


. (3.40)

Using (3.22) and the identity

U⊺
2r+1 Ar U2r+1 = Ar , (3.41)

we find g ◦ Ir = Ir , i.e., Ir in eq. (3.39) is SL(2 , R) invariant. Further note that eq. (3.38)
forms a complete basis if the inner products between sm do not accidentally vanish.

To prove the above statement, we consider a general quadratic SL(2 , R) invariant

I =
∑
ℓ , m

aℓ , ℓ+m

〈
sℓ , sm

〉
(3.42)

that satisfies g ◦ I = I . Under the SL(2 , R) group action, g ◦ ⟨si , sj⟩ is a degree-(i + j)
polynomial in κ . Suppose the highest degree among all the summands in eq. (3.42) is h .
Collecting all summands in eq. (3.42) that transform into a degree-h polynomial defines

Ih =
h∑

m=0
am, h

〈
sm , sh−m

〉
. (3.43)

By construction, g ◦ Ih is a degree-h polynomial in κ . Using eq. (3.21), we find

g ◦ Ih =
h∑

p=0

h−p∑
q=0

(−κ)h−p−q
〈
sp , sq

〉 h−p−q∑
m=0

am+p, h

m! (h − m − p − q)! , (3.44)

where a summand takes the form κh−p−q ⟨sp , sq⟩ , while a summand in g ◦
(
I − Ih

)
takes

a different form κu ⟨sp , sq⟩ , with u + p + q < h . Therefore, Ih has to be invariant on its
own, i.e., g ◦ Ih = Ih , which implies

h−p−q∑
m=0

am+p, h

m! (h − m − p − q)! = 0 , 0 ≤ p + q ≤ h − 1 . (3.45)

When p + q = h − 1 , we find ap+1, h = −ap, h for 0 ≤ p ≤ h − 1 . It then follows that

am, h = (−1)m a0, h , 0 ≤ m ≤ h . (3.46)

The relations in eq. (3.46) solve eq. (3.45). Plugging eq. (3.46) into eq. (3.43), we find

Ih = a0, h

h∑
m=0

(−1)m
〈
sm , sh−m

〉
, (3.47)
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which is identically zero if h is odd. When h is even, eq. (3.47) is one of the basis invariants
in eq. (3.38). This procedure can be repeated for I − Ih until we find zero, which implies

I =
⌊h/2⌋∑
r=0

a0,2r Ir , (3.48)

i.e., any SL(2 , R) invariant I is a linear combination of the basis invariants in eq. (3.38).
In contrast, there is only one quadratic invariant associated with the GL(2 , R) transfor-

mation (3.31) (instead of eq. (3.33) that we have been considering) for a degree-N binary
form in classical invariant theory,

IN =
N−1∑
m=0

(−1)m sm sN−m−1 . (3.49)

Note that the r.h.s. of eq. (3.49) vanishes identically when N is even.
For later application to IIB supergravity, we note the following subtlety: in the

classification of invariants formed from the fields in an N -dimensional realization SN of
SL(2 , Z) in eq. (3.23), one might have to resort to higher-dimensional vectors. This is
because an inner product (3.38) involving components in both SN and the higher-dimensional
vectors may accidentally vanish. We will see an explicit example of this in the construction
of NL IIB supergravity around eq. (C.4).

4 Application to non-Lorentzian IIB supergravity

Finally, we are ready to apply the mathematical machinery that we have developed in
section 3 to NL IIB supergravity. We start with a dictionary of the notation for the reader.

• O(i) is a differential form of degree i .

• S(i)
N is an N -dim. SL(2 , R) realization whose components are degree-i differential forms.

• s
(i)
m is a component in the vector S(i)

N , where m labels its location in S(i)
N .

• I
(i)
r is a quadratic invariant containing inner products of the form

〈
s

(i)
m , s

(i)
2r−m

〉
.

In section 4.3, we will also see the notation I
(i, p)
r associated with

〈
s

(i)
m , s

(i)
2r−m

〉
p

, where p

means that there are p pairs of longitudinal frame indices being contracted in the inner
product.

4.1 Supergravity data as binary forms

Using the invariant theory we developed in section 3.3, we find that the information of NL
IIB supergravity is encoded in the following two binary forms:

P4(x , y) = 24 s
(3)
4 x4 + 24 s

(3)
3 x3 y + 12 s

(3)
2 x2 y2 + 4 s

(3)
1 x y3 + s

(3)
0 y4 , (4.1a)

P2(x , y) = 2 s
(5)
2 x2 + 2 s

(5)
1 x y + s

(5)
0 y2 , (4.1b)
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where
x = F (1) , y = −3

(
1
2 dΦ+ d lnE

)
, (4.2)

with E the determinant defined in (2.13b). There are three polynomial realizations,

S(1)
2 =

x

y

 , S(3)
5 =



F (1)∧ ℓ(2)

Γ(3)

F (3)

H(3)

A(3)


, S(5)

3 =


F (3) ∧ ℓ(2)

H(3) ∧ ℓ(2)

F (5)

 . (4.3)

Here, S(1)
2 , S(3)

5 , and S(5)
3 contain one-, three-, and five-form fields, respectively. We have

introduced a formal, commutative product between the differential forms in the polynomials
in eq. (4.1), while preserving the associative and distributive properties. 16 We emphasize
that this product is distinct from the wedge product between differential forms. For example,
x4 does not vanish even though x is a one-form.

The mapping between the above ingredients and the field strengths in NL IIB super-
gravity introduced in section 2.13 is determined by

F (1) = 3 eΦ dC(0) , Γ(3) = dℓ(2) − 3
2 dΦ ∧ ℓ(2) , (4.4a)

F (5) = dC(4) + C(2) ∧ dB(2) , F (3) = eΦ/2 (dC(2) + C(0) dB(2)) , (4.4b)

H(3) = e−Φ/2 dB(2) . (4.4c)

Note F (5) = dC(4) + 1
2
(
dB(2)∧ C(2) − dC(2)∧ B(2)) in terms of C(4) in eq. (2.13a). The

three-form A(3) is related to the Lagrange multiplier A(5) in the NL IIB action (2.26) and
that imposes part of the self-duality constraints in eq. (2.22). The relation between A(3)

and A(5) is given by

A(5) = A(3) ∧ ℓ(2) . (4.5)

From the point of view of polynomial realizations, A(3) is more fundamental than A(5) : the
new field A(3) is a part of the five-dimensional realization S(3)

5 in eq. (4.3). Moreover, while
A(5) is defined with a constraint A(5) ∧ τA = 0 , A(3) is not constrained at all. This implies
that A(3) contains the following Stückelberg-type ambiguity:

A(3) → A(3) +Θ(2)
A ∧ τA . (4.6)

In the following, we will classify the invariants in NL IIB action in terms of A(3) instead of
A(5) . One may switch back to the notation in section 2 by using the condition (4.5).

Finally, we note that the expressions of y in eq. (4.2) and Γ(3) in eq. (4.4a) are designed
such that they both have a well-defined weight under the local dilatation transformation.
We will further elaborate this in the next subsection.

16The addition and product in eq. (4.1) form a commutative ring.
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4.2 Dilatation weights and SL(2 , R) transformations

Now, we use the binary forms in eq. (4.1) to generate the symmetry transformations of
various field strengths. We first consider the local dilatation transformation parametrized
by λD(x) , which acts on an operator O as in eq. (2.34), i.e., O → exp

[
∆(O)λD

]
O . Here,

∆(O) is the dilatation weight associated with the operator O (see eq. (2.35)). Note that
the combinations y ∼ 1

2 dΦ+ d lnE in eq. (4.2) and Γ(3) = dℓ(2) − 3
2 dΦ ∧ ℓ(2) in eq. (4.4a)

are required such that they have well-defined dilatation weights: the local dilatation
transformation of dΦ is

dΦ → dΦ+ d ln λD (4.7)

where the shift ln λD is canceled in the transformation of both y and Γ(3) . The dilatation
weights of the components in the vectors S(1)

2 , S(3)
5 , and S(5)

3 are given by

∆
(
s(1)

m

)
= 1− m , ∆

(
s(3)

m

)
= 5

2 − m , ∆
(
s(5)

m

)
= 2− m , (4.8)

respectively. Any invariant term E
〈
s

(n)
i , s

(n)
j

〉
in the NL IIB Lagrangian has to have zero

dilatation weight such that it is invariant under the local dilatation transformation. Here,
E is the measure defined in eq. (2.13a) and its dilatation weight is ∆(E) = −1/2 .

Next, we turn to the SL(2 , R) transformations. The vectors S(1)
2 , S(3)

5 , and S(5)
3 form two-

, five-, and three-dimensional polynomial realizations of SL(2 , R), respectively. According
to the transformation rule in eq. (3.22) and the definitions in eq. (4.3), we find the following
SL(2 , R) transformations of the IIB data:

F (1) → F (1) , (4.9a)

Γ(3) → Γ(3) − κF (1) ∧ ℓ(2) , (4.9b)

F (3) → F (3) − κΓ(3) + 1
2 κ2 F (1) ∧ ℓ(2) , (4.9c)

H(3) → H(3) − κF (3) + 1
2 κ2 Γ(3) − 1

3! κ3 F (1) ∧ ℓ(2) , (4.9d)

A(3) → A(3) − κH(3) + 1
2 κ2 F (3) − 1

3! κ3 Γ(3) + 1
4! κ4 F (1) ∧ ℓ(2) , (4.9e)

F (5) → F (5) − κH(3) ∧ ℓ(2) + 1
2 κ2 F (3) ∧ ℓ(2) . (4.9f)

Supplemented with the definition of κ in eq. (3.5) and the SL(2 , R) transformations of C(0)

and Φ in eq. (3.4a), which we transcribe below,

κ = γ eΦ

γ C(0) + δ
, eΦ/2

(
C(0)

1

)
→ eΦ/2

(
α β

γ δ

)(
C(0)

1

)
, (4.10)

we are ready to classify all the quadratic SL(2 , R) invariants in the NL IIB action.

4.3 SL(2 , R) invariants in non-Lorentzian IIB supergravity

For now, we are interested in classifying the Lagrangian terms that are quadratic in spacetime
derivatives and are invariant under both global SL(2 , R) and local dilatation. As we have
stressed in section 2.3, the higher-form gauge, spacetime diffeomorphism, longitudinal
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Lorentz boost, and transverse rotation are easy to take care of. We will leave the string
Galilei boost symmetry to section 4.4.

The SL(2 , R) invariants have been classified in eq. (3.38), which contains an abstract
inner product

〈
sm , sn

〉
. We define this inner product “⟨· , ·⟩” between two differential forms

of the same degree to be〈
s(i)

m , s(i)
n

〉
p
= 1

p! (i − p)!
(
sm

)
A1···Ap A′

1···A
′
i−p

(
sm
)A1···Ap A′

1···A
′
i−p . (4.11)

Here, p counts how many indices in each s
(i)
m are contracted with the inverse longitudinal

Vielbein field τµ
A . Due to over-antisymmetrization, 0 ≤ p ≤ min{i , 2} . Explicitly,(

sm

)
A1···Ap A′

1···A
′
i−p

=
(
sm

)
µ1···µi

τµ1
A1 · · · τµp

Ap
Eµp+1

A′
1
· · · Eµi

A′
i−p

, (4.12)

where the curved indices µk in the differential form s
(i)
m of degree i are antisymmetrized.

Therefore, a single invariant Ir in eq. (3.38) gives

I(i)
r =


I

(i,0)
r

I
(i,1)
r

I
(i,2)
r

 =
2r∑

m=0
(−1)m


1
i!
〈
s

(i)
m , s

(i)
2r−m

〉
0

1
(i−1)!

〈
s

(i)
m , s

(i)
2r−m

〉
1

1
2! (i−2)!

〈
s

(i)
m , s

(i)
2r−m

〉
2

 . (4.13)

In each s
(i)
m contained in I

(i, p)
r , i counts the total number of its indices and p counts

how many of the total i indices are contracted with inverse longitudinal Vielbeine. The
dilatation weights of the components of each invariant I

(i)
r in eq. (4.13) have been designated

in eq. (4.8).
The quadratic SL(2 , R) invariant terms I

(i)
r with well-defined dilatation weights have

been classified in eq. (3.49). In terms of the inner product defined in eq. (4.11), these
invariants give rise to I

(i ,p)
r in eq. (4.13). The building blocks for the SL(2 , R) invariants

that are quadratic in spacetime derivatives in the NL IIB supergravity Lagrangian are
therefore

LNL IIB ∼
∑

i , p , r

E I(i, p)
r , (4.14)

where E is the determinant in eq. (2.13a) with the dilatation weight ∆(E) = −1/2 . The
complete classification of all non-trivial quadratic invariants that are relevant to NL IIB
supergravity and respect exact global SL(2 , R) and local dilatation is given below:

I
(1, 1)
0 = F (1)

A F (1)
B ηAB , (4.15a)

I
(3, 2)
1 = Γ(3)

ABA′ Γ(3)ABA′ − 2F (1)
A′ F (3)

A′AB ϵAB , (4.15b)

I
(3, 1)
2 = 1

2 F
(3)
AA′B′ F (3)AA′B′ − Γ(3)

AA′B′ H(3)AA′B′
, (4.15c)

I
(3, 0)
3 = 1

3!

(
−H(3)

A′B′C′ H(3)
A′B′C′ + 2F (3)

A′B′C′ A(3)
A′B′C′

)
, (4.15d)

I
(5, 2)
1 = 1

3!

(
H(3)

A′B′C′ H(3)
A′B′C′ + F (3)

A′B′C′ F (5)
A′B′C′AB ϵAB

)
, (4.15e)

I
(5, 1)
2 = 1

4! F
(5)
A′B′C′D′A F (5)

A′B′C′D′
A . (4.15f)
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See the first part of appendix C for a detailed derivation of eq. (4.15), where we will highlight
the subtlety that was pointed out at the end of section 3.3.2.

Moreover, in NL IIB supergravity, any expressions formed by the Vielbeine τµ
A and

Eµ
A′ together with their inverses are trivially invariant under SL(2 , R), as the Vielbeine fields

are SL(2 , R) invariant in Einstein’s frame. After imposing the local dilatation symmetry up
to a total derivative, we find the following two Lagrangian terms that are trivally invariant
under SL(2 , R) : 17

E
(
R + 8

3 τA′A
A τA′B

B
)

, E τA′{AB} τA′{AB} . (4.16)

Here, the curvature scalar R is defined in eq. (A.2) and τA′A
B = Eµ

A′ τν
A ∂[µτν]

B . Further-
more, τA′{AB} ≡ τA′(AB) − 1

2 ηAB τA′C
C reads off the symmetric traceless part of the tensor

Note that there is no cosmological constant term as it violates the local dilatation symmetry.
So far, we have classified the quadratic terms that are exactly invariant under SL(2 , R).

There is also a Chern-Simons term that is invariant only up to a total derivative. In
the second half of appendix C, we construct this missing Chern-Simons term by formally
treating the 10D NL IIB theory as the boundary of an 11D theory. This gives rise to the
unique Chern-Simons term with zero dilatation weight,

I
(10)
CS = C(4) ∧H(3) ∧ F (3) −F (5) ∧ A(3) ∧ ℓ(2) , (4.17)

which is invariant under SL(2 , R) up to a total derivative.

4.4 From non-Lorentzian IIB action to non-Lorentzian bootstrap

In section 2.2, we have shown that the reparametrizations in eq. (2.9) allow for a well-defined
ω → ∞ limit of type IIB supergravity. This is the non-relativistic string limit that leads us
to the action (2.26), which realizes the bosonic symmetries as detailed in section 2.3. Now,
we would like to turn the question around and ask: what is the effective field theory (EFT)
that is invariant under all these bosonic symmetries?

In the Lorentzian case, the resulting bosonic EFT invariant under the higher-form
gauge, spacetime Poincaré, and global SL(2 , R) symmetry is not very illuminating. Focusing
on the Lagrangian terms quadratic in spacetime derivatives, we find the EFT

ŜEFT = 1
16πGN

∫
d10x Ê

[
R̂ + α1 tr

(
∂µM̂ ∂µM̂−1

)
+ α2 Ĥ⊺

µνρ M̂ Ĥµνρ
]

+ 1
16πGN

∫ (
α3 F̂ (5) ∧ ⋆F̂ (5) + α4 Ĉ(4) ∧ Ĥ(3)⊺ ∧ ϵ Ĥ(3)

)
.

(4.18)

Moreover, besides the above quadratic invariants, there is also a cosmological constant term

ŜΛ = − 1
8πGN

∫
d10x Ê Λ , (4.19)

17The first term in eq. (4.16) is invariant under the local dilatation symemtry up to a total derivative
while the second term is an exact invariant.
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which is also invariant under all the bosonic symmetries. Not surprisingly, we still need the
fermionic sector and have to impose local supersymmetry to fix all the free parameters αi ,
i = 1, · · · , 4 and the cosmological constant Λ in the EFT (4.18), such that the Lorentzian IIB
action (2.1) is recovered. As is well known, after incorporating the fermions and imposing
supersymmetry, the bosonic sector (2.1) of the IIB supergravity action is recovered, where
αi’s in eq. (4.18) are now fixed to be

α1 = 1
4 , α2 = − 1

12 , α3 = α4 = −1
4 , (4.20)

and the cosomological constant Λ is set to zero. Now, the only coupling constant in
the theory is the gravitational constant GN . Moreover, requiring the invariance under
supersymmetry also imposes the self-duality condition (2.4).

The same question regarding the bosonic EFT, but now in the NL corner, turns out
to be more interesting. The non-relativistic string limit of the action (4.18) is generically
singular for arbitrary αi’s, and one has to fine tune the αi couplings such that this stringy
limit even makes sense. This fine tuning is a consequence of tuning the electric B-field to
its critical value such that it cancels the string tension in the non-relativistic string limit,
which is analogous to a BPS limit and must inherits some imprints of supersymmetry. This
strongly suggests that imposing the bosonic symmetries in NL IIB theory must already lead
to a much more constrained EFT compared to the Lorentzian case in eq. (4.18), without
explicitly using supersymmetry. In other words, we expect fewer coupling constants in the
NL EFT after imposing the bosonic symmetries detailed in section 2.3 but before imposing
supersymmetry. It is therefore motivating to classify the NL EFT invariant under all the
bosonic symmetries. If all the coupling constants other than the gravitational constant
GN can be fixed just using the bosonic symmetries, this would provide us with a powerful
tool for classifying invariants in supergravity without even considering the more involved
fermionic sector. We will see that this is indeed the case for NL IIB theory, at least at the
lowest α′ order. The impact of this study is not limited to the NL corner; we will show
evidence that it is possible to “bootstrap” the bosonic action in Lorentzian supergravity
from the NL theory.

Non-Lorentzian IIB Action as a Bosonic EFT. Just as in the Lorentzian case, the
higher-form gauge symmetries are manifestly realized by requiring the gauge invariance of all
the field strengths, and the spacetime diffeomorphisms are made manifest by appropriately
contracting the curved indices µ = 0 , 1 , · · · , 9 . Moreover, the local Lorentz boost symmetry
in the 2D longitudinal sector and the local spatial rotation symmetry in the 8D transverse
sector are made manifest by properly contracting the frame indices A and A′ . See section 2.3
for further details. In contrast, the remaining symmetries, namely, the local string Galilei
boost, anisotropic dilatation symmetry, and the global SL(2 , R) symmetry, are less manifest
in the action (2.26). We have spent the bulk of this section on systematically formulating the
polynomial realizations of the global SL(2 , R) and their interplay with the local anisotropic
dilatation symmetry, culminating in the derivation of a complete list of invariants quadratic
in spacetime derivatives in eqs. (4.15), (4.16), and (4.17). At this point, the only remaining
bosonic symmetry that has not yet been imposed is the local string Galilei boost symmetry
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(see eq. (2.29)). In the absence of this boost symmetry, the NL effective action quadratic in
spacetime derivatives is

SEFT = 1
16πGN

∫
d10xE

(
R+ 8

3 τA′A
A τA′B

B+β1 τA′{AB} τA′{AB}
)

+ 1
16πGN

∫
d10xE

(
β2 I

(1,1)
0 +β3 I

(3,2)
1 +β4 I

(3,1)
2 +β5 I

(3,0)
3 +β6 I

(5,2)
1 +β7 I

(5,1)
2

)

+ 1
16πGN

∫
β8 I

(10)
CS , (4.21)

where there are eight coupling constants βi , i = 1 , · · · , 8 in addition to the gravitational
constant GN . We already noted in section 4.3 that the NL analog of the cosmological
constant term (4.19) is excluded due to the local dilatation symmetry (2.34), which is a
symmetry that is absent in the Lorentzian case. Fascinatingly, upon requiring that eq. (4.21)
be invariant under the string Galilei symmetry (2.29), we find that all the βi’s are uniquely
fixed. Namely,

β1 = 0 , β2 = − 1
18 , β3 = 1

12 , β4 = −1
2 , (4.22a)

β5 = 1
4 , β6 = −1

4 , β7 = −1
4 , β8 = −1

2 . (4.22b)

The resulting NL EFT is

SEFT = 1
16πGN

∫
d10xE

(
R+ 8

3 τA′A
A τA′B

B
)
− 1
32πGN

∫
I

(10)
CS

− 1
64πGN

∫
d10xE

(
2
9 I

(1,1)
0 − 1

3 I
(3,2)
1 +2I

(3,1)
2 −I

(3,0)
3 +I

(5,2)
1 +I

(5,1)
2

)
,

(4.23)

where we have plugged the values of βi in eq. (4.22) back into the action (4.21). Recall
that the expressions of I

(i, p)
r and I

(10)
CS are given in eqs. (4.15) and (4.17), respectively.

Now, there is only a single coupling GN in the theory. Using the relations in eqs. (4.4)
and (4.5), it is a straightforward exercise to show that the EFT (4.23) is identical to the
action principle (2.26) that we have obtained from the non-relativistic string limit of the
Lorentzian IIB action (2.1).

We therefore arrive at a remarkable conclusion: the bosonic sector of the NL IIB
supergravity action can be constructed by only imposing the bosonic symmetries, without
any explicit reference to the fermionic sector or supersymmetry! 18

Furthermore, it turns out that the NL EFT (4.23) together with the non-relativsitic
string limit already provide us with sufficient information to recover the bosonic part of
Lorentzian IIB supergravity without explicitly resorting to the fermionic sector:

(1) Requiring that the NL action (4.23) arise from the non-relativistic string limit of the
Lorentzian EFT action (4.18) allows us to uniquely fix all the αi couplings precisely as

18In other words, the action (4.23) is an irreducible singlet under the bosonic symmetries.
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in eq. (4.20). We explain a systematic way how this can be done. First, we match the
O(ω0) terms in the large ω expansion of the Lorentzian EFT (4.18) with the associated
terms in the NL EFT (4.23). It turns out that this procedure already fixes all the αi as
in eq. (4.20). With these fixed αi , as we have learned in section 2.2, all the quadratic
ω divergences in the Lorentzian EFT (4.18) combine nicely into a complete square and
give rise to the terms containing the Lagrange multiplier A(3) that match the associated
ones in the NL EFT (4.21). 19

(2) As we have noted earlier, the analog of the cosmological constant term (4.16) is forbidden
in NL EFT (4.23) due to the dilatation symmetry. By requiring the consistency of the
non-relativistic string limit, the cosmological constant Λ in eq. (4.16) is also set to zero.

(3) The Lagrange multiplier A(3) in eq. (4.23) (or, equivalently, A(5) in eq. (2.26)) imposes
the constraint (2.23) on the three- and five-form field strengths. Lifting this constraint to
the Lorentzian IIB theory, its covariantization gives rise to the self-duality condition (2.4)
in the Lorentzian theory.

In this way, we are able to derive the bosonic part of Lorentzian IIB supergravity action in
eq. (2.1) together with the self-duality condition, without considering the fermions at all!

A Non-Lorentzian Bootstrap. The above procedure provides a potentially powerful
method for determining the bosonic part of Lorentzian IIB supergravity action purely using
bosonic symmetries, order by order in the Regge slope coupling α′ . A subtlety to note is
that, when higher-curvature corrections are included, only the global SL(2 , Z) (instead of
SL(2 , R)) symmetry can be restored [56]. 20 However, this subtlety does not affect any of
our arguments here. We summarize the detailed steps below:

(1) We start with the classification of a bosonic, NL EFT by requiring its invariance under
all the bosonic symmetries in NL IIB supergravity, which in particular include the local
dilatation, string Galilei boost, and global SL(2 , R) (or SL(2 , Z)) symmetry.

(2) In parallel, we derive a bosonic, Lorentzian EFT by requiring the theory to be invariant
under all the bosonic symmetries in Lorentzian IIB supergravity, which in particular
include the SL(2 , R) (or SL(2 , Z)) symmetry.

(3) We require that the NL EFT found in step 1 arise from the non-relativistic string limit
of Lorentzian EFT found in step 2. This step is supposed to further constrain the
coupling constants in the latter theory and determines the final Lorentzian EFT.

We emphasize for another time that the above method does not explicitly involve any
fermion or supersymmetry. In this subsection, we have seen that the above method works
extremely well for determining the lowest-order bosonic terms in Lorentzian IIB supergravity.

19It is interesting to note that, even before imposing the boost symmetry, matching the O(ω0) terms
already leads to the following constraints on both αi and βi : α1 = 1/4 , α2 = −1/12 , α3 = β6 , α4 = β8/2 ,
β6 = β7 = β5 − 1

2 , and βi , i = 1 , · · · , 4 are fixed as in eq. (4.22). Note that only β6 and β8 remain to be
fixed by the string Galilei boost symmetry in the NL EFT.

20We would like to thank Axel Kleinschmidt for pointing this out.
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It would be fascinating if the same method can also be applied to extract higher-order
bosonic terms in Lorentzian IIB supergravity from the classification of the NL IIB action.
These lines of exploration may eventually lead to the idea of non-Lorentzian bootstrap,
where bosonic quantities in Lorentzian IIB supergravity are constrained using bosonic
symmetries in a smaller, NL theory, by requiring that the latter be embeddable within the
former theory.

Before ending this section, we present a few more comments. First, we emphasize
the power of the string Galilei boost symmetry to fix almost all the coupling constants
in eq. (4.21). In fact, without imposing the global SL(2 , R) but requiring all the other
bosonic symmetries including the string Galilei boost, the NL EFT can already be fixed
up to two coupling constants GN and β , where GN is the gravitational constant and β

the coupling between the NS-NS and RR sectors. The resulting NL IIB EFT without the
SL(2 , R) symmetry takes the following form:

Sβ = 1
GN

(
SNS + β SR

)
. (4.24)

Here, SNS contains all the NS-NS terms, while SR contains all the RR terms and the term
involving the Lagrange multiplier A(3) . It has been shown in [18] that SNS is invariant
under the local boost and dilatation symmetry, and we also find that SR is invariant under
these symmetries as well. Imposing the global SL(2 , R) symmetry further fixes the coupling
β to be a constant value, such that the effective action (4.24) becomes identical to the NL
IIB supergravity action (4.23).

In contrast, in NL IIA theory, a similar splitting between the NS-NS and RR terms
as in eq. (4.24) also takes place, but there is no extra global SL(2 , R) that allows us to
further fix the coupling β (unless T-duality between 9D IIA and IIB is taken into account).
Moreover, there is also a cosmological constant that is not necessarily zero in the IIA case,
which may lead to a NL version of massive IIA supergravity [57].

Note that the key point of our proposed non-Lorentzian bootstrap is not so much that
the symmetries that we use to fix the bosonic part of the NL IIB supergravity action are
bosonic symmetries. The point is that there are other symmetries, such as supersymmetry,
that turn out not to constrain the form of the bosonic part of the action any further. In fact
there are more symmetries, such as the O(10, 10) symmetry group made manifest through
Double Field Theory (see [58, 59] for context in IIA/IIB supergravity and nonrelativistic
string theory), and the U-duality group of Exceptional Field Theory [60]. Certainly, in the
latter, the bosonic symmetries fix the NL IIB action, but this is also a much larger group of
symmetries than those we have used in this paper.

5 Outlook

Beyond determining the SL(2 , R) symmetry structure of NL IIB supergravity, there are
several natural directions to pursue. We leave the following points for future investigations.

Equations of Motion. Apart from the realization of the SL(2 , R) symmetry, other
symmetries that are realized non-trivially in NL IIB supergravity are the boost symmetry
and an emergent anisotropic dilatation symmetry. The dilatation symmetry was found before
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in the context of both string sigma models [29] and 10D N = 1 supergravity [17]. They have
the effect that the Poisson equation describing the dynamics of the string Newton-Cartan
supergravity theory does not follow from a variation of the NL action. 21 This Poisson
equation arises from the non-relativistic limit of the equations of motion [18], or, intrinsically,
from the beta-functions of the worldsheet sigma model describing non-relativistic string
theory [9, 10]. The NL action should therefore be viewed as a pseudo-action that gives rise
to most but not all equations of motion. Additional contributions to the Poisson equation
from the Ramond-Ramond sector are also expected. It would be interesting to see how the
SL(2 , R) symmetry is realized on the equations of motion. In particular, it is natural to ask
how the field equations of motion, including the Poisson equation, fit into the framework of
the polynomial realization of SL(2 , R) .

There is also an interesting aspect regarding the equations of motion in Lorentzian IIB
supergravity. It is well known that there is a self-duality condition of the RR five-form
field-strength in Lorentzian IIB supergravity. This condition, even though it constrains the
bosonic contents, does not follow from the bosonic action principle but only arises as an
equation of motion in the full supergravity theory. In section 2.2, we showed that, after
taking the non-relativistic string limit, this self-duality condition gives rise to two separate
conditions. These resulting conditions together form a reducible but indecomposable
representation under the boost transformations. Remarkably, in contrast to the case in
Lorentzian IIB theory, one of these conditions (but not both) does follow from the NL
IIB action. This condition is precisely the equation of motion imposed by the Lagrange
multiplier A(5) that we discussed in the bulk of the paper. This new field is an indispensable
part of the IIB supergravity action and of the polynomial realization of SL(2 , R). It is
therefore important to further understand the role of A(5) as part of the supermultiplet in
NL IIB supergravity.

Supersymmetry and Torsional Constraints. It is natural to extend the results of this
paper to a supersymmetric theory, which entails adding fermionic fields along the lines shown
for minimal supergravity in [17]. There, it was also shown that the supersymmetric multiplet
exists only if we impose non-trivial constraints on the intrinsic torsion associated with
the longitudinal Vielbein field τµ

A . Since the IIB multiplet has maximal supersymmetry,
further constraints are expected.22 This expectation is also supported by a study of the
eleven-dimensional supermultiplet [64].

Since the torsional constraints play a fundamental role in NL supergravity, it is
desirable to understand them from the worldsheet perspective. Two different interacting,
renormalizable string sigma models describing bosonic non-relativistic strings have been
constructed from symmetry principles [44]. Both the symmetry algebras involved in the
construction of the string sigma models require certain non-central extensions of the string
Galilei algebras:

21It is not surprising that the Poisson equation is not captured by the action principle in Newton-Cartan-
like theories. In fact, in Newtonian gravity, it has long been an open question to construct an action principle
that captures the geometrized Poisson equation. There has been recent progress on deriving the Poisson
equation in Newton-Cartan gravity by extending the field content to the so-called type II Newton-Cartan
geometry [61]. Also see [62] for later generalizations to string Newton-Cartan gravity.

22We were informed by Luca Romano that work on a NL IIB SUGRA including fermions is in progress [63].

– 33 –



J
H
E
P
1
2
(
2
0
2
3
)
0
2
2

• The first choice requires that the string Galilei boosts and the transverse translations
commute into a new generator ZA , whose realization on the worldsheet imposes the
torsional constraint D[µτν]

A = 0 , where Dµ is covariantized with respect to the frame
index A [13, 29]. This constraint is expected to arise from requiring the self-consistency
of N = 2 supersymmetry transformations in IIA or IIB supergravity [64].

• The second choice breaks half of the ZA in a lightlike coordinate, whose realiza-
tion on the worldsheet leads to the torsional constraint τ[µ

−∂ντρ]
− = 0 [44]. Here,

the superscript “−” is the lightlike index. This constraint also arises from requir-
ing the self-consistency of N = 1 supersymmetry transformations in 10D minimal
supergravity [17].

Both the torsional constraints are crucial for maintaining the renormalizability of the
worldsheet quantum field theory such that the theory does not generate extra counterterms
at higher loop orders, which would have driven the theory towards the sigma models
describing relativistic string theory [9, 11, 44].

It might be puzzling why there exist two self-consistent, bosonic non-relativistic string
theories defined by different symmetry principles that lead to different torsional constraints.
This is rather distinct from the relativistic case, where there is a unique bosonic string
theory and there is a priori no constraint on the target-space geometry. The observations
we collected above strongly suggest a natural explanation in the context of non-relativistic
superstrings: the bosonic non-relativistic string theory with the ZA symmetry should be the
bosonic part of non-relativistic superstring theories with N = 2 supersymmetry, while the
other one with the halved ZA symmetry should correspond to non-relativistic superstrings
with N = 1 supersymmetry. The associated torsional constraints are also expected to play
an important role in DLCQ string/M-theory and Matrix theory, in view of their duality
relations to non-relativistic string/M-theory [7, 8, 29].

Higher-Curvature Corrections. Remarkably, the bosonic sector of NL IIB supergravity
can be viewed as a bosonic effective field theory on its own, with the action being uniquely
determined by the bosonic symmetries, without explicitly considering the fermionic sector.
This is different from the Lorentzian case. It would be interesting to see whether the bosonic
symmetries can also constrain the higher-curvature terms and thereby provide a systematic
way of classifying the α′-corrections in NL supergravity. Furthermore, requiring that the NL
theory arise from the non-relativistic string limit of Lorentzian supergravity as in this paper,
this could, in turn, serve as a tool to constrain the α′-corrections in Lorentzian supergravity
without considering fermions. See an example at the lowest α′ order in IIB supergravity in
section 4.4, where the full bosonic sector including the self-duality constraint in Lorentzian
IIB supergravity is recovered from the NL corner. It is valuable to further develop this
novel idea of non-Lorentzian bootstrap in the future, probably also with generalizations
beyond IIB supergravity.

Non-Lorentzian Holography. One of the main motivations for investigating NL IIB
supergravity and its symmetries is because it allows us to study its half-supersymmetric
D-brane solutions. Starting from the half-supersymmetric fundamental string solution that
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we constructed in [32] and using the duality symmetries, one is able to construct all the
half-supersymmetric Dp-brane solutions for odd p = 1, 3, 5, 7, 9 in NL IIB supergravity. The
NL D7- and D9-branes should couple to the NL version of the RR eight- and ten-form
potentials in generalized IIB supergravity [65]. The zero-mode dynamics of these NL
Dp-brane solutions should correspond to the worldvolume actions in non-relativistic string
theory, which are derived from the worldsheet perspective in [12] and then extended in [16]
to include the RR potentials. These solutions can be used as a convenient starting point to
speculate about a top-down realization of holography with NL supergravity in the bulk.
We hope to come back to this possibility in a future work.

Other Ramond-Ramond Potentials. In this work, we considered a minimal formulation
of IIB supergravity. There are further higher-form RR potentials that couple to a doublet
of five-branes, a triplet of seven-branes, and a quadruplet of nine-branes [65]. It would be
interesting to see how the SL(2 , R) transformations of the NL versions of these higher-form
RR potentials follow from the general formalism developed in this work.

Finally, in parallel to this work on NL IIB supergravity, it would be interesting to also
consider the non-relativistic limit of Lorentzian IIA supergravity, where the reparametriza-
tion of the RR fields is in form the same as eq. (2.9c) but with q = 1, 3 (instead of q = 0, 2, 4).
In the same spirit of our discussion from the previous paragraph, one may also consider other
higher odd-form RR potentials. Naïvely, the non-relativistic string limit of the Lorentzian
IIA action leads to a divergence in the NL IIA action, in a similar way as in eq. (2.18). Just
like in the IIB case, this divergence can be treated by performing a Hubbard-Stratanovich
transformation and eventually leads to a well-defined NL IIA action with an extra Lagrange
multiplier imposing certain constraints. Related discussions on NL IIA supergravity have
appeared in [66], albeit using a different approach.
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A Non-Lorentzian scalar curvature

In section 2.2, we have shown that the redefinitions (2.9) lead to an expansion of the IIB
action of the form (2.16). This calculation is straightforward once one finds the correct
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expansion of the Ricci scalar which takes the form

R̂ = −ω5/2 τA′B′A τA′B′A + ω1/2 R +O(ω−3/2) . (A.1)

The leading order term cancels against contributions coming from the Kalb-Ramond field,
leaving R as the leading order. In order to give an explicit expression for the expansion
of the Ricci scalar it is actually more useful to expand in the metric formalism where
τµν = ηABτµ

Aτν
B, Eµν = δA′B′Eµ

A′
Eν

B′ , τµν = ηABτµ
Aτν

B, and Eµν = δA′B′
Eµ

A′Eν
B′ .

Then

R = τµν(∂ρXρ
µν − ∂µXρ

ρν + Xρ
ρσY σ

µν − Xρ
µσY σ

ρν

)
+ Eµν (∂ρY ρ

µν − ∂µY ρ
ρν + Y ρ

ρσY σ
µν − Y ρ

µσY σ
ρν + Xρ

ρσZσ
µν − Xρ

µσZσ
ρν

)
, (A.2)

where

Xρ
µν = Eρσ (∂(µτν)σ − 1

2 ∂στµν
)

, (A.3a)
Y ρ

µν = τρσ (∂(µτν)σ − 1
2 ∂στµν

)
+ Eρσ (∂(µEν)σ − 1

2 ∂σEµν
)

, (A.3b)

Zρ
µν = τρσ (∂(µEν)σ − 1

2 ∂σEµν
)

. (A.3c)

The expression R is manifestly invariant under SL(2 , R) transformations and has global
dilatation weight ∆(R) = 1/2 . It is, however, not transforming covariantly under Galilean
boosts and local dilatations

δR = −2 τA′B′
A

(
DA′λA

B′ + 2λBA′ τB′
(AB)

)
− 4 τA′A

A ∂A′
λD (A.4)

which follows from the fact that R appears at subleading order in the expansion of the rela-
tivistic Ricci scalar. The derivative DµλAA′ contains the SO(1, 1)× SO(8) spin connections

ωµ
AB = τνB

(
∂µτν

A − Y ρ
µντA

ρ

)
, ωµ

A′B′ = EνB′(
∂µEν

A′ − Y ρ
µνEρ

A′)
. (A.5)

For manipulations involving the scalar curvature it is often useful to use the following identity

∂µ
(
E Eµ

A′
)
= E

(
Eµ

B′ ωµA′B
′ + 2 τA′A

A
)
. (A.6)

In [18], an improved curvature scalar R(J) has been defined, which transforms covari-
antly under boosts. This is achieved by adding appropriate Kalb-Ramond terms in the
definition. The relation between the two scalars can straightforwardly be worked out by
using the relation between the string and Einstein expansions

REinstein = eΦ/2
(

Rstring +
9
2 DA′

∂A′Φ− 9
2 ∂A′Φ ∂A′Φ+ 9 τA′A

A∂A′Φ
)

, (A.7)

where DA′ contains an SO(8) connection that can be obtained by replacing the Einstein
frame fields in the previously defined connections by string frame fields.
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B Expansion of the IIB supergravity action

In this appendix, we present details of the expansion of the Lorentzian IIB supergravity
action (2.1) with respect to the parameter ω introduced in eq. (2.9). We start by separating
the Lorentzian action (2.1) into different manifestly SL(2 , R)-invariant terms as

Ŝ = SEH + SM̂ + SĤ + SF̂ (5) + SCS , (B.1)

where

SEH = 1
16πGN

∫
d10x ÊR̂ , (B.2a)

SM̂ = 1
16πGN

∫
d10x Ê tr

(
1
4 ∂µM̂ ∂µM̂−1

)
, (B.2b)

SĤ = 1
16πGN

∫
d10x Ê

(
− 1

12 Ĥ
⊺
µνρ M̂ Ĥµνρ

)
, (B.2c)

SF̂ (5) =
1

16πGN

∫
1
4 F̂ (5) ∧ ⋆F̂ (5) , (B.2d)

SCS = 1
16πGN

∫ (
−1

4 Ĉ
(4) ∧ Ĥ(3)⊺ ∧ ϵ Ĥ(3)

)
, (B.2e)

Later in (2.16), we rewrote the Lorentzian action (B.1) using eq. (2.9) and expanded it
with respect to a large ω , i.e.,

Ŝ = ω2 (2)
S +

(0)
S +O(ω−2) . (B.3)

The ω2 terms are given in eq. (2.18), which combine the following contributions from all
the different terms in eq. (B.2):

(2)
SEH = 1

16πGN

∫
d10x E

(
−τA′B′AτA′B′A

)
, (B.4a)

(2)
SĤ = 1

16πGN

∫
d10x E

(
τA′B′AτA′B′A + 1

2 e2Φ FA′ F A′ − 1
2·3! eΦ FA′B′C′ F A′B′C′

)
,

(B.4b)

(2)
SM̂ = 1

16πGN

∫
d10x E

(
−1

2 e2ΦFA′F A′
)

, (B.4c)

(2)
S F̂5

= 1
16πGN

∫
d10x E

(
1
4! eΦ FA′B′C′ F A′B′C′ − 1

4·5! FA′
1···A

′
5

F A′
1···A

′
5

)
, (B.4d)

(2)
SCS = 1

16πGN

∫ (
−1

2 eΦ/2 F (5) ∧ F (3) ∧ ℓ(2)
)

, (B.4e)

where various integrations by parts (ignoring boundary terms) had to be performed in order
to bring the Chern-Simons term in the form given above. Summing over the expressions in
eq. (B.4) gives eq. (2.18). Furthermore, the O(ω0) terms in eq. (B.3) receive the following
contributions from eq. (B.1):

(0)
S EH = 1

16πGN

∫
d10x E R , (B.5a)
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(0)
S Ĥ = 1

16πGN

∫
d10x E

(
2 τA′A

A τA′B
B + τA′A

A ∂A′Φ+ 1
8 ∂A′Φ ∂A′Φ

+ e−
1
2 Φ ϵAB τA′B′

A HA′B′B − 1
2·3! e−ΦHA′B′C′HA′B′C′

− 1
2 e

3
2 Φ F A′

FA′AB ϵAB − 1
4 eΦFA′B′AF A′B′A

)
, (B.5b)

(0)
S M̂ = 1

16πGN

∫
d10x E

(
−1

2 e2Φ FA F A − 1
2 ∂A′Φ ∂A′Φ

)
, (B.5c)

(0)
S F̂5

= 1
16πGN

∫
d10x

E

4!

(
−e

1
2 Φ F A′B′C′

FA′B′C′ABϵAB − 1
4 FA′

1···A
′
4A F A′

1···A
′
4A
)

, (B.5d)

(0)
S CS = 1

16πGN

∫ (
−1

2 C
(4) ∧ H(3) ∧ F (3)

)
, (B.5e)

summing over which gives
(0)
S =

(0)
SEH +

(0)
SĤ +

(0)
SM̂ +

(0)
S F̂5

+
(0)
SCS . (B.6)

This is what we have recorded in eq. (2.25).

C SL(2 , R) invariants in non-Lorentzian IIB supergravity

This appendix contains some supplementary materials for section 4.3.
We first provide more details for how eq. (4.15) is derived. Using eqs. (4.8) and (2.35),

we find that the dilatation weights of the associated Lagrange terms are

∆
(
E I(1, p)

r

)
= 2 (1− r − p) , ∆

(
E I(3, p)

r

)
= ∆

(
E I(5, p)

r

)
= 2 (3− r − p) . (C.1)

Recall that 0 ≤ p ≤ min{i , 2} in I
(i, p)
r . In order for these terms to qualify as invariants in

the NL IIB supergravity action, their associated dilatation weights have to vanish. Moreover,
as we have mentioned at the end of section 3.3.2, components in higher-dimensional S(i)

N

vectors may be required for the full classification of all the invariants. Setting the dilatation
weights in eq. (C.1) to zero, our classification of quadratic invariants in eq. (3.49) says that
the relevant SL(2 , R) invariant terms are (without the measure E)

I
(1, 1)
0 = sA

0 sB
0 ηAB , (C.2a)

I
(3, 2)
1 = −1

2 sA′AB
1 sA′

1 AB + sA′AB
0 sA′

2 AB , (C.2b)

I
(3, 1)
2 = 1

2 sA′B′A
2 sA′B′

2 A − sA′B′A
1 sA′B′

3 A + sA′B′A
0 sA′B′

4 A , (C.2c)

I
(3, 0)
3 = 1

6

(
−sA′B′C′

3 sA′B′C′
3 + 2sA′B′C′

2 sA′B′C′
4 − 2sA′B′C′

1 sA′B′C′
5 + 2sA′B′C′

0 sA′B′C′
6

)
,

(C.2d)

I
(5, 2)
1 = 1

12

(
−sA′B′C′AB

1 sA′B′C′
1 AB + 2 sA′B′C′AB

0 sA′B′C′
2 AB

)
, (C.2e)

I
(5, 1)
2 = 1

4!

(
sA′B′C′D′A

2 sA′B′C′D′
2 A − 2sA′B′C′D′A

1 sA′B′C′D′
3 A + 2sA′B′C′D′A

0 sA′B′C′D′
4 A

)
.

(C.2f)
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Note that we have included I
(3, 0)
3 and I

(5, 1)
2 , which contain s

(3)
5 , s

(3)
6 , s

(5)
3 , and s

(5)
4 that do

not appear in the polynomial realizations in eq. (4.3) and, therefore, they are not included
in the NL IIB supergravity. However, according to the mapping (4.3), we have

s
(3)
0 = F (1) ∧ ℓ(2) , s

(5)
0 = F (3) ∧ ℓ(2) , (C.3a)

s
(3)
1 = Γ(3) = dℓ(2) − 3

2 dΦ ∧ ℓ(2) , s
(5)
1 = H(3) ∧ ℓ(2) , (C.3b)

and using the identities ℓAA′ = ℓA′B′ =
(
dℓ
)

A′B′C′ = 0 , we find

sA′B′C′
0 = sA′B′C′

1 = sA′B′C′D′A
0 = sA′B′C′D′A

1 = 0 (C.4)

in eq. (4.3), which implies that the dependencies on s
(3)
5 , s

(3)
6 , s

(5)
3 , and s

(5)
4 drop off in

eq. (C.2). Finally, plugging the mapping (4.3) into eq. (C.2), we derive the list of SL(2 , R)
and dilatation invariants in eq. (4.15).

In order to identify the Chern-Simons term, we formally treat our 10D NL IIB super-
gravity as the boundary of an 11D theory. There exists only one zero-dilatation weight
quantity F (5) ∧ F (3) ∧ H(3) in 11D that is invariant under SL(2 , R) up to an exact form,
such that

g ◦
(
F (5) ∧ F (3) ∧H(3)) = F (5) ∧ F (3) ∧H(3) − d

(
F (5) ∧ K(3)

4 ∧ ℓ(2)
)

. (C.5)

Here,
K(3)

4 = −κH(3) + 1
2 κ2 F (3) − 1

3! κ3 Γ(3) + 1
4! κ4 F (1) ∧ ℓ(2) (C.6)

satisfies the consistency conditions (3.15). Furthermore, note that

F (5) ∧ F (3) ∧H(3) = −d
(
C(4) ∧H(3) ∧ F (3)

)
(C.7)

is a total derivative by itself. From eqs. (C.5) and (C.7), we find the following transformation
of a ten-form quantity in the boundary 10D theory:

g ◦
(
C(4) ∧H(3) ∧ F (3)

)
= C(4) ∧H(3) ∧ F (3) + F (5) ∧ K(3)

4 ∧ ℓ(2) + dχ(9) . (C.8)

Recall the transformation of A(3) in eq. (4.9e), i.e.,

g ◦ A(3) = A(3) +K(3)
4 , (C.9)

we find
g ◦ I

(10)
CS = I

(10)
CS + dχ(9) , (C.10)

where I
(10)
CS is defined in eq. (4.17). This concludes the construction for the zero dilatation

weight and preserves SL(2 , R) up to an exact form dχ(9) .
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