
 

 

 University of Groningen

Methods for analyzing routing games
Verbree, Jasper

DOI:
10.33612/diss.872396326

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2024

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Verbree, J. (2024). Methods for analyzing routing games: Information design, risk-averseness, and
Braess's paradox. [Thesis fully internal (DIV), University of Groningen]. University of Groningen.
https://doi.org/10.33612/diss.872396326

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 01-02-2024

https://doi.org/10.33612/diss.872396326
https://research.rug.nl/en/publications/30cafed4-a87c-4c84-af15-8cc166c6372e
https://doi.org/10.33612/diss.872396326


Methods for analyzing 
routing games

Information design, risk-averseness, and Braess’s paradox

Jasper Verbree

M
ethods for analyzing routing gam

es
Jasper Verbree





627714-L-bw-Verbree627714-L-bw-Verbree627714-L-bw-Verbree627714-L-bw-Verbree
Processed on: 8-1-2024Processed on: 8-1-2024Processed on: 8-1-2024Processed on: 8-1-2024 PDF page: 1PDF page: 1PDF page: 1PDF page: 1

Book cover: The author routing traffic in his youth.

ISBN/EAN: 978-94-6473-355-6

Published by Ipskamp Printing

The research described in this thesis has been carried out at the Faculty of Science and
Engineering, University of Groningen, the Netherlands. This thesis was completed
using the thesis LATEXtemplate by Drs. K. Bunte, A. Taghribi, and E. Talavera Martinez



627714-L-bw-Verbree627714-L-bw-Verbree627714-L-bw-Verbree627714-L-bw-Verbree
Processed on: 8-1-2024Processed on: 8-1-2024Processed on: 8-1-2024Processed on: 8-1-2024 PDF page: 2PDF page: 2PDF page: 2PDF page: 2



627714-L-bw-Verbree627714-L-bw-Verbree627714-L-bw-Verbree627714-L-bw-Verbree
Processed on: 8-1-2024Processed on: 8-1-2024Processed on: 8-1-2024Processed on: 8-1-2024 PDF page: 3PDF page: 3PDF page: 3PDF page: 3

 
 
 
 
 
 

Methods for analyzing routing 
games 

 
Information design, risk-averseness, and Braess's paradox 

 
 
 
 
 

Proefschrift 
 
 
 
 

ter verkrijging van de graad van doctor aan de  
Rijksuniversiteit Groningen 

op gezag van de 
rector magnificus prof. dr. ir. J.M.A. Scherpen 

en volgens besluit van het College voor Promoties. 
 

De openbare verdediging zal plaatsvinden op 
 

maandag 5 februari 2024 om 11.00 uur 
 
 
 

door 
 
 
 

Jasper Verbree 
 

geboren op 3 februari 1995 
 

  



627714-L-bw-Verbree627714-L-bw-Verbree627714-L-bw-Verbree627714-L-bw-Verbree
Processed on: 8-1-2024Processed on: 8-1-2024Processed on: 8-1-2024Processed on: 8-1-2024 PDF page: 4PDF page: 4PDF page: 4PDF page: 4

Promotor 
Prof. dr. D. Bauso  

 

Copromotor 
Dr. A.K. Cherukuri  

 

Beoordelingscommissie 
Prof. dr.  J.G. Peypouquet  

Prof. dr.  M. Cao  

Prof. dr.  B. Gharesifard  

 
 



627714-L-bw-Verbree627714-L-bw-Verbree627714-L-bw-Verbree627714-L-bw-Verbree
Processed on: 8-1-2024Processed on: 8-1-2024Processed on: 8-1-2024Processed on: 8-1-2024 PDF page: 5PDF page: 5PDF page: 5PDF page: 5

Contents

Acknowledgements vii

1 Introduction 1
1.1 Braess’s paradox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Inferring the prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Risk-based variational inequalities . . . . . . . . . . . . . . . . . . . . 3
1.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Publications and origin of chapters . . . . . . . . . . . . . . . . . . . . 5

2 Routing games 7
2.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Wardrop equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Varying demand 13
3.1.1 Definitions, notation and preliminaries . . . . . . . . . . . . . 14

3.2 The evolution of WE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Finding the final breaking point DM . . . . . . . . . . . . . . . . . . . 31
3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Braess’s paradox 43
4.1 Introductory examples and preliminaries . . . . . . . . . . . . . . . . 45

4.1.1 Notation, Facts and Definitions . . . . . . . . . . . . . . . . . . 49
4.2 The evolution of WE-costs in routing games . . . . . . . . . . . . . . . 54
4.3 Conditions revealing Braess’s paradox . . . . . . . . . . . . . . . . . . 59
4.4 The benefits of Braess’s paradox . . . . . . . . . . . . . . . . . . . . . 68
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

v



627714-L-bw-Verbree627714-L-bw-Verbree627714-L-bw-Verbree627714-L-bw-Verbree
Processed on: 8-1-2024Processed on: 8-1-2024Processed on: 8-1-2024Processed on: 8-1-2024 PDF page: 6PDF page: 6PDF page: 6PDF page: 6

Contents

5 Inferring the prior 75
5.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 Inferring the prior: General case . . . . . . . . . . . . . . . . . . . . . 81

5.2.1 Probability distribution and equilibrium . . . . . . . . . . . . 83
5.2.2 Existence of q-identifying signalling schemes . . . . . . . . . . 87
5.2.3 Designing the signalling scheme . . . . . . . . . . . . . . . . . 93

5.3 Multiple priors and robust identification . . . . . . . . . . . . . . . . . 98
5.3.1 Heterogeneous population . . . . . . . . . . . . . . . . . . . . 98
5.3.2 Robustness of signalling schemes in identifying priors . . . . 100

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 CVaR-Based variational inequalities 103
6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.2 Problem statement and motivating examples . . . . . . . . . . . . . . 107

6.2.1 CVaR-based routing games . . . . . . . . . . . . . . . . . . . . 108
6.2.2 CVaR-based Nash equilibrium . . . . . . . . . . . . . . . . . . 108

6.3 Algorithms for solving VI(H, F ) . . . . . . . . . . . . . . . . . . . . . 109
6.3.1 Projected algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.3.2 Subspace-constrained algorithm . . . . . . . . . . . . . . . . . 113
6.3.3 Multiplier-driven algorithm . . . . . . . . . . . . . . . . . . . . 117

6.4 Estimation error, sample sizes and accuracy . . . . . . . . . . . . . . . 119
6.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7 Conclusions 125
7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A Example of a routing game not representable by a graph 129

B Proof of Corollary 3.1.1 133

C WE and WE-costs of routing games in Example 4.3.6 135

D WE of routing game in Example 4.4.1 137

Bibliography 139

vi



627714-L-bw-Verbree627714-L-bw-Verbree627714-L-bw-Verbree627714-L-bw-Verbree
Processed on: 8-1-2024Processed on: 8-1-2024Processed on: 8-1-2024Processed on: 8-1-2024 PDF page: 7PDF page: 7PDF page: 7PDF page: 7

Acknowledgments

“The end is near.” These are the first words that go through my mind as I start writing
this last, final part of my thesis. Perhaps it is overly dramatic, but I’ve always liked
to put a bit more drama in my writing than strictly necessary, or even wise. At least
it is true. The end is near. The end of my time as a Ph.D. student here in Groningen.
The end of my project, which has been such a major part of my life for these last four
years. The end of a chapter. Endings have their good sides, of course. Pursuing a
Ph.D can be like an island, a tiny region of the world of research that you explore in
excruciating detail. The chance to now expand my view, look at a broader picture,
and start something new is an exciting prospect. There were also times that the work
was hard, when I was exhausted and plodding on seemed too daunting a task. To put
the finishing touches on a project I once doubted I could complete is very satisfying.
However, when I look back at my time as a Ph.D. student, the good times outnumber
the bad by quite a margin, and so I would like to take some time to thank all of those
who helped make the last few years so enjoyable.

First of all there is my daily supervisor, Ashish Cherukuri. Thank you, Ashish,
for all the time you have given me. At the start of my project my weeks had a clear
pattern to them. During the week I would slow down, as I encountered new problems
and challenges, until we had our weekly meeting and I would leave energized and
full of new ideas. Thank you for that. Later on, when weekly meetings were not
required anymore, you were still always available when I needed you. You gave me
the freedom to work on my own ideas and projects, which I appreciate immensely,
and which is one of the main reasons I so enjoyed my Ph.D. project.

I also want to thank my promotor, Dario Bauso. You gave me some important
pointers on communication, which gave me some useful insights into myself.

Next, I want to express my gratitude toward the members of the reading commit-
tee: Ming Cao, Bahman Gharesifard, and Juan Peypouquet. Thank you for your time
and feedback!

Then there are my office mates. Wouter Baar, Emmanuel de la Cruz Piña, Bo Jin

vii



627714-L-bw-Verbree627714-L-bw-Verbree627714-L-bw-Verbree627714-L-bw-Verbree
Processed on: 8-1-2024Processed on: 8-1-2024Processed on: 8-1-2024Processed on: 8-1-2024 PDF page: 8PDF page: 8PDF page: 8PDF page: 8

and Amin Maghami. The corona period was not the ideal time to bond in the office,
but for what little time we had, I enjoyed your company a lot. In the same line of
thought I want to thank my friends, Henk and Tessa van Waarde and Lammert and
Charlotte Wiersma, who so generously loaned me office space in their homes when
the university was closed, and stood in for the office mates that I therefore had to
miss. Thank you guys, I would probably not have finished this project without you.

I also want to thank my family, my father and mother, my brothers and sisters. In
law or otherwise. You kept me stable throughout these times, lifted me up when I
was down, and I am thankful that I got to do this project here in Groningen, with all
of you so (relatively) close.

And then there are my colleagues. So many that I am sure to fail to name them all
here, but let me try anyway. Agung, Alireza, Arijit, Auriane, Azin, Bahadir, Bangguo,
Brenda, Emin, Frederika, Hayden, Ivett, Juan, Julien, Kathinka, Linda, Lorenzo,
Luis, Marco, Matthijs, Mireny, Najmeh, Ping, Rafael, Rhido, Rory, Saeed, Santiago,
Sepide, Simon, Stefanny, Taraneh, Vaibhav, Yifan, Yvonne, Zaki, and probably a
lot more. Thank you all for making the office lively. A special mention goes to
Nikolai Charalampadis, Anne-men Huijser, Jasper Koning, Brayan Shali, and Paul
Wijnbergen, without whom I may never have started this project at all. I also want to
say thanks, again, to Emin and Anne-men, my paranymphs, who doubtlessly will
get me through the final defense without too much trouble.

Finally, my greatest thanks go to my wife, Joanne, who I am quite sure is the
loveliest person alive, and my son Adam, who is working hard to change that. You
are the ground beneath my feet and the sun in my sky. I would be lost without you.

Jasper Verbree
Groningen

January 4, 2024



627714-L-bw-Verbree627714-L-bw-Verbree627714-L-bw-Verbree627714-L-bw-Verbree
Processed on: 8-1-2024Processed on: 8-1-2024Processed on: 8-1-2024Processed on: 8-1-2024 PDF page: 9PDF page: 9PDF page: 9PDF page: 9

Chapter 1

Introduction

Networks are a more and more prevalent part of our daily life. Think, for instance, of
traffic networks, power grids, water and gas distribution systems, and communica-
tion networks such as the internet. All of these have become an integral part of our
world. As our dependency on these systems grows, so do the networks themselves.
They increase in size and complexity, and as a result the need for efficient ways of
designing and regulating these networks grows.

One way in which the efficient usage of these networks is hindered is through the
use of competing agents. Multiple parties want to transport their product over the
network for the smallest cost possible, not taking into account the extra costs their
usage imposes on the other users of the network. We are all too familiar with the
additional travel time caused by congestion on the road, a phenomenon that could
sometimes be alleviated by proper coordination of the traffic flow. This perspective of
’selfish’ agents making use of a shared network to facilitate their transport objectives,
while aiming to minimize their own costs of transportation gives rise to the subject
of routing games. The inefficiencies caused by the competition among agents create
the potential for a social planner or controller to step in and be of benefit to all users
by regulating the design, usage, and information provision of these systems. In this
thesis, we investigate several questions related to the efficient design and control of
routing games. Since all chapters share this overarching theme, Chapter 2 is devoted
to giving a thorough introduction to the subject, including some notation, definitions,
and preliminary results necessary for the rest of this thesis.

1.1 Braess’s paradox

One type of inefficiency that can occur in routing games is called Braess’s paradox,
named after its discoverer Dietrich Braess, who first presented it in 1968 [1](see [2]
for an English translation). The phenomenon occurs when the cost that all agents
experience when traversing a network can be reduced by removing one or more
connections in the network. It is a fascinating phenomenon that has inspired a large
body of research since its discovery. However, the problem of avoiding the paradox
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2 1. Introduction

when designing networks, and indeed even that of detecting the presence of the
paradox in a given routing game has proven to be difficult. It is this difficulty, and
the hope to alleviate it, that motivates the material presented in Chapters 3 and
4. In Chapter 3 we give a rigorous analysis of how the choices of agents using a
network change as the amount of demand that is routed over the network changes.
Although results in Chapter 3 were initially derived in the search for methods for
alleviating Braess’s paradox, there are some surprising observations on how the
usage of the network can be easily derived for very large levels of demand. These
results are interesting in their own right and warrant their own presentation, and
thus we have chosen to present Chapter 3 separately from Chapter 4, where we delve
into the subject of Braess’s paradox proper. In Chapter 4 we make use of the results
of Chapter 3 to derive a number of conditions, which are computationally feasible
to check, and which reveal the presence of Braess’s paradox. We also show the
necessary and sufficient condition for the presence of Braess’s paradox that underlies
all of these conditions, which is less useful in practice but may be valuable for further
analysis. Finally we show how the obtained insights change the perspective on
Braess’s paradox. Although often presented as a problematic phenomenon, the
paradox is fundamentally a matter of balance. Removing a link from a network
may improve efficiency at one level of demand, but only if it decreases efficiency for
another level of demand. Whether the presence of a link is beneficial or detrimental
then depends on how the demand on the network varies, and on what measure one
uses to determine the ’value’ of a link, as we demonstrate in the last part of Chapter 4.

1.2 Inferring the prior

The phenomenon of Braess’s paradox shows that sometimes a network becomes
more efficient after a link is removed. Similarly, sometimes all participants of a
routing game are better off when some information is withheld from them. This
creates the opportunity for information design, where a central authority called a
travel information system(TIS), who has more information about the network than
the agents, can release this information strategically in order to promote efficient
usage of the network. However, it is reasonable to assume that the behaviour of the
participants does not only depend on the information supplied by the TIS but also
on their own beliefs and preferences, which the TIS does not necessarily have access
to. To optimize information provision, the TIS thus needs a way to learn about these
private parameters of the participants.

This is the issue under consideration in Chapter 5. In it, we study routing games
subject to uncertainty. Costs associated with the usage of a link now include a
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1.3. Risk-based variational inequalities 3

stochastic term, and as a consequence, participants can only make estimations about
what the cost of a particular route through the network is. This estimation depends
on a prior belief the participants hold on the state that the network is in, and on
the information supplied by a TIS. The situation is meant to model a routing game
over a traffic network, where costs can be subject to uncertainty (think of weather
conditions or accidents on the road), and drivers make use of navigation software to
inform them about the state of the network. The TIS would like to supply information
in such a way that the average travel time of all participants is minimized, but is
hindered by the fact that the choices of the drivers also depend on their own beliefs,
called the prior belief, which the TIS does not necessarily have access to. We study
how the choices of the participants can be used by the TIS to infer information
about the prior belief they hold. We investigate under what conditions information
provision strategies can be designed that allow the TIS to fully identify this belief,
and subsequently show how to design these strategies.

1.3 Risk-based variational inequalities

Like Chapter 5, Chapter 6 is motivated by routing games which are subject to un-
certainty. Fundamental in the study of routing games are variational inequalities(VI),
which can be used to compute equilibrium solutions to routing games, in which no
users can decrease their experience cost by changing their strategy. In Chapter 6
we investigate the case where participants try to minimize their uncertain cost in
a risk-averse manner, where they use the conditional-value-at-risk(CVaR) as a risk
measure. The result is a CVaR-based VI, involving the CVaR of random costs. To
properly design and regulate games involving these CVaR-based VIs, a planner
would need a way to solve these VIs. However, finding a solution of such a VI is
hindered by the fact that no unbiased estimators of the CVaR of a random variable are
available. Thus we need to investigate the potential of some standard methods for
solving VI, or stochastic VI, when applied in the context of biased estimators. We
study three different schemes for finding solutions of CVaR-based VI and show that
as long as enough samples of the uncertainty are taken, a solution can be obtained
up to any level of desired accuracy. We also provide an explicit relation between the
number of samples taken, and the achieved accuracy of the solution, and compare
the performance of the different methods using an example of a routing game.
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4 1. Introduction

1.4 Notation

Here we introduce part of the general notation that we use throughout this thesis.
The concept of routing games and related notation is introduced in Chapter 2. More
specific instances of notation, that are less common, or only relevant to one or two
chapters, will be defined when they are first encountered.

The set of natural and real numbers are denoted by N and R respectively. We also
use R≥0 to denote the set of non-negative real numbers, and for the empty set we
write ∅. For a given n ∈ N, we write [n] = {1, 2, · · · , n} and [n]0 = {0, 1, 2, · · · , n}.
For a finite set S, the number of elements in S is |S|. For a subset S ⊆ P the
complement of S in P is denoted Sc or P \ S; i.e. Sc := P \ S := {p ∈ P | p /∈ S}.
The closure of a set S ⊆ Rn is denoted by cl(S). The normal cone to a given set
X ⊆ Rn at x ∈ X is defined as NX (x) := {y ∈ Rn | y>(z − x) ≤ 0 ∀z ∈ X}. The set
TX (x) := cl

(
∪y∈X ∪λ>0λ(y − x)

)
is referred to as the tangent cone to X at x ∈ X .

The simplex of all vectors f ∈ Rn for which the elements sum to D is denoted
HD := {f ∈ Rn |

∑
i∈[n] fp = D}. When talking about probability distributions

q ∈ Rm, we also sometimes write ∆m
1 := {q ∈ Rm |

∑
i∈[m] qi = 1}.

We use 0 and 1 to denote the vector of all zeros and all ones respectively, where the
dimension should be clear from the context. For a vector f ∈ Rn, we let fi denote the
i-th element. Similarly, given a set S ⊂ [n], we use fS ∈ R|S| for the vector constructed
by removing all elements whose indices are not in S. For a matrix A ∈ Rn×m we
write Ai ∈ R1×m for the i-th row of the matrix, and Aij for the element of A in the
i-th row and the j-th column. For a square matrix A ∈ Rn×n and a set S ⊂ [n] we
write AS ∈ R|S|×|S| for the matrix constructed by removing all rows and columns of
A whose indices are not in S. We also use A> to denote the transpose of the matrix
A ∈ Rn×m; that is A> ∈ Rm×n is defined by (A>)ij := Aji. The kernel of a matrix
A ∈ Rn×m is denoted ker(A) := {f ∈ Rm | Af = 0}. The space of n × m column
stochastic matrices is CS(n,m) := {A ∈ Rn×m≥0 |

∑
i∈[n]Aij = 1 for all j ∈ [m]}.

Given f, qf ∈ Rn and µ ∈ [0, 1] we use cocoµ(f, qf) := µf + (1 − µ) qf to denote
the convex combination of f and qf . The Euclidean norm of a vector f ∈ Rn is
given by ‖f‖ :=

√∑
i∈[n] f

2
i . The Euclidean projection of f onto the set F is then

denoted ΠF (f) := arg min
qf∈F ‖f − qf‖. The ε-neighbourhood of f is defined as

Cε(f) := { qf ∈ Rn | ‖f − qf‖ < ε}.
For a function g : Rn → R, f 7→ g(f), we write ∇g(f) for the gradient at f . For

a function g : Rn → Rm, f 7→ g(f) we use Dg(f) to denote the Jacobian at f . For
a function g : R → Rn, f 7→ g(f), we write ∂+

∂f g(f) := limh→0+
g(f+h)−g(f)

h for the

right-hand derivative of g at f . Similarly, ∂
−

∂f g(f) := limh→0−
g(f+h)−g(f)

h denotes the
left-hand derivative of g at f .
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Chapter 2

Routing games

In this chapter, we take the time to introduce the concept of a routing game, which is
the shared theme of all material presented in this thesis. Routing games are a class of
games in which participants, or agents, aim to traverse a network, choosing a route
in such a way that their own travel cost is minimized. However, the cost of traversing
the network depends not only on which route an agent takes, but also on the extent
to which this route overlaps with the routes of other agents. Parts of the network that
are heavily used can become congested and therefore increase in cost. Our use of
terms like “routes” and “congestion” already hints at the inspiration for these types
of games: traffic networks. The archetypical example of a routing game is a network
of roads that services a number of traffic participants. Modelling and control of traffic
remains one of the main areas in which the subject of routing games finds application,
although other uses of these types of games exist, for instance in communication
networks [3] or in mechanical, electrical, and hydraulic systems [4]. In this chapter
we will give a rigorous mathematical description of the specific type of routing game
that we consider, introduce fundamental related concepts, and discuss some of the
assumptions that hold throughout this thesis as well as basic results needed for the
subsequent chapters. For a more general introduction to the subject of routing games,
see [5].

2.1 The model

Our starting point for the introduction of routing games is a network, an example of
which can be seen in Figure 2.1. A network consists of a set of points, called nodes or
vertices, and a set of connections, called edges, between these points. Thus a network
is completely defined by the associated graph G = (V, E), where V = [N ], N ∈ N is
the set of vertices and E ⊆ V × V is the set of edges. In this work we only consider
directed graphs, meaning that an edge ek ∈ E consists of an ordered pair of vertices
(vin
k , v

out
k ), where vin

k , v
out
k ∈ V , indicating that there is a connection from vin

k to vout
k .

Using these connections, we can start at a vertex vo and move along the edges in
E until we reach some vertex vd to find a path from vo to vd. Thus a path p from vo
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8 2. Routing games

v1

v2

v3

v4

e1

e3

e5

e2

e4

Figure 2.1: The Wheatstone network.

to vd is an ordered set of edges (ep1 , · · · , epl) such that vin
p1

= vo and vout
pl

= vd and
vout
pk

= vin
pk+1

for all k ∈ [l − 1]. Paths are also defined to be acyclic, meaning that
vin
pi 6= vout

pj for all 1 ≤ i ≤ j ≤ l. The next step in constructing a routing game is now
to associate an origin vo ∈ V and a destination vd ∈ V to the network. The paths
relevant to the the routing game are all those starting at vo and ending at vd and the
set of all these paths is denoted P . It is also possible to define a routing game using
multiple origin-destination pairs, however, in this thesis we mainly consider single
origin-destination networks. In this case, there is only one origin and one destination
in the network, and all traffic needs to be routed from this origin to the destination
over the paths in P . The next element of a routing game is the total amount of traffic
that needs to be routed in this way, which we refer to as the demand and is denoted
D ≥ 0. The way in which this demand is divided among the paths in P gives rise to a
vector of path flows f ∈ Rn≥0, where fp denotes the amount of flow routed over path
p, and n = |P|. We assume the flow to be non-atomic, meaning that f is a continuous
variable. The set of all feasible flows f is therefore given by

FD :=
{
f ∈ Rn≥0 |

∑
p∈P

fp = D
}
. (2.1)

Based on the flow over the paths in P , the flow over an edge ek ∈ E of the network is
given by the sum of the flows over all paths that contain ek, i.e.

fek :=
∑
p3ek

fp. (2.2)

For any traffic participant, traversing one of the edges in the network incurs a cost
that depends on the amount of flow on that edge. Specifically, each edge ek of the
network has a cost function Cek : R → R associated to it that maps the edge-flow
fek to the edge-cost Cek(fek). The functions {Cek}ek∈E are assumed to be continuous,
and non-negative and non-decreasing on R≥0. The cost of traversing the path p is then
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2.1. The model 9

equal to the sum of the costs of all edges in that path; i.e.,

Cp(f) :=
∑
ek∈p

Cek(fek).

For the sake of convenience, we define the following notation:

Ce(f) :=
(
Ce1(fe1), · · · , Cem(fem)

)>
,

C(f) :=
(
C1(f), · · · , Cn(f)

)>
,

C := {Cek}ek∈E ,

(2.3)

where m := |E|. Throughout this thesis we make the assumption that the functions
in C are continuous, and non-negative and non-decreasing on R≥0 explicit by writing
C ⊂ K. Here K is thus the set of all functions that are continuous, and non-negative
and non-decreasing on R≥0. With the feasible set and the related costs defined, the
final ingredient of a routing game is the way in which drivers make routing choices.
For this we assume that all traffic participants want to minimize their own travel
cost and choose a path accordingly. The resulting flow is therefore assumed to be a
Wardrop equilibrium(WE):

Definition 2.1.1. Given a set of paths P , associated cost functions C ⊂ K, and a demand
D ≥ 0, a flow fD ∈ Rn≥0 is called a Wardrop equilibrium if fD ∈ FD and for every p ∈ P
such that fDp > 0 we have

Cp(f
D) ≤ Cr(fD) for all r ∈ P. (2.4)

We will denote the set of all Wardrop equilibria asWD. •

Remark 2.1.2. In the hope that it provides the reader with a clear intuition for what a
routing game is, and for what applications it may be useful, we have introduced the
concept using a network represented by a graph. However, the definition of Wardrop
equilibrium requires only the existence of the set P , the set C, and the demand D.
In fact, a routing game is completely defined by only the set of paths P , the set of
cost functions C, and the demand D, but this general formulation of routing games
can result in situations for which there no longer exists a graph that represents the
structure of the game, (see Appendix A for an example). We will encounter this
possibility later in this thesis when we consider routing games in which the flow on
some paths is constrained to be zero. However, by simply removing any path whose
flow is constrained to zero from consideration, and defining a routing game using
only the set of paths P , the edge-costs in C, and the demand D, it is immediately clear
that all results that apply to classical routing games with a graph representation also
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10 2. Routing games

apply to these games. For this reason we do not impose the existence of a graph that
represents the routing game in Definition 2.1.1 or any future definitions and results,
but instead only consider the sets P and C as given. •

In the next section we discuss preliminaries on the subject of Wardrop equilibria.

2.2 Wardrop equilibria

The intuitive motivation behind the concept of Wardrop equilibrium is that individual
drivers want to minimize their own travel costs. Therefore they would change their
routing choices if a path with lower cost was available to them. Thus, for the flow
to be in equilibrium it is required that every driver experiences the same cost, and
this cost must be minimal among all paths. This leads naturally to the introduction
of the set of WE as given in Definition 2.1.1. However, for the purpose of analysis
and computation, alternative characterizations of the set of WE can be more useful.
For instance, the set of WE can equivalently be defined as the set of solutions to a
variational inequality(VI).

Definition 2.2.1. (Variational inequalities (VIs)): Given a map C : Rn → Rn and a set
F ⊂ Rn, the associated variational inequality problem, denoted VI(F , C) is to find f∗ ∈ F
such that the following holds:

C(f∗)>(f − f∗) ≥ 0, for all f ∈ F . (2.5)

The set of solutions f∗ ∈ F satisfying the above property is denoted as SOL(F , C). •

Based on the feasible set FD and the cost function C as given by (2.1) and (2.3),
we have the following relation between WE and VIs.

Proposition 2.2.2. (WE as the solution of a VI [6]): Let P , C ⊂ K, and D ≥ 0 be given.
Then, fD is a Wardrop equilibrium if and only if fD ∈ SOL(FD, C).

We note that when C(f) = Af for some matrix A ∈ Rn×n, then we use the
notation SOL(F , A) := SOL(F , C). Alternatively, the set of WE can be defined as the
solution set of a convex optimization problem, a characterization that is more useful
from a computational perspective.

Proposition 2.2.3. (WE as the solution of an optimization problem [7]): Let P , C ⊂ K,
and D ≥ 0 be given, and let the map V : R→ R be given by

V (D) := min
f∈FD

∑
ek∈E

∫ fek

0

Cek(z)dz. (2.6)
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2.2. Wardrop equilibria 11

A flow fD is a Wardrop equilibrium if and only if it is an optimal solution of the above
minimization problem; that is, if and only if fD ∈ FD and

∑
ek∈E

∫ fDek

0

Cek(z)dz = V (D).

The repeated reference to the set of WE may already have made clear that a WE
is in general not unique. However, the set of WE does have a property sometimes
referred to as essential uniqueness [8], meaning that for all WE fD ∈ WD the cost on
all edges is the same.

Proposition 2.2.4. (All WE induce the same edge costs [9]): Let P , C ⊂ K, and D ≥ 0

be given. We have

Cek(fDek) = Cek( qfDek) for all fD, qfD ∈ WD and ek ∈ E .

If we strengthen the assumption that the functions Cek are non-decreasing on R≥0

by imposing that these functions are instead strictly increasing on R≥0, the above
proposition implies the following corollary on the uniqueness of WE.

Corollary 2.2.5. Let P , C ⊂ K, and D ≥ 0 be given, where all functions in C are strictly
increasing. We have

fDek = qfDek for all fD, qfD ∈ WD and ek ∈ E .
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Chapter 3

Varying demand

A routing game is defined by a set of paths, a set of cost functions on the edges in
those paths, and finally by the amount of traffic that traverses the network, often
referred to as the demand. It follows naturally that an important subject in the study
of routing games is how changes demand affect how flow is divided among the
paths. In other words: “how does the set of WE change as the demand changes?” Of
course this is a question that has been studied before. An early investigation into the
relation between WE and demand establishes useful properties such as continuity
and potential non-differentiability of the WE relative to changes in demand [10].
In [11] the authors show how in routing games with multiple origin-destination pairs
the relation between demand and the experienced travel costs can be counterintuitive,
to the extent that an increase in demand can decrease travel costs. Later, in [12], an
insightful characterization of the ’directional derivatives’ of WE is provided for a
broad class of routing games. This offers a comprehensive understanding of how
WE evolve in response to changes in demand. More recently [9] studies the relation
between demand and price of anarchy, which is a measure of the inefficiency caused by
the ’selfish’ routing choices of drivers. We take a moment to highlight the contribution
of [12], which gives quite a complete picture of how changes in certain parameters,
including the demand, affect WE of a broad class of routing games.

Our work in this chapter studies a question closely related to the work in [12].
Specifically we look at single origin-destination routing games where the functions in
C are affine and characterize the set of directions in which the set of WE can change
as the demand increases. The reason results in [12] are not directly applicable to our
case is that they depend on the assumption that WE have unique edge flows, which
is not valid in our case. In addition the argumentation in [12] is given in terms of
the flows on edges rather than in terms of flows on paths as we do, though both
perspectives are eventually equivalent. However, the main motivation for writing
this chapter instead of relying on the results in [12] is that many of the intermediary
results are required for Chapter 4, which investigates the phenomenon of Braess’s
paradox, where the removal of one or more edges from a network can decrease the
travel cost under WE. In a way this chapter and Chapter 4 are two parts of one
story, where the former is necessary for the latter, and the latter motivates the former.
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14 3. Varying demand

Nonetheless, the results of this chapter are interesting in their own right and are
therefore presented separately.

Organization

In broad terms the structure of this chapter is as follows. After introducing some
required definitions, notations, and other preliminaries we start with an illustrative
example, showcasing a lot of the properties of the evolution of WE which we establish
formally in later parts of the chapter. The example demonstrates that the set of WE
moves continuously with respect to the demand, and what is more, that the evolution
of the WE is piecewise affine1. The first step of our investigation then considers
the evolution of two important sets: the set of paths with minimal cost, also called
the active set, and the set of paths that for some WE carry a positive amount of
flow, also referred to as the used set. These sets remain constant on the intervals of
demand in which the evolution of the WE is affine, and we investigate how these
sets can change at the endpoints of these intervals. Next we turn our attention to
the evolution of the costs of the paths under WE. This too evolves in a piecewise
affine manner, and we show that the points of non-differentiability lie exactly at the
endpoints of the intervals on which the evolution of the WE is affine. With all of
the preceding results established, we can address the main topic of the chapter, and
obtain a characterization of the evolution of the set of WE as the set of solutions to
a variational inequality. We finish by discussing some interesting consequences of
this main result among which is the possibility of constructing a direct method for
finding all WE above a sufficiently high level of demand. Throughout the chapter
we illustrate our findings using examples.

3.1.1 Definitions, notation and preliminaries

To ease the exposition in this chapter we introduce some concepts and notation
related to the cost of paths under WE. First of all, here and in Chapter 4 we will
assume that the cost functions for the edges are, in addition to continuous, non-
negative and non-decreasing, also affine. That is, for each edge ek ∈ E there exist
parameters αek , βek ≥ 0 such that

Cek(fek) := αekfek + βek . (3.1)

This assumption allows us to write the path-cost function concisely as

C(f) = Af + β, (3.2)
1Since the WE is not unique, a piecewise affine evolution here means that we can divide the range of

the demand into intervals on which the set of directions in which the set of WE evolves remains constant
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where β = (βp)p∈P is the vector with entries βp =
∑
ek∈p βek and A ∈ Rn×n≥0 is a

matrix with the (p, r)-th entry given byApr =
∑
ek∈p∩r αek . ThereforeA is symmetric

and in fact positive semi-definite. This can be seen by noting that A = BTQB, where
B ∈ Rm×n is defined by Bk,i = 1 if edge ek is in path pi and Bk,i = 0 otherwise,
and Q ∈ Rm×m is a diagonal matrix with Qk,k = αek ≥ 0. Throughout this chapter
and the next we will make the assumption that the functions in C are affine explicit
by writing C ⊂ Kaff . Here Kaff is thus the set of all non-decreasing affine functions
which are non-negative on R≥0.

We recall from Proposition 2.2.4 that the costs of the edges are the same for all WE
in the setWD, which has several useful consequences. First of all, in combination
with (3.1) this gives a representation of WD as a set satisfying a number of affine
constraints, showing that the setWD is convex. In addition we note that since all
edge costs are the same for all WE inWD, the same holds for the costs of the paths
and therefore we can define a map from demand to a vector of path costs as follows:

λvec(D) := C(fD), fD ∈ WD.

We thus have that the p-th element of λvec(D) is the cost of path p under any WE in
the setWD. There are two important sets related to this path-cost under WE that are
essential to the analysis in this chapter. The first of these sets we call the active set.
Given a demand D, the active set is the set of all paths that have minimal cost under
WE. We denote this set as

Ract
D := {p ∈ P | λvec

p (D) ≤ λvec
r (D), for all r ∈ P}. (3.3)

We recall that for any WE inWD, a positive amount of flow is routed onto path p
only if p has minimal cost among all paths. It follows that when in WE all traffic
experiences the same cost, and this cost is exactly that of the paths that are in the
active set. We write

λWE(D) := λvec
p (D), p ∈ Ract

D . (3.4)

The other important set we call the used set. It is the set of all paths for which there
exists at least one WE inWD which assigns a positive amount of flow to that path.
Formally we have

Ruse
D := {p ∈ P | there exists an fD ∈ WD such that fDp > 0}. (3.5)

Since a WE only routes flow onto paths with minimal cost we haveRuse
D ⊆ Ract

D .
The final concept we want to introduce is that of the set of breakpoints of a routing

game. It turns out that we can divide the non-negative real line into a finite number
of intervals, and for any two levels of demand in one such interval, the corresponding
active sets will be the same, as will the corresponding used sets. We use the term
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16 3. Varying demand

breakpoints to refer to the endpoints of these intervals. The set of all these breakpoints
is denoted D. We formally introduce this set in the following result.

Corollary 3.1.1. (Piecewise constant evolution of active and used sets): Let P and
C ⊂ Kaff be given. There exists a set D := (D0, D1, · · · , DM , DM+1) ⊂ R≥0 ∪ {+∞} of
finitely many points, with D0 = 0, DM+1 = ∞ and Dj > Dj−1 for all j ∈ [M + 1], and
associated sets of subsets of P denoted {J act

0 ,J act
1 , · · · ,J act

M } and {J use
0 ,J use

1 , · · · ,J use
M },

such that, for all i ∈ [M ]0 and D ∈ (Di, Di+1), we have

Ract
D = J act

i , Ruse
D = J use

i .

Furthermore, J act
i 6= J act

j and J use
i 6= J use

j for all i 6= j.

The parts of the above concerning the active set are established in [9, Section
4]. The arguments mainly rely on the upcoming Lemma, also from [9], which
establishes properties of convex combinations of WE. For ease of reference we recall
that cocoµ(f, f̃) = µf + (1− µ)f̃ .

Lemma 3.1.2. (Evolution of the active set [9]): Let P and C ⊂ Kaff be given. For any
0 ≤ D− ≤ D+ that satisfyRact

D− = Ract
D+ , the following hold

1. For all D ∈ [D−, D+], we haveRact
D = Ract

D− = Ract
D+ .

2. If fD
− ∈ WD− , fD

+ ∈ WD+ and µ ∈ [0, 1], then cocoµ(fD
−
, fD

+

) ∈ WT , where
T = cocoµ(D−, D+).

This Lemma, in combination with the affine form of C and the already established
parts of Corollary 3.1.1 related to the active set, can also be used to prove the parts
of Corollary 3.1.1 concerning the used set. For the sake of rigour a proof is given in
Appendix B.

3.2 The evolution of WE

We start our investigation into the evolution of the set of WE with a set of exam-
ples, which will provide useful intuition and context for the subsequent analysis.
Throughout the chapter we revisit these examples to demonstrate obtained results.

Example 3.2.1. (Evolution of WE): We discuss here two simple networks:

(Case-a) For the first example, consider the network depicted in Figure 3.1, often
called the Wheatstone network, where the edge-cost functions are given by
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3.2. The evolution of WE 17

vo vd

e1

e3

e5

e2

e4

Figure 3.1: The Wheatstone net-
work.

WE vs demand

0 1 2 3
0

0.5

1

1.5

Figure 3.2: The WE at different demands
for the routing game defined by the Wheat-
stone network (Figure 3.1) and costs (3.7).

Ce1(fe1) = fe1 , Ce2(fe2) = 1,

Ce3(fe3) = 1, Ce4(fe4) = fe4 ,

Ce5(fe5) = 0.

(3.6)

There are three paths from the origin to the destination in this network, namely
p1 = (e1, e2), p2 = (e3, e4) and p3 = (e1, e5, e4), with cost functions given respectively
by

C1(f) = f1 + f3 + 1,

C2(f) = f2 + f3 + 1,

C3(f) = f1 + f2 + 2f3.

(3.7)

Using this, we can find the following explicit expression for the WE as a function of
the demand D.

fD =



(
0 0 D

)>
for D ∈ [0, 1],(

D − 1 D − 1 2−D
)>

for D ∈ [1, 2],(
D
2

D
2 0

)>
for D ∈ [2,∞).

(3.8)

The first important observation is that fD changes continuously, and what is more,
it evolves in a piecewise affine manner. The points at which the evolution changes
from one affine piece to the next will later turn out to be exactly the breakpoints
in D defined in Corollary 3.1.1. Notice that in this example the WE is unique for
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18 3. Varying demand

any demand and the evolution of the WE as demand increases is therefore fully
characterized by the right-hand derivative of the map D 7→ fD:

fδ(D) :=
∂+

∂D
fD =



(
0 0 1

)>
for D ∈ [0, 1),(

1 1 −1
)>

for D ∈ [1, 2),(
1
2

1
2 0

)>
for D ∈ [2,∞).

Also note that on the intervals where the map D 7→ fD is affine, naturally the
direction in which the WE moves is constant.

(Case-b) When the WE are not unique, the situation can become more complicated.
To illustrate this, we slightly modify our example. Instead of connecting the top and
bottom nodes of the Wheatstone network (Figure 3.1) with the edge e5, we merge
them into one node. The resulting network is depicted in Figure 3.3.

vo vd

e1

e3

e2

e4

Figure 3.3: The Wheatstone network after merging the top and bottom nodes.

The edge-cost functions are still given by (3.6), except that edge e5 no longer exists.
There are now four paths in P , namely p1 = (e1, e2), p2 = (e3, e4), p3 = (e1, e4) and
p4 = (e3, e2), and the path-cost function is given by

C(f) = Af + b =


1 0 1 0

0 1 1 0

1 1 2 0

0 0 0 0

 f +


1

1

0

2

 . (3.9)

Note that Af0 = 0 for f0 = (−1,−1, 1, 1)> and so, for any flow f and any value
ε ∈ R, we have C(f + εf0) = C(f). In other words, re-routing equal amounts of flow
from p1 to p2 and from p3 to p4, or vice versa, does not change the path-cost. As a
consequence, the WE are not always unique, and we instead find a set of WE given
by

WD :=


{(

0 0 D 0
)>}

for D ∈ [0, 1],

{f ∈ FD | f1 + f3 = 1, f2 + f3 = 1} for D ∈ [1,∞).

(3.10)
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3.2. The evolution of WE 19

Using this, we obtain the directions along which the WE can move as the demand
increases as:

ΓD :=


{fδ ∈ H1 | fδ1 , fδ2 , fδ4 = 0, fδ3 = 1}, D ∈ [0, 1),

{fδ ∈ H1 | fδ1 , fδ2 , fδ4 ≥ 0, fδ1 = fδ2 = −fδ3}, D = 1,

{fδ ∈ H1 | fδ1 + fδ3 = 0, fδ2 + fδ3 = 0}, D ∈ [1,∞),

(3.11)

where we recall thatHT := {f ∈ Rn |
∑
i∈[n] fp = T}. Instead of a single direction,

we find a set of directions along which the set of WE evolves. That is, for every D
and every fδ ∈ ΓD, there exist fD ∈ WD and ε̄ > 0 such that for all ε ∈ [0, ε̄) the flow
fD + εfδ is a WE for the demand D + ε. Note that, as in the previous example, the
non-negative real line is divided into intervals such that the set of directions ΓD is
constant in each interval. •

In the above example we observed that the set of WE changes continuously with
respect to the demand. Our first goal is to establish that this holds for any routing
game. When equilibrium flows over the edges are unique, such a result is already
established in [10]. We now show that the same holds when considering sets of WE.

Lemma 3.2.2. (Continuity of the map D 7→ WD): Let P and C ⊂ Kaff be given. The
(set-valued) map D 7→ WD is continuous; that is, for every D ≥ 0 and ε > 0 the following
hold:

1. There exists a δ > 0 such that for all fD ∈ WD and T ≥ 0 satisfying |T −D| < δ

there exists fT ∈ WT such that ‖fD − fT ‖ < ε.

2. There exists a δ > 0 such that for all T ≥ 0 satisfying |T −D| < δ and all fT ∈ WT

there exists fD ∈ WD such that ‖fD − fT ‖ < ε.

The first and second parts of the above definition are known as lower and up-
per semicontinuity respectively [13], or as inner and outer semicontinuity, respec-
tively [14]. The result follows from [15, Theorem 4.2] and noting that since A is
positive semi-definite, and symmetric, it is cocoercive [15, Theorem 3.3].

With continuity properly established, we first turn our attention to the evolution
of the active and used sets. Our next result sheds light on how these two sets evolve
on the interval [Di, Di+1], where Di, Di+1 ∈ D. Recall that D is the set of breakpoints
of the routing game; that is, D contains the points where the active and used sets
change (see Corollary 3.1.1).

Lemma 3.2.3. (Relationship between active and used sets over an interval): For a
given P and C ⊂ Kaff , let Di, Di+1 ∈ D and let J act

i ⊆ P and J use
i ⊆ P be the associated

active and used sets on (Di, Di+1), respectively. Then, we have

Ruse
Di ⊆ J

use
i ⊆ J act

i ⊆ Ract
Di , (3.12a)
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20 3. Varying demand

Ruse
Di+1

⊆ J use
i ⊆ J act

i ⊆ Ract
Di+1

. (3.12b)

Proof. We will first establish (3.12a). Let p ∈ Ract
Di

and r ∈ (Ract
Di

)c. It follows that
λvec
p (Di) < λvec

r (Di). Continuity of the map D 7→ WD, as proven in Lemma 3.2.2,
implies continuity of the map λvec(·). Therefore, it follows that for small enough ε > 0

we have λvec
p (T ) < λvec

r (T ) for all T ∈ [Di, Di + ε). It follows that r ∈ (Ract
T )c for all

T ∈ [Di, Di + ε), which shows that r ∈ (J act
i )c. Thus we have J act

i ⊆ Ract
Di

. Similarly,
it follows from Lemma 3.2.2 that for small enough ε > 0 there exist fT ∈ WT such
that fTp > 0 for all p ∈ Ruse

Di
and T ∈ [Di, Di + ε). This shows thatRuse

Di
⊆ Ruse

T for all
T ∈ [Di, Di+ ε). Thus we haveRuse

Di
⊆ J use

i . By definition of the active and used sets,
we also have J use

i ⊆ J act
i , proving (3.12a). The result (3.12b) concerningRuse

Di+1
and

Ract
Di+1

follows by the same arguments considering the interval (Di+1 − ε,Di+1].

The implication of the above is that when the demand D moves from the point
Di into the interval (Di, Di+1), the used setRuse

D can only gain elements, while the
active set Ract

D can only lose elements. When the demand D then moves from the
interval (Di, Di+1) to the point Di+1 the situation is reversed. That is,Ruse

D can only
lose elements, whileRact

D can only gain elements. Also note that since J use
i 6= J use

j

and J act
i 6= J act

j for all i 6= j, both the active and the used set must change as D
moves from (Di−1, Di) to (Di, Di+1). Turning our attention back to Example 3.2.1a,
using (3.7) and (3.8), we deriveRact

D andRuse
D as:

(Ract
D ,Ruse

D ) =



({p3}, ∅) for D = 0,

({p3}, {p3}) for D ∈ (0, 1),

({p1, p2, p3}, {p3}) for D = 1,

({p1, p2, p3}, {p1, p2, p3}) for D ∈ (1, 2),

({p1, p2, p3}, {p1, p2}) for D = 2,

({p1, p2}, {p1, p2}) for D ∈ (2,∞).

(3.13)

We see that the evolution of the active and used sets indeed adheres to the result
in Lemma 3.2.3. We can also use Lemma 3.2.3 to establish the following minor but
useful extension of Lemma 3.1.2:

Corollary 3.2.4. (Convex combinations of WE in [Di, Di+1]): For a given P , C ⊂ Kaff

and Di, Di+1 ∈ D, let D,T ∈ [Di, Di+1]. Then, for any fD ∈ WD, fT ∈ WT , and
µ ∈ [0, 1], we have cocoµ(fD, fT ) ∈ Wcocoµ(D,T ).

Proof. The result for the case D,T ∈ (Di, Di+1) is already stated in Lemma 3.1.2.
Now consider the case D = Di and T = Di+1. For given µ ∈ [0, 1], fD ∈ WD, and
fT ∈ WT , denote fµ := cocoµ(fD, fT ). Since fD, fT ≥ 0, we have fµ ≥ 0, and it
follows in a straightforward manner that fµ ∈ FTµ , where Tµ := cocoµ(D,T ).
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3.2. The evolution of WE 21

Now let p ∈ P be a path such that fµp > 0. It follows that either fDp > 0 or fTp > 0.
Since D = Di and T = Di+1, we obtain either p ∈ Ruse

Di
or p ∈ Ruse

Di+1
. In both cases,

Lemma 3.2.3 implies that p ∈ J use
i , and subsequently the same result implies that

p ∈ Ract
Di
∩Ract

Di+1
. Thus, we have

Cp(f
D) ≤ Cr(fD), for all r ∈ P,

Cp(f
T ) ≤ Cr(fT ), for all r ∈ P.

Since the function C is affine and fµ is a convex combination of fD and fT , we get
Cp(f

µ) ≤ Cr(fµ) for all r ∈ P . This establishes the WE condition (2.4) and thus we
have shown that fµ ∈ WTµ . The cases D = Di, T ∈ (Di, Di+1) and D ∈ (Di, Di+1),
T = Di+1 follow using similar arguments.

The main goal of this chapter is to characterize the evolution of the set of WE. We
already noted in Example 3.2.1 that there exists a (set of) directions fδ along which
the WE moves when the demand increases in the intervals between the breakpoints
in D. We refer to such a direction as a direction of increase. The collection of all such
vectors, denoted ΓD, is referred to as the set of directions of increase. Our aim is to
characterize this set ΓD, which is formally defined as follows:

Definition 3.2.5. (Set of directions of increase): Let P , C ⊂ Kaff , and D ≥ 0 be given.
The set of directions of increase ΓD is the set of all directions fδ ∈ H1 in which the flow
can be increased, starting from some flow inWD, such that the new flow is a WE as long as
the increase is small enough. That is,

ΓD := {fδ ∈ H1 | ∃fD ∈ WD, ε̄ > 0 such that fD + εfδ ∈ WD+ε for all ε ∈ [0, ε̄]}.

Before we address this evolution of the WE, we first focus on the evolution of the
WE-cost λWE. The following result relates the evolution of λvec to the set ΓD.

Proposition 3.2.6. (The evolution of λvec): Let P and C ⊂ Kaff be given. For any
i ∈ [M ]0 there exists a vector δCi such that the following hold:

1. for all D ∈ [Di, Di+1) and fδ ∈ ΓD

Afδ = δCi, (3.14)

2. for all T ∈ [Di, Di+1]

λvec(T ) = λvec(Di) + (T −Di)δC
i, (3.15)

3. δCi 6= δCi+1.
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22 3. Varying demand

Proof. We start with the second claim, which is a consequence of the affine form of
C, given in (3.2), and the convexity result in Corollary 3.2.4. Let fDi ∈ WDi and
fDi+1 ∈ WDi+1

and define

fδ0 := (Di+1 −Di)
−1(fDi+1 − fDi).

By Corollary 3.2.4 any convex combination of fDi and fDi+1 is a WE. To be specific,
pick some µ ∈ [0, 1] and let fµ := cocoµ(fDi , fDi+1). Then, fµ ∈ WTµ , where
Tµ = cocoµ(Di, Di+1). Furthermore, we have

fµ = fDi + (1− µ)(fDi+1 − fDi)

= fDi + (Tµ −Di)
fDi+1 − fDi
Di+1 −Di

= fDi + (Tµ −Di)f
δ0 .

Using the fact that C is affine and the definition of λvec we derive

λvec(Tµ) = C(fµ)

= C
(
fDi + (Tµ −Di)f

δ0
)

= C(fDi) + (Tµ −Di)Af
δ0

= λvec(Di) + (Tµ −Di)Af
δ0 .

(3.16)

Since the above holds for all µ ∈ [0, 1] we have λvec(T ) = λWE(Di) + (Tµ −Di)Af
δ0

for all T ∈ [Di, Di+1]. Setting δCi := Afδ0 the second statement is proven.
To show the first statement, let D− ∈ [Di, Di+1) and let fδ ∈ ΓD− . It follows that

there exist fD
− ∈ WD− , D+ ∈ (D−, Di+1] and fD

+ ∈ WD+ such that

fD
+

= fD
−

+ (D+ −D−)fδ.

Using the same derivation as in (3.16) we find

λvec(D+) = λvec(D−) + (D+ −D−)Afδ. (3.17)

However, from (3.15) we have

λvec(D+) = λvec(Di) + (D− −Di)δC
i + (D+ −D−)δCi

= λvec(D−) + (D+ −D−)δCi,
(3.18)

where we have again used λvec(D−) = λvec(Di) + (D− −Di)δC
i. Comparing (3.17)

and (3.18) we get Afδ = δCi, proving the first statement.
The third statement we show by contradiction. Therefore, assume δCi = δCi+1

holds for some i ∈ [M ]0 and let p, r ∈ J act
i . By definition of the active set it follows



627714-L-bw-Verbree627714-L-bw-Verbree627714-L-bw-Verbree627714-L-bw-Verbree
Processed on: 8-1-2024Processed on: 8-1-2024Processed on: 8-1-2024Processed on: 8-1-2024 PDF page: 31PDF page: 31PDF page: 31PDF page: 31

3.2. The evolution of WE 23

that λvec
p (D) = λvec

r (D) for all D ∈ (Di, Di+1). Combined with (3.15) this implies
δCip = δCir. Under the assumption that δCi = δCi+1 we then have, by (3.15), that
λvec
p (D) = λvec

r (D) for all D ∈ (Di, Di+2) and p, r ∈ J act
i . As a consequence either all

of the paths in J act
i are in the active set on the interval (Di+1, Di+2) or none of them

are. That is, one of the following holds: J act
i ∩ J act

i+1 = ∅ or J act
i ⊆ J act

i+1. However,
note that from Lemma 3.2.3 we haveRuse

Di+1
⊆ J use

i ⊆ J act
i andRuse

Di+1
⊆ J use

i+1 ⊆ J act
i+1.

Since Di+1 > 0, we have Ruse
Di+1

6= ∅ and it follows that J act
i ∩ J act

i+1 6= ∅. Thus we
must have J act

i ⊆ J act
i+1.

Now since J act
i 6= J act

i+1, there must exist some path r′ ∈ (J act
i )c∩J act

i+1. Since r′ is
not in the active set J act

i , one can find a path p′ ∈ J act
i and a demand D ∈ (Di, Di+1)

such that λvec
p′ (D) < λvec

r′ (D). On the other hand, by Lemma 3.2.3, r′ ∈ J act
i+1 implies

r′ ∈ Ract
Di+1

and so, λvec
r′ (Di+1) ≤ λvec

p′ (Di+1). Combining the above two facts with
the affine form (3.15), we deduce that δCip′ > δCir′ . Since δCi+1 = δCi it then
follows from (3.15) and λvec

r′ (Di+1) ≤ λvec
p′ (Di+1) that λvec

p′ (D) > λvec
r′ (D) for all

D ∈ (Di+1, Di+2). However, this contradicts the fact that p′ ∈ J act
i ⊆ J act

i+1. We
see that we arrive at a contradiction, and therefore the premise must be false. We
conclude that δCi+1 6= δCi.

Proposition 3.2.6 shows that the map λvec is affine on the intervals between the
breakpoints in D and non-differentiable at the points in D. A similar result can be
obtained for the evolution of λWE.

Corollary 3.2.7. (Evolution of λWE): Let P and C ⊂ Kaff be given. For any i ∈ [M ]0
there exists a value δλi ≥ 0 such that for all T ∈ [Di, Di+1]

λWE(T ) = λWE(Di) + (T −Di)δλ
i.

Furthermore, δλi = minr∈J act
i

δCir.

Proof. The result follows from (3.15) and from the fact that for any i ∈ [M ]0 and
D ∈ (Di, Di+1) we have λWE(D) = λvec

p (D) for any p ∈ J act
i .

Note that we do not state that δλi 6= δλi+1, as surprisingly, this does not neces-
sarily hold. We show this fact, and illustrate Proposition 3.2.6 and Corollary 3.2.7 as
well as some of the complexities of the evolution of the cost with an example:

Example 3.2.8. (λWE can be differentiable at points in D):

(a) First we show that, even though we know δCi 6= δCi+1, we can have δCi = δCj

when j /∈ {i− 1, i, i+ 1}. Consider the network depicted in Figure 3.4, which is the
Wheatstone network with the additional edge e6. For e1, e2, e3, e4, and e5 we use the
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24 3. Varying demand

vo vd

e1

e3

e5
e2

e4

e6

Figure 3.4: The Wheatstone net-
work with an added parallel path.

0 1 2 3
0

1

2

Figure 3.5: The evolution of λvec(D) for
the routing game discussed in Exam-
ple 3.2.8a.

cost functions given in (3.6), and for the new edge e6 we use

Ce6(fe6) := 2.1.

There are four paths through this network, given by p1 := (e1, e2), p2 := (e3, e4),
p3 := (e1, e5, e4) and p4 := (e6). The resulting path-cost function is given by

C(f) = Af + b =


1 0 1 0

0 1 1 0

1 1 2 0

0 0 0 0

 f +


1

1

0

2.1

 .

As long as the WE-cost of this game is lower than the constant cost of path p4, the WE
will be the same as that of the game in Example 3.2.1a, with the additional element
fp4 = 0. Furthermore, after the WE-cost has reached the constant cost of path p4, all
subsequent flow will be routed onto path p4. That is, we have

fD =



(
0 0 D 0

)>
for D ∈ [0, 1],(

D − 1 D − 1 2−D 0
)>

for D ∈ [1, 2],(
D
2

D
2 0 0

)>
for D ∈ [2, 2.2],(

1.1 1.1 0 D − 2.2
)>

for D ∈ [2.2,∞).
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3.2. The evolution of WE 25

Therefore we obtain

λvec(D) =



(
1 +D 1 +D 2D 2.1

)>
for D ∈ [0, 1],(

2 2 2 2.1
)>

for D ∈ [1, 2],(
1 + D

2 1 + D
2 D 2.1

)>
for D ∈ [2, 2.2],(

2.1 2.1 2.2 2.1
)>

for D ∈ [2.2,∞).

In Figure 3.5 we see the above illustrated, and it is immediately apparent that on the
intervals D ∈ (1, 2) and D ∈ (2.2,∞) the costs of all paths remain constant. In other
words, we have δC1 = δC3 = 0.

(b) Using the same network we can also show that even though λvec(·) is necessarily
not differentiable at the points in D, the same does not hold for λWE(·). To see this,
again consider the network in Figure 3.4, where as before the cost functions of the
edges e1, e2, e3, and e4 are given by (3.6), but for the edges e5 and e6 we set

Ce5(fe5) := fe5 , Ce6(fe6) := 2 + fe6 .

The resulting path-cost function is given by

C(f) = Af + b =


1 0 1 0

0 1 1 0

1 1 3 0

0 0 0 1

 f +


1

1

0

2


and we get the following expression for the WE:

fD =



(
0 0 D 0

)>
for D ∈ [0, 1

2 ],

1
3

(
2D − 1 2D − 1 2−D 0

)>
for D ∈ [ 1

2 , 2],

1
3

(
D + 1 D + 1 0 D − 2

)>
for D ∈ [2,∞).

For D ∈ ( 1
2 , 2) and D ∈ (2,∞) we have Ract

D = {p1, p2, p3} and Ract
D = {p1, p2, p4},

respectively. Therefore λvec(·) should not be differentiable at D = 2, which is verified
by noting that

λvec
p4

(D) =

{
2 for D ∈ [0, 2],
1
3D + 4

3 for D ∈ [2,∞).

However, λWE(·) is given by

λWE(D) =

{
3D for D ∈ [0, 1

2 ],
1
3D + 4

3 for D ∈ [ 1
2 ,∞).
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26 3. Varying demand

The full evolution of λvec(D) and λWE is depicted in Figure 3.6. We see that λWE(·)

0 1 2 3
0

1

2

Figure 3.6: The evolution of λWE(D) and λvec
p4

(D) for the routing game discussed in
Example 3.2.8b.

is differentiable on ( 1
2 ,∞), even though λvec

p3
(·) and λvec

p4
(·) clearly show a breakpoint

at D = 2. •

With results on the evolution of λvec and λWE in place, our next goal is to charac-
terize ΓD in a comprehensive way. For ease of exposition we first define the set of
directions of feasibility.

Definition 3.2.9. (Direction of feasibility): Let P , C ⊂ K, and D ≥ 0 be given. The set of
directions of feasibility MD is the set of all directions fδ ∈ H1 in which the flow can be
increased such that no flow is assigned to or taken from paths that are inactive under WE,
and a non-negative flow is assigned to paths that are unused under WE. That is,

MD := {fδ ∈ H1 | fδRact
D \Ruse

D
≥ 0, fδ(Ract

D )c = 0}, (3.19)

where (Ract
D )c = P \ Ract

D .

The main result of this chapter is that ΓD can be obtained as the set of solutions
of a VI problem, where the feasible set is given byMD, and the map is given by
f 7→ Af . Specifically, we will show the following:

Theorem 3.2.10. (Directions of increase as solutions to a VI): Let P , C ⊂ Kaff , and
D ≥ 0 be given. Then

ΓD = SOL(MD, A).

Working towards a proof of the above, we first need to establish two intermediate
statements. We start by showing that the set of directions of increase is contained in
the set of directions of feasibility.
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3.2. The evolution of WE 27

Lemma 3.2.11. (ΓD is a subset ofMD): Let P , C ⊂ Kaff and D ≥ 0 be given. Then
ΓD ⊆MD.

Proof. Let fδ ∈ ΓD, and let Di, Di+1 ∈ D satisfy D ∈ [Di, Di+1). Then there exist
fD ∈ WD, T ∈ (D,Di+1], and fT ∈ WT such that fT = fD + (T −D)fδ. Thus we
have fδ = (T −D)−1(fT − fD). Note that since D ∈ [Di, Di+1) and T ∈ (D,Di+1] it
follows from Lemma 3.2.3 thatRuse

T ⊆ Ract
D . Therefore (Ract

D )c ⊆ (Ruse
T )c. Since paths

that are not in the used set do not carry any flow under WE, this inclusion implies
fT(Ract

D )c = 0. Similarly, paths that are not in the active set are not in the used set
either, and therefore do not carry any flow under WE, and thus we have fD(Ract

D )c = 0.
Combining all of the above we find fδ(Ract

D )c = 0.
Once again, since paths not in the used set do not carry flow under WE, we

have fDRact
D \Ruse

D
= 0. By feasibility of the WE we also have fT ≥ 0. It follows that

fδRact
D \Ruse

D
≥ 0, which completes the proof.

Next is a more technical result, that establishes some useful properties of the set
SOL(M, A), whereM is of the same form as the setMD.

Proposition 3.2.12. (Properties of SOL(M, A)): Let P , C ⊂ Kaff , T ∈ R, andR,Q ⊆ P
satisfyingR ⊆ Q be given. In addition, let

M := {fδ ∈ HT | fδQ\R ≥ 0, fδQc = 0}.

We then have the following:

1. SOL(M, A) is non-empty,

2. There exists a vector δC ∈ Rn such that fδ ∈ SOL(M, A) if and only if fδ ∈M and
Afδ = δC,

3. If fδp > 0 for some fδ ∈ SOL(M, A) and p ∈ P , then Apfδ = minr∈QArf
δ ,

4. If p ∈ R and fδ ∈ SOL(M, A), then we have Apfδ = minr∈QArf
δ .

Proof. Part 1: The first claim follows by noting that fδ ∈ SOL(M, A) if and only if it
solves [16, Section 1.3.1]

minimize
1

2
f>Af

subject to f ∈M.
(3.20)

Since A is positive semi-definite and M is closed and convex, this minimization
problem has a non-empty solution set, showing that SOL(M, A) is non-empty.
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Part 2: To prove the “only if” side, let fδ1 , fδ2 ∈ SOL(M, A). By definition of the
set of solutions of a VI (Definition 2.2.1) we have

(Afδ1)>(fδ2 − fδ1) ≥ 0,

(Afδ2)>(fδ1 − fδ2) ≥ 0.
(3.21)

Since A is symmetric and positive semidefinite we also have

0 ≤ (fδ1 − fδ2)>A(fδ1 − fδ2)

= (Afδ1)>(fδ1 − fδ2)− (Afδ2)>(fδ1 − fδ2) ≤ 0.

where the last inequality follows from (3.21). Thus, we have A(fδ1 − fδ2) = 0. This
shows that there exists a δC ∈ Rn such that Afδ = δC for all fδ ∈ SOL(M, A). Now
we show the “if” part of the claim. Let fδ0 ∈ M be a flow satisfying Afδ0 = δC.
We wish to show that fδ0 ∈ SOL(M, A). Since this set is non-empty, consider
some fδ ∈ SOL(M, A). From what we have shown above, we obtain Afδ0 = Afδ.
Therefore, using this equality, the following derivation holds for any f ∈M:

(Afδ0)>(f − fδ0) = (Afδ)>(f − fδ0)

= (Afδ)>f − (fδ)>Afδ0

= (Afδ)>f − (fδ)>Afδ

= (Afδ)>(f − fδ) ≥ 0.

Here the final inequality holds since f ∈ M and fδ ∈ SOL(M, A). We see that
(Afδ0)>(f − fδ0) ≥ 0 for all f ∈M and therefore fδ0 ∈ SOL(M, A). This shows that
the second claim holds.

Part 3: Let fδ ∈ SOL(M, A) and assume for the sake of contradiction that there
exist p ∈ P and r ∈ Q such that fδp > 0 and Apfδ > Arf

δ. Since fδp > 0 and r ∈ Q it
follows by definition ofM, that f := fδ − ε(Ep − Er) ∈M for small enough ε > 0.
Here Ei is the vector defined by (Ei)i = 1 and (Ei)j = 0 for all j 6= i. We then have

(Afδ)>(f − fδ) = ε(fδ)>A(Ep − Er)
= ε(Apf

δ −Arfδ) < 0.

This contradicts fδ ∈ SOL(M, A). Therefore the premise must be false, and we
conclude that fδp 6= 0 implies Apfδ = minr∈QArf

δ, proving the third claim. Similar
arguments can be used to show the last claim.

The above result is not explicitly about routing games, since the feasible set of
the VI allows for negative flows, and is unbounded. Nevertheless, it is quite closely
related to the subject. Note for instance that when the setR is empty, the first three



627714-L-bw-Verbree627714-L-bw-Verbree627714-L-bw-Verbree627714-L-bw-Verbree
Processed on: 8-1-2024Processed on: 8-1-2024Processed on: 8-1-2024Processed on: 8-1-2024 PDF page: 37PDF page: 37PDF page: 37PDF page: 37

3.2. The evolution of WE 29

statements of the proposition are equivalent to well-known results on the existence
and essential uniqueness of WE, and properties of the cost under WE, which can be
proven in much the same way. To be specific, whenR is empty, the setM is simply
the feasible set for the routing game over the set of paths in Q, with a path-cost
function given by C(f) = AQf and a demand equal to T , where we recall that
AQ ∈ R|Q|×|Q| is the matrix A with the rows and columns associated with paths in
Qc removed. The first two claims in the above result then simply state the existence
and essential uniqueness of WE and the third claim states that any used path has
minimal cost among all paths, which is the WE condition. Using this perspective, we
get a nice intuitive interpretation of the third and fourth claims when Q = Ract

D and
R = Ruse

D . Note that in this case we haveM =MD. The third claim then shows that
for any fδ ∈ SOL(MD, A), any path in the active set that gains flow when moving
in the direction of fδ must have the smallest increase in cost among all active paths.
Similarly, the fourth claim shows that when moving in the direction of that same
fδ any path in the used set must have the smallest increase in cost among all active
paths, regardless of how the flow on that path changes. Despite the similarities to
results for routing games, here the setM is not bounded and therefore the cases are
not identical. For the sake of rigor, we have therefore included the proof here.

With the previous two results established, we are ready to prove the main result
of this chapter: Theorem 3.2.10.

Proof. First we show that SOL(MD, A) ⊆ ΓD, and to do this we rely heavily on the
conclusions of Proposition 3.2.12. Note the parallel between the setM given there
and the setMD used here; that isM =MD when we set Q := Ract

D andR := Ruse
D .

We start by showing that there exists an fD ∈ WD satisfying fDRuse
D

> 0, a fact which
holds because the setWD is convex. To see why, consider the following argument:
By definition of the used set, there exists a WE fp ∈ WD satisfying fpp > 0, and this is
true for any p ∈ Ruse

D . Setting fD =
∑
r∈Ruse

D
µrf

r, where µr ∈ (0, 1) for all r ∈ Ruse
D

and
∑
r∈Ruse

D
µr = 1 we clearly have fDRuse

D
> 0. From the convexity ofWD we also

have fD ∈ WD. Thus there always exists a flow fD ∈ WD satisfying fDRuse
D

> 0.
Now let fD ∈ WD be such a WE satisfying fDRuse

D
> 0. For a given direction

fδ ∈ SOL(MD, A) and ε > 0 we write

fD+ε = fD + εfδ.

Note that since fDRuse
D

> 0 and fδ ∈ MD we have fD+ε ≥ 0 as long as ε > 0 is
small enough. We will show that for such a small enough ε we have fD+ε ∈ WD+ε

which then implies fδ ∈ ΓD. Let p ∈ P be a path such that fD+ε
p > 0. This implies

that either (a) fDp > 0 or (b) fδp > 0. If fDp > 0 it follows that p ∈ Ruse
D . In addition,

Proposition 3.2.12-4 then tells us thatApfδ = minr∈Ract
D
Arf

δ . Similarly, when fδp > 0,
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the definition ofMD shows that p ∈ Ract
D and from Proposition 3.2.12-3 we obtain

Apf
δ = minr∈Ract

D
Arf

δ. Also for both cases (a) and (b), we have p ∈ Ract
D and so

Cp(f
D) = minr∈P Cr(f

D). Using these properties and Proposition 3.2.6, it follows
that, as long as ε > 0 is small enough,

Cp(f
D+ε) = Cp(f

D) + εApf
δ

≤ min
r∈P

(
Cr(f

D) + εArf
δ
)

= min
r∈P

Cr(f
D+ε).

Thus fD+ε
p > 0 implies Cp(fD+ε) = minr∈P Cr(f

D+ε) which means that condition
(2.4) is satisfied, and it follows that fD+ε ∈ WD+ε. Therefore SOL(MD, A) ⊆ ΓD.

To show ΓD ⊆ SOL(MD, A), let fδ ∈ ΓD. Since SOL(MD, A) ⊆ ΓD we then
know that there exists an fδ0 ∈ ΓD ∩ SOL(MD, A). By Lemma 3.2.11 we have
fδ ∈MD, and by Proposition 3.2.6 we have Afδ = Afδ0 . Therefore it follows from
Proposition 3.2.12 that fδ ∈ SOL(MD, A). This establishes that ΓD ⊆ SOL(MD, A).
In conclusion, we find ΓD = SOL(MD, A).

To illustrate Theorem 3.2.10, we look at the routing game associated to Figure 3.3
as discussed in Example 3.2.1b, for the demand D = 1. Using (3.9) and (3.10) we
findRact

D = {p1, p2, p3, p4},Ruse
D = {p3}. ThusMD = {fδ ∈ H1 | fδ1 , fδ2 , fδ4 ≥ 0}. We

also have ker(A) = {f ∈ R | f1 = f2 = −f3}, which shows that ker(A) ∩MD is
non-empty. Therefore, let f ∈ ker(A)∩MD. Since A is positive semi-definite we find

(Afδ)>(f − fδ) ≤ 0

for any fδ ∈ MD. Using (2.5) in the definition of SOL(MD, A) it follows that in
order for fδ ∈ SOL(MD, A) to hold, we need fδ ∈ ker(A)∩MD. Furthermore, when
fδ ∈ ker(A) ∩MD, we have (Afδ)>(f − fδ) = 0 for any f ∈ MD. In other words,
SOL(MD, A) = ker(A) ∩ MD. From (3.11) we then have ΓD = SOL(MD, A), as
claimed.

We finish this section by establishing some basic properties of the set ΓD, which
are now straightforward consequences of Theorem 3.2.10. First we have that ΓD is
closed, which follows from the fact thatMD is closed [16, Section 1.1], and that it is
convex, which follows from [16, Theorem 2.3.5].

Corollary 3.2.13. Let P , C ⊂ Kaff , and D ≥ 0 be given. Then, ΓD is non-empty, closed,
and convex.

In Example 3.2.1 we already noted that in the intervals in-between the points of
D the set directions of increase ΓD remains constant. Using Theorem 3.2.10 it is now
easy to prove that this holds for any routing game.
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Lemma 3.2.14. Let P , C ⊂ Kaff and Di, Di+1 ∈ D be given. There exists a set Γi ⊂ H1

such that for all D ∈ (Di, Di+1) we have ΓD = Γi. Furthermore Γi+1 ∩ Γi = ∅ and
ΓDi ⊆ Γi.

Proof. The existence of Γi such that ΓD = Γi for all D ∈ (Di, Di+1) follows directly
from Theorem 3.2.10 and observing that MD remains constant on the interval
(Di, Di+1), which follows from Corollary 3.1.1. To show ΓDi ⊆ Γi, let fδ ∈ ΓDi
and pick T ∈ (Di, Di+1], fDi ∈ WDi , and fT ∈ WT such that

fT = fDi + (T −Di)f
δ.

Pick µ ∈ (0, 1) and let Tµ = cocoµ(Di, T ) and fµ = cocoµ(fDi , fT ). Note that
Tµ ∈ (Di, Di+1), T ∈ (Tµ, Di+1), and that from Corollary 3.2.4 we have fµ ∈ WTµ .
Moreover, fT = fµ + (T − Tµ)fδ, and this holds for any µ ∈ (0, 1). Therefore
fδ ∈ ΓTµ = Γi, showing that ΓDi ⊆ Γi. For the last statement, note that if there exists
fδ ∈ Γi ∩ Γi+1 then the first statement of Proposition 3.2.6 implies δCi+1 = δCi,
contradicting the third statement of Proposition 3.2.6. Therefore Γi+1 ∩ Γi = ∅.

3.3 Finding the final breaking point DM

An interesting consequence of the results in Section 3.2, and most importantly The-
orem 3.2.10, is that it enables us to design a method to directly calculate the final
breaking point DM of the set of breakpoints D, as well as the WE-cost λWE and λvec

for all D ≥ DM , and at least one WE fD for all D ≥ DM . In other words, this method
allows us to fully characterize the properties of the WE on the interval [DM ,∞).
Having access to this characterization will prove to be surprisingly useful in the next
chapter on Braess’s paradox.

We start the exposition on how to obtain DM and related quantities by showing
an interesting relationship between the sets ΓM and SOL(F1, A). Namely, these two
sets overlap, and this allows us to obtain δCM by solving VI(F1, A).

Theorem 3.3.1. (Finding δCM by solving VI(F1, A)): Let P , C ⊂ Kaff , and a demand
D ≥ DM = max

(
D \ {∞}

)
be given. Then we have:

1. ΓD ∩ SOL(F1, A) is non-empty,

2. Afδ = δCM for all fδ ∈ SOL(F1, A),

3. δλM = minr∈P δC
M
p .

Proof. We note that the second statement follows from the first. To see this, let
fδ ∈ ΓD ∩SOL(F1, A). From Proposition 3.2.6 we have Afδ = δCM , and Proposition

https://1.xn--d-2lb/


627714-L-bw-Verbree627714-L-bw-Verbree627714-L-bw-Verbree627714-L-bw-Verbree
Processed on: 8-1-2024Processed on: 8-1-2024Processed on: 8-1-2024Processed on: 8-1-2024 PDF page: 40PDF page: 40PDF page: 40PDF page: 40

32 3. Varying demand

3.2.12 then gives us Af̃δ = δCM for all f̃δ ∈ SOL(F1, A). Thus, to prove the first two
claims it is enough to show that ΓD ∩ SOL(F1, A) is non-empty, which we now do.

First we show that ΓD ∩ F1 is non-empty. For any fδ ∈ ΓD we already have
fδ ∈ H1. Therefore to establish that ΓD ∩ F1 is non-empty it is enough to prove the
existence of fδ ∈ ΓD such that fδ ≥ 0. This we will do by constructing a sequence
{fδ,i}i∈N ⊂ ΓD that converges to an fδ satisfying fδ ≥ 0. Then, using the fact that
ΓD is closed (as stated in Corollary 3.2.13), we conclude that fδ ∈ F1 ∩ ΓD.

Let fD ∈ WD, and let {fTi}i∈N be a sequence of WE satisfying fTi ∈ WTi , where
DM ≤ D < T1, Ti < Ti+1 for all i, and limi→∞ Ti =∞. We then define the sequence
{fδ,i}i∈N by setting

fδ,i := (Ti −D)−1(fTi − fD).

Since D ≥ DM and Ti > D for all i ∈ N, it follows from Corollary 3.2.4 that any
convex combination of fD and fTi is a WE; that is, for any ε ∈ [0, (Ti−D)−1) we find
that fD + εfδ,i is a WE. By Definition 3.2.5, we deduce that fδ,i ∈ ΓD for all i ∈ N. In
addition, the sequence {fδ,i}i∈N is bounded. To show this, let t := maxr∈P f

D
r . Since

fTi ≥ 0 for all i ∈ N we obtain (fTir − fDr ) ≥ −t for all r ∈ P and all i ∈ N. Therefore,
fδ,ir ≥ −t(Ti − D)−1 for all r ∈ P and i ∈ N. Letting Ri := {r ∈ P | fδ,ir < 0} it
follows that ∑

r∈Ri

fδr ≥ −nt(Ti −D)−1.

Since fδ,i ∈ H1 the above implies that fδ,ir ≤ nt(Ti −D)−1 + 1 for all r ∈ P . Since
T1 ≤ Ti for all i ∈ N we get −t(T1 −D)−1 ≤ fδ,ir ≤ −nt(T1 −D)−1 + 1 for all r ∈ P
and i ∈ N. In other words, {fδ,i}i∈N is bounded. Therefore, the sequence contains
a subsequence, denoted {fδ,ik}k∈N, that converges. For this subsequence, since
limk→∞ Tik =∞ it follows that limk→∞ fδ,ikr ≥ 0 for all r ∈ P . We see that

fδ := lim
k→∞

fδ,ik ≥ 0.

Since ΓD is closed, it follows that fδ ∈ ΓD. Thus, there exists fδ ∈ ΓD ∩ F1.
The final step is to show that fδ ∈ ΓD ∩ F1 implies fδ ∈ SOL(F1, A). This we

do by showing that fδ is a WE of the routing game with the path cost function
C̃(f) = Af and the feasible set F1.

Given an fδ ∈ ΓD ∩ F1, let p ∈ P satisfy fδp > 0. By definition of the set ΓD
we then know that for some T > D there exist WE fT ∈ WT satisfying fTp > 0.
Since D ≥ DM this implies that the path p is used, and therefore active, in the
interval (DM ,∞). In other words, p ∈ J act

M . For the sake of contradiction assume
that r ∈ P satisfies Arfδ < Apf

δ. Since fδ ∈ ΓD we have Afδ = δCM , which
implies λvec(T ) = λvec(D) + (T −D)Afδ for any T ∈ (D,∞). It follows that for large
enough T we have λvec

r (T ) < λvec
p (T ), which implies that p /∈ Ract

T . Since T > D, and
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D ≥ DM this implies that for some T ∈ (DM ,∞), the path p is not active. In other
words p /∈ J act

M . We have arrived at a contradiction, and therefore we conclude that
Apf

δ = minr∈P Arf
δ. In other words, fδ is a WE of the routing game with the path

cost function C̃(f) = Af and the feasible set F1. By Proposition 2.2.2 this implies
fδ ∈ SOL(F1, A), which concludes the proof.

For the third statement, note that when δCMr < δλM for some r ∈ P , this implies
that in the interval (DM ,∞), the cost of path r under WE increases at a slower rate
than the WE-cost. Since the cost of all paths in this interval increases at a constant
rate, this implies that at some demand T > DM , λvec

r (T ) < λWE(T ). However, the
WE-cost is the minimal cost of all paths under WE, and therefore this is not possible.
Thus we have δλM = minr∈P δC

M
r . This concludes the proof.

The intuition behind the above result is as follows. Consider a demand D in
the “final” interval [DM ,∞), for which we have ΓD ⊆ ΓM by Lemma 3.2.14, and
consider the set of directions in which the WE moves as demand increases from D;
that is, consider the set ΓD. Since the interval [DM ,∞) stretches to infinity without
encountering any other breakpoint, there must be some direction in ΓD along which
we can move indefinitely. For any direction fδ which takes flow from some path,
that is the vector has some negative component, one can only move a finite amount
in that direction as sooner or later the flow on that path then becomes zero, and we
can no longer move in that direction. Thus, there must be some fδ ∈ ΓD ∩ F1. In
addition, when moving in such a “non-negative” direction of increase the cost of all
paths receiving flow must remain minimal to satisfy the WE conditions. Therefore
the cost of paths receiving flow must show the minimal increase among all paths.
This implies that in fact fδ ∈ SOL(F1, A), which in turn shows the above result. Note
that these observations do not imply SOL(MD, A) = SOL(F1, A), as for instance
demonstrated in Example 3.2.1b. There we see that for any D ≥ DM = 1 there exist
fδ ∈ ΓD and p ∈ P such that fδp < 0. However, once we have obtained δCM by
solving SOL(F1, A) we can give a full characterization of ΓM ∩ SOL(F1, A). Note
that the result considers ΓD for someD ≥ DM instead of ΓM , but wheneverD > DM

we have ΓD = ΓM .

Proposition 3.3.2. Let P , C ⊂ Kaff , and D ≥ DM = max
(
D \ {∞}

)
be given. The set

ΓD ∩ SOL(F1, A) is equal to the set of solutions of the following minimization problem:

minimize β>fδ

subject to Afδ = δCM

fδ ∈ F1.

(3.22)

Proof. We start with the observation that taken together Proposition 3.2.12 and The-
orem 3.3.1 imply fδ ∈ SOL(F1, A) if and only if fδ ∈ F1 and Afδ = δCM . In other
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words, the feasible set of (3.22) is equal to SOL(F1, A). Our first aim is therefore to
show that fδ is a solution to (3.22) if and only if it is feasible and fδ ∈ ΓM , which will
prove the result for all D > DM . The same arguments are also sufficient for the case
D = DM .

Our first step is to show that any fδ ∈ ΓM that is feasible for (3.22) is a solution
to the given minimization problem. To do so, let fDM ∈ WDM and consider the
minimization problem

minimize (fδ)>(AfDM + β)

subject to Afδ = δCM

fδ ∈ F1.

(3.23)

This minimization problem is actually equivalent to (3.22), meaning that fδ is a
solution to (3.22) if an only if it is a solution to (3.23). To see this, note that since
fDM ∈ WDM we have AfDM + β = λvec(DM ). Therefore, if p ∈ P satisfies fDMp > 0,
then it follows that p ∈ Ruse

DM
, and by Lemma 3.2.3 we then have p ∈ J use

M . We see
that p is in the used set on the interval [DM ,∞), and therefore it must maintain
minimal cost under WE among all paths as D increases to infinity. Consequently
δCMp = minr∈P δC

M
p = δλM . We also have, by Proposition 3.2.6, δCM = Afδ for any

fδ ∈ ΓD. Thus we have Apfδ = δλM whenever fDMp > 0. Since fDM ∈ FDM this
implies

(fδ)>AfDM = DMδλ
M for all fδ ∈ SOL(F1, A). (3.24)

We see that the term (fδ)>AfDM is constant over the feasible set of (3.23). Therefore
fδ solves (3.23) if and only if it minimizes the term β>fδ over the feasible set. This is
exactly the objective function of (3.22), and since the feasible sets of (3.22) and (3.23)
are the same, this shows that (3.22) and (3.23) have the same solution set.

Now we find a lower bound on (3.23). We have λvec(DM ) = AfDM + β, and in
addition λWE(DM ) = minr∈P λ

vec
r (DM ). In other words, λvec(DM ) ≥ λWE(DM )1.

For any fδ ∈ F1 all elements of fδ are non-negative, and sum to one, and therefore it
follows that for all fδ ∈ SOL(F1, A) we have

(fδ)>(AfDM + β) = (fδ)>λvec(DM )

≥ λWE(DM ).

Next we show that any fδ ∈ ΓD ∩ SOL(F1, A) achieves this lower bound. We
know from Theorem 3.3.1 that ΓD ∩ SOL(F1, A) is non-empty, so we can pick f̃δ ∈
ΓD ∩ SOL(F1, A). By Theorem 3.2.10 we then have f̃δ ∈ SOL(MD, A) for any
D > DM . Now let p ∈ P satisfy f̃δp > 0. From the definition of ΓD it follows
that p ∈ Ruse

T = J use
M for some T > D, and by Lemma 3.2.3 this implies p ∈ Ract

DM
.
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Therefore λvec
p (DM ) = λWE(DM ). Since f̃δ ∈ F1 it follows that

(f̃δ)>λvec(DM ) = λWE(DM ), (3.25)

showing that f̃δ achieves the lower bound we established for (3.23). In other words,
f̃δ is a solution of (3.23), and is therefore also a solution to (3.22). This shows that
ΓD ∩ SOL(F1, A) is contained within the set of solutions of (3.22).

Now for the other inclusion let fδ be a solution of (3.22), and therefore also a
solution of (3.23). We now know that this implies (fδ)>λvec(DM ) = λWE(DM ). Since
λvec(DM ) ≥ λWE(DM )1 and fδ ∈ F1 this gives us

λvec
p (DM ) = λWE(DM ) for all p ∈ P satisfying fδp > 0.

In other words, fδp > 0 implies p ∈ Ract
DM

. Together with fδ ∈ F1 this shows that
fδ ∈ MDM . Thus we have fδ ∈ MDM and Afδ = δCM . From Theorem 3.2.10 we
have ΓDM = SOL(MDM , A), from Proposition 3.2.6 we have Af̂δ = δCM for all
f̂δ ∈ ΓDM and from Proposition 3.2.12 it then follows that f̂δ ∈ ΓDM if and only if
f̂δ ∈ MDM and Af̂δ = δCM . Thus we see that fδ ∈ ΓDM . From Corollary 3.2.14
we have ΓDM ⊆ ΓM , and thus we conclude that fδ ∈ ΓD for any D ≥ DM . This
completes the proof.

Making use of the above, we can also obtain an expression for λWE(D) for any
D ≥ DM , as shown in the next result.

Lemma 3.3.3. (Obtaining λWE(D) for D ≥ DM ): Let P , C ⊂ Kaff be given. In addition,
let D ≥ DM = max(D \ {∞}) and βM = β>fδ , where fδ is a solution of (3.22). We have

λWE(D) = δλMD + βM .

Proof. First pick D > DM , and let fδ be a solution of (3.22). From Proposition 3.3.2
fδ ∈ ΓM ∩ SOL(F1, A) follows. Additionally λWE(D) = λWE(DM ) + (D−DM )δλM

holds. Now consider the expression

(fδ)>
(
A
(
fDM + (D −DM )fδ

)
+ β

)
,

where fDM ∈ WDM . Since fDM ≥ 0 and fδ ≥ 0 it follows that fDM +(D−DM )fδ ≥ 0.
In combination with fδ ∈ ΓM this shows that fDM + (D −DM )fδ ∈ WD. Thus we
have A

(
fDM + (D −DM )fδ

)
+ β = λvec(D). By the same arguments used to derive

(3.25) we obtain (fδ)>λvec(D) = λWE(D). Thus we have

(fδ)>
(
A
(
fDM + (D −DM )fδ

)
+ β

)
= (fδ)>λvec(D)

= λWE(D).
(3.26)
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36 3. Varying demand

We also have the following:

(fδ)>
(
A
(
fDM + (D −DM )fδ

)
+ β

)
= (fδ)>AfDM + (D −DM )(fδ)>Afδ + β>fδ.

(3.27)
From (3.24) we have (fδ)>AfDM = DMδλ

M . From arguments similar to those for
(3.25) we also find (D−DM )(fδ)>Afδ = (D−DM )δλM . These facts combined with
(3.26) and (3.27) yield

λWE(D) = (fδ)>
(
A
(
fDM + (D −DM )fδ

)
+ β

)
= DδλM + β>fδ.

Since fδ is a solution of (3.22) we therefore have

λWE(D) = DδλM + βM .

The above holds for any D > DM , and it follows from Corollary 3.2.7 that it then also
holds for D = DM , which concludes the proof.

Now that we have access to an expression for λWE on the interval [DM ,∞), our
next result shows how we can use this information to obtain J act

M .

Lemma 3.3.4. (Obtaining J act
M ): For a given P , C ⊂ Kaff and D ∈ R let fδ be a solution

to (3.22). Consider the following index sets:

I1 = {r ∈ P | fδr > 0},
I2 = {r ∈ P | fδr = 0, δCMr > δλM},
I3 = {r ∈ P | fδr = 0, δCMr = δλM}.

Let f∗ be a solution of the following convex minimization problem:

minimize f>Af + f>β (3.28a)

subject to fr = 0 ∀r ∈ I2, (3.28b)

fr ≥ 0 ∀r ∈ I3, (3.28c)

Cr(f) ≥ δλMD + βM ∀r ∈ I3, (3.28d)

Cr(f) = δλMD + βM ∀r ∈ I1, (3.28e)

1>f = D. (3.28f)

We then have that p ∈ J act
M if and only if δCMp = δλM and Cp(f∗) = δλMD + βM .

The following is a long proof, and for this reason we first provide some intuition to
clarify the underlying ideas. The optimization problem (3.28) is designed to identify
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3.3. Finding the final breaking point DM 37

the set J act
M . Note that due to the previous results we can already obtain δCM and

δλM as well as an element fδ of ΓM , which provide quite some information about
J act
M . For instance, on the interval (DM ,∞), the cost under WE of any path r ∈ I2

increases faster than δλM , where the latter is the minimum over all paths of the
increase in cost under WE. Thus, the cost of these paths can not remain minimal on
this interval, which immediately shows that J act

M ∩ I2 = ∅. Similarly, since fδ ∈ ΓM

we know that any path in I1 is used under WE in the interval (DM ,∞), which shows
that I1 ⊆ J act

M . What remains is to find which paths in I3 are in J act
M , which can be

done by solving (3.28). The reason that this works is that (3.28) is designed in such
a way that for any solution f∗ the flow f∗ + εfδ is a WE as long as ε > 0 is large
enough. Appropriately picking ε will then ensure that the constructed flow is a WE
with demand in (DM ,∞). Consequently the active set J act

M is given by the paths
that have minimal cost given the flow f∗ + εfδ. Using the conditions imposed by
the constraints we can show that these are exactly the paths for which δCMp = δλM

and Cp(f
∗) = δλMD + β̄, completing the argument. Before we start the proof, we

explicitly note that the result holds for any D ∈ R. Therefore it can be used without
prior knowledge of DM .

Proof of Lemma 3.3.4. We start by noting that from (3.22) we have fδ ≥ 0 and from
Theorem 3.3.1 we have δλM = minr∈P δC

M . This implies that P = I1 ∪ I2 ∪ I3.
The first part of the proof is now to show that

(f∗)>Af∗ + (f∗)>β = D(δλMD + βM )

holds for any optimizer f∗ of (3.28). To prove that this is true, we construct a specific
optimal solution f ′ of (3.28) in the following way. Let fT ∈ WT for some T > DM ,
and let

f ′ := fT + (D − T )fδ.

To show that f ′ is an optimal solution of (3.28) our first step is to show that it satisfies
all the constraints. Then we obtain the objective function value (f ′)>Af ′ + (f ′)>β

and finally we show that this value is optimal, proving that f ′ is a solution of (3.28).
Step 1: f ′ is feasible: We start by considering the constraints on the paths in I1

given in (3.28e). Note that since fδ is a solution of (3.22), Proposition 3.3.2 gives
fδ ∈ ΓT , and Theorem 3.2.10 then implies fδ ∈ SOL(MT , A). Also note that we have

C(f ′) = Af ′ + β,

= A
(
fT + (D − T )fδ

)
+ β,

= AfT + β + (D − T )Afδ,

= C(fT ) + (D − T )Afδ.

(3.29)
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Now let p ∈ I1, which gives fδp > 0, and since fδ ∈ ΓT is a direction of increase,
this implies that p ∈ Ruse

T+ for some T+ > T . However, since T ∈ (DM ,∞), we
obtain p ∈ J use

M ⊆ J act
M . Therefore, we have p ∈ Ract

T and so, Cp(fT ) = λWE(T ). Con-
sequently, Lemma 3.3.3 then tells us thatCp(fT ) = δλMT+βM . Furthermore, the fact
that p ∈ J use

M , in combination with Proposition 3.2.12, impliesApfδ = minr∈J act
M

Arf
δ .

It then follows from Corollary 3.2.7 that Apfδ = δλM . Collecting these deduced facts
that Cp(fT ) = δλMT + βM and Apf

δ = δλM and employing them in (3.29) then
gives us

Cp(f
′) = δλMT + βM + (D − T )δλM ,

= δλMD + βM .

Thus, f ′ satisfies the constraint (3.28e). Similar arguments can be used to show that
any path p ∈ I3 satisfies Cp(fT ) ≥ δλMT + βM and Apf

δ = δλM , leading to the
conclusion that Cp(f ′) ≥ δλMD + βM . That is, f ′ satisfies (3.28c).

To show that the constraint on paths in I2 holds, let p ∈ I2, which by definition
means δCMp > δλM . Since fδ ∈ ΓT , from Proposition 3.2.12, we have δCM = Afδ.
In combination with δλM = minr∈J act

M
Arf

δ we see that δCMp > minr∈P δC
M
r . In

other words, the cost under WE of path p can not remain minimal on the en-
tire interval (DM ,∞) and therefore p /∈ J act

M . Since T ∈ (DM ,∞), this implies
p /∈ Ract

T , which gives p /∈ Ruse
T . Therefore, fTp = 0. Furthermore, since p /∈ Ract

T and
fδ ∈ SOL(MT , A) it follows from the definition ofMT that fδp = 0. Consequently,
f ′p = 0, and so, f ′ satisfies the constraint (3.28b).

For the constraint (3.28c) on the paths in I3, note that since fT ∈ FT , we have
fT ≥ 0. For any p with fδp = 0 it then follows that f ′p ≥ 0, as required. That the
final constraint (3.28f) holds follows from the definition of f ′. Thus, in summary, f ′

satisfies all constraints in (3.28), and is therefore feasible.
Step 2: Obtaining an expression for (f ′)>Af ′ + (f ′)>: The next step required for

showing f ′ is an optimal solution of (3.28) is to further derive (f ′)>Af ′ + (f ′)>β,
which will later be shown to be the lower bound of the objective function of (3.28)
over the feasible set. To get this expression, we show that if f ′p 6= 0 for some p,
then Cp(f

′) = δλMD + βM . This fact is consequently used to show that we have
(f ′)>Af ′ + (f ′)>β = (f ′)>C(f ′) = D(δλMD + βM ).

Let p be a path such that f ′p 6= 0. It follows that either fδp > 0 or fδT > 0 (note
that both vectors are non-negative, so values less than zero are not possible). For
the first case, fδp > 0, we have p ∈ I1 which we have already shown implies
Cp(f

′) = δλMD + βM . For the second case, fTp > 0, we have p ∈ Ruse
T ⊆ Ract

T ,
and therefore we have Cp(f

T ) = λWE(T ) = δλMT + βM . Setting MT = M in
Proposition 3.2.12 yields Apfδ = minr∈Ract

T
Arf

δ, and Corollary 3.2.7 then implies
Apf

δ = δλM . Using these conclusions in (3.29), we obtain Cp(f ′) = δλMD + βM . In
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3.3. Finding the final breaking point DM 39

summary, f ′p 6= 0 implies Cp(f ′) = δλMD + βM and we then have

(f ′)>Af ′ + (f ′)>β = (f ′)>C(f),

= D(δλMD + βM ).
(3.30)

Step 3: f ′ is optimal: To finish proving that f ′ is an optimal solution of (3.28), we
show thatD(δλMD+βM ) is in fact a lower bound on f>Af+f>β for any f satisfying
the constraints of (3.28). Therefore, let f be an element of the feasible set of (3.28).
Consider p such that fp 6= 0. SinceP = I1∪I2∪I3, the constraints in (3.28) then imply
p ∈ I1 ∪ I3. From constraint (3.28e), if p ∈ I1, then we have Cp(f) = δλMD + βM .
On the other hand, if p ∈ I3, then we obtain Cp(f) ≥ δλMD + βM from (3.28d).

Since 1>f = D, the same derivation as in (3.30) then gives

f>Af + f>β ≥ D(δλMD + βMD). (3.31)

We see that D(δλMD+βM ) is a lower bound on the objective function value of (3.28),
and f ′ achieves this lower bound. Since f ′ is also feasible for this minimization
problem, it follows that it is an optimal solution of (3.28).

From the above we draw the conclusion that any optimizer f∗ of (3.28) satisfies
(f∗)>Af∗ + (f∗)>β = D(δλMD + βM ). As shown in the derivation of (3.31), any
feasible f and path p satisfying fp 6= 0 satisfy Cp(f) ≥ δλMD + βM . Consequently
we have the following for any optimizer f∗ of (3.28):

Cp(f
∗) = δλMD + βM for all p such that f∗p 6= 0. (3.32)

The next part of the proof is to establish that for any optimizer f∗ of (3.28), there
exists D+ > 0 such that the following holds:

fD
+

:= f∗ + (D+ −D)fδ ∈ WD+ .

Step 4: fD
+

is a WE: We start by noting that if f∗p < 0, then the constraint (3.28e)
along with the definition of the set I1 imply fδp > 0. Thus, there exists a large enough
D+ such that fD

+ ≥ 0, and therefore, fD
+ ∈ FD+ . Next, a similar derivation as

in (3.29) gives us
C(fD

+

) = C(f∗) + (D+ −D)Afδ. (3.33)

Now choose p such that fD
+

p > 0. This implies that either fδp > 0 or f∗p > 0.
For the first case, fδp > 0, we have p ∈ I1 and the constraint (3.28e) gives us
Cp(f

∗) = δλMD + βM , and we have already shown in Step 1 that we then also
have Apfδ = δλM . Thus, we get

Cp(f
D+

) = δλMD+ + βM . (3.34)
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40 3. Varying demand

Now consider the second case f∗p > 0. Using (3.32), we deduceCp(f∗) = δλMD+βM .
Furthermore, constraint (3.28b) implies that p ∈ I1 ∪ I3. From Step 1, we get that for
p ∈ I1 ∪ I3, the expression δCMp = δλM holds. In combination with (3.33) this shows
that (3.34) holds.

To establish that fD
+

is a WE, all that remains to be shown is that we have
Cp(f

D+

) ≥ δλMD+ + βM whenever fD
+

p = 0. Therefore, let p be a path such that
fD

+

p = 0. This can occur when f∗p < 0 and fδp > 0, however, in this case the previous
arguments already show that (3.34) holds. The only other way in which fD

+

p = 0

is when f∗p = 0 and fδp = 0. We split this scenario into two cases. First we consider
δCMp > δλM . In this case it follows from δCM = Afδ in combination with (3.33) that
for a large enough D+ we get

Cp(f
D+

) ≥ δλMD+ + βM . (3.35)

The second case is δCMp = δλM (In Step 3 we already argued that δCMp = δλM for all
p ∈ I1 and from the definition of I2 and I3 it follows that δCMp < δλM is not possible.)
For this case (3.28d) gives Cp(f∗) ≥ δλMD + βM . Once again, using δCM = Afδ in
combination with (3.33) we find that (3.35) holds. In conclusion, for a large enough
D+ we have fD

+ ≥ 0 and fD
+

p = 0 implies (3.35), and fD
+

p > 0 implies (3.34). In
other words, as long as D+ is large enough, fD

+

is a WE. It follows that we can pick
D+ such that D+ ∈ (DM ,∞) and fD

+ ∈ WD+ .
To finish the proof we now have J act

M = Ract
D+ . Since the cost under WE is unique,

it follows that p ∈ J act
M if and only if it has minimal cost among all paths for the flow

fD
+

. In Step 4, we have shown that the paths with minimal cost are exactly those
for which δCMp = δλM and Cp(f∗) = δλMD+ βM hold and therefore, this concludes
the proof.

Now that we can derive J act
M , we finish this chapter by showing that we can also

find DM , as well as an associated WE fDM .

Corollary 3.3.5. Let P and C ⊂ Kaff be given, and consider the following minimization
problem:

minimize 1>f

subject to Cp(f) ≤ Cr(f) for all p ∈ J act
M

fr = 0 for all r ∈ (J act
M )c

f ≥ 0.

for any solution f∗ of the above we have 1>f∗ = DM and f∗ ∈ WDM .

Proof. Since any WE for a demand in (DM ,∞) satisfies the constraints, we see that
the feasible set is non-empty. Also note that due to the affine and non-strict nature of
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the constraints, this implies that any WE inWDM is also feasible. It is then easy to
prove that any solution f∗ to the given minimization problem must be a WE, and also
that any flow of the form f∗ + εfδ , where fδ ∈ ΓDM ∩ F1 and ε > 0, is a WE as well.
This shows that f∗ is a WE in the interval [DM ,∞), and it follows that 1>f∗ = DM ,
which implies f∗ ∈ fDM .

3.4 Conclusions

In this chapter we looked at how the set of Wardrop equilibria of a routing game
with affine cost functions on the edges evolves as the demand increases, without
imposing that the WE are unique with respect to their induced flow on the edges. We
have obtained useful results on the evolution of the active and used sets, the vector
of costs under WE, and given a specific demand have given a full characterization
of the set of directions of increase, that is the set of directions in which the set of
WE moves as the demand increases. We have then shown how these results can be
used to fully characterize the WE, WE-cost, and the evolution of these in the “final”
interval in which these values evolve in an affine manner.
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Chapter 4

Braess’s paradox

Braess’s paradox(BP) is an intriguing phenomenon that occurs in routing games
when the removal of a path from a network decreases the cost under Wardrop equi-
librium(WE) of the associated routing game. It is a counter-intuitive and fascinating
subject, that is best introduced using an example. Thus, for those readers who
are unfamiliar with BP, we recommend looking at Example 4.1.1 first, to see the
phenomenon illustrated, before reading on. Be advised that the exposition in Exam-
ple 4.1.1 assumes the reader is already familiar with the concepts of routing games
and Wardrop equilibrium, as introduced in Chapter 2. It is also worth mentioning
that most literature on BP considers the phenomenon as related to the removal of
a set of edges from a network. In this chapter we consider the slightly more general
perspective of BP related to the removal of a set of paths from the network. The two
perspectives are similar, and in fact any BP caused by the removal of a set of edges is
also caused by the removal of a set of paths, but the converse is not true, as we show
in Example 4.1.1b. We also feel analysis is more transparent from the path perspective,
and some of our obtained results are more natural to present from this point of view.
However, the number of paths in a network can grow exponentially with the number
of nodes, so for practical implementation one should convert the statements to an
edge-based formulation. All results we present here are straightforward to modify in
this way when required.

Literature review

We give a short overview of some of the literature on Braess’s paradox that is most
relevant to this chapter. For an extensive overview of work published on this subject
see [17]. The counter-intuitive Braess’s “paradox” was first discovered in 1968 by
Dietrich Braess, who presented it in [1](see [2] for an English translation), and has
been extensively studied ever since [18–23]. One of the essential results obtained
in the literature is that BP, or more precisely BP with respect to the removal of an
edge from a network, can occur if and only if the considered network is not series
parallel. The result is formally proven in [24], but the observation was already stated
in [18]. We note that a network is series parallel if and only if it does not have the



627714-L-bw-Verbree627714-L-bw-Verbree627714-L-bw-Verbree627714-L-bw-Verbree
Processed on: 8-1-2024Processed on: 8-1-2024Processed on: 8-1-2024Processed on: 8-1-2024 PDF page: 52PDF page: 52PDF page: 52PDF page: 52

44 4. Braess’s paradox

Wheatstone network (see Figure 4.1) embedded in its structure, and it is for this
reason that this network can be seen as the archetypical example of a network subject
to BP. In a way the relation between the occurrence of BP and network structure
is completely captured by this one fact: if the network contains an instance of the
Wheatstone network, BP can occur, and if it does not, it can not. As such, other
literature has focused on how the presence or absence of BP can be revealed based
on other parameters of a routing game, such as the level of demand or the specifics
of the cost functions [20, 22, 23]. There has also been interesting work on the the
likelihood of BP occurring in a routing game [21, 25], indicating that it is quite likely
that BP occurs in real life traffic networks, and that the phenomenon may in fact be
quite prevalent. Further supporting this line of thought are some famous real life
examples of the paradox revealed by the closure of roads [26].

Of course, since BP increases travel costs, the ultimate goal is to prevent the
paradox from occurring in traffic networks as much as possible. To bring obtained
results closer to practical implementation various approaches have been suggested
[27–29]. However, the general problem of finding the optimal subset of edges in a
network that minimizes the travel cost under WE has proven to be very difficult,
and has in fact been shown to be NP-hard [30]. Despite this established difficulty,
detecting BP is exactly the aim of this chapter. In the work presented here, we
study the relationship between varying demand and the occurrence of BP, and how
knowledge on the evolution of the set of WE as demand varies can be used to reveal
the presence of BP. For this reason the results in this chapter heavily rely on the
observations and conclusions obtained in Chapter 3 on the evolution of the set of
WE. In this way, Chapter 3 and the current chapter are two parts of one story, where
the former is required for the latter, and the latter motivates the former.

Organization

The structure of this chapter is as follows. To familiarize the reader with Braess’s
paradox we first provide two illustrative examples, which also highlight one of the
advantages of the path-based perspective over the edge-based perspective. Then,
before we start the analysis proper, we introduce some required definitions, notation,
and preliminaries. Next we use results from Chapter 3 to explore the relation between
the evolution of the cost under WE and the evolution of the active and used sets,
and a new set called the necessary set, consisting of all sets of paths that can not be
removed from the game without changing the WE. We then use the obtained insight
to construct upper bounds on the WE-cost of the routing game, meaning that whenever
the WE-cost exceeds any of these upper bounds, it is certain that BP occurs. It turns
out that the results in Chapter 3 on the “final” evolution of the set of WE is very useful
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4.1. Introductory examples and preliminaries 45

for constructing these upper bounds. We also show how the same line of reasoning
can be used to find a necessary and sufficient condition for the occurrence of BP,
though the practical value of this is limited since it requires investigation of a large
number of subsets of all paths. Finally we discuss some surprising consequences of
our results for the effects of BP when it occurs. We show that, depending on which
measure one uses, the removal of a path that causes BP may not be a good idea,
since the detrimental effects the path’s presence has at one level of demand are often
compensated by the beneficial effects it has at other levels of demand.

4.1 Introductory examples and preliminaries

vo vd

e1

e3

e5

e2

e4

Figure 4.1: The Wheatstone net-
work.

0 1 2 3
0

1

2

WE-cost vs demand

Figure 4.2: The cost under Wardrop equi-
librium at different demands for the rout-
ing game defined by the Wheatstone net-
work (Figure 4.1) and costs (4.1).

To familiarize the reader with the concept of Braess’s paradox, and to showcase
the difference between BP caused by edges and BP caused by paths, we start with an
illustrative example. Note that we assume familiarity of the reader with the subject
of routing games, as introduced in Chapter 2. For our example we consider the
archetypical instance of BP that occurs in the Wheatstone network, with the edge
cost functions used in Example 3.2.1a discussed in Chapter 3. For ease of reference
we recall this example here.

Example 4.1.1. (Evolution of BP):
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46 4. Braess’s paradox

(a) Consider the network in Figure 4.1, with edge-cost functions given by

Ce1(fe1) = fe1 , Ce2(fe2) = 1,

Ce3(fe3) = 1, Ce4(fe4) = fe4 ,

Ce5(fe5) = 0.

(4.1)

The set of paths is then given by P = {p1, p2, p3}, where p1 = (e1, e2), p2 = (e3, e4)

and p3 = (e1, e5, e4). The resulting path-cost function is

C(f) = Af + b =

 1 0 1

0 1 1

1 1 2

 f +

 1

1

0

 .

For this example the Wardrop equilibria are unique for each level of demand, and
given by

fD =



(
0 0 D

)>
for D ∈ [0, 1],(

D − 1 D − 1 2−D
)>

for D ∈ [1, 2],(
D
2

D
2 0

)>
for D ∈ [2,∞).

This allows us to derive that the cost under WE is given by

λWE(D) =


2D if 0 ≤ D ≤ 1,

2 if 1 ≤ D ≤ 2,
D
2 + 1 if 2 ≤ D.

Next we consider the same network, with the same edge-cost functions, but with
edge e5 removed. This effectively removes the path p3 from consideration, and leaves
us with a routing game over only the paths p1 and p2, where the path-cost function is
given by

C̃(f̃) = Ãf̃ + b̃ =

(
1 0

0 1

)
f̃ +

(
1

1

)
.

Once again, the WE is unique for each level of demand. In this case it is given by

f̃D =
(

D
2

D
2

)>
for all D ≥ 0,

which gives us the following expression for the cost under WE:

λ̃WE(D) =
D

2
+ 1 for all D ≥ 0.
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In Figure 4.2 we compare the WE-cost λWE of the original game with λ̃WE, that is the
cost of the modified game with edge e5 removed. Note that for a level of demand
between 2

3 and 2, the modified game achieves a lower cost than the original game.
This is the phenomenon referred to as Braess’s paradox. Counter-intuitively, the
removal of a part of the network has decreased the travel cost of all users.

However, there is more to this story, as can already be deduced from Figure 4.2. We
see that the presence of edge e5 is detrimental when 2

3 < D < 2, but also that its
presence is beneficial when 0 ≤ D < 2

3 , and neutral when D ∈ { 2
3} ∪ [2,∞). Clearly,

Braess’s paradox is demand dependent, and the occurrence of the paradox at one
level of demand does not necessarily imply that the presence of the relevant set of
edges is detrimental overall. The situation warrants further investigation, and this is
the subject of this chapter. However, before moving on we discuss one more example
which highlights the advantage of considering BP from the perspective of removing
paths rather than edges.

vo vd

e1

e3

e2

e4

Figure 4.3: The Wheatstone net-
work after merging the top and
bottom nodes.

0 1 2 3
0

1

2

WE-cost vs demand

Figure 4.4: An illustration of BP compar-
ing the cost of the routing games over the
network Figure 4.3, with and without the
path p4 = (e1, e4) present. The costs are
defined by (4.1).

(b) Classically, Braess’ paradox refers to the situation where removal of an edge (or
a set of edges) leads to a lesser cost for all participants, but in this chapter we will
consider a slightly more generalized form of the paradox, where removal of a path, or
set of paths, from the network leads to a lesser cost for all participants. The previous
example shows an instant where these two cases are the same. However, it is possible
that a BP is present in a routing game that only emerges as the result of removing
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a (set of) path(s), but not as the result of removing a (set of) edge(s). To show this,
we revisit Example 3.2.1b. That is, we consider a routing game over the network in
Figure 4.3, with the edge-costs given by (4.1), taking into account that edge e5 no
longer exists. Setting p1 = (e1, e2), p2 = (e3, e4), p3 = (e3, e2) and p4 = (e1, e4), the
path-cost function becomes

C(f) = Af + b =


1 0 0 1

0 1 0 1

0 0 0 0

1 1 0 2

 f +


1

1

2

0

 .

We obtain the following expression for the set of WE

WD :=


{(

0 0 0 D
)>}

for D ∈ [0, 1],

{f ∈ FD | f1 + f4 = 1, f2 + f4 = 1} for D ∈ [1,∞),

(4.2)

and therefore the WE cost is given by

λWE(D) =

{
2D for D ∈ [0, 1],

2 for D ∈ [1,∞).

If we instead consider the same routing game, but with the path p4 = (e1, e4) re-
moved, the path-cost function is given by

C̃(f̃) = Ãf̃ + b̃ =

 1 0 0

0 1 0

0 0 0

 f̃ +

 1

1

2

 ,

and we obtain the following expression for the WE

f̃D :=


(

D
2

D
2 0

)>
for D ∈ [0, 2],(

1 1 D − 2
)>

for D ∈ [2,∞).

The resulting WE-cost is given by

λ̃WE(D) =

{
1 + D

2 for D ∈ [0, 2],

2 for D ∈ [2,∞).

Figure 4.4 shows the comparison between the cost of the original game λWE and
λ̃WE, that is the cost of the modified game with path p4 removed. Note that the case
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is almost identical to that of Example 4.1.1a. The same BP occurs on the interval
D ∈ ( 2

3 , 2), but in this case there is no edge that is responsible for the inefficiency.
Instead it is the presence of the path p4 = (e1, e4) that causes the BP. Also note that
the network considered in this last example is series parallel, and thus we see that
the result that BP does not occur in series parallel networks no longer holds when
considering BP from a path perspective, which is an interesting observation in itself.•

4.1.1 Notation, Facts and Definitions

In this section we take the time to introduce and recall some concepts required for the
exposition of the rest of this chapter. We note that some of these preliminaries have
already been introduced in Chapter 3. For ease of reference, and to make this chapter
as self-contained as possible, we recall this material here, but for a more detailed
discussion we refer the reader to Section 3.1.1. We also assume that the reader is
familiar with the general preliminaries on routing games given in Chapter 2.

Affine costs, WE-costs, and active and used sets

In this chapter, as in the previous, we assume that the edge-cost functions are of the
form

Cek(fek) := αekfek + βek ,

where αek , βek ≥ 0. We recall that in this case the path-cost function can be written as

C(f) = Af + β,

where β = (βp)p∈P is the vector with entries βp =
∑
ek∈p βek and A ∈ Rn×n≥0

is a symmetric and positive semidefinite matrix with the (p, r)-th entry given by
Apr =

∑
ek∈p∩r αek . Throughout this and the previous chapter we make the assump-

tion that the edge-cost functions are affine explicit by writing C ⊂ Kaff . We also recall
from Section 3.1.1 the definitions of the vector of path costs under WE λvec(D), the
cost under WE λWE(D), the active setRact

D and the used setRuse
D , respectively given

by

λvec(D) := C(fD), fD ∈ WD,

λWE(D) := λvec
p (D), p ∈ Ract

D ,

Ract
D := {p ∈ P | λvec

p (D) ≤ λvec
r (D), for all r ∈ P}

Ruse
D := {p ∈ P | There exists an fD ∈ WD such that fDp > 0},

whereWD denotes the set of WE of the routing game at demand D. Finally we recall
that the set D denotes the “breakpoints” of the routing game; that is, in between the
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points in D the active and used sets remain constant, and the points in D are exactly
the points where the piecewise affine function λvec is not differentiable.

Necessary sets

In addition to the active and used sets, we now define the closely related concept of
the necessary set. Intuitively the necessary set at demand D, denoted ND, is the set of
all sets of paths that can not be removed from the game without changing the WE at
the demand D. Formally we have the following definition:

Definition 4.1.2. (Necessary sets): Let P and C ⊂ Kaff be given. we say that a set
Snec ⊆ P is necessary at demand D if

fDSnec 6= 0 for all fD ∈ WD.

That is, for every WE fD there exists at least one path in the set Snec that takes non-zero
flow. We use ND to denote the set of all necessary sets at D; that is,

ND := {Snec ⊆ P | fDSnec 6= 0 for all fD ∈ WD}.

When S /∈ ND we say that S is unnecessary at demand D. •

Note that for any S ⊂ P , if S ∩Ruse
D = ∅ then S /∈ ND. Due to this close relation

to the used set, one might expect that the dependency of the necessary set on the
demand is similar to that of the the used set. Therefore we find it important to
note that unlike the used set, the necessary set is not guaranteed to stay constant
in the intervals between the points of D. For instance, in Example 4.1.1b we have
D = {0, 1,∞}. However, we can deduce from the expression given forWD in (4.2)
that {p4} ∈ ND for D ∈ (0, 2), but {p4} /∈ ND for D ≥ 2, showing that the necessary
set changes at D = 2.

Modified games

Next we introduce the concept of a modified game. Braess’s paradox is related to the
difference in WE-cost of a routing game and a modified version of that routing game,
where a set of paths has been removed from consideration. For this reason we find it
useful to introduce notation for the sets of paths, sets of WE, WE-costs, etc. of this
modified game. Thus, given a routing game defined by a set of paths P and cost
functions C ⊂ Kaff , a modified game is constructed by removing a set Srem ⊂ P from
consideration; that is, we replace the feasible set FD of the original game with the set

F̃D := {f̃ ∈ Rn≥0 |
∑
i∈P

f̃i = D, f̃Srem = 0}.
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We introduce the following notation:

P̃ := P \ Srem,

H̃D := {f̃ ∈ Rn |
∑
i∈P̃

f̃i = D, f̃Srem = 0}.

For notational convenience the dimension of the flows f̃ ∈ F̃D of the modified game
is kept equal to n = |P|. For a modified game, we say that f̃D is a WE when f̃D ∈ F̃D
and for all p ∈ P̃ such that f̃p > 0 we have

Cp(f̃
D) ≤ Cr(f̃D) for all r ∈ P̃.

Analogously we use this (̃·) notation for other concepts related to the modified game.
Specifically, we have the following:

W̃D := SOL(F̃D, C)

λ̃vec(D) := C(f̃D) for any f̃D ∈ W̃D,

R̃act
D := {p ∈ P̃ | λ̃vec

p (D) ≤ λ̃vec
r (D) for all r ∈ P̃},

R̃use
D := {p ∈ P̃ | There exists an f̃D ∈ W̃D such that f̃Dp > 0},

λ̃WE(D) := λ̃vec(D) for any p ∈ R̃act
D

M̃D := {f̃δ ∈ H̃1 | f̃δR̃act
D \R̃use

D

≥ 0, f̃δ
(R̃act

D )c
= 0},

Γ̃D := SOL(M̃D, A).

Similarly we use D̃ to denote the set of breakpoints of a modified game and use D̃i

to denote the i-th breakpoint of D̃. We write M̃ for the index of the greatest finite
valued breakpoint D̃

M̃
in D̃ and use δλ̃i and δC̃i to denote the directions in which

respectively λ̃WE and λ̃vec evolve on the interval between D̃i and D̃i+1. When we
need to discuss multiple modified games simultaneously, as is sometimes the case
in a proof, we use a similar notation for concepts related to these modified games,
replacing (̃·) with |(·) or with (·)′, (·)′′ or (·)′′′. (e.g. we use qP , and P ′, P ′′ and P ′′′ to
denote the related sets of paths, and similarly for the feasible set, WE-cost etc.).

We note that modified games, as presented here, are technically not routing
games of the same form as those presented in Chapter 2, because of the additional
constraints on the feasible set, and because the introduced concept of WE for these
modified games does not take into account the costs of paths in the set Srem. Of
course, instead of imposing f̃remS = 0, we could simply drop this set of paths Srem

from consideration, and let f̃ ∈ R|P̃|≥0 . In this case we could define F̃D without
imposing additional restrictions, and in this representation the modified game is of
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the form presented in Chapter 2. However, removing a set of paths from a routing
game like this can result in a situation that is no longer representable by a graph.
That is, in that case there does not exist a graph, an associated origin-destination pair
and a set of cost functions such that the resulting routing game over all paths from
the origin to the destination has the same cost function as that of the modified game
(see Appendix A for an example). For this reason, and because of some notational
conveniences we have chosen to define modified games in the presented way. Since
there exists a straightforward way to equivalently represent a modified game in a
form aligning with the presentation of routing games in Chapter 2, all results that we
have established and will establish for routing games also hold for modified games.
We highlight that this implies that W̃D and Γ̃D, as defined above, are indeed the set
of WE of the modified game and the set of directions of increase of the modified
game respectively, as the notation suggests.

Directions of decrease

The results presented in Chapter 3 consider the set of directions of increase, which is
the set of directions in which the set of WE evolves as the demand increases. For our
investigation into BP it will be helpful to also have these results formulated in terms
of directions of decrease.

Definition 4.1.3. (Set of directions of decrease): Let P , C ⊂ Kaff and D > 0 be given.
The set of directions of decrease Γ−D is the set of all directions fδ ∈ H−1 in which the flow
can be decreased, starting from some flow inWD, such that the new flow is a WE as long as
the decrease is small enough. That is,

Γ−D := {fδ ∈ H−1 | ∃fD ∈ WD, ε̄ > 0 such that fD + εfδ ∈ WD−ε for all ε ∈ [0, ε̄]}.

Similar to the definition of the set of directions of feasibility (Definition 3.2.9), we
define the setM−D of feasible descent directions as

M−D := {fδ ∈ H−1 | fδRact
D \Ruse

D
≥ 0, fδ(Ract

D )c = 0}.

The arguments made in Chapter 3 can then be repeated to obtain the following
modified version of Theorem 3.2.10.

Lemma 4.1.4. (Directions of decrease as solutions to a VI): Let P , C ⊂ Kaff , and D > 0

be given. Then

Γ−D = SOL(M−D, A).
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Properties of V

Finally we recall from Chapter 2 the definition of the function V :

V (D) := min
f∈FD

∑
ek∈E

∫ fek

0

Cek(z)dz.

A useful result from [9] shows that V is differentiable on the positive real line, as well
as convex, and that the derivative of V at D is given by λWE(D).

Proposition 4.1.5. (Properties of WE cost λWE [9]): Let P and C ⊂ Kaff be given. The
function V is differentiable, and for any D > 0 we have

∂

∂D
V (D) = λWE(D).

In addition λWE is non-decreasing, and consequently, V is convex.

For a modified game we define

Ṽ (D) := min
f̃∈F̃D

∑
ek∈E

∫ f̃ek

0

C̃ek(z)dz. (4.3)

We then have the following straightforward observations on the relationship between
routing games, modified games and necessary sets.

Lemma 4.1.6. (Relations between the original and the modified game): For given P ,
Srem ⊂ P , C ⊂ Kaff and D, let V (D) and Ṽ (D) be as defined in (2.6) and (4.3) respectively.
The following then hold:

• V (D) ≤ Ṽ (D),

• V (D) = Ṽ (D) if and only if Srem /∈ ND,

• if Srem /∈ ND, then f̃D ∈ W̃D if and only if f̃DSrem = 0 and f̃D ∈ WD. As a conse-
quence we then have λWE(D) = λ̃WE(D).

The above Lemma is illustrated in Figure 4.5, which shows the functions V (D)

and Ṽ (D) for the games considered in Example 4.1.1a. For demand in the interval
(0, 2), where the path p3 = (e1, e5, e4) is a necessary set, we see that V (D) < Ṽ (D),
and exactly at the point D = 2, where this path is no longer necessary, we have
V (D) = Ṽ (D).
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0 1 2 3
0

2

4

6

Figure 4.5: A comparison between V (D) and Ṽ (D) for the Wheatstone network in
Figure 4.1, with and without edge e5 present and with edge-costs defined by (4.1).

4.2 The evolution of WE-costs in routing games

Our investigation into the relation between varying demand and Braess’s paradox
begins with an analysis of how changes in the active and used sets affect the evolution
of the WE-cost. In particular we look at how the slope of λWE changes at the
breakpoints in D. To ease the exposition of results on this subject we define the
following notation for left- and right-hand derivatives of the function λWE:

δλ+(D) :=
∂+

∂D
λWE(D), δλ−(D) :=

∂−

∂D
λWE(D).

Note that from Corollary 3.2.7 we know that λWE is piecewise affine, and differ-
entiable outside of the set D, where we thus have δλ+(D) = δλ−(D). Now using
Proposition 3.2.12 withM =MD andM =M−D we have the following observation:

Corollary 4.2.1. (Relation between SOL(MD, A) and slope of λWE): Let P , C ⊂ Kaff ,
and D ≥ 0 be given. We have

δλ+(D) = min
r∈Ract

D

Arf
δ for all fδ ∈ SOL(MD, A),

δλ−(D) = − min
r∈Ract

D

Arf
δ for all fδ ∈ SOL(M−D, A).

We see that sets of the form SOL(MD, A) are important when studying the
evolution of δλ+(D) and δλ−(D). The next result concerns SOL(M, A), where the set
M is of a form similar to that ofMD given in Definition 3.2.9. As discussed after
Proposition 3.2.12, sets of the form SOL(M, A) of this form are not explicitly about
calculating WE of a routing game, but are quite closely related to the subject.
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Lemma 4.2.2. (Properties of SOL(M, A)): Let P , C ⊂ Kaff and sets Q,R, Q̃, R̃ ⊆ P
satisfyingR ⊆ Q and R̃ ⊆ Q̃ be given. In addition let

M := {fδ ∈ H1 | fδQ\R ≥ 0, fδQc = 0},

M̃ := {fδ ∈ H1 | fδQ̃\R̃ ≥ 0, fδQ̃c = 0},

M− := {fδ ∈ H−1 | fδQ\R ≥ 0, fδQc = 0},

M̃− := {fδ ∈ H−1 | fδQ̃\R̃ ≥ 0, fδQ̃c = 0},

and let fδ ∈ SOL(M, A), f̃δ ∈ SOL(M̃, A). If M̃ ⊆M then

min
r∈Q̃

Arf̃
δ ≥ min

r∈Q
Arf

δ.

Similarly, if fδ− ∈ SOL(M−, A), f̃δ− ∈ SOL(M̃−, A) and M̃− ⊆M− then

min
r∈Q̃

Arf̃
δ− ≤ min

r∈Q
Arf

δ−.

Proof. We first prove the statement concerning the case M̃ ⊆M. For fδ ∈ SOL(M, A),
let p ∈ P be a path satisfying fδp 6= 0. Then, either fδp > 0 or p ∈ R. For both these
cases Proposition 3.2.12 tells us that Apfδ = minr∈QArf

δ. Using this and the fact
that fδ ∈ H1 and fδQc = 0, we obtain (fδ)>Afδ = minr∈QArf

δ. Similarly we find
(f̃δ)>Af̃δ = minr∈Q̃Arf̃

δ . Now, assume for the sake of contradiction that

min
r∈Q̃

Arf̃
δ < min

r∈Q
Arf

δ. (4.4)

Since fδ ∈ SOL(M, A) and f̃δ ∈ M̃ ⊆M, we have

(fδ)>A(f̃δ − fδ) ≥ 0, (4.5)

which gives us the following derivation:

(f̃δ)>Af̃δ = min
r∈Q̃

Arf̃
δ < min

r∈Q
Arf

δ = (fδ)>Afδ

≤ (fδ)>Af̃δ,

where the first inequality is due to (4.4) and the second inequality follows from (4.5).
The above implies

(f̃δ)>A(fδ − f̃δ) > 0. (4.6)

On the other hand, since A is positive semi-definite

(f̃δ − fδ)>A(fδ − f̃δ) ≤ 0. (4.7)
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Expanding the left-hand side of this inequality and combining it with (4.5), we obtain
(f̃δ)>A(fδ − f̃δ) ≤ 0, which contradicts (4.6). Therefore the premise is false, and the
proof is complete.

For the other case, M̃− ⊆M−, the result can be proven using the same arguments,
where the direction of the inequality reverses, since fδ is inH−1 rather thanH1, and
thus (fδ)>Afδ = −minr∈QArf

δ , and similarly for f̃δ .

The above result allows us to specify how the slope of λWE changes at the break-
points Di ∈ D, in the special case where the used or active set at Di is the same as in
the interval (Di−1, Di). We have the following result:

Lemma 4.2.3. (Slope of λWE for constant active and used set): For a given P and
C ⊂ Kaff , let Di ∈ D, where i ≥ 1. We have the following:

J use
i−1 = Ruse

Di ⇒ δλi−1 > δλi, J use
i = Ruse

Di ⇒ δλi−1 < δλi,

J act
i−1 = Ract

Di ⇒ δλi−1 < δλi, J act
i = Ract

Di ⇒ δλi−1 > δλi.

Proof. We start with the claim for the case J use
i−1 = Ruse

Di
. From Corollary 3.2.7 we

have δλi−1 = minr∈J act
i−1

δCi−1
r . Now let D ∈ (Di−1, Di). From Proposition 3.2.6

we then have δCi−1
r = Afδ for any fδ ∈ ΓD. Furthermore, Theorem 3.2.10 gives

ΓD = SOL(MD, A) and it follows from the definition ofMD and Corollary 3.1.1 that

MD = {fδ ∈ H1 | fδJ act
i−1\J use

i−1
≥ 0, fδ(J act

i−1)c = 0}.

In summary, we found that δλi−1 = minr∈J act
i−1

Arf
δ, where fδ ∈ SOL(MD, A), and

MD is given by the above equality.
We can obtain a similar result for δλi. From Proposition 3.2.6 we find that

λvec(T ) = λvec(Di) + δCi for any T ∈ [Di, Di+1], and from Corollary 3.2.7 we have
λWE(T ) = λWE(Di) + (T −Di)δλ

i. Since the WE λWE(T ) is the minimum of all
λvec(T ) it follows that it is equal to the costs of those paths that have minimum cost
under WE at demand Di, and that keep minimal cost as λvec moves in the direction
of δCi. In other words, δλi = minr∈Ract

Di
δCi. Proposition 3.2.6 also gives δCi = Afδ

for any fδ ∈ ΓDi , and Theorem 3.2.10 gives ΓDi = SOL(MDi , A). In summary, we
found that δλi = minr∈Ract

Di
Arf

δ , where fδ ∈ SOL(MDi , A), andMDi is given by

MDi = {fδ ∈ H1 | fδRact
Di
\Ruse

Di

≥ 0, fδ(Ract
Di

)c = 0}.

By assumption we have J use
i−1 = Ruse

Di
, and from Lemma 3.2.3 we have J act

i−1 ⊆ Ract
Di

.
Therefore we haveMD ⊆ MDi . The rest of the proof follows in the same manner
as the proof of Lemma 4.2.2, withM =MDi and M̃ =MD. The only difference is
that the inequalities (4.4) and (4.6) are non-strict while the inequality in (4.7) is strict,
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4.2. The evolution of WE-costs in routing games 57

therefore preserving the contradiction. To see that (4.7) holds strictly, note that it
holds with equality only ifAfδ = Af̃δ . However, in our case we haveAfδ = δCi and
Af̃δ = δCi−1. Thus equality of (4.7) would imply δCi = δCi−1, which contradicts
Proposition 3.2.6.

This completes the proof for the case J use
i−1 = Ruse

Di
. The claim for the case

J act
i−1 = Ract

Di
follows by the same arguments, where we findMDi ⊆MD instead of

MD ⊆MDi . The other claims can be proven similarly, where we considerM−D and
M−Di instead ofMD andMDi .

In light of Theorem 3.2.10, the above is a very intuitive result. For instance, when
J use
i−1 = Ruse

Di
, in order for ΓDi 6= ΓD to hold we must have J act

i−1 6= Ract
Di

. However, as
discussed before, Lemma 3.2.3 shows that the active set can only gain elements as D
moves from (Di−1, Di) to Di. Thus we findMD ⊂MDi , which shows that the set of
directions to which ΓD is restricted has grown strictly larger. In other words, there
are new paths that are now feasible for carrying flow. Since the division of flow is a
result of the traffic participants trying to minimize their own travel time, it seems
natural that an increase in options will decrease the ’speed’ at which the WE-cost
grows as the demand increases. Similarly, J act

i−1 = Ract
Di

implies a scenario in which
there are fewer options for the evolution of the flow, and as such, the ’speed’ at which
the WE-cost grows as the demand increases becomes larger. We can also see this in
Example 4.1.1a. We recall from (3.13) the evolution of the active and used set for this
example:

(Ract
D ,Ruse

D ) =



({p3}, ∅) for D = 0,

({p3}, {p3}) for D ∈ (0, 1),

({p1, p2, p3}, {p3}) for D = 1,

({p1, p2, p3}, {p1, p2, p3}) for D ∈ (1, 2),

({p1, p2, p3}, {p1, p2}) for D = 2,

({p1, p2}, {p1, p2}) for D ∈ (2,∞).

Comparing this to Figure 4.1, we see that at D = 1, where p1 and p2 become active,
the slope of the cost decreases. Conversely, at D = 2, where path p3 leaves the used
set, it is no longer possible to take flow away from that path, and as a consequence,
the slope of the cost increases. Note that this intuition is exactly the one that is defied
by Braess’s paradox, where we see that more options increase travel time. Thus, even
though this intuition does not hold for the WE-cost, it does hold for the slope of the
WE-cost. It is also interesting to note that using this perspective, Lemma 4.2.2 implies
that BP does not occur in a network in which βek = 0 for all ek ∈ E .

Lemma 4.2.3 also sheds light on Example 3.2.8b, in which the slope of λWE(·)
does not change at D = 2, despite this being a breakpoint. Lemma 4.2.3 tells us that
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this can only happen when both the active and used set change simultaneously at the
considered breakpoint. That is, there needs to be both a path that loses all flow, and
there must be a previously inactive path that becomes active. The slope of λWE(·)
then remains constant when the effects on the evolution of λWE(·) of these changes
in the used and active set exactly cancel each other out.

A useful observation for the upcoming analysis is the following consequence of
Lemma 4.2.3.

Corollary 4.2.4. (Slope of λWE when all paths are active): Let P , C ⊂ Kaff and D ≥ 0

be given. In addition let i ∈ [M ] satisfy J act
i = P . Then δλi−1 > δλi.

Proof. From Lemma 3.2.3 we know that J act
i ⊆ Ract

Di
. Since J act

i = P andRact
Di
⊆ P

this implies Ract
Di

= P . Thus we have J act
i = Ract

Di
, and thus result follows from

Lemma 4.2.3.

The final result of this section connects the previous analysis of the evolution of
λWE to the concepts of modified games and necessary sets. It shows that whenever a
set Srem is not necessary, the slope of the WE-cost of the associated modified game is
at least as steep as the slope of the WE-cost of the original game.

Lemma 4.2.5. (Necessary sets and the slope of λWE): Let P , Srem ⊂ P , C ⊂ Kaff and
D > 0 be given. If S /∈ ND, the following hold:

δλ̃+(D) ≥ δλ+(D),

δλ̃−(D) ≥ δλ−(D).

Proof. We start by proving the first inequality. From Corollary 4.2.1 we obtain

δλ+(D) = min
r∈Ract

D

Arf
δ, δλ̃+(D) = min

r∈R̃act
D

Arf̃
δ.

where fδ ∈ SOL(MD, A) and f̃δ ∈ SOL(M̃D, A). Here

M̃D := {f̃δ ∈ H̃1 | f̃δR̃act
D \R̃use

D

≥ 0, f̃δ
(R̃act

D )c
= 0}.

Now, since Srem /∈ ND it follows from Lemma 4.1.6 that f̃D ∈ W̃D if and only
if f̃D ∈ WD ∩ F̃D. Consequently R̃use

D ⊆ Ruse
D ∩ (Srem)c and in addition we have

λ̃vec(D) = λvec(D), which implies R̃act
D = Ract

D ∩ (Srem)c. These facts collectively
imply M̃D ⊆MD and it follows from Lemma 4.2.2 that

min
r∈R̃act

D

Af̃δ ≥ min
r∈Ract

D

Afδ.
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Thus we find
δλ̃+(D) ≥ δλ+(D).

This shows that the first inequality holds. The second inequality follows by similar
arguments, but considering sets of feasible descent directionsM−D, rather than sets of
feasible ascent directionsMD.

4.3 Conditions revealing Braess’s paradox

Now we are ready to give our first result on Braess’s paradox. It states that if a
set Srem is not necessary at D, then it is either not necessary for all lower levels of
demand, or it causes BP at some lower levels of demand.

Theorem 4.3.1. (Sets not in ND are “non-essential” for lower demands): Let P ,
Srem ⊂ P , C ⊂ Kaff and D be given. If Srem /∈ ND then exactly one of the following holds:

• Srem /∈ NT for all T ∈ [0, D],

• There exists D−, D+ satisfying 0 < D− < D+ ≤ D and

λWE(T ) > λ̃WE(T ) for all T ∈ (D−, D+). (4.8)

Proof. First we recall from Proposition 4.1.5 that V (·) and Ṽ (·) are continuously
differentiable, with d

dT V (T ) = λWE(T ) and d
dT Ṽ (T ) = λ̃WE(T ). Furthermore, since

Srem /∈ ND Lemma 4.1.6 tells us that V (D) = Ṽ (D) and λWE(D) = λ̃WE(D). We
defineD+ ≤ D as the smallest value such that λWE(T ) = λ̃WE(T ) for all T ∈ [D+, D].
In other words, the derivatives of V (·) and Ṽ (·) are equal on the interval [D+, D].
Since V (D) = Ṽ (D) this implies V (T ) = Ṽ (T ) for all T ∈ [D+, D]. By Lemma 4.1.6
it follows that Srem /∈ NT for all T ∈ [D+, D]. If D+ = 0 this gives us Srem /∈ NT for
all T ∈ [0, D], which corresponds to the first scenario.

Alternatively, if D+ > 0, it remains to be shown that there exists a D− ∈ (0, D+)

such that (4.8) holds. First, we note that using the fact Srem /∈ ND+ in Lemma 4.2.5
gives us δλ̃−(D+) ≥ δλ−(D+). That is, we have either δλ̃−(D+) = δλ−(D+) or
δλ̃−(D+) > δλ−(D+). The former of these is not possible. To see this, recall that
by definition of D+, we have λWE(D+) = λ̃WE(D+). Since λWE and λ̃WE are con-
tinuous, piecewise affine functions with only finitely many points in which the
functions are not differentiable, it follows that if δλ̃−(D+) = δλ−(D+), then there
exists some ε > 0 such that λWE(T ) = λ̃WE(T ) for all T ∈ (D+−ε,D+]. This however
contradicts the definition of D+ as the smallest value such that λWE(T ) = λ̃WE(T )

for all T ∈ [D+, D]. Therefore, δλ̃−(D+) = δλ−(D+) is not possible and we have
δλ̃−(D+) > δλ−(D+). This then implies that there exists some D− > 0 such that
D− < D+ and (4.8) holds, completing the proof.
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Of course, as a method for detecting BP Theorem 4.3.1 leaves much to be desired,
not only because it does not specify at which level of demand the considered set of
paths Srem causes a BP, but also because it leaves the option open that the set does
not cause BP at all, but is instead not a necessary set for all lower levels of demand.
However, it is still a potentially useful result. To see this, recall that in Chapter 3 we
gave a straightforward method to obtain the “final” active set J act

M , as well as fDM

and an fδ ∈ ΓDM . This gives us an easy method for finding sets of paths that are not
used, and therefore not necessary, in the interval (DM ,∞). In light of Theorem 4.3.1
the usefulness of any set of paths with this property then becomes rather suspect,
because it shows that this set is either responsible for BP at some levels of demand
in the interval (0, DM ), or it can be completely removed from the network without
affecting the WE-cost of the game at any level of demand. Since we can easily obtain
(J act

M )c, this supplies a social planner with a quick method for identifying sets of
paths in the network whose benefits to the network warrant further investigation,
and which are potential candidates for removal.

Though Theorem 4.3.1 has its uses, it would still be preferable if we could also
find a condition that more explicitly guarantees the presence of BP, and does so for
a specific level of demand. Our next result gives the essential observation that will
allow us to find more efficient ways of detecting BP. To ease its exposition we define
the following function:

Definition 4.3.2. (Affine extension functions): Let P , C ⊂ Kaff and ~P ⊂ P be given,
and consider the game (~P, C). For i ∈ [ ~M]0, we define the following function:

u~P,i(T ) := ~λWE( ~Di) + (D − ~Di)δ~λ
i,

Note that u~P,i is simply the affine function that describes ~λWE on the interval [ ~Di, ~Di+1),
but extended to the whole of R≥0. We call u~P,i an affine extension. •

where D̃i ∈ D̃. Note that the function uP̃,i(·) is simply the affine function that

describes λ̃WE(D) on the interval [D̃i, D̃i+1], but extended to the whole of R≥0. Our
upcoming result shows that for any affine extension uP̃,i of any modified game (P̃, C),

there exists another modified game ( qP, C) that achieves a WE-cost lower than uP̃,i(D)

for all D ≤ D̃i+1.

Lemma 4.3.3. (An upper bound on minimum WE-cost of all modified games): Let
P and C ⊂ Kaff be given. For any P̃ ⊆ P , i ∈ [M̃ ]0 and D ≤ D̃i+1, there exists a set
Sremi,D ⊂ P such that for the modified game over the set qP , where qP = P \ Sremi,D the associated
WE-cost, given by qλWE

i,D (·), satisfies

qλWE
i,D (D) ≤ uP̃,i(D).
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Proof. For notational convenience, we prove the result for the case P̃ = P . The case
P̃ ⊂ P can be proven using the same arguments. Let J use

i be the used-set for the
routing game defined by P and C on the interval (Di, Di+1), and let S ′ = (J use

i )c. We
consider the modified game associated with P ′ where P ′ := P \ S ′. Clearly, (J use

i )c

is unnecessary with respect to the original game on the interval (Di, Di+1); i.e.,
(J use

i )c /∈ ND for all D ∈ (Di, Di+1). By Lemma 4.1.6, the WE-cost of the modified
game, denoted by λ′WE(·), then satisfies

λ′WE(D) = λWE(D), for all D ∈ [Di, Di+1]. (4.9)

This already shows that λ′WE(D) = uP,i(D) holds on the interval [Di, Di+1). There-
fore, if Di = 0, the proof would be complete.

Now, assume Di > 0 and note that P ′ = R′ use
D = R′ use

T for all D,T ∈ (Di, Di+1).
Corollary 3.1.1 then tells us that there exist D′j , D

′
j+1 ∈ D′ for which we have

(Di, Di+1) ⊆ (D′j , D
′
j+1) and J ′ use

j = P ′. Therefore, using this inclusion and (4.9),
we have δλ′j = δλi. This fact in combination with λ′WE(Di) = λWE(Di) shows that
λ′WE(D) = uP,i(D) for all D ∈ [D′j , D

′
j+1). As before, if D′j = 0, the proof would be

complete.
When D′j > 0, note that J ′ act

j = J ′ use
j = P ′. From Lemma 3.2.3 we then have

R′ act
D′j

= J ′ act
j , and it follows from Lemma 4.2.3 that δλ′j−1 > δλ′j . This in combi-

nation with δλ′j = δλi and λ′WE(D′j) = uP,i(D
′
j) shows that λ′WE(D) < uP,i(D) for

all D ∈ [D′j−1, D
′
j). As before, if D′j−1 = 0, the proof would be complete. Note that

the conclusions up until this point also give uP′,j−1(D) < uP,i(D) for all D < D′j .
If D′j−1 > 0, we can define S ′′ = (J ′ use

j−1 )c and consider the modified game
associated to P ′′ , where P ′′ := P \ S ′′. First we show that P ′′ is non-empty. To
see this, note that P ′′ = ∅ implies J ′ use

j−1 = ∅, which in turn implies that all for all
demands D ∈ (D′j−1, D

′
j) and all WE f ′D ∈ WD, f ′Dp = 0. This however means that

the fD ∈ F0, which contradicts the assumption that D′j−1 > 0. We conclude that P ′′
is nonempty.

We also have J ′ use
j−1 ⊆ P ′, and Corollary 3.1.1 gives J ′ use

j−1 6= J ′ use
j . Since

J ′ use
j = P ′ we see that J ′ use

j−1 ⊂ P ′. Therefore P ′′ ⊂ P ′.
We can now apply the arguments made for comparing λ′WE with uP,i to compare

λ′′WE with uP′,j−1, which gives

λ′′WE(D) = uP′,j−1 for all D ∈ [D′′k , D
′′
k+1), (4.10)

where k is such that [D′j−1, D
′
j) ⊆ [D′′k , D

′′
k+1) for some D′′k , D

′′
k+1 ∈ D′′. If D′′k = 0,

the proof is complete, and if D′′k > 0, the same arguments as before give

λ′′WE(D) < uP′,j−1 for all D ∈ [D′′k−1, D
′′
k),

uP′′,k−1 < uP′,j−1 for all D ≤ D′′k ,
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where D′′k−1 ∈ D′′ satisfies D′′k−1 < D′′k ≤ D′j−1. This then shows that the result holds
on the interval [D′′k−1, Di+1). If D′′k−1 = 0, the proof is complete. If D′′k−1 > 0 we can
again repeat our arguments, to extend the interval on which the statement is shown
to hold. Each time we repeat the arguments the set of paths under consideration is
a strict subset of the previously considered set (e.g. P ′′ ⊂ P ′ ⊂ P), since there are
only finitely many paths, we can only repeat the arguments finitely many times, but
we can always repeat the argument as long as the used set at the lowest value in the
interval where the statement is shown to hold is non-empty. We conclude that after a
finite number of repetitions the used set at the lowest value of the interval where the
statement is shown to hold is empty, which implies that demand at this point is zero.
Therefore, the proof is complete.

Lemma 4.3.3 is an essential part of the upcoming results for detecting BP. For this
reason we highlight the implications of this result by revisiting Example 4.1.1. At the
start of this chapter we showed that the routing game discussed in Example 4.1.1a
over the network in Figure 4.1 experiences BP when D ∈ ( 2

3 , 2). In Figure 4.2 we see
the comparison between the WE-cost of the original game and that of the modified
game with edge e5 removed. However, note that λ̃WE(D) is simply the extension
to R≥0 of the line piece describing λWE(D) on the interval (D2, D3) = (2,∞). That
is λ̃WE(D) = uP,2(D). Thus we see that λWE(D) > uP,2(D) for D ∈ ( 2

3 , 2), and
therefore Lemma 4.3.3 implies that the network is subject to BP on this interval.
Using this approach we could have known that BP was present in this interval even
without analysing a modified game. Note that we can not always count on BP to
be revealed by comparing λWE with functions of the form uP,i. For instance, the
BP present in Example 4.1.1b, shown in Figure 4.4, is not revealed in this way, but
instead by comparing λWE with u~P,0, where ~P = P \ {(e1, e4)}. The full potential
of Lemma 4.3.3 for use in detecting BP is revealed later in Theorem 4.3.7. However,
before we can establish that result, we need to give some intermediate statements,
which themselves give additional useful methods for detecting BP. The first of these
statements is that as a consequence of Lemma 4.3.3, any increase in the slope of λWE

reveals the presence of BP.

Corollary 4.3.4. (BP revealed by increase of slope of λWE): For a given P and C ⊂ Kaff ,
let Di ∈ D with Di > 0. If δλi−1 < δλi then there exists, for all T ∈ [Di−1, Di), a set
SremT ⊂ P such that λ̃WE(T ) < λWE(T ), where λ̃WE(T ) is the WE-cost at demand T for
the modified game formed by removing paths in SremT .

Proof. The result follows from Lemma 4.3.3 after noting that λWE(Di) = uP,i(Di)

and that for D ∈ (Di−1, Di) we have

λWE(D) = λWE(Di) + (D −Di)δλ
i−1,
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uP,i(D) = uP,i(Di) + (D −Di)δλ
i.

Lemma 4.3.3 and the above corollary provide potentially useful ways of detecting
BP. However, they do require investigating the WE-cost of a routing game for multiple
levels of demand, which increases the computational intensity. The following result
instead gives us a sufficient condition for the presence of BP at one level of demandD,
which requires no investigation of modified games, or of the same game at multiple
levels of demand.

Theorem 4.3.5. (Paths losing flow reveals BP): Let P , C ⊂ Kaff and D be given. If
ΓD ∩ F1 = ∅, then there exists a set Srem such that λ̃WE(D) < λWE(D).

Proof. Let D be such that ΓD ∩ F1 = ∅. In addition let Di, Di+1 ∈ D satisfy
D ∈ [Di, Di+1) and let Srem := (J use

i )c. We consider the modified game over the set
of paths P̃ := J use

i . Note that Srem /∈ NT for all T ∈ [Di, Di+1) and by Lemma 4.1.6
we therefore have λWE(T ) = λ̃WE(T ) for all T ∈ [Di, Di+1]. Consequently, for
proving the result, it suffices to show that there exists a set P̂ ⊂ P̃ such that
λ̂WE(D) < λ̃WE(D).

Our first aim is to show that for the game defined over the set of paths P̃ := J use
i

we have D < D̃
M̃

; that is, D does not lie in the ’final’ interval of the modified game
(see Theorem 3.3.1). This we do by proving that Γ̃D ∩ F1 = ∅. Indeed this is enough
as from Theorem 3.3.1, if D ≥ D̃

M̃
, then Γ̃D ∩ SOL(F1, A) is non-empty.

Note that we have Srem /∈ ND from above. Consequently, by Lemma 4.1.6, we
have f̃D ∈ W̃D if and only if f̃D ∈ WD and f̃DSrem = 0. Now pick f̃D ∈ W̃D and
f̃δ ∈ Γ̃D, such that f̃D + εf̃δ ∈ W̃D+ε as long as ε is small enough. For any ε > 0 that
then also satisfies D + ε ∈ (D,Di+1) we thus obtain a WE of the modified game over
the set J use

i at demand D + ε. Note that we have (J use
i )c /∈ ND and (J use

i )c /∈ ND+ε.
It follows from Lemma 4.1.6 that f̃D ∈ WD, and as long as ε is small enough we
also have f̃D + εf̃δ ∈ WD+ε, which shows that f̃δ ∈ ΓD. Thus we see that Γ̃D ⊆ ΓD,
which implies Γ̃D ∩ F1 = ∅ and so, we have D < D̃

M̃
.

Now let D̃j , D̃j+1 ∈ D̃ satisfy D ∈ [D̃j , D̃j+1). Since R̃act
T = J̃ act

j = P̃ for
all T ∈ (D̃j , D̃j+1) it follows from Lemma 3.2.3 that J̃ act

j = R̃act
D̃j+1

. Lemma 4.2.3

therefore gives us δλ̃j < δλ̃j+1. The statement then follows from Corollary 4.3.4.

The previous three results supply us with useful, practically implementable
methods for detecting the presence of BP, but the statements themselves provide
little direction on how one can find a set of paths Srem whose removal alleviates
the detected paradox. However, based on the proofs of these results there is some
guidance we can offer on how to find Srem, as we illustrate in our next example.
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Example 4.3.6. First note that the proof of Theorem 4.3.5 depends on Corollary 4.3.4,
which in turn depends on Lemma 4.3.3. Finally Lemma 4.3.3 is established by looking
at the evolution of the costs of modified games where attention is constrained only
to the used set, and this is part that can help in the search for a set Srem that causes
BP. For instance, we see that in the proof of Lemma 4.3.3, whenever the considered
used set loses one or more paths as we decrease the level of demand, the game is
again modified by dropping the now unused paths from consideration. We see that
the arrived-at subsets of paths that achieve lower WE-costs are found by limiting
our attention to the used set, and then decreasing the flow continuously, dropping a
path from consideration whenever it leaves the used set. Similarly, in the proof of
Theorem 4.3.5 we also limit our attention to only the used set, and we consider the
demand D̃i+1, which is the smallest level of demand higher than D such that the
used set of this modified game loses one or more paths. If we write S ′ := P̃ \ R̃use

Di+1

for the set of paths that is no longer used at D̃i+1, following the discussed procedure
of Lemma 4.3.3, the first step to reveal BP on the interval (D̃i, D̃i+1) is then to drop
this set S ′. In other words, what we know is that there exists a set Srem that contains
S ′ and which causes the detected BP. We note that we only have S ′ ⊂ Srem and not
necessarily S ′ = Srem. To see this, consider the network given in Figure 4.6. This is

vo vd

e1 e2

e3 e4

e6 e7

e5

e8 e9

Figure 4.6: The nested Wheatstone network, in which the middle edge of the Wheat-
stone network has been replaced with an instance of the Wheatstone network.

the Wheatstone network, modified by replacing the middle edge by another instance
of the Wheatstone network. For this reason this is called a nested Wheatstone network.
This network has five paths, namely p1 = (e1, e2), p2 = (e3, e4), p3 = (e1, e7, e9, e4),
p4 = (e1, e6, e8, e4), and p5 = (e1, e7, e5, e8, e4).
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4.3. Conditions revealing Braess’s paradox 65

Let the cost functions of the edges be given by

Ce1(fe1) = fe1 , Ce2(fe2) = 7,

Ce3(fe3) = 7, Ce4(fe4) = fe4 ,

Ce6(fe6) = 1, Ce7(fe7) = fe7 ,

Ce8(fe8) = fe8 , Ce7(fe7) = 1,

Ce5(fe5) = 0.

The resulting WE, which is unique in this case, is shown in Figure 4.7.

0 5 10 15
0

3

6

Figure 4.7: The evolution of fD for the
routing game over the network in Fig-
ure 4.6, as discussed in Example 4.3.6.

0 5 10 15
0

5

10

15

Figure 4.8: The evolution of the WE-cost,
for the three games discussed in Exam-
ple 4.3.6.

Full expressions for the WE and WE-costs of the games considered in this example
are given in Appendix C. In Figure 4.8 we see a comparison between the WE-cost
of the original game, the game over the paths P̃ = P \ {p5} and the game over the
paths P ′′ = P \ {p3, p4, p5}. Note that on the interval D ∈ (4, 8), the flow over paths
p3 and p4 decreases, which by Theorem 4.3.5 indicates that a BP is present. At D4 = 8

the used set is given by Ruse
D4

= {p1, p2, p3, p4} and thus we have P \ Ruse
D4

= {p5}.
However, as we see in Figure 4.8, it is not the set {p5} which causes the BP in the
interval (4, 8), but rather the sets {p3, p4} or {p3, p4, p5}. This shows that indeed
there exists a set Srem causing BP that satisfies P \ Ruse

D4
⊂ Srem, but it is not equal to

P \ Ruse
D4

.
We also note that when a BP is detected using Theorem 4.3.5, it is not necessarily

the subset of paths that is losing flow that causes BP, but there does exist a set
containing the subset of paths that loses flow, that causes a paradox. To see this, note
that in our example the path p5 loses flow on the interval D ∈ (9, 14). Indeed, on
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66 4. Braess’s paradox

the interval D ∈ ( 32
3 , 14) we find confirmation that the removal of path p5 decreases

the WE-cost. However, on the interval D ∈ (9, 32
3 ), removal of p5 increases WE cost,

despite p5 being the only path that loses flow in this interval. We see that in this case
the BP is associated with the removal of the set {p3, p4, p5}. •

Theorem 4.3.5 gives us a feasible way of detecting Braess’s paradox in a network
at one specific level of demand. The downside is that the given condition is only
sufficient; that is, Braess’s paradox can still be present in the network even when the
given condition is not satisfied. For instance, considering the routing game defined by
(3.7) in Example 4.1.1a and looking at the evolution of the associated WE in Figure 4.2,
we see that ΓD ∩ F1 = ∅ for D ∈ [1, 2), revealing BP in this range of demands, while
the condition is not satisfied for D ∈ ( 2

3 , 1) despite the presence of BP there. What
is more, in Example 4.1.1b we have that ΓD ∩ F1 = ∅ does not hold for any level
of demand, completely missing the BP that is present in that example. Our next
result shows how the obtained results can be used to give a necessary and sufficient
condition for the existence of Braess’s paradox, though the practical usefulness of
this result is limited, since applying it requires searching the space of all subsets of
the set of paths. We recall that M is used to denote the index of the last finite valued
breaking point DM ∈ D of a routing game.

Theorem 4.3.7. (Final cost evolution of modified games reveals all BPs): Let P and
C ⊂ Kaff be given. The routing game is subject to a Braess’s paradox at demand D if and
only if there exists a set Srem ⊂ P such that Γ̃D ∩ F1 6= ∅ and

uP̃,M̃ (D) < λWE(D). (4.11)

Proof. First assume that (P, C) is subject to Braess’s paradox at demand D. That
is, there exists a set S ′ such that λ′WE(D) < λWE(D), where λ′WE stands for the
WE-cost for the game (P \ S ′, C). To reiterate, we need to show that there exists
Srem such that Γ̃D ∩ F1 6= ∅ and (4.11) holds. Consider therefore the case when
Γ′D ∩ F1 = ∅. It follows from Theorem 4.3.5 that the routing game (P \ S ′, C) is also
subject to Braess’s paradox at demand D. That is, there exists a set S ′′ ⊂ P ′ such that
λ′′WE(D) < λ′WE(D). With this we deduce that since P is subject to BP caused by
the set S ′ and P ′ is subject to BP by removing the paths S ′′, then P is subject to BP
caused by the set S ′ ∪ S ′′. We can repeat this argument until we find a set Ŝ such
that the modified game (P \ Ŝ) satisfies Γ̂D ∩ F1 6= ∅. Let Ŝ ′ = (R̂use

D )c. We then
consider the game (P̂ \ Ŝ ′, C). Once again, if Γ̂′D ∩ F1 = ∅, this means that the game
(P̂ \ Ŝ ′, C) is subject to BP at demand D, and therefore there exists a set Ŝ ′′ ⊂ P̂ ′ such
that for the game over (P̂ ′ \ Ŝ ′′, C) we find λ̂′′WE(D) < λ̂′WE(D). We can repeat the
above arguments until we find a set Srem ⊂ P that satisfies P̃ := P \ Srem, R̃use

D = P̃ ,
Γ̃D ∩ F1 6= ∅, and λ̃WE(D) < λWE(D).
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4.3. Conditions revealing Braess’s paradox 67

Next, let f̃δ ∈ Γ̃D ∩ F1. Since R̃use
D = P̃ we have λ̃WE

p (D) = λ̃WE
r (D) for all

p, r ∈ P̃ . In addition we have

M̃D = {fδ ∈ H1 | fδP̃c = 0},

and from Theorem 3.2.10 we know that f̃δ ∈ SOL(M̃D, A). It follows from Proposi-
tions 3.2.12 that Apf̃δ = Arf̃

δ holds for all p, r ∈ P̃ . In other words, as we move in
the direction of f̃δ, the costs of all paths remain equal. Since f̃δ ∈ F1 it also follows
that for any f̃D ∈ W̃D and any ε > 0 we have f̃D + εf̃δ ≥ 0. Consequently, f̃D + εf̃δ

is a WE for any ε > 0. From this it follows that f̃δ ∈ Γ̃T for all T ≥ D. Since we know
from Lemma 3.2.14 that Γ̃i 6= Γ̃i+1 for all i ∈ [M̃ ], it follows that D ∈ [D̃

M̃
,∞). As a

consequence, using the definition of the affine extension function uP̃,M̃ we arrive at

λ̃(D) = uP̃,M̃ (D). And since λ̃(D) < λWE(D), we conclude that uP̃,M̃ (D) < λWE(D).
This shows one direction of the implication.

For the other direction, assume that there exists some Srem ⊂ P such that
uP̃,M̃ (D) < λWE(D). If D < D̃

M̃
, then it follows from Lemma 4.3.3 that the game

(P, C) is subject to BP at demand D. If D ≥ D̃
M̃

, then we have λ̃WE(D) = uP̃,M̃ (D)

and therefore λ̃WE(D) < λWE(D), which shows that the game is subject to BP at
demand D. This completes the proof.

Though it is computationally expensive to use the above proposition for detection
of BP, it does have one advantage worth mentioning. Namely, that one does not
have to check for BP separately for different levels of demand. Instead there is one
piecewise affine function that serves as a bound on the WE-cost. Simply checking
whether the value of WE-cost exceeds the value of this function reveals the presence
or absence of BP. However, constructing this function requires finding a set of subsets
of P that define it, and it can be computationally infeasible to check all subsets of
P to know which ones to use. Despite this limitation, it is still a useful result. For
instance, we observed earlier that for Example 4.1.1a, comparing λWE(D) to uP,2(D)

reveals BP on the interval D ∈ ( 2
3 , 1) and we can now generalize this observation

with the following Corollary:

Corollary 4.3.8. (Easily attainable upper bound on achievable WE-cost): Let P , C ⊂ K
and D be given. If uP,M (D) < λ(D), then the network suffers from Braess’s paradox at
demand D.

Once the evolution of λWE has been mapped out, the above provides an easily
obtained ’upper bound’ on the cost λWE(D), such that whenever λWE(D) exceeds
this bound, the network necessarily suffers from Braess’s paradox.

Before finishing our exposition on BP in this section we use the obtained results to
show that for any network BP can only occur on a finite interval of demand. Though
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68 4. Braess’s paradox

it seems rather surprising, to the best of our knowledge this result has not been
proven before in full generality, though versions limited to the Wheatstone network
(Figure 4.1) have been obtained [23, 31].

Theorem 4.3.9. (Braess’s paradox occurs on finite interval): Let P and C ⊂ Kaff be
given. There exists a value DBP ≥ 0 such that λWE(D) ≤ λ̃WE(D) for all D ≥ DBP and
all Srem ⊂ P .

Proof. Let DM ∈ D and D̃
M̃
∈ D̃ be the largest finite valued breakpoints of the

original and modified game respectively. It follows that there exist δλM and δλ̃M̃

such that

λWE(T ) = λWE(DM ) + (T −DM )δλM ,

λ̃WE(T ) = λ̃WE(D̃
M̃

) + (T − D̃
M̃

)δλ̃M̃

for all T ≥ max(DM , D̃M̃
). For the sake of contradiction, assume that δλ̃M̃ < δλM .

From Proposition 4.1.5 we have

∂

∂D

(
Ṽ (T )− V (T )

)
= λ̃WE(T )− λWE(T )

= λWE(DM )− λ̃WE(D̃
M̃

)

+ (T −DM )δλM − (T − D̃
M̃

)δλ̃M̃

(4.12)

for any T ≥ max(DM , D̃M̃
). Since we assume δλ̃M̃ < δλM , the above relation

implies that for large enough T , we get Ṽ (T ) < V (T ) which contradicts Lemma 4.1.6.
Therefore, we obtain δλ̃M̃ ≥ δλM . Now consider two cases: (a) δλ̃M̃ = δλM and (b)
δλ̃M̃ > δλM . For (a) note that if λ̃WE(T ) < λWE(T ) for any T ≥ max(DM , D̃M̃

), then
we arrive at a similar contradiction with Lemma 4.1.6 as before. Thus, for case (a), we
must have λ̃WE(T ) ≥ λWE(T ) for all T ≥ max(DM , D̃M̃

). For case (b), from (4.12), for
all large values of T , we have λ̃WE(T ) ≥ λWE(T ). Hence, combining the reasoning
of both cases, we find that there exists some value DBP such that λ̃WE(T ) ≥ λWE(T )

for all T ≥ DBP. This completes the proof.

Note that DBP can be strictly larger than DM , as is the case in Example 4.1.1b,
where DM = 1 while Figure 4.4 shows that BP occurs on the interval D ∈ ( 2

3 , 2).

4.4 The benefits of Braess’s paradox

In the final part of this chapter we want to discuss how the results we have obtained
on BP show that even when BP is detected in a network, one should be careful
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4.4. The benefits of Braess’s paradox 69

in drawing the conclusion that a set of paths is better removed. We start from
Theorem 4.3.1 which, as discussed, hints at the possibility that a set Srem that is not
necessary at some demand D is not useful to the network. If this set of paths had not
been present, either the WE-cost would have stayed the same for all lower levels of
demand, or better yet, would have decreased for some of these demands.

Of course this tells us nothing about what happens for higher demands. A path
that is unnecessary for one level of demand may be very important when demand
is higher. It can even be the case that a path is necessary at some level of demand,
becomes unnecessary at a higher level of demand, and finally becomes a necessary
part of the “final” set of used paths J use

M . This phenomenon is showcased in the
following example:

vo vd

e1 e2

e3

e5

e7

e4

e6

Figure 4.9: Modification of the
Wheatstone network, in which
there is one additional path.

0 3 6 9
0

2

4

Figure 4.10: The evolution of fD for the
routing game over the network in Fig-
ure 4.9 defined by the costs (4.13).

Example 4.4.1. Consider the network in Figure 4.9, and let the cost functions of the
edges be given by

Ce1(fe1) = 2fe1 , Ce2(fe2) = fe2 + 1,

Ce3(fe3) = fe3 + 1, Ce4(fe4) = 2fe4 ,

Ce5(fe5) = 0, Ce6(fe6) = fe6 + 5,

Ce7(fe7) = fe7 .

For this network, the set P contains four paths, namely p1 = (e1, e2), p2 = (e3, e7, e4),
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70 4. Braess’s paradox

p3 = (e1, e5, e4) and p4 = (e3, e6). The path-cost function is then given by

C(f) = Af + b =


3 0 2 0

0 4 2 1

2 2 4 0

0 1 0 2

 f +


1

1

0

6

 . (4.13)

We see the evolution of the WE, which is unique in this case, in Figure 4.10. An
explicit expression for the WE is provided in Appendix D. Note that path p3 first
carries all flow, and then loses all flow as it rerouted onto the paths p1 and p2. Finally
p3 becomes necessary again, as we see that J use

M = P in this case. The intuition for
why this happens is that before path p4 becomes active, the routing game is essentially
a variant of that over the Wheatstone network discussed in Example 4.1.1a. As was
the case there, The path over edge e5 takes all flow at low levels of demand, but
eventually becomes unnecessary for higher demands as paths p1 and p2 can carry the
flow more efficiently. However, for even higher levels of demand, path p4 becomes
active, and this changes the evolution of the WE. Specifically, the availability of path
p4 means that less flow is routed onto the edges e7 and e5, and this reduces the
increase in cost of path p3, which then becomes a viable alternative to the paths p1

and p2 again.
Note that we can control when path p4 becomes active by tuning the free flow

cost Ce6(0) = βe6 of edge e6, which can be used to illustrate the ways in which BP
can remain hidden or be revealed. When βe6 ∈ (0, 3.5), path p4 becomes active before
p3 loses all flow, which prevents p3 from ever losing all flow. In this case p3 never
becomes unnecessary, and Theorem 4.3.1 does not reveal the presence of BP. We can
then still appeal to Theorem 4.3.5 to reveal the BP, since there remains a range of
demands on which the flow over p3 decreases. Setting βe6 = 0 will prevent this as
well, resulting in a scenario where p4 becomes active before p3 starts losing flow,
preventing p3 from ever decreasing in flow. The BP is still present, but the only result
presented in this text that can help us reveal it is now Theorem 4.3.7. •

The above example already urges caution when it comes to dismissing a set of
paths that becomes unnecessary, and thus causes BP at some level of demand, as
useless or detrimental overall, since we do not know what happens at higher levels
of demand. However, even for lower levels of demand the conclusions are not that
straightforward. The following result shows that when a set Srem causes BP at some
demand D, its presence must have been strictly beneficial at some lower level of
demand.

Theorem 4.4.2. (Paths causing BP are useful at lower demands): let P , Srem ⊂ P ,
C ⊂ Kaff and D be given. If λWE(D) > λ̃WE(D) then there exist a D−, D+ such that
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0 < D− < D+ < D and

λWE(T ) < λ̃WE(T ) for all T ∈ (D−, D+).

Proof. The arguments for proving this are similar to those for Theorem 4.3.1. We note
that λWE(·) and λ̃WE(·) are the derivatives of V (D) and Ṽ (D) respectively, and are in
addition continuous and piecewise affine with only finitely many points at which they
are not differentiable. From Lemma 4.1.6 we know that V (T ) ≤ Ṽ (T ) for all T ∈ R≥0.
It follows that λWE(D) > λ̃WE(D) implies V (D) < Ṽ (D). Since V (0) = Ṽ (0) = 0

this implies that for some range of demands (D−, D+) with 0 ≤ D− < D+ < D we
must have λWE(T ) < λ̃WE(T ) for all T ∈ (D−, D+).

The above result lends us a different perspective on Braess’ paradox. We have
already seen that the phenomenon is highly dependent on the demand, but this
corollary shows that even though addition of a set of paths may increase the travel
time of all participants at one level of demand, looking at a more complete picture,
we see that the same set of paths must have decreased travel time for some lower
level of demand. When deciding to keep or remove a path from a network it would
thus be helpful to consider the effect of that path on the network for the entire range
of demands in which the network functions.

This leads naturally to the question how to quantify the value of a path to the
network while considering a range of demands. An initial, perhaps naive, method
may be to consider the function

J(D) =

∫ D

0

λ̃WE(z)− λWE(z)dz

as a measure of the value of a set of paths Srem to the network on the range of
demands from zero to D. For this we have the following result:

Proposition 4.4.3. (Benefits of a path using a simple measure): let P , Srem ⊂ P ,
C ⊂ K and D ≥ 0 be given. We have

J(D) ≥ 0 for all D ∈ [0,∞),

with J(D) = 0 if and only if Srem /∈ ND.

Proof. Since λWE(D) = d
dDV (D) and λ̃WE(D) = d

dD Ṽ (D) we get∫ D

0

λ̃WE(z)− λWE(z)dz = Ṽ (z)|D0 − V (z)|D0

= Ṽ (D)− V (D)
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≥ 0,

with equality holding if and only if Ṽ (D) = V (D). Using Lemma 4.1.6 the proof is
finished.

Using this measure, we see that in the worst-case scenario the set Srem is “neutral”
to the network, which only occurs when Srem is unnecessary at demand D. If this is
not the case, then the presence of Srem is strictly beneficial to some degree.

As mentioned, J may be a fairly naive measure. Even when not knowing anything
about the levels of demand that a network is likely to carry, we may weigh certain
levels more than others. A reasonable approach may be to weigh each level of
demand by that amount of demand, as it is more important for the system to perform
well when demand is high than when demand is low. In this case we have the
measure

W (D) =

∫ D

0

z
(
λ̃WE(z)− λWE(z)

)
dz.

For which we have the following result:

Proposition 4.4.4. (Detriments of a path using a measure weighed by demand): let
P , Srem ⊂ P , C ⊂ K and D > 0 be given. If Srem /∈ ND then

W (D) ≤ 0

with equality holding if and only if Srem /∈ NT for all T ∈ (0, D).

Proof. The result can be obtained by integration by parts:

W (D) =

∫ D

0

z
(
λ̃WE(z)− λWE(z)

)
dz

= z
(
Ṽ (z)− V (z)

)
|D0 −

∫ D

0

Ṽ (z)− V (z)dz

=

∫ D

0

V (z)− Ṽ (z)dz.

Here the last equality follows since Srem /∈ ND and therefore we have, by Lemma 4.1.6,
that V (D) = Ṽ (D). From the same Lemma we know that V (T ) ≤ Ṽ (T ) for all
T ∈ [0, D] and it follows that we end up with an integral over a non-positive func-
tion, which is only equal to the zero function if Ṽ (T ) = V (T ) for all T ∈ (0, D). By
Lemma 4.1.6, this happens if and only if Srem is not necessary for all T ∈ (0, D). This
completes the proof.
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Thus, if we use this measure, and look at a range of demands from zero to a de-
mand at which the set Srem is unnecessary, then it follows that Srem is at best “neutral”
to the network performance, and this best case scenario only occurs when Srem is
“useless” in that for the whole range of considered demands the set is unnecessary.

4.5 Conclusion

In this chapter we have studied the relation between the demand of a routing game
with affine cost functions on the edges and the occurrence of Braess’s paradox. First
we have given a rigorous analysis of the evolution of the WE-cost of such routing
games and subsequently we have used the gained insight to give sufficient conditions
for the presence of BP which are computationally feasible to check. In addition we
have provided a very efficient way to find a set of paths in the network that are
potential candidates for causing BP, or are otherwise not beneficial to the network.
We have also given a necessary and sufficient condition for the occurrence of Braess’s
paradox that can be usefully employed, but is computationally intractable to check
in full. Finally we have shown that any set of paths responsible for BP at some level
of demand must at other levels of demand strictly reduce the WE-cost. Based on this
observation we have constructed two measures on the value of a set of paths, and
have shown that even when a set of paths is observed to cause BP at some demand,
removal of that set from the network could still be detrimental to the performance of
the network overall, depending on which measure one uses.
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Chapter 5

Inferring the prior

Recent years have seen increased utilization of traffic information systems (TISs) such
as Google Maps and Waze by users of traffic networks. These TISs supply the drivers
with information about some uncertain states of a network that they can not otherwise
obtain. On one hand the increased utilization of TISs can cause problems such as
congestion, and pose various challenges for traffic management [32], but on the other
hand they also create the opportunity for information design, where information about
the state of the network is strategically revealed in order to minimize congestion.
To motivate this idea, we note that sometimes the travel cost of all drivers can be
reduced when information about certain routes is withheld [33].

A fitting framework for studying the effects of information on decision making is
Bayesian persuasion [34]. In the context of routing games, applying this framework
entails assuming there are several states that the network can inhabit, representing
for instance the presence or absence of road congestion, accidents, or weather events,
and the participants are assumed to have a prior belief about the probability of each
state occurring. The TIS releases information about the state using a set of messages
or signals and in this way influences the posterior belief formed by the participants.
Subsequently, participants select routes that minimize the expected travel cost in
a selfish manner under the posterior belief, i.e., they route according to a Wardrop
equilibrium. Note that we consider the case where all participants receive the same
signal, commonly known as public signalling. In the above explained framework, the
TIS can influence the flow by carefully designing the map from states to messages,
also known as the signalling scheme. The effects of such a design naturally depend
on the prior of the participants. However, the TIS may not know this prior in advance,
presenting a problem for the implementation of this method. For instance, we will
show that when aiming to minimize the total travel time of all participants, any error
in the estimation of the prior by the TIS can result in decreased performance.

The aim of this chapter is to address this problem by studying how the prior of a
population influences the Wardrop equilibrium, and how information about the prior
can be inferred from observing the equilibrium flows under a signalling scheme.
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Literature review

Adaptions of the Bayesian persuasion framework [34] for information design in the
context of routing games have been studied in several recent works. In [35] the
potential of information design to reduce travel times is show-cased for two common
examples, in [36] the cost-performance of incentive-compatible signalling schemes
are studied in comparison to socially optimal solutions, and in [37, 38] the relative
performance of different strategies of information design, such as public and private
signalling, are obtained. Instead of assuming that all users participate in persuasion,
the works [39, 40] determine optimal information provision for heterogeneous pop-
ulations, where a part of the users do not “trust” the TIS. Closer to the subject of
our work, [41] also studies the effects of a mismatch between the actual distribution
and the prior belief of a population concerning some parameters of a congestion
game. In particular it introduces a type of routing game called a ‘subjective Bayesian
congestion game’ which considers information that users have about the signals
other users receive. Recent works also investigate the possible pitfalls of information
provision by TISs. For example, [42, 43] explore inefficiencies caused by competing
TISs; [33] highlights how knowing more routes can cause more congestion, revealing
informational Braess’s paradox; and [44] demonstrates oscillating traffic behaviour
when information about travel times is available in real time. An analysis of how
the benefits and detriments of revealing information to the population relate to the
specifics of the cost functions and structure of the uncertainty is given in [45].

The viewpoint adopted in this chapter of learning about private parameters, such
as the prior, of users in a routing setup is similar in spirit to [46] and [47]. In the
former, the problem of estimating the learning rate of the population that employs a
mirror descent algorithm to adapt route choices is considered. In the latter, learning of
the cost functions of paths is studied. In a broader context, [48] investigates incentive
design for a set of non-cooperative agents by learning the cost functions that govern
their decisions. Our work is partly related to learning in routing games, where a lot
of focus is on learning from the perspective of participants, see [49,50] and references
therein. The work [51] looks at a Bayesian framework and explores how participants
learn about the state of the network in repeated play. It is worth noting that none of
the works consider learning preferences or biases inherently present in the decisions
of users in the context of information design.

Finally, we note that a popular alternative to information design for influencing
flows in a traffic network is incentive design. For routing games, this area focuses on
how tolls and subsidies can be used to influence the behaviour of traffic participants,
see [52] and references therein for an overview, and [53] for an investigation on the
potential of using incentive and information design in tandem.
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5.1. The model 77

Organization

We start this chapter by introducing the model of a routing game that can be in several
states, and for which information about the state is communicated to the population
by a TIS. Then we discuss an example that shows how a mismatch between the
prior of the population and the estimate thereof made by the TIS can lead to a
higher average travel cost. Our first point of study is then to find when a signalling
scheme exists that allows the TIS to fully identify the prior. We show that under mild
conditions, such a scheme exists, employing as many signals as there are states. Next
we provide an iterative procedure for constructing such a signalling scheme, which
in each iteration uses observations of the equilibrium flow incurred by the current
signalling scheme. Next we discuss the challenges and potential encountered when
generalizing these results to the case where the population is divided into fractions,
each adhering to their own prior. We also show that a subclass of the signalling
schemes we consider has some robustness properties, meaning that the same scheme
can be used for identification of the prior even after the prior has been perturbed.
Finally we summarize our findings in the conclusion of the chapter. Throughout the
text we employ examples to improve the technical exposition of our results.

5.1 The model

The model considered in this chapter is a modification of the framework for routing
games as introduced in Chapter 2. We recall from that chapter that a routing game
is defined over a network, represented by a graph G = (V, E), with a single origin-
destination pair vo, vd, and the total amount of traffic, also called the demand, can be
divided among the paths in P , which is the set of all paths through the network from
vo to vd. In this chapter we assume that the demand is constant, and for the sake of
simplicity equal to one. That is, the feasible set is given by

F :=
{
f ∈ Rn≥0 |

∑
p∈P

fp = 1
}
,

where n = |P|. We recall that the edge-flow is then given by fek :=
∑
p3ek fp. To

include uncertainty in our model, we assume that at any instant, the network can be in
one of a finite number of states, drawn from the set of all states Θ := {θ1, · · · , θm}. In
any state θs ∈ Θ each edge ek ∈ E is associated with a cost function Cθsek : R≥0 → R≥0,
fek 7→ Cθsek (fek), which we assume to be known, continuous and strictly increasing on
R≥0. As was the case in Chapter 2, the cost of traversing path p in state θs is simply
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the sum of costs in state θs of all edges contained in p:

Cθsp (f) =
∑
ek∈p

Cθsek (fek). (5.1)

We consider a Bayesian setting, where the users of the network are assumed to have
a prior belief q ∈ ∆m

1 regarding the probability distribution of the state in which the
network operates at any instant. That is, qs is the probability with which the users
believe the network will be in state θs, given that they have received no additional
information. For ϕ ∈ Rm, the weighted cost under ϕ of traversing a path p and an
edge ek are respectively given by

Cϕp (f) :=
∑
s∈[m]

ϕsC
θs
p (f), Cϕek(f) :=

∑
s∈[m]

ϕsC
θs
ek

(fek). (5.2)

When ϕ ∈ ∆m
1 , i.e., when ϕ is a probability distribution, we call these the expected

costs under ϕ. For notational convenience, we define the following:

C := {Cθsek}ek∈E,s∈[m],

Cp(f) :=
(
Cθ1p (f), · · · , Cθmp (f)

)>
,

Cϕ(f) :=
(
Cϕ1 (f), · · · , Cϕn (f)

)>
.

Here, C is the set of all edge-cost functions,Cp is the vector of cost functions associated
to path p per state, and Cϕ is the vector of weighted costs under ϕ per path.

For a given probability distribution ϕ over the states Θ, we assume that the
users aim to minimize their own expected cost of travelling, where the expectation
is taken with respect to the distribution ϕ. To formalize which flows result from
such rational decision-making of users, we define a modified version of the Wardrop
equilibrium(WE) as follows:

Definition 5.1.1. (ϕ-WE): Given a set of paths P , states Θ, cost functions C, and a
probability distribution ϕ ∈ ∆m

1 , a flow fϕ is said to be a ϕ-based Wardrop equilibrium
(ϕ-WE) if fϕ ∈ F and for all p ∈ P such that fϕp > 0 we have

Cϕp (fϕ) ≤ Cϕr (fϕ) for all r ∈ P. (5.3)

The set of all ϕ-WE is denotedWϕ.

Note that the set of ϕ-WE is simply the set of WE of a routing game without
multiple states, where for all edges ek ∈ E the edge-cost function is given by Cϕek . The
results in Chapter 2 therefore imply that the setWϕ is equal to the set of solutions of
the variational inequality(VI) problem VI(F , Cϕ). We also recall from Chapter 2 that a
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WE is not unique, but since we assume that the functions Cϕek are strictly increasing,
we do have that the flow over the edges under WE is unique. That is, qfϕ is a ϕ-WE if
and only if

qfϕek = fϕek for all ek ∈ E , fϕ ∈ Wϕ. (5.4)

Throughout this chapter we use fϕek to denote the edge-flow on edge ek under ϕ-WE.
The last part of the model is a traffic information system (TIS), that observes the

state θs of the network at any instant, and subsequently supplies information about
this state to the drivers. The TIS has a set of signals Z := {ζ1, · · · , ζz} from which it
chooses one to send to the users at any instant of the game. Before the traffic is routed,
the TIS commits to a signalling scheme Φ : Θ 7→ ∆z

1. Each state θs is mapped by Φ to
a probability vector Φ(θs) := φθs ∈ ∆z

1. After observing state θs, the TIS randomly
draws a signal from Z to send to the participants, where the probability of sending
signal ζu is given by the u-th element of φθs . In our setting all participants receive
the same signal, which is known as public signalling. Note that the signalling scheme
Φ can be represented as a z ×m column stochastic matrix; that is, Φ ∈ CS(z,m),
with the (u, s)-th entry, denoted φus , giving the probability of sending signal ζu after
observing state θs. We will adhere to this matrix representation of Φ throughout this
chapter.

After receiving a signal ζu, the users update their belief about the state of the
network by forming a posterior q̃ using Bayes’ rule:

q̃s := P[θs|ζu] =
P[ζu|θs]qs∑

`∈[m] P[ζu|θ`]q`
=

φus qs∑
`∈[m] φ

u
` q`

, (5.5)

for all s ∈ [m], where P[θs|ζu] is the probability of the network being in state θs
having received the signal ζu and P[ζu|θs] is the probability of sending signal ζu

after observing state θs. The resulting flow is then assumed to be a q̃-based Wardrop
equilibrium. When no additional information regarding the state of the network is
available to the users, the flow is assumed to depend on the prior q and is given by
a q-WE denoted as fq. Throughout this chapter we will use q to denote the prior,
q̃ζ
u

to denote the posterior with respect to the signal ζu, and use q̃ when the signal
is clear from the context. Associated sets of WE will be denoted asWq,Wζu , and
W q̃, respectively. Similarly, given a distribution ϕ ∈ ∆m

1 we will use the notation
Wϕ for the set of ϕ-based WE, andWθs for a ϕθs-based WE, where the distribution
ϕθs is defined by ϕθss = 1. Note that when qs = 0 for some s ∈ [m], despite the
TIS observing state θs, it is possible that q̃` is ill-defined for some ` ∈ [m] as it may
involve division by zero. To avoid this issue, we assume that qs > 0 for all s ∈ [m].

We finish this section with a motivating example showing how for a TIS that aims
to design a signalling scheme to minimize social cost, a mismatch between the prior
and the estimate of that prior made by that TIS can lead to an increase in social cost.
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80 5. Inferring the prior

Example 5.1.2. (Motivating example): Consider a network with two nodes: the
origin vo and destination vd, and two parallel paths from vo to vd as depicted in
Figure 5.1.

vo

vd

r1 r2

Figure 5.1: A parallel network
with two roads.
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Figure 5.2: Cost for TIS with and without
exact knowledge of q.

The network can be in two states, and the cost functions of the paths in these states
are

Cθ11 (f) = Cθ21 (f) = 2f1 +
1

2
,

Cθ12 (f) = 0, and Cθ22 (f) = 1.

The probability distribution of states θ1 and θ2 is given byϕtrue = (ϕtrue
1 , ϕtrue

2 ), where
θ1 occurs with probability ϕtrue

1 = 0.5 and θ2 occurs with probability ϕtrue
2 = 1−ϕtrue

1 .
The distribution ϕtrue is assumed to be known to the TIS. The goal of the TIS is to
minimize the long-term average social cost, which is a function of the signalling
scheme. For a general network, given the prior belief q, the state θs, and a message
ζu, the incurred social cost is given by

J stage
q (ζu, θs) :=

∑
p∈P

f̃ζ
u

p Cθsp (f̃ζ
u

), (5.6)

where f̃ζ
u

is a q̃ζ
u

-WE. Recall that for any two q̃ζ
u

-WE, say f̃ζ
u

and qfζ
u

, we have
f̃ζ

u

ek
= qfζ

u

ek
for all ek ∈ E . From (5.1) and fek =

∑
p3ek fp, we then conclude that (5.6)

is independent of the choice of q̃ζ
u

-WE. The long-term average cost will be the sum
of J stage

q (ζu, θs) over all possible combinations of signals ζu and states θs, weighted
by the probability ϕtrue

s that θs occurs, and the probability φus of signal ζu being send
when θs occurs. This will therefore depend on the number of signals that the scheme
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5.2. Inferring the prior: General case 81

employs. However, in [54, Proposition 3] it is shown that a public signalling scheme
Φ ∈ CS(z,m) needs no more than m signals to achieve the optimum and therefore
we set z = m. Summarizing this, the long-term average cost that the TIS aims to
minimize is given by

Jq(Φ) :=
∑
s∈[m]

∑
u∈[m]

ϕtrue
s φus

∑
p∈P

f̃ζ
u

p Cθsp (f̃ζ
u

).

When the TIS knows the prior belief q, it aims to find a scheme Φ that minimizes
Jq(Φ). When the TIS does not know this prior belief, it assumes it to be the same
as the probability distribution of states ϕtrue, and therefore employs a signalling
scheme Φ that minimizes Jϕtrue(Φ). Whenever q 6= ϕtrue, designing a signalling
scheme using ϕtrue as an estimate of q can increase the social cost. This we show in
Figure 5.2. The horizontal axis in the plot depicts the prior held by the users and since
we only consider two states, it is completely specified by the first component q1 of
the two-dimensional vector q. The blue line shows the long-term average cost of the
game when the TIS uses ϕtrue as an estimate of the prior q and employs a signalling
scheme that minimizes Jϕtrue . The dashed orange line shows the cost achieved when
the TIS uses the exact knowledge of q and employs an optimal signalling scheme
minimizing Jq. We see that the TIS with full knowledge performs better, with the
difference becoming more pronounced as q moves further away from ϕtrue. •

5.2 Inferring the prior: General case

We have seen that to achieve optimal results, a TIS needs to know the prior that
underlies the decisions of the population. Our goal is thus to find a way for the TIS
to infer this prior based on the information available to it. With this goal in mind, we
start by investigating the relation between the path-flows under ϕ-WE, edge-flows
under ϕ-WE, and the distribution ϕ. To illustrate the intuition behind the ideas we
will present on this subject, we first consider a simplified example where the TIS
provides no information to the users and the resulting flow fq is therefore a q-WE as
players base their routing choices on the prior.1 From Definition 5.1.1 we know that
fq satisfies (5.3) where ϕ is replaced by q. That is,

Cqp(fq) = Cqr (fq), for all p, r ∈ P such that fqp , f
q
r > 0,

Cqp(fq) ≤ Cqr (fq), for all p, r ∈ P such that fqp > 0, fqr = 0.
(5.7)

1The same situation can be achieved by using a signalling scheme which supplies no information, for
instance by setting φus = 1

z
for all u, s.
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82 5. Inferring the prior

Defining the matrix-valued map Cmat : F → Rn×m≥0 as

Cmat(f) :=


Cθ11 (f) Cθ21 (f) . . . Cθm1 (f)

Cθ12 (f) Cθ22 (f) . . . Cθm2 (f)
...

...
...

Cθ1n (f) Cθ2n (f) . . . Cθmn (f)

 ,

we have Cq(fq) = Cmat(fq) · q and so (5.7) can be rewritten as(
Cmat
p (fq)− Cmat

r (fq)
)
q = 0, for all p, r with fqp , f

q
r > 0,(

Cmat
p (fq)− Cmat

r (fq)
)
q ≤ 0, for all p, r with fqp > 0, fqr = 0,

(5.8)

where Cmat
p (f) denotes the p-th row of Cmat(f). Given a q-WE fq, the above gives

constraints on the possible values that the prior can take. We see that observing the
WE flow fq supplies us with constraints on the prior q, and in this way, observing
equilibria can help us identify the prior. Most information can of course be obtained
from the equality constraints, though it is also possible that a combination of equality
and inequality constraints together result in additional equality constraints. We
also note that in addition to the above we have

∑
s∈[m] qs = 1, which is linearly

independent from all equality constraints obtained from (5.8)2. We thus find a
number of linearly independent equality constraints on q. However, since q ∈ Rm

we need m such constraints to uniquely determine q, and there is no guarantee
that observing a flow fq ∈ Wq will give that number of independent constraints.
If we do not obtain enough information by observing fq, we can instead use a
public signalling scheme Φ to induce different posteriors for the population. These
posteriors will lead to different equilibrium flows resulting in equality constraints of
the form (5.8), where q and fq are replaced with q̃ and f q̃, respectively. Using (5.5),
these constraints on the posterior q̃ = q̃ζ

u

can be rewritten into constraints on the
prior q, by noting that

(
Cmat
p (f)− Cmat

r (f)
)
q̃ζ
u

=
∑
s∈[m]

φus
(
Cθsp (f)− Cθsr (f)

)
qs∑

`∈[m] φ
u
` q`

.

Thus constraints on the prior q imposed by observing the equilibrium flow f̃ζ
u

are of
the form ∑

s∈[m]

φus
(
Cθsp (f̃ζ

u

)− Cθsr (f̃ζ
u

)
)
qs = 0, (5.9a)

2An intuitive way to see this is as follows. When fq is fixed, for any q that satisfies the constraints in
(5.7), cq will also satisfy these constraints for any c ∈ R≥0. This is clearly not the case for the constraint∑
s∈[m] qs = 1
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∑
s∈[m]

φus
(
Cθkp (f̃ζ

u

)− Cθsr (f̃ζ
u

)
)
qs ≤ 0, (5.9b)

where (5.9a) holds for all p, r with f̃ζ
u

p , f̃ζ
u

r > 0 and (5.9b) holds for all p, r such that
f̃ζ

u

p > 0 and f̃ζ
u

r = 0. In the above conditions, the denominator has been dropped,
since it is the same for each term in the summation, and assumed to be positive. When
some of the constraints in (5.9) are linearly independent from those in (5.8), observing
f̃ζ

u

has thus supplied us with additional information on the prior. In this way, each
of the individual signals induces a flow that potentially reveals more information
about the prior to the TIS. To identify q completely, the set of all constraints obtained
from observing the flows induced by each signal must contain at least m linearly
independent constraints. For a given signalling scheme Φ we denote the set of all
priors satisfying all obtained constraints from all signals as

QΦ = {q ∈ ∆m
1 | q satisfies (5.9) for all u ∈ [z]}.

Though the above seems to depend on which specific q̃ζ
u

-WE f̃ζ
u

are observed we
will show in upcoming results, (specifically Corollary 5.2.9) that this is not the case.
We give the following definition:

Definition 5.2.1. (q-identifying signalling scheme): Given a set of paths P , states Θ, cost
functions C, and a prior q ∈ ∆m

1 , a signalling scheme Φ ∈ CS(s,m) is called q-identifying if
QΦ = {q}.

The goal of this chapter is to answer the question “How can we design Φ so as to
ensure that it is q-identifying?” Before we are ready to address this issue, we must
now first investigate the relations between the distribution ϕ, the associated ϕ-WE
fϕ, and the related edge-flows fϕek .

5.2.1 Probability distribution and equilibrium

The results in upcoming sections build upon three lemmas presented here, which
give insight into how the edge-flows under ϕ-WE, path-flows under ϕ-WE, and the
distribution ϕ relate to each other. To ease the exposition of the first lemma, we
introduce the following notation:

Fe := {v ∈ R|E|≥0 | ∃f ∈ F such that vk = fek for all k ∈ [|E|]}.

Note that since F is compact, so is Fe. Our first lemma makes use of this set to show
that the edge-flows under ϕ-WE change continuously with respect to ϕ.
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Lemma 5.2.2. (Continuity of ϕ-WE edge-flows): Let P , Θ, and C be given. For every
ε > 0, there exists a δ > 0 such that for any two distributions ϕ, ξ ∈ ∆m

1 , we have

‖ϕ− ξ‖ < δ ⇒
∣∣fϕek − fξek ∣∣ < ε for all ek ∈ E .

In other words, the edge-flows under ϕ-WE depend continuously on the distribution ϕ.

Proof. For ϕ ∈ ∆m
1 , recall the notation of Cϕek from (5.2). Following [55], a flow vector

fϕ ∈ F is a ϕ-WE if and only if it is a solution of the following optimization problem:

min
f∈F

∑
ek∈E

∫ fek

0

Cϕek(t)dt, (5.10)

where for a path-flow f , the quantity fek is the corresponding flow on edge ek given
by fek =

∑
p3ek fp. Recall from [9] that while the ϕ-WE need not be unique, the

edge-flows induced by them are. Thus, following (5.10), the edge-flows associated to
ϕ-WE are given by the unique solution of the following problem:

min
fe∈Fe

∑
k∈[|E|]

∫ fek

0

∑
s∈[m]

ϕsC
θs
ek

(t)dt. (5.11)

Consider the above optimization problem with ϕ as a parameter. Given ϕ, denote
the optimal solution as fϕedge. Since the objective function of the above problem
depends linearly on ϕ and the domain is compact and independent of ϕ, we deduce
from [56, Proposition 4.4] that the map ϕ 7→ fϕedge is continuous. This concludes the
proof.

To ease the exposition of the next result, we define

Ruse
ϕ := {p ∈ P | ∃fϕ ∈ Wϕ such that fϕp > 0}.

That is,Ruse
ϕ denotes the set of all paths p for which there exists a ϕ-WE such that a

positive amount of flow is routed onto path p. We call these paths the used paths. The
set of ϕ-WE then has the following useful properties:

Lemma 5.2.3. (Characterizing used paths of ϕ-WE): Let P , Θ, C, and ϕ ∈ ∆m
1 be given.

We have the following:

1. There exists an fϕ ∈ Wϕ satisfying fϕp > 0 for all p ∈ Ruse
ϕ .

2. We have p ∈ Ruse
ϕ if and only if fϕek > 0 for all ek ∈ p.
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Proof. The first claim follows from the fact that the setWϕ is convex. This can be
deduced from (5.4) and noting that if two path flows induce the same edge flow,
then any convex combination of these flows will still induce that same edge flow. To
see that the first claim then follows let the flow fϕ,r ∈ Wϕ denote a WE satisfying
fϕ,rr > 0 for r ∈ Ruse

ϕ . Such a flow exists by the definition ofRuse
ϕ . Next select scalars

cr > 0 for all r ∈ Ruse
ϕ such that

∑
r∈Ruse

ϕ
cr = 1. Using the selected WE flows and

scalars, define fuse :=
∑
r∈Ruse

ϕ
crf

ϕ,r. Note that fuse ∈ Wϕ as this set is convex.
Finally, by definition of {fϕ,r, cr} and the fact that all WE flows are non-negative, we
deduce that fuse

r > 0 for all r ∈ Ruse
ϕ . This establishes the first claim.

For the second claim, the “only if” part is easier to deduce. Let p ∈ Ruse
ϕ and

let fϕ,p ∈ Wϕ satisfy fϕ,pp > 0. Since fϕ,pr ≥ 0 for all r ∈ P , and fek =
∑
p3ek fp,

it follows that fϕ,pek
> 0 for all ek ∈ p. For the other direction we only provide a

sketch of the arguments here. In it we make use of some properties of equilibrium
flows which are straightforward, but cumbersome to establish formally, which is
why, in the interest of space, we have chosen to omit a more formal proof. For a more
detailed discussion on the subject we refer to [57].

For the sketch of the proof, first note that for a ϕ-WE, a total flow of unity enters
and leaves the network at the origin and destination, respectively, while for all
other vertices the flow satisfies mass-conservation constraints. That is, the total flow
entering and leaving a vertex are equal. Second, it can also be shown that ϕ-WE does
not contain any cycle with a positive amount of flow on all its edges. To see this,
note that reducing the flow equally from all edges in such a cycle will preserve mass
conservation and inflow and outflow constraints, while the value of (5.11) decreases.
Thus, with the presence of a positive-flow cycle, the path-flow can not be a ϕ-WE.
Lastly, consider any path p such that fϕek > 0 for all ek ∈ p. Set fϕp := minek∈p f

ϕ
ek

and
then subtract fϕp of flow from all edges in p. The new flow will then still satisfy mass-
conservation constraints, but the inflow and outflow at the origin and destination
have both decreased by fϕp . Continue this procedure until all flow has been assigned
and the result is a feasible flow fϕ which induces the same edge-flow as any ϕ-WE.
Therefore, fϕ is a WE, and it satisfies fϕp > 0 for any desired p ∈ Ruse

ϕ by construction,
which concludes the proof. The procedure of assigning flow in this way is treated in
more detail in [57, Theorem 2.1].

In our next result we show that for a given f ∈ F , the set of all distributions ϕ
such that f ∈ Wϕ is compact and convex.

Lemma 5.2.4. (Convexity of set of distributions inducing the same ϕ-WE): Let P , Θ,
C, and f ∈ F be given. The set of distributions ϕ with f ∈ Wϕ is compact and convex.

Proof. For any distribution ϕ ∈ ∆m
1 , we have f ∈ Wϕ if and only if the constraints in

(5.7) hold, where q and fq are replaced with ϕ and f , respectively. Since f is fixed,
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the map Cmat(f) is also fixed and we see that (5.7) imposes a number of equality and
non-strict inequality constraints on ϕ, all of which are affine. Therefore, the set of
ϕ satisfying these constraints is convex and closed. Since distributions belong to a
compact set ∆m

1 , the claim follows.

We illustrate the implications of Lemma 5.2.4 using the following examples. For
simplicity’s sake, we have chosen examples such that the ϕ-WE are unique.

Example 5.2.5. (Demonstration of Lemma 5.2.4): Consider a 2-path, 2-state network,
with cost functions given by

Cθ11 (f) = 0.8f2 + 0.7, Cθ21 (f) = 0.1f2 + 0.2,

Cθ12 (f) = 0.3f1 + 0.2, Cθ22 (f) = 0.5f1 + 0.5.

Figure 5.3 shows the relationship between the ϕ-WE and the distribution ϕ.
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0.2

0.4

0.6

0.8

1

Figure 5.3: A graph showing the relation-
ship between the ϕ-WE and the distribu-
tion ϕ for a 2-path, 2-state scenario.
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Figure 5.4: A graph showing the relation-
ship between the ϕ-WE and the distribu-
tion ϕ for a 4-path, 2-state scenario.

Note that since ϕ2 = 1− ϕ1 the distributions ϕ in the above figures are completely
defined by the value ϕ1. Figure 5.3 shows that the ϕ-WE remains constant in two
convex regions, namely when ϕ1 ≤ 0.133 and when ϕ1 ≥ 0.8. In one of these cases
we have fϕ = fθ1 = (1, 0)> and in the other fϕ = fθ2 = (0, 1)>.

Next we consider a 4-path, 2-state network, with the following cost functions:

Cθ11 (f) = f1 + 1, Cθ21 (f) = 0.4f1 + 4,

Cθ12 (f) = 0.5f2 + 1.7, Cθ22 (f) = 0.5f2 + 1.7,

Cθ13 (f) = 0.4f3 + 1.8, Cθ23 (f) = 0.4f3 + 1.8,

Cθ14 (f) = 0.4f4 + 3.5, Cθ24 (f) = 0.6f4 + 1.

(5.12)
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Figure 5.4 shows the dependency between the distribution and the WE. We see that
the situation has changed compared to the 2-path, 2-state case. Here we find a region
in which the ϕ-WE remains constant while not equal to fθ1 or fθ2 or having all flows
on one path. The sets of distributions in which the ϕ-WE remains constant are still
convex, as claimed in 5.2.4

Although it is perhaps not directly apparent from Lemma 5.2.4, a consequence of
that result is that for any distribution which is not in a convex set where the ϕ-WE
remains constant, the associated ϕ-WE is unique to that distribution. When such
a flow is observed, we can derive the unique distribution which induced it. If a
ϕ-WE is observed that can be induced by multiple distributions, we can at best limit
the distribution that induced the flow to a set. Intuitively regions of ∆m

1 where the
ϕ-WE remains constant are less helpful in identifying q, and should be avoided when
attempting to design a q-identifying signalling scheme. •

5.2.2 Existence of q-identifying signalling schemes

We are now ready to address the existence of signalling schemes which are q-
identifying. Our strategy involves first showing existence for the simplified case
where there are only two states; i.e. Θ = {θ1, θ2}. Later we can use this result for the
more general case Θ = {θ1, · · · , θm}, m ∈ N by designing our signalling scheme Φ in
such a way that the resulting posteriors only assign positive probability to exactly
two states. A key element of designing such a scheme is the set of flows that provide
information regarding the distribution that induced it. In particular, for the case
Θ = {θ1, θ2}, we define the set of informative flows Finf as follows:

Finf := {f ∈ F | f /∈ Wθ1 ∪Wθ2 , fp > 0 ∀p ∈ Ruse
ϕθ1 }. (5.13)

That is, Finf is the set of all flows that are not in the set of ϕθ1 - or ϕθ2 -WE, but which
do contain a positive amount of flow on all paths that have a positive amount of
flow for some ϕθ1 -WE. The importance of this set lies in the fact that for the two-state
case, observing a flow from this set allows us to uniquely identify which distribution
induced that flow.

Remark 5.2.6. (Sufficiency of Finf ): We note that it is not necessary for a flow fϕ to
lie in Finf in order to allow ϕ to be identified. Any flow fϕ that can only be induced
by a unique distribution ϕ will, when observed, necessarily allow us to identify the
distribution ϕ that induced it, while the set Finf limits the attention to flows with
a special relation to the flows inWθ1 . The set Finf is however of special import in
the coming results because under mild assumptions, we can identify conditions that
allow the flow induced by a signal to be contained in Finf . •
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88 5. Inferring the prior

Before we discuss our results, we collect two useful properties of ϕ-WE here, both
of which follow from the fact that a flow is a ϕ-WE if and only if it induces the same
unique edge flow as all other ϕ-WE, as mentioned before in (5.4). The first property
implies that for two distributions, the induced sets of WE overlap if and only if they
are equal.

Lemma 5.2.7. (Intersection of sets of WE induced by two distributions): Let P , Θ, C,
and two distributions ϕ, ξ ∈ ∆m

1 be given. Then,Wϕ 6=Wξ if and only ifWϕ ∩Wξ = ∅.

The second property is that for two flows which are both WE induced by the
same distribution, the sets of all distributions for which the first and the second flow
is a WE, respectively, are equal.

Lemma 5.2.8. (Equality of sets of distributions inducing two ϕ-WE): Let P , Θ, and C
be given. For ξ ∈ ∆m

1 , if we have fξ ∈ Wξ and qfξ ∈ Wξ, then

{ϕ ∈ ∆m
1 | fξ ∈ Wϕ} = {ϕ ∈ ∆m

1 | qfξ ∈ Wϕ}.

A useful consequence of the above is that QΦ is independent of which q̃ζ
u

-WE
flow is observed for each signal ζu.

Corollary 5.2.9. (Equal informativity of all qζ
u

-WE.): Let P , Θ, C, a signalling scheme
Φ ∈ CS(z,m) and a signal ζu be given. For any f̃ζ

u

, qfζ
u ∈ Wζu the set of all priors ϕ ∈ ∆m

1

satisfying (5.9) is the same.

Proof. The result follows by applying Lemma 5.2.8 to the routing game where the
cost functions Cθsp (·) are replaced with φusCθsp (·).

Our first result considers the two-state case, and shows that there exists a set of
distributions which induce flows in Finf .

Lemma 5.2.10. (Distributions leading to Finf ): Let P , Θ, and C be given, where
Θ = {θ1, θ2} andWθ1 6=Wθ2 . LetFinf be as given in (5.13). There exist distributions ξ 6= η

with ξ1 > η1 such that for any ϕµ := µϕθ1 + (1− µ)ξ, µ ∈ [0, 1] we haveWϕµ = Wθ1 ,
and for any ϕλ := λξ + (1− λ)η, λ ∈ (0, 1) there exists fϕλ ∈ Wϕλ such that

fϕλ ∈ Finf . (5.14)

Proof. First we aim to find the distribution ξ := (ξ1, 1− ξ1). Pick any fθ1 ∈ Wθ1 .
From Lemma 5.2.4, the set of distributions ϕ ∈ ∆2

1 with fθ1 ∈ Wϕ is convex and
compact. That is, there exists a c ∈ [0, 1] such that fθ1 /∈ Wϕ for all ϕ ∈ ∆2

1 with
ϕ1 < c and fθ1 ∈ Wϕ for all ϕ ∈ ∆2

1 with ϕ1 ≥ c. In addition, by Lemma 5.2.7,
fθ1 ∈ Wϕ for some ϕ if and only if Wϕ = Wθ1 . Combining these two facts and
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setting ξ := (c, 1 − c) yields that: (a)Wϕµ = Wθ1 for all ϕµ = µϕθ1 + (1 − µ)ξ and
µ ∈ [0, 1]; and (b) for all ϕ ∈ ∆2

1 with ϕ1 < ξ1 and all fϕ ∈ Wϕ, we have fϕ /∈ Wθ1 .
The latter item (b) shows that ξ1 > 0 which is essential for a η distribution with
η1 < ξ1 to exist. To see that ξ1 > 0, note that Wθ1 6= Wθ2 and by Lemma 5.2.7,
Wθ1 ∩ Wθ2 = ∅. This statement will contradict if ξ1 = 0 as then, Wϕµ = Wθ2 for
µ = 0. The next step is to find the distribution η := (η1, 1− η1). Let fξedge be the edge-
flows associated with any ξ-WE. Pick any p ∈ Ruse

η and by the second implication
of Lemma 5.2.3, (fξedge)k > 0 for all ek ∈ p. By continuity property of Lemma 5.2.2,
there exist δξ > 0 such that (fηedge)k > 0 for edge-flows associated to any η-WE where
‖ξ − η‖ < δξ. This along with the second implication of Lemma 5.2.3 implies that
Ruse
ξ ⊆ Ruse

η for all η satisfying ‖ξ − η‖ < δξ. This along with the fact Wξ = Wθ1

shown above, gives us

Ruse
ϕθ1 ⊆ R

use
η ,

for all η satisfying ‖ξ − η‖ < δξ. From the first claim of Lemma 5.2.3, there exists
fη ∈ Wη such that fηp > 0 for all p ∈ Ruse

ϕθ1
. Further, restricting our attention to

η with η1 < ξ1, we also know that fη /∈ Wθ1 . To establish (5.14), we now show
that fη ∈ Finf . Given the above properties of fη, all that remains to be shown to
prove fη ∈ Finf is that setting δξ small enough ensures fη /∈ Wθ2 . For this, note that
since Wθ1 ∩ Wθ2 = ∅, we have fθ1edge 6= fθ2edge. Consequently, by Lemma 5.2.2 and
Wξ =Wθ1 , it follows that there exists δ0 > 0 such that ‖ξ − η‖ < δ0 gives fη /∈ Wθ2 .
Thus, setting δξ < δ0 implies that for any η ∈ ∆2

1 with ‖ξ − η‖ < δξ and η1 < ξ1 there
exists fη ∈ Wη such that fη ∈ Finf . Fixing η1 as the infimum over all values for
which ‖ξ − η‖ < δξ holds finishes the proof.

Figure 5.4 can help us gain some intuition about the implications of Lemma 5.2.10.
Under the given assumptions, the result divides the set ∆2

1 of all distributions into
three convex regions. The first region is compact, and for any distribution inside of it
the induced flows are contained inWθ1 . In Figure 5.4 we see that this region is the
singleton set {(0, 1)}. The second region is a convex and open set of distributions
bordering the first region, for which the induced flows are in Finf . In Figure 5.4 this
would be all distributions between ϕ1 = 1 and the first point where the flow on path
1 becomes zero. Note that any flow in this region is induced by a unique distribution.
The third region then contains all other distributions. Note that in this third region
there are still flows that are uniquely associated with only one distribution.

The next result shows that if for a given distribution ϕ there exists a ϕ-WE fϕ

such that fϕ ∈ Finf , then the constraints (5.8) for any ϕ-WE uniquely determine ϕ.

Lemma 5.2.11. (Informativity of flows in Finf ): Let P , Θ = {θ1, θ2}, C, and ϕ ∈ ∆2
1 be

given. If there exists fϕ ∈ Wϕ satisfying fϕ ∈ Finf , then ϕ is the unique solution to (5.8)
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for any ϕ-WE qfϕ ∈ Wϕ.3

Proof. Let fϕ,1 ∈ Wϕ be a flow such that fϕ,1p > 0 for all p ∈ Ruse
ϕ , which exists by

Lemma 5.2.3. By assumption, there exists a WE fϕ,2 ∈ Wϕ satisfying fϕ,2 ∈ Finf . Let
qfϕ ∈ Wϕ be defined as qfϕ := λ1f

ϕ,1 + λ2f
ϕ,2 for some λ1, λ2 > 0 with λ1 + λ2 = 1.

Note that qfϕp > 0 for all p ∈ Ruse
ϕ ∪ Ruse

θ1
and one can select λ1 and λ2 additionally

to ensure qfϕ ∈ Finf . Picking such constants and noting the definition of Finf , we
have qfϕ /∈ Wθ1 , meaning that qfϕ is not a ϕθ1-WE. We will next show that ϕ is the
unique solution to (5.8) where fq is replaced with qfϕ and q is treated as a variable to
be solved for. Note that since qfϕ is not a ϕθ1 -WE, there exist paths p, r ∈ P such that
qfϕp > 0 and

Cθ1p ( qfϕ) > Cθ1r ( qfϕ). (5.15)

Consider two cases: (a) qfϕr > 0 and (b) qfϕr = 0. For case (a), from (5.8), we obtain an
equality constraint of the form(

Cθ1p ( qfϕ)− Cθ1r ( qfϕ) Cθ2p ( qfϕ)− Cθ2r ( qfϕ)
)
ϕ = 0.

Since Cθ1p ( qfϕ) 6= Cθ1r ( qfϕ) this constraint along with ϕ1 + ϕ2 = 1 gives us two linearly
independent equality constraints on ϕ. Since ϕ ∈ R2 this implies that ϕ is the only
distribution that satisfies the constraints in (5.8). We next show that case (b), with
qfϕr = 0, does not occur. To be precise, we claim that for qfϕ /∈ Wθ1 , there exists at
least one pair of paths p, r ∈ P satisfying (5.15) where both qfp > 0 and qfr > 0. To
show this, we proceed with a contradiction argument. Assume there does not exist
such a pair of paths. This implies two things: 1) Cθ1p ( qfϕ) = Cθ1r ( qfϕ) for all p, r ∈ P
such that qfϕp > 0 and qfϕr > 0; 2) if Cθ1p ( qfϕ) > Cθ1r ( qfϕ) for some p such that qfϕp > 0

this implies qfϕr = 0. Now consider the graph G′ = (V ′, E ′) with V ′ = V and E ′ ⊆ E
such that ek ∈ E ′ if and only if ( qfϕedge)k > 0, where qfϕedge is the vector of edge-flows
associated to qfϕ. To all edges in E ′ associate the same state-dependent cost functions
as in the original network, and consider the same set of states Θ. This defines a
new routing game over the network G′. Note that for any p ∈ P such that qfϕp > 0,
we have by Lemma 5.2.3 that ( qfϕedge)k > 0 for all ek ∈ p. Thus, when qfϕp > 0 and
ek ∈ p, then ek ∈ E ′. Therefore, qfϕp > 0 implies p ∈ P ′. Thus, we can define a feasible
flow for the modified game by setting f ′ϕp := qfϕp for all p such that qfϕp > 0. Since
cost functions over the used edges have not changed, if for two paths p and r we
have Cθ1p ( qfϕ) = Cθ1r ( qfϕ), then C ′θ1p (f ′ϕ) = C ′θ1r (f ′ϕ). Now recall that if there was
a path r in the original game such that Cθ1p ( qfϕ) > Cθ1r ( qfϕ) for some p satisfying
qfϕp > 0, then by 2) we have qfϕr = 0. Since qfϕp > 0 for all p ∈ Ruse

ϕ by construction,

3Here we replace fq in (5.8) with qfϕ and treat q as a variable that can be solved for.
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we deduce that fr = 0 for all f ∈ Wϕ. Using the second implication of Lemma 5.2.3
we see that there exists some edge ek ∈ r such that ( qfϕedge)k = 0. Therefore, the edge
ek has been removed in the modified game, and it follows that the path r is not
present in the modified game. In conclusion, we have C ′θ1p (f ′ϕ) = C ′θ1r (f ′ϕ) for all
p, r ∈ P ′ which implies that f ′ϕ is a ϕθ1-WE for the modified game. Now consider
any flow fθ1 ∈ Wθ1 . If fθ1p > 0, then p ∈ Ruse

ϕθ1
, which implies qfϕp > 0. Repeating the

above arguments then shows that p ∈ P ′. Thus, we can define a feasible flow for
the modified game by setting f ′′θ1p := fθ1p . Similar to before we have that since fθ1

is a ϕθ1-WE of the original game this implies that f ′′θ1 is a ϕθ1-WE for the modified
game. However, since qfϕ ∈ Finf , we have qfϕ /∈ Wθ1 which implies that qfϕedge 6= fθ1edge.
This means we obtain two ϕθ1 -WE, namely f ′ϕ and f ′′θ1 for the modified game with
unequal edge-flows. This contradicts the uniqueness of edge-flow under ϕθ1-WE.
Thus we arrive at a contradiction. Therefore there do exist p, r ∈ P such that qfϕp > 0,
qfϕr > 0, and (5.15) holds. Therefore, ϕ is uniquely determined by the constraints
in (5.8). From Lemma 5.2.8, we have that for any qfϕ ∈ Wϕ the set of priors satisfying
the constraints imposed by (5.8) is the same, which then concludes the proof.

Now we are ready to present the main result of this section. In it we make use of
Lemma’s 5.2.10 and 5.2.11 to design a signalling scheme for which all but one of the
signals give an equality constraint on the prior, showing that there always exists a
signalling scheme using m messages that is q-identifying.

Proposition 5.2.12. (Existence of q-identifying signalling scheme): LetP , Θ, C, and q be
given, and assume thatWθ1 6=Wθ2 .4 Then, there exists a signalling scheme Φ ∈ CS(m,m)

of m messages that is q-identifying.

Proof. Our proof will be constructive. Recall the matrix notation of the signalling
scheme, that is, Φ = (φus )u,s∈[m], where φus is the (u, s)-th entry of the matrix and
denotes the probability of sending signal ζu under the state θs. We will proceed
row-by-row starting from the second row of Φ.

Step 1: Constructing the second row: Set φ2
s = 0 for all s ∈ [m] \ {1, 2}. Using (5.5)

we obtain the posterior distribution under the message ζ2 as

q̃ζ
2

1 =
φ2

1q1

φ2
1q1 + φ2

2q2
, q̃ζ

2

2 =
φ2

2q2

φ2
1q1 + φ2

2q2
,

q̃ζ
2

s = 0, for all s ∈ [m] \ {1, 2}.
(5.16)

Since q1 and q2 are non-zero by assumption, one can tune φ2
1 and φ2

2 to induce any
posterior q̃ζ

2

satisfying 0 < q̃ζ
2

1 < 1 and q̃ζ
2

1 = 1 − q̃ζ
2

2 . By construction we then
4By relabelling the states we can see that this assumption is equivalent to assuming the existence of

two states θk, θ` ∈ Θ such that Wθk 6= Wθ` .
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have φ2
1, φ

2
2 > 0. In the following, we will outline the procedure for tuning these

parameters such that the flow induced by signal ζ2 results in an equality constraint
for the prior q.

Observe that when considering the signal ζ2, we have simplified the situation by
removing the influence from all but the first two states on the posterior (by setting
φ2
s = 0 for s = 3, 4, . . . ). That is, we have effectively reduced the analysis to a two

state case, as analysed in Lemma’s 5.2.10 and 5.2.11. Consequently we can appeal to
Lemma 5.2.10 to conclude that there exists a posterior q̃, with q̃1 ∈ (0, 1), q̃2 = 1− q̃1,
and q̃s = 0 for all s = [m]\{1, 2}, such that there exists a q̃-WE f q̃ satisfying f q̃ ∈ Finf ,
where Finf is given in (5.13). From Lemma 5.2.11 we know that if there exists a q̃-WE
that lies in Finf , then the constraints in (5.8) generated by any q̃-WE allow for unique
identification of q̃.5 Now pick φ2

1 and φ2
2 such that the posterior q̃ with f q̃ ∈ Finf is

induced under the signal ζ2. Consequently, substituting q̃ = q̃ζ
2

into (5.16) then gives
the constraint

φ2
2

φ2
1(1− q̃1)

q2 = q1. (5.17)

This constraint is well-posed and non-trivial since φ2
2 and φ2

1 are non-zero by design,
and as noted q̃1 = q̃ζ

2

1 < 1. Thus, by tuning the values φ2
1 and φ2

2, we can find an
equality constraint (5.17) on the prior.

Step 2: Constructing rows 3 through m: For row s /∈ {1, 2} Lemma 5.2.7 and
Wθ1 6= Wθ2 imply that we have either Wθs = Wθ1 , in which case Wθs 6= Wθ2 , or
we have Wθs 6= Wθ1 . In other words, there exists a state θ` with ` < s such that
Wθs 6= Wθ` . By setting φss′ = 0 for all s′ /∈ {s, `} we can, similar to before, induce
any posterior q̃ = q̃ζ

s

such that q̃s′ = 0 for all s′ /∈ {s, `} and so, q̃s = 1− q̃`. We can
then repeat the previous arguments to show that by tuning φss and φs` we can obtain
a well-posed, non-trivial equality constraint on q of the form

φss
φs`(1− q̃`)

qs = q`.

This equality constraint is necessarily linearly independent from the other equality
constraints obtained in this manner. To see this note that the constraint generated by
row s involves qs, while the set of constraints generated by the rows s′ < s do not
involve qs by construction. Thus, in this manner we obtainm−1 linearly independent
equality constraints q.

Step 3: Constructing the first row: Once we have constructed the rows 2 through m
of Φ, we select the elements of the first row such that each column of Φ sums to one.
This is always possible and a short procedure is given in Algorithm 1.

5That is, it allows us to determine q̃1, and q̃2. Since we already know that q̃s = 0 for all s /∈ {1, 2} this
fully identifies q̃.



627714-L-bw-Verbree627714-L-bw-Verbree627714-L-bw-Verbree627714-L-bw-Verbree
Processed on: 8-1-2024Processed on: 8-1-2024Processed on: 8-1-2024Processed on: 8-1-2024 PDF page: 101PDF page: 101PDF page: 101PDF page: 101
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Finally, note that with the m− 1 linearly independent equality constraints and the
additional independent constraint 1>q = 1 derived from the condition that q ∈ ∆m

1

lies in the simplex, we obtain m constraints that uniquely identify q.

Remark 5.2.13. (Drawbacks of signals limited to two states): In the proof of Proposi-
tion 5.2.12 we make use of a specific kind of signalling scheme in which each signal
except the first has a positive chance of being sent only in two states, and the first
signal is used to ensure that the signalling scheme satisfies all the required constraints.
Mathematically, the signalling scheme belongs to the set

Ssig :=
{

Φ ∈ CS(m,m) | ∀ s ∈ [m] \ {1}, ∃` < s

such thatWθs 6=Wθ` , and φss′ = 0⇔ s′ 6∈ {s, `}
}
.

(5.18)

Such a scheme is used because for each signal, as mentioned, the situation is effec-
tively reduced to a two state case, allowing for simpler analysis. However, such a
scheme is limited in that it can derive at most one equality constraint from a signal.
If a signal can be sent in more than two states, more information may be gained.
Analysis however becomes more difficult, since it is not clear if and how the result of
Lemma 5.2.10 can be generalized to a case involving more than two states. •

5.2.3 Designing the signalling scheme

With the existence of a q-identifying signalling scheme guaranteed under mild con-
ditions, the next step would be to give guidelines for how such a scheme can be
designed. For this purpose we provide Algorithm 1, which using observations of the
flow under various signals, updates a signalling scheme until it is q-identifying. The
algorithm uses signalling schemes in the set (5.18), and requires the assumption of
Proposition 5.2.12 that the setsWθ1 andWθ2 are not equal.

[Informal description of Algorithm 1]: The procedure starts with an initial
Φ(0) of the form (5.18), such that for each signal s ∈ [m] \ {1} exactly two
elements in the s-th row of Φ(0) are non-zero. One of these elements is
φss and the other is denoted φs`(s) (cf. Line 1). At each iteration N , and

for each row s ∈ I, we check whether the flow f̃ζ
s

observed under the
signalling scheme Φ(N) when sending signal ζs results in an equality
constraint on q (cf. Line 8). If it does, then row s of Φ(N) is not updated
in the for-loop and the ratio between φss and φk`(s) remains the same for
all subsequent iterations (cf. Lines 4 and 9). If not, then we consider two
cases. In the first case, the flow f̃ζ

s ∈ Wθs and the values φss and φs`(s) are
updated so as to increase the ratio φs`(s)/φ

s
s in signalling scheme Φ(N + 1).
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In this way, the posterior induced by signal s in the next iteration will
assign less probability to state θs. This increase in ratio is achieved in
Lines 11 through 15. In the second case, f̃ζ

s

/∈ Wθs and we decrease the
ratio φs`(s)/φ

s
s in Line 18. After modifying rows in this way, the signalling

scheme Φ(N + 1) is updated in Lines 21-24 so as to ensure that each
column sums to unity while preserving the ratios φs`(s)/φ

s
s.

The above procedure identifies the right signalling scheme, and can also determine
the prior, since the obtained constraints define it uniquely. Next we establish the
correctness of Algorithm 1.

Proposition 5.2.14. (Convergence of Algorithm 1): Let P , Θ, C, and q be given, and
assume thatWθ1 6=Wθ2 . Then, Algorithm 1 terminates in a finite number of iterations Nf ,
and the resulting signalling scheme Φ(Nf ) is q-identifying.

Proof. For a signal s ∈ [m] \ {1}, we look at the properties of f̃ζ
s

, lows(N), ups(N),

and rs(N) :=
φs`(s)
φss

as the algorithm iterates. We first show that lows(N) ≤ ups(N)

for all N , which holds by definition for the initial iterate. We suppress the argument
N in the following few statements for the sake of convenience. Observe that the
signalling scheme maintains the same sparsity pattern, of the form (5.18), in all
iterations. That is, φsi = 0 for all i /∈ {`(s), s} and all iterations. This effectively
reduces the analysis to that of a two-state situation, meaning that the posterior under
signal ζs, denoted q̃ = q̃ζ

s

, satisfies q̃i = 0 for all i /∈ {`(s), s} and any choice of φs`(s),
φss. From Lemma 5.2.10, there exist constants as ∈ (0, 1] and cs ∈ (0, 1) with as > cs
such that

q̃s ≥ as ⇒W q̃ ∩Wθs = ∅,
as > q̃s > cs ⇒ ∃f q̃ ∈ W q̃ such that f q̃ ∈ Finf .

6 (5.19)

From (5.5), we have

q̃s =
φssqs

φssqs + φs`(s)q`(s)
=

qs

qs +
φs
`(s)

φss
q`(s)

.

Note that the influence of Φ on q̃s is completely determined by the ratio rs =
φs`(s)
φss

and that q̃s is monotonically decreasing in rs with limrs→∞ q̃s = 0 and limrs→0 q̃s = 1.
Thus, given (5.19), and the relationship between q̃s and rs, we deduce that there exist
constants bs ≥ 0 and ds > bs such that

rs ≤ bs ⇒ f q̃ ∈ Wθs ,

ds > rs > bs ⇒ f q̃ ∈ Finf .
(5.20)

6Here q and fq in (5.8) are replaced with q̃ and f q̃ respectively.
7Here, instead of considering all f ∈ H we only consider flows f for which there exists a

ϕ ∈ {ξ ∈ ∆m
1 | ξs′ = 0, for s′ /∈ {`(s), s}} \ {ϕθs}s∈[m] such that f ∈ Wϕ in the definition of Finf .
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Algorithm 1: Find q-identifying Signalling Scheme
Initialize :An index set I = {2, 3, · · · ,m}, counter N = 0, lower and upper

bounds lows(0) = 0, ups(0) =∞ for all s ∈ I, a signalling scheme
Φ(0) ∈ Ssig using (5.18)

1 For all s ∈ I set `(s) 6= s such that φs`(s)(0) 6= 0

2 Compute fθs for all s ∈ [m] by solving VI(H, Cθs)
3 while I 6= ∅ do
4 Set φji (N + 1)← φji (N) for all i ∈ [m] and j ∈ [m] \ I
5 for s ∈ I do
6 Obtain f̃ζ

s

under scheme Φ(N) and signal ζs

7 Check if q̃ζ
s

is uniquely determined by (5.8) 7

8 if q̃ζ
s

is uniquely identified then
9 Set I ← I \ {s}

10 else if f̃ζ
s ∈ Wθs then

11 Set lows(N + 1)← φs`(s)(N)

φss(N) ,

ups(N + 1)← ups(N), and

φss(N + 1)← φss(N)

12 if ups(N + 1) =∞ then
13 Set φs`(s)(N + 1)← 2φs`(s)(N)

14 else
15 Set φs`(s)(N + 1)← 1

2

(
lows(N + 1) + ups(N + 1)

)
φss(N)

16 end
17 else
18 Set ups(N + 1)← φs`(s)(N)

φss(N) ,

lows(N + 1)← lows(N), and

φss(N + 1)← φss(N)

φs`(s)(N + 1)←
1
2

(
lows(N + 1) + ups(N + 1)

)
φss(N)

19 end
20 end
21 Set a = maxi∈[m]

∑
j∈[m]\{1} φ

j
i (N + 1).

22 Set Φ(N + 1)← 1
aΦ(N + 1)

23 for s ∈ [m] do
24 Set φ1

s(N + 1)← 1−
∑
j∈[m]\{1} φ

j
s(N + 1)

25 end
26 Set N ← N + 1

27 end
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With this in mind, we now analyse the evolution of lows and ups. Note that lows is
only changed in line 11 of the algorithm. Here we set lows(N) = rs(N) whenever
f q̃ ∈ Wθs and thus from (5.20), lows(N) ≤ bk for all N . Similarly, ups(N) = rs(N)

whenever f q̃ /∈ Wθs and q̃ζ
s

is not uniquely identified. As shown in the proof of
Proposition 5.2.12, whenever f q̃ ∈ Finf we obtain an informative equality constraint.
From (5.20) we then conclude that ups(N) ≥ ds. We now have lows(N) < ups(N) for
all N . In fact, we have (bs, ds) ⊆

(
lows(N), ups(N)

)
for all N . We also note that since

ds > bs we have ds > 0 and bs <∞.
Now we look at the evolution of rs(N). We will show that rs(N) ∈ (bs, ds) for

some finite N and at that iteration, we obtain an informative equality constraint
corresponding to signal s. This in turn proves the termination of the algorithm in a
finite number of iterations. Consider three cases: (a) ds =∞; (b) bs = 0 and ds <∞;
and (c) otherwise. In case (a), at any N , we have either rs(N) ∈ (bs, ds) and we find
an informative equality constraint, or rs(N) ≤ bs, implying f q̃ = fθs . In the latter
case, rs(N + 1) = 2rs(N). Thus, there exists some N̄ such that rs(N̄) > bs, implying
rs(N̄) ∈ (bs, ds). Similarly, in case (b), we have either rs(N) ∈ (bs, ds) or rs(N) ≥ ds.
In the latter case, rs(N) is halved for the next iteration and so in a finite number of
steps rs reaches (bs, ds). In case (c), the arguments for case (a) and (b) can be repeated
to show that there exists N̄ such that lows(N̄) > 0 and ups(N̄) <∞. Looking at the
algorithm, we see that the quantity ups(N)− lows(N) is halved in every subsequent
iteration N ≥ N̄ . Since rs(N) always belongs to the interval

(
lows(N), ups(N)

)
, it

then reaches the set (bs, ds) in a finite number of iterations yielding an informative
equality constraint. Following these facts, we conclude that an informative equality
constraint is found in a finite number of iterations for each signal which completes
the proof.

Remark 5.2.15. (Practical considerations of implementing Algorithm 1): The purpose
of Algorithm 1 is to demonstrate how insights from Proposition 5.2.12 can be applied.
It gives a methodical approach for constructing a q-identifying signalling scheme.
However, it has several drawbacks worth noting:

1) The TIS can only send one signal at any instance which is dependent on the
observed state. Therefore, in practice, the TIS cannot send all signals in an ordered
manner at each iteration of the algorithm and then update Φ. Instead, it would be
best to update a row of Φ after each instance of a game when the used signal does not
induce a useful equality constraint. We have presented the algorithm in its current
form, rather than the practically implementable one, to simplify the exposition.

2) When additional information on the prior is available, such as a lower bound
qs ≥ ε > 0 which holds for all s ∈ [m], it may be possible to determine in advance
which signalling scheme will supply informative constraints on the prior. For instance
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looking at Figure 5.3, we see that whenever ϕ1 ∈ (0.133, 0.8) the result is a WE
belonging uniquely to the associated distribution. If we then have, for instance,
ϕ1, ϕ2 ≥ 0.25 it follows that for this example an uninformative scheme (with φus = 0.5

for all u, s ∈ [2]) is q-identifying.
3) As mentioned in Remark 5.2.13, it may be beneficial to allow a signal to be sent

in more than two states, in order to obtain multiple equality constraints from a single
signal. This may significantly reduce the number of iterations required to identify
the prior, especially in combination with the above mentioned possibility of using
additional knowledge about the prior to determine a signalling scheme in advance
that necessarily provides informative constraints.

4) Finally, we have only considered the question of identifying the prior. In
practice, the social cost incurred during identification is also important. For instance,
once a signal ζu has resulted in an equality constraint on q` and qs, that specific
signal is no longer required for identification and can be modified with the aim
of minimizing the social cost. However, the comparison between the benefits of
obtaining a better estimate of the prior and optimizing with respect to the current
estimate is more involved and left for future work. •

Example 5.2.16. (Application of Algorithm 1 in 4-path 2-state case): To shed light
on the conclusions of Proposition 5.2.12 and the workings of Algorithm 1, we revisit
the 4-path, 2-state case in Example 5.2.5. Setting q = (0.5, 0.5)>, and using the initial
signalling scheme

Φ(0) =

(
0.5 0.5

0.5 0.5

)
.

Using Φ(0) as a signalling scheme, (5.5) gives us q̃ζ
2

= q̃ = (0.5, 0.5)>. We can then
use the functions C q̃p(f) and (5.3) to find that f q̃ = (0, 5

9 ,
4
9 , 0)> is the flow observed

after sending signal ζ2. Even though two paths carry positive flow, the resulting
constraint is trivial, since Cθ22 ( 5

9 )−Cθ23 ( 4
9 ) = 0. In Figure 5.4 this can also be observed

by noting that q̃ = (0.5, 0.5)> is in a region of distributions where the flow remains
constant. We do have f q̃ 6= fθ2 which means that we will update Φ(0) according to
Line 18. Setting the values as prescribed there, we get φ2

1(1) = 0.25, φ2
2(1) = 0.5. In

Lines 21-24 we then update the first row to ensure that all columns of Φ(1) sum to
one, and thus we arrive at

Φ(1) =

(
0.75 0.5

0.25 0.5

)
.

Using the new signalling scheme we find q̃ζ
2

= q̃ = ( 1
3 ,

2
3 )>, resulting in the equilib-

rium f q̃ = (0, 32
68 ,

23
68 ,

13
68 )>. Substituting φ2

1(1), φ2
2(1) and f q̃ into (5.9), where we set
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p = 2, r = 4, we get (
1
4 ( 32

68
1
2 + 1.7− 2

5
13
68 − 3.5)

1
2 ( 32

68
1
2 + 1.7− 3

5
13
68 − 1)

)>
q = 0.

‘ Solving this we find q1 = q2. Taken together with q1 + q2 = 1 this implies that
q = (0.5, 0.5)>. Thus, the q-identifying scheme exists and is obtained in one iteration
of the algorithm. •

5.3 Multiple priors and robust identification

We finish this chapter with a discussion about possible generalizations of our setup
that can bring it closer to real-life implementation. First we discuss the case where
the population does not have a common prior, but is instead heterogeneous, meaning
that it is divided into groups, each adhering to their own prior, and later we show
how the signalling schemes that we obtain have some robustness with respect to
perturbations in the prior p.

5.3.1 Heterogeneous population

Consider the case where the population of users traversing the network are divided
into K groups, each containing users that share a common prior. In particular,
assume that ck ∈ (0, 1] is the fraction of users sharing the prior q[k] ∈ ∆m

1 and we
have

∑K
k=1 c

k = 1. We assume that each group k ∈ [K] uses the same set of available
paths. Note that we considered K = 1 in the earlier sections. After a public signal ζu

is received, each group k routes its fraction of the flow according to the q̃ζ
u

[k]-WE,
where q̃ζ

u

[k] is the posterior formed by group k under a signal ζu and some signalling
scheme Φ. The aggregated flow observed by the TIS is

f̃ζ
u

:=
∑
k∈[K]

ckf̃u,k, (5.21)

where f̃u,k is a q̃ζ
u

[k]-WE.
First, we note that for the case K = 2, where c1, c2 and q[1] are known, then

identification of q[2] can be achieved by following Algorithm 1. This is so because
for each signal we observe f̃ζ

u

while we know f̃u,1. Thus, following (5.21), one

gets f̃u,2 = f̃ζ
u
−c1f̃u,1
c2 . Identification of q[2] can then be done using Algorithm 1 by

perceiving the second group as the only one being routed. Next examine the case
where more than one prior is unknown. Here, even when the fractions c1 and c2 are
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known, it is not clear how to design a signalling scheme that can identify both priors.
The reason being that now we have an additional m unknowns as compared to the
case of single prior, while the amount of information that can be obtained from a
signalling scheme does not grow.

Finally, consider the case where all priors {q[k]} are known, but the fractions {ck}
are not. Here, for a given signalling scheme Φ ∈ CS(z,m), we define the following
matrix:

M :=



1 1 · · · 1

f̃1,1 f̃1,2 · · · f̃1,K

f̃2,1 . . .
...

...
f̃z,1 f̃z,2 · · · f̃z,K


(5.22)

and present the following result.

Lemma 5.3.1. (Identifying population size per prior): Let P , Θ, C be given, together
with pairs of fractions and priors {(ck, qk)}k∈[K], K ∈ N satisfying ck > 0 for all k ∈ [K]

and qk 6= q` for all k 6= `. A signalling scheme Φ ∈ CS(z,m) allows us to uniquely identify
the vector c := (c1, c2, · · · , cK)> if and only if rank(M) = K.

Proof. We know that c must satisfy 1>c = 1, since the fractions sum up to the whole
of the population. This, together with (5.21) and (5.22) implies that c must satisfy

Mc =
(

1, f̃ζ
1

, f̃ζ
2

, · · · , f̃ζ
z
)>

. (5.23)

When rank(M) = K, that is, M has full column rank, the above equation has a
unique solution. If on the other hand rank(M) < K, then the equality (5.23) still
holds. However, in this case there also exists c̃ ∈ RK such that Mc̃ = 0 and c̃ 6= 0.
Since c > 0, there exists ε > 0 such that c + εc̃ ≥ 0. We then have M(c + εc̃) = Mc,
which implies c+ εc̃ is in ∆K

1 and is a solution to (5.23). In other words, there exist
multiple solutions to (5.23) in ∆K

1 .

In general it is difficult to prescribe guidelines on how to design Φ in order to
ensure that M has full row rank. However, when z ≥ K and flows {fθs}s∈[k] are
linearly independent, one can design the signal ζk such that q̃ζ

k

[`] is arbitrarily close
to qθk . In this way, the induced WE f̃u,` will get arbitrarily close to fθk for all `. Since
flows {fθs}s∈[K] are linearly independent, this will result in M having full column
rank. Also note that when considering K = 2, all that is required is that there exist
k, ` ∈ [K] and a u ∈ [z] such that f̃u,k 6= f̃u,`.
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5.3.2 Robustness of signalling schemes in identifying priors

One of the limitations of our results is that we consider the prior distribution that the
population adheres to as fixed. However, we have the following robustness result
on q-identifying signalling schemes with respect to perturbations in the prior, which
shows that for a q-identifying signalling scheme Φ for which the obtained equality
constraints are enough to identify q, there exists a neighbourhood of q such that for
all priors qq in this neighbourhood Φ is qq-identifying.

Lemma 5.3.2. (Robustness of Φ for identifying prior): Let P , Θ, C, a prior q, and a
q-identifying signalling scheme Φ be given. In addition, let Q=

Φ be defined as

Q=
Φ :=

 ϕ ∈ Rm |

1>ϕ = 1,∑
s∈[m]

φus
(
Cθsp (f̃ζ

u

)− Cθsr (f̃ζ
u

)
)
ϕs = 0

∀u ∈ [z], p, r ∈ P with f̃ζ
u

p , f̃ζ
u

r > 0.

 . (5.24)

If Q=
Φ = {q}, then there exists a δ > 0 such that for all qq ∈ ∆m

1 with ‖q − qq‖ < δ the
signalling scheme Φ is qq-identifying.

Proof. First, we note that as a consequence of Corollary 5.2.9, the set QΦ is indepen-
dent of which WE f̃ζ

u ∈ Wζu are observed. Thus, to show that Φ is ξ-identifying for
ξ ∈ ∆m

1 , it is enough to show that there exists a set {f̃ζu}u∈[z] of ξ̃ζ
u

-WE such that
the obtained constraints identify ξ. Now consider q ∈ ∆m

1 and the signalling scheme
Φ which by assumption is q-identifying. Since Q=

Φ = {q}, it follows from (5.24) that
there exist m − 1 triplets {(pi, ri, ui)}i∈[m−1] with pi, ri ∈ P and ui ∈ [m] such that
f̃ζ

ui

pi , f̃ζ
ui

ri > 0 and the system of equations

Q(q)ϕ :=


1>(

α(q, p1, r1, u1)
)>

...(
α(q, pm−1, rm−1, um−1)

)>

ϕ =


1

0
...
0

 (5.25)

has one solution ϕ = q. Here α(q, pi, ri, ui) ∈ Rm is given by

α(q, pi, ri, ui) :=


φu1
(
Cθ1pi (f̃ζ

ui
)− Cθ1ri (f̃ζ

ui
)
)

φu2
(
Cθ2pi (f̃ζ

ui
)− Cθ2ri (f̃ζ

ui
)
)

...
φum
(
Cθmpi (f̃ζ

ui
)− Cθmri (f̃ζ

ui
)
)

 ,

where the dependence on q is via the dependence of f̃ζ
ui on the posterior q̃ζ

ui .
Note that from (5.25), the matrix Q(q) has full rank, that is, rank

(
Q(q)

)
= m. From
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Lemma 5.2.2, since f̃ζ
ui

pi , f̃ζ
ui

ri > 0, there exists a δf > 0 such that ‖q− qq‖ < δf implies
that for posteriors qqζ

ui (based on the prior qq), there exist qqζ
ui -WE, denoted qfζ

ui ,
satisfying qfζ

ui

pi , qfζ
ui

ri > 0. That is, positive flow on pi and ri under a WE formed
using signal ζui under scheme Φ and prior q implies that the same paths will have
positive flow for some WE under the same signal ζui and scheme Φ but induced
by a prior qq that is close enough to q. This fact along with (5.1), Lemma 5.2.2, the
continuity of functions {Cek(·)}, and the fact that the flow over an edge is equal
to the sum of the flow over the paths containing that edge implies that the entries
of the matrix Q(q) change continuously with respect to q. That is, there exists a
δQ > 0 such that ‖q − qq‖ < δQ implies rank

(
Q(qq)

)
= m. 8 Thus, the linear system

of equations Q(qq)ϕ = (1 0 · · · 0)> has a unique solution which is necessarily qq.
That is, we have QΦ = {qq}. As we mentioned before, even though we use here that
for specific qqζ

ui -WE we obtain qfζ
ui

pi , qfζ
ui

ri > 0, which supplies us with the required
equality constraints, the set QΦ is independent of which specific qqζ

ui -WE is observed.
The result follows.

We note that the signalling schemes produced by Algorithm 1 are of the type
considered in the above result. That is, Algorithm 1 produces signalling schemes for
which the resulting equality constraints are enough to identify q. What is more, since
for these schemes each signal (except the first) supplies one independent equality
constraint relating two elements qk and q` of the prior, each signal can be analysed
separately to find the region of priors for which it is guaranteed to still supply an
equality constraint. For example, let Φ be a signalling scheme for a given instance
of the game such that under the signal ζ2 we have q̃s = 0 for all s ≥ 3 and let the
remaining dependency of the WE on the posterior q̃ be given in Figure 5.3, where
q̃1 = ϕ1. If q̃1 ∈ (0.133, 0.8) the resulting flow gives us an equality constraint on q.
Additionally, for any perturbation qq of q, the signalling scheme Φ will still provide an
equality constraint on qq as long as the induced change in posterior does not take it
outside of the set (0.133, 0.8). Furthermore, once q has been identified, the scheme
can be modified so as to ensure q̃1 is in the centre of the interval (0.133, 0.8) thereby
increasing the robustness of this signal for identification purposes.

5.4 Conclusions

In this chapter we have studied the problem of identifying the unknown prior
belief that a population holds on the state of the network in a routing game, on the

8To see this, take a square, non-singular submatrix of Q(q) and note that the determinant depends
continuously on the coefficients of Q(q). It follows that for small enough perturbations, the determinant
of the submatrix does not become 0, and thus Q(q) retains full column rank.
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102 5. Inferring the prior

basis of observations of Wardrop equilibria. First we provided an analysis of how
observations of WE induce constraints on the underlying prior, and how a signalling
scheme can be used to obtain such constraints. We have shown that under very mild
conditions there always exists a signalling scheme with as many signals as there
are states, that allows for full identification of the prior. Using the insights gained
from proving this existence we have also provided a way in which such a signalling
scheme can be designed by iteratively updating an initial scheme based on observed
WE. We finished the chapter with a discussion on the challenges and potential of
generalizing presented results to a scenario in which not all participants adhere to the
same prior, and by highlighting how the signalling schemes designed by the given
procedure are robust in that they can still identify the prior after a small perturbation.
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Chapter 6

CVaR-Based variational inequalities

A useful tool in the field of game theory is the variational inequality(VI) problem [16].
For example, the set of Nash equilibria of a game, or the Wardrop equilibria of a routing
game are under mild conditions given by the set of solutions of a VI, which is often
relatively simple to obtain. The specifics of the to be solved VI depend on the specifics
of the game; in particular, the feasible set of the considered game and the involved
cost functions. Of course in real-life, these cost functions which the participants of the
game wish to optimize can be subject to uncertainty, and faced with such randomness,
the risk-preferences of the participants are an important factor in the decision making
process. Instead of optimizing a certain cost, or optimizing the expected value of
an uncertain cost, participants can choose to optimize a particular risk-measure of
the uncertain costs. Consequently finding the equilibria of such a game involves
solving a VI defined by risk-measures of uncertain costs. Motivated by this setup, we
consider in this chapter VIs defined by the conditional value-at-risk(CVaR) of random
costs, and develop some stochastic approximation(SA) schemes for solving these VIs.

Literature review

The most popular way of incorporating uncertainty in VIs is to formulate a stochastic
variational inequality (SVI) problem, see e.g. [58] and references therein. Here, the
map associated with the VI is the expectation of a random function. SA methods
for solving SVI are well studied [58, 59]. A key feature of such schemes is the
availability of an unbiased estimator of the map using any number of samples of
the uncertainty. This leads to strong convergence guarantees under a mild set of
assumptions. However, the empirical estimator of CVaR, while being consistent, is
biased [60]. Therefore, depending on the required level of precision, more samples are
required to estimate the CVaR. This biasedness poses challenges in the convergence
analysis of SA schemes. For a general discussion on risk-based VIs, including CVaR,
and their potential applications, see [61]. In [62], a sample average approximation
method for estimating the solution of CVaR-based VI was discussed. Our work also
broadly relates to [63] and [64] where sample-based methods are used for optimizing
the CVaR and other risk measures, respectively. The convergence analysis of our
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104 6. CVaR-Based variational inequalities

iterative methods consists of approximating the asymptotic behaviour of iterates
with a trajectory of a continuous-time dynamical system and studying their stability.
See [65] and [66] for a comprehensive account of such analysis.

Organization

After introducing some preliminaries, the starting point of this chapter is the defini-
tion of the CVaR-based variational inequality (VI), where the map defining the VI
consists of components that are the CVaR of random functions. We motivate this
setup with two examples of non-cooperative games for which CVaR-based VIs are
relevant. We then introduce and analyse three different stochastic approximation(SA)
algorithms for solving these VIs. The first scheme we term the projected method. This
iterative method consists of moving along the empirical estimate of the map defining
the VI and projecting each iterate onto the feasibility set. We show that under strict
monotonicity, the projected algorithm asymptotically converges to any arbitrary
neighbourhood of the solution of the VI, where the size of the neighbourhood is
determined by the number of samples used to form the empirical estimate in each
iteration. The second scheme, which we call the subspace-constrained method, over-
comes the computational burden of calculating projections onto the feasibility set
by dealing with equality and inequalities differently. In particular, the proximity
to satisfying inequality constraints is ensured using penalty functions and iterates
are constrained to lie on the subspace generated by linear equality constraints by
pre-multiplying the iteration step by an appropriate matrix. We establish that under
strict monotonicity, the algorithm converges asymptotically to any neighbourhood of
the solution of the VI. In the third scheme, which we call the multiplier-driven method,
projections are discarded altogether by introducing a multiplier for the inequality
constraints. Satisfaction of equality constraints is guaranteed in the same way as for
the subspace-constrained method by using matrix pre-multiplication. The iterates are
shown to converge asymptotically under strict monotonicity to any neighbourhood
of the solution of the VI. With the convergence of all three methods established, we
also supply a result that directly relates the accuracy of the convergence to number
of samples required to achieve that level of precision. Finally, we demonstrate the
behaviour of the algorithms using a network routing example.

6.1 Preliminaries

In this section we take the time to introduce some definitions and preliminary results
concerning the subjects of variational inequalities, conditional value-at-risk and
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6.1. Preliminaries 105

projected dynamical systems which are required for the analysis in the rest of this
chapter.

Variational inequalities and KKT points

We recall the definition of a variational inequality problem, as given in Chapter 2:

Definition 6.1.1. (Variational inequalities (VIs)): Given a map C : Rn → Rn and a set
F ⊂ Rn, the associated variational inequality problem, denoted VI(F , C) is to find f∗ ∈ F
such that the following holds:

C(f∗)>(f − f∗) ≥ 0, for all f ∈ F . (6.1)

The set of solutions f∗ ∈ F satisfying the above property is denoted as SOL(F , C). •

A useful concept in the context of variational inequalities is monotonicity of
functions.

Definition 6.1.2. (Monotone functions): The map C : Rn → Rn is called monotone if for
all f, qf ∈ Rn we have (

C(f)− C( qf)
)>

(f − qf) ≥ 0.

When the inequality holds strictly for all f 6= qf , the map C is called s strictly monotone. If
instead we have (

C(f)− C( qf)
)>

(f − qf) ≥ c‖f − qf‖2,

for all f, qf ∈ Rn, then C is called strongly monotone with constant c > 0.

Important for this chapter is that, under the assumption that the map C is strictly
or strongly monotone and the feasible set F is compact and convex, VI(F , C) has a
unique solution [16, Corollary 2.2.5, Theorem 2.2.3].

Lemma 6.1.3. (Unique solutions to VI(F , C)): Let C : Rn → Rn be a strictly or strongly
monotone, continuous function, and let F be a compact, convex set. In that case VI(F , C)

has a unique solution.

Under some additional assumptions on the constraints determining F , there
exists another useful characterization of SOL(F , C), namely as the set as the set of
Karush-Kuhn-Tucker (KKT) points.

Lemma 6.1.4. (KKT points of VI(F , C)): Let

F := {f ∈ Rn | Af = b, qi(f) ≤ 0, ∀i ∈ [s]},
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106 6. CVaR-Based variational inequalities

whereA ∈ Rl×n, b ∈ Rl and l ∈ N, and the functions qi : Rn → R, i ∈ [s], s ∈ N are convex
and continuously differentiable. For q(f) := (q1(f), . . . , qs(f))> ∈ Rs, let Dq(f)∈Rs×n
be the Jacobian at f . For any f∗ ∈ Rn, if there exists a multiplier (λ∗, µ∗) ∈ Rs × Rl

satisfying

C(f∗) +
(
Dq(f∗)

)>
λ∗ +A>µ∗ = 0,

Af∗ = b, q(f∗) ≤ 0, λ∗ ≥ 0, λ∗>q(f∗) = 0,
(6.2)

then we have f∗ ∈ SOL(F , C). Such a point (f∗, λ∗, µ∗) is referred to as a KKT point of the
VI(F , C). Conversely, for f∗ ∈ SOL(F , C), let If∗ = {i ∈ [s] | qi(f∗) = 0}. If the vectors
{∇qi(f∗)}i∈If∗ and the row vectors {Aj}j∈[l] are linearly independent, or in other words,
the LICQ holds at f∗, then there exists a (λ∗, µ∗) satisfying (6.2).

The above result is well known in the context of convex optimization. The
extension to the VI setting can be deduced in a straightforward manner, for instance
from [67, Proposition 3.46], [68, Theorem 12.1], and noting that if f∗ ∈ SOL(F , C),
then it is also a minimizer of the function qf 7→ qf>C(f∗) subject to qf ∈ F .

Conditional Value-at-Risk

The following is the definition of the Conditional Value-at-Risk (CVaR) of a real-valued
random variable Z defined on a probability space (Ω,F ,P):

Definition 6.1.5. Let Z be a real-valued random variable, defined on the probability space
(Ω,F ,P). The Conditional Value-at-Risk at level α ∈ (0, 1] is given by

CVaRα[Z] := inf
η∈R

{
η + α−1E[Z − η]+

}
.

The valueα in the above definition is a parameter that characterizes risk-averseness.
Using lower values of α puts more weight on extreme scenarios where Z is high,
such that minimizing CVaRα[Z] will result in conservative, less risky strategies. Thus
lower values of α correspond to less willingness to take risks.

Note that calculating CVaRα[Z] requires knowledge of the distribution of Z, due
to the presence of an expected value. When the distribution of Z is not directly
available to us, we will instead have to resort to empirical estimation.Given N

i.i.d samples {Ẑj}j∈[N ] of Z, one can approximate CVaRα[Z] using the following
empirical estimate:

ĈVaR
N

α [Z] = inf
η∈R

{
η + (Nα)−1∑N

j=1[Ẑj − η]+
}
. (6.3)

This estimator is biased, but consistent [69, Page 300].
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6.2. Problem statement and motivating examples 107

Lemma 6.1.6. (Consistency of ĈVaR
N

α ): For a real-valued random variable Z we have

ĈVaR
N

α [Z]→ CVaRα[Z] almost surely as N →∞.

Projected dynamical systems

Part of the analysis in this chapter relies on approximating the asymptotic behaviour
of iterates produced by our suggested schemes with the trajectories of continuous-
time dynamical systems. For this we require the definition of a projected dynamical
system.

Definition 6.1.7. For a given C : Rn × [0,∞)→ Rn and a closed set F ⊆ Rn, the associ-
ated projected dynamical system is given by

ḟ(t) = ΠTF (f(t))

(
C(f, t)

)
.

In the above TF (f) is the tangent cone of F at f (see Section 1.4). We say that
a map f̄ : [0,∞) → F with f̄(0) ∈ F is a solution of the above system when f̄(·)
is absolutely continuous and ˙̄f(t) = ΠTF (f̄(t))

(
F
(
f̄(t), t

))
for almost all t ∈ [0,∞).

Note that f̄(t) ∈ F for all t. Throughout this chapter we use the terms solution and
trajectory interchangeably.

6.2 Problem statement and motivating examples

The objective of this chapter is to provide stochastic approximation(SA) algorithms
to solve the variational inequality problem VI(F , C), where the map C is a vector
of conditional values-of-risk of a given set of uncertain cost functions. Specifically
consider a set of functions ci : Rn × Rm → R, i ∈ [n], (f, ξ) 7→ ci(f, ξ), where ξ
represents a random variable with distribution P. For a fixed f , ci(f, ξ) is therefore a
real-valued random variable. Define the map Ci : Rn → R as the CVaR of ci at level
α ∈ (0, 1]:

Ci(f) := CVaRα

[
ci(f, ξ)

]
, for all i ∈ [n]. (6.4)

For notational convenience, let C : Rn → Rn be the element-wise concatenation of
the maps {Ci}i∈[n], respectively. Let F ⊆ Rn be a non-empty closed set of the form

F := {f ∈ Rn | Af = b, qi(f) ≤ 0, ∀i ∈ [s]}, (6.5)

where A ∈ Rl×n, b ∈ Rl and l ∈ N, and the functions qi : Rn → R, i ∈ [s], s ∈ N
are convex and continuously differentiable. The VIs whose solutions we aim to
approximate are then of the form VI(F , C). Before we move on to the analysis, we
discuss two motivating examples for our setup.
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108 6. CVaR-Based variational inequalities

6.2.1 CVaR-based routing games

For our first example, we consider a routing game, as introduced in Chapter 2,
with some minor modifications. In particular, we generalize the setup in Chapter 2
by considering a set of origin-destination(OD) pairs, instead of a single OD pair.
Therefore, consider a directed graph G = (V, E), where V = [N ] is the set of vertices,
and E ⊆ V × V is the set of edges and let O ⊆ V × V be the set of origin-destination
(OD) pairs. An OD-pair w is given by an ordered pair (vwo , v

w
d ), where vwo , vwd ∈ V are

called the origin and the destination of w, respectively. The set of all paths in G from
the origin to the destination of w is denoted Pw. The set of all paths relevant to the
game is given by P = ∪w∈OPw, and n = |P|.

Given a demand Dw for each OD pair in O the feasible set of the routing game is
then given by

F = {f ∈ Rn |
∑
p∈Pw

fp = Dw for all w ∈ O, and fp ≥ 0 for all p ∈ P}.

To each of the paths p ∈ P a cost function cp : Rn × Rm → R, (f, ξ) 7→ cp(f, ξ) is
associated, which depends on the flow f , as well as on the uncertainty ξ ∈ Rm. faced
with this uncertainty, we assume that agents are risk-averse, in that they aim to
minimize the conditional value at risk of their travel time. That is, they aim to choose
the path p ∈ Pw that minimizes CVaRα

[
cp(f, ξ)

]
. The result is a CVaR-based routing

game [62], to which we assign the following notion of equilibrium: the flow f∗ ∈ H
is said to be a CVaR-based Wardrop equilibrium (CWE) of the CVaR-based routing
game if, for all w ∈ O and all p, p′ ∈ Pw such that f∗p > 0, we have

CVaRα

[
cp(f

∗, ξ)
]
≤ CVaRα

[
cp′(f

∗, ξ)].

Assuming that the functions cp are continuous, the set of CWE is then equal to the
set of solutions of VI(F , C), where C : Rn → Rn takes the form (6.4).

6.2.2 CVaR-based Nash equilibrium

A more general example of our setup would be in finding the Nash equilibrium of
a non-cooperative game [16, section 1.4.2]. Let there be N players with individual
cost functions ci : RnN → R, f 7→ ci(f) and possible strategy sets Fi ⊆ Rn. Here
f ∈ RnN denotes the vector containing the strategies of all players, where fi ∈ Rn

is the strategy of player i. We assume without loss of generality that the strategy
sets of each player are of the same dimension n, and we use the shorthand notation
ci(f) = ci(fi, f−i), to denote the cost function of agent i, where f−i is the vector
containing the strategies of all players except i. Each player i aims to minimize its
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6.3. Algorithms for solving VI(H, F ) 109

cost ci by choosing its own strategy optimally. That is, for any fixed qf−i they solve

minimize ci(fi, qf−i),

subject to fi ∈ Fi.

A Nash equilibrium of such a game is a solution vector f∗ such that none of the
players can reduce their costs by changing their strategy. Under the assumption
that the sets Fi are convex and closed, and the functions fi 7→ ci(fi, qf−i) are convex
and continuously differentiable for any qf−i, a joint strategy vector f∗ is a Nash
equilibrium if and only if it is a solution to VI(F , C), where C(f) := (∇fici(f))Ni=1

is the concatenation of the gradients of ci functions, and F =
∏n
i=1 Fi. Consider the

functions ci of the form

ci(x) := CVaRα[gi(fi, f−i)h(ξ) + qgi(gi, g−i)],

where gi, h and qgi are real-valued, ξ models the uncertainty, and gi(fi, f−i) ≥ 0 for
all f . Then, VI(F , C) is a CVaR-based variational inequality. Specifically, in this case,
since CVaR is positive-homogeneous and shift-invariant [69, Chapter 6], we have

ci(f) = CVaRα[h(ξ)]gi(fi, f−i) + qgi(fi, f−i).

As a consequence, we get

∇ci(f) = CVaRα[h(ξ)]∇figi(fi, f−i) +∇fiqgi(fi, f−i).

Under the assumption that∇figi is non-negative for all f ∈ F , we get

∇ci(f) = CVaRα[h(ξ)∇figi(fi, f−i) +∇fiqgi(fi, f−i)].

where CVaR is understood component-wise. Thus, C can be written as the concate-
nation of CVaR of various functions and finding the Nash equilibrium of this game
is equivalent to solving VI(F , C), which fits into our presented framework.

6.3 Algorithms for solving VI(H, F )

In this section, we introduce stochastic approximation(SA) algorithms for solving
CVaR-based VIs, along with their convergence analysis. All introduced schemes ap-
proximateC with the estimator given in (6.3). GivenN independently and identically
distributed samples

{
(ĉi(f, ξ))j

}N
j=1

of the random variable ci(f, ξ), let

ĈNi (f) := inft∈R

{
t+ (Nα)−1

∑N
j=1

[
(ĉi(f, ξ))j − t

]+}
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110 6. CVaR-Based variational inequalities

stand for the estimator of Ci(f). Analogously, the estimator of C(f) formed using
the element-wise concatenation of ĈNi (f), i ∈ [n], is denoted by ĈN (f). We assume
that the N samples of each cost function are a result of the same set of N events, that
is, the distribution of ĈN (f) depends on PN . We start our analysis with an algorithm
that employs projection of the iterates onto the feasible set F .

6.3.1 Projected algorithm

For a given sequence of step-sizes {γk}∞k=0, with γk > 0 for all k, a sequence
{Nk}∞k=0 ⊂ N, and an initial vector f0 ∈ F , the first algorithm under considera-
tion, which we will refer to as the projected algorithm, is given by

fk+1 = ΠF
(
fk − γkĈNk(fk)

)
, (6.6)

where ΠF is the projection operator (see Section 1.4) and fk is the k-th iterate pro-
duced by the algorithm. The above algorithm is inspired by the SA schemes for
solving a stochastic VI problem, see [58] for details on other SA schemes. The key
difference from the setup in [58] is the fact that there the map C is the expected value
of a random variable for which an unbiased estimator Ĉ is available. In our case the
employed estimator is biased posing limitations on the sample requirements for con-
vergence of the algorithms. We can write the projected algorithm (6.6) equivalently
as

fk+1 = ΠF

(
fk − γk

(
C(fk) + β̂Nk

))
, (6.7)

where β̂Nk := ĈNk(fk) − C(fk) is the error introduced by the estimation. For this
and the upcoming algorithms, common assumptions on the sequence {γk} are∑∞

k=0 γ
k =∞,

∑∞
k=0(γk)2 <∞. (6.8)

Our first result gives sufficient conditions for convergence of (6.7) to any neighbour-
hood of the solution f∗ of VI(F , C).

Proposition 6.3.1. (Convergence of the projected algorithm (6.6)): Let C as defined
in (6.4) be a strictly monotone, continuous function, and let F be a compact convex set of
the form (6.5). For the algorithm (6.7), assume that the sequence {γk} satisfies (6.8) and the
sequence {Nk} is such that {β̂Nk} is bounded with probability one. Then, for any ε > 0 there
exists Nε ∈ N such that Nk ≥ Nε for all k implies, with probability one,

lim
k→∞

‖fk − f∗‖ ≤ ε.

Proof. To ease the exposition of this proof, we split the error as β̂Nk = eNk + ε̂Nk ,
where eNk = E[β̂Nk ]. Note that we then have E[ε̂Nk ] = 0, and by the boundedness
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assumption, there exists a constant Be > 0 such that ‖eNk‖ ≤ Be for all k. The first
step of the proof is to show that the sequence {fk} converges to a trajectory of the
following continuous-time projected dynamical system:

˙̄f(t) = ΠTF (f̄(t))

(
− C

(
f̄(t)

)
− e(t)

)
, f̄(0) ∈ F . (6.9)

Here e(·) is a uniformly bounded measurable map satisfying ‖e(t)‖ ≤ Be for all t
(see Section 6.1 for further details on how solutions to projected dynamical systems
are defined). For the sake of rigour, we note that the existence of a trajectory of (6.9)
starting from any point in F is guaranteed by [70, Lemma A.1]. To make precise the
convergence of the sequence generated by (6.7) to a trajectory of (6.9), we say that
{fk} converges to a trajectory f̄(·) of (6.9) if

lim
i→∞

sup
j≥i

∥∥∥f j − f̄(j−1∑
k=i

γk
)∥∥∥ = 0. (6.10)

That is, the discrete-time trajectory formed by the linear interpolation of the iterates
{fk} approaches the continuous time trajectory t 7→ f̄(t). The proof of the existence
of a map f̄(·) satisfying (6.10) is similar to that of [65, Theorem 5.3.1], with the only
change being the existence of an error term e(t) in dynamics (6.9) which is absent
in the cited reference. The inclusion of the error term is facilitated by reasoning
presented in the proof of [65, Theorem 5.2.2]. We avoid repeating these arguments
here in the interest of space.

Convergence of the sequence {fk} can now be analysed by studying the asymp-
totic stability of (6.9). To this end, we consider the candidate Lyapunov function

V
(
f̄
)

=
1

2
‖f̄ − f∗‖2,

where f∗ is the unique solution of VI(F , C). We first look at the case e(·) ≡ 0. For
notational convenience, define the right-hand side of (6.9) in such a case by the map
Xe≡0 : Rn → Rn. The Lie derivative of V along Xe≡0 is then given by

∇V (f̄)>Xe≡0(f̄) = (f̄ − f∗)>ΠTF (f̄)

(
− C(f̄)

)
. (6.11)

We want to show that the right-hand side of the above equation is negative for all
f̄ 6= f∗. We first note that by Moreau’s decomposition theorem [71, Theorem 3.2.5],
for any v ∈ Rn and f̄ ∈ F , we have ΠTF (f̄)(v) = v −ΠNF (f̄)(v), where NF (f̄) is the
normal cone to F at f̄ . Using the above relation in (6.11) gives

∇V (f̄)>Xe≡0(f̄) =− (f̄ − f∗)>C(f̄) + (f∗ − f̄)>ΠNF (f̄)

(
− C(f̄)

)
≤− (f̄ − f∗)>C(f̄), (6.12)
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where the inequality is due to the definition of the normal cone (see Section 1.4) and
f∗ ∈ F . Due to strict monotonicity of C, we have (f̄ − f∗)>C(f̄) > (f̄ − f∗)>C(f∗)

whenever f̄ 6= f∗. Since f∗ ∈ SOL(F , C) we also know that (f̄ − f∗)>C(f∗) ≥ 0 for
all f̄ ∈ F . Combining these two facts implies that the functionW (f̄) := (f̄−f∗)>C(f̄)

satisfies W (f̄) > 0 whenever f̄ 6= f∗. Using this in the inequality (6.12) yields

∇V (f̄)>Xe≡0(f̄) ≤ −W (f̄) < 0 (6.13)

whenever f̄ 6= f∗. Now let Fε := {f ∈ F | ‖f − f∗‖ ≥ ε}. Since F is compact, Fε
is compact. Since W is continuous, there exists a δ > 0 such that W (f̄) ≥ δ for all
f̄ ∈ Fε. Therefore we get, from (6.13),

∇V (f̄)>Xe≡0(f̄) ≤ −δ, for all f̄ ∈ Fε. (6.14)

Next, we drop the assumption that e(·) ≡ 0 and use the map X : Rn × [0,∞)→ Rn

to denote the right-hand side of (6.9). Consider any trajectory t 7→ f̄(t) of (6.9). Since
the map is absolutely continuous and V is differentiable, we have for almost all t ≥ 0

and for f̄(t) ∈ Fε,

dV

dt
(t) = ∇V (f̄(t))>X(f̄(t), t) ≤ −δ − (f̄(t)− f∗)>e(t),

where for obtaining the above inequality we have first used Moreau’s decomposition
as before to get rid of the projection operator in X and then employed (6.14). Next
we bound the error term in the above inequality. Since F is compact and f∗ ∈ F ,
there exists Bf > 0 such that ‖f̄ − f∗‖ ≤ Bf for all f̄ ∈ F . In addition ‖e(t)‖ ≤ Be
for all t, where Be is the bound satisfying ‖eNk‖ ≤ Be. Since the empirical estimate
of the CVaR is consistent, we know that Be can be made arbitrarily small by selecting
Nk to be appropriately large for all k. That is, there exists Nε ∈ N such that when
Nk > Nε we have ‖eNk‖ < δ

Bf
. Consequently, if Nk > Nε for all k, then ‖e(t)‖ < δ

Bf
for all t. By selecting such a sample size at each iteration and thus bounding the error
term, we obtain

dV

dt
(t) ≤ −δ − (f̄(t)− f∗)>e(t)

≤ −δ + ‖f̄(t)− f∗‖‖e(t)‖ < −δ +Bf
δ

Bf
≤ 0,

which holds for almost all t whenever f̄(t) ∈ Fε. That is, the trajectory converges to
the set {f ∈ F | ‖f − f∗‖ ≤ ε} as t→∞. This concludes the proof.

In the above result, the restriction Nk ≥ Nε does not need to hold for all k. The
result also holds if there exists a K ∈ N such that Nk ≥ Nε for all k ≥ K. Regarding
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6.3. Algorithms for solving VI(H, F ) 113

boundedness of {β̂Nk}we note that it is ensured if for example each Ci is bounded
over the set F × Ξ, where Ξ is the support of ξ.

Despite the convergence property established in Proposition 6.3.1, the algorithm
in (6.7) suffers from some disadvantages. Most notably, the algorithm requires
computing projections onto the set F at each iteration, which can be computationally
expensive. To address these issues we propose two algorithms that achieve similar
convergence to any neighbourhood of the solution of the VI(F , C). The first requires
projection onto inequality constraints only and the second does not involve any
projection on the primal iterates and instead ensures feasibility using dual variables.
As in Proposition 6.3.1, we will impose continuity and monotonicity assumptions on
F in the upcoming results. We provide the following general result on the continuity
and monotonicity properties of C.

Lemma 6.3.2. (Sufficient conditions for monotonicity and continuity of C): The
following hold:

• If for any ε > 0 there exist a δ > 0 such that ‖ci(f, ξ) − ci( qf, ξ)‖ ≤ ε holds for all
i ∈ [n] whenever ‖f − qf‖ ≤ δ, then C is continuous.

• Let gi : Rn → R and hi : Rm → R satisfy ci(f, ξ) ≡ gi(f) + hi(ξ), for all i ∈ [n].
Let g(f) :=

(
g1(f), . . . , gn(f)

)
. Then, C is monotone (resp. strictly) if g is monotone

(resp. strictly monotone).

Proof. Continuity follows by arguments similar to the proof of [62, Lemma IV.8]. For
the second part, note that CVaR satisfies CVaRα

[
Ci(f, ξ)

]
= gi(f) + CVaRα

[
hi(ξ)

]
,

for all f and i ∈ [n] [69, Page 261]. The proof then follows from the fact that
C(f)− C(f∗) = g(f)− g(f∗).

In the above result, the continuity condition, that may be difficult to check in
practice, holds if ξ has a compact support and for any fixed ξ, the functions Ci are
continuous with respect to h.

6.3.2 Subspace-constrained algorithm

Too address the computational intensiveness of the projected algorithm, we take
a closer look at the form of F given in (6.5) and design an algorithm that handles
inequality and equality constraints independently. To this end, we us the notation
Faff := {f ∈ Rn | Af = b}, and Fineq := {f ∈ Rn | qi(f) ≤ 0, ∀i ∈ [s]} for the sets of
points satisfying the equality and inequality constraints, respectively. We then have
F = Faff ∩ Fineq. It turns out that, using matrix operation, we can ensure that the
iterates of our algorithm always remain in Faff . The method works as follows. Let
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114 6. CVaR-Based variational inequalities

{a1, · · · , al} be the row vectors of A, and let {u1, · · · , un} be an orthonormal basis
for Rn such that the first M ∈ N vectors {u1, · · · , uM} form a basis for the span of
vectors {a1, · · · , al}. Then, for the subspace S = {g ∈ Rn | Ag = 0}, we have

ΠS(v) =
(
I −

∑M
i=1 uiu

>
i

)
v, for any v ∈ Rn.

This well known expression follows from [72, Theorem 7.10] combined with the fact
ΠS(v) = v − ΠS⊥(v), where S⊥ is the set of vectors orthogonal to the subspace S.
Thus, the projection onto S is achieved by pre-multiplying with the matrix

L := I −
M∑
i=1

uiu
T
i . (6.15)

Consequently, for any vector z of the form z = Lv, v ∈ Rn we have Az = 0. To
construct L one can find the orthonormal basis vectors {ui}i∈[l] for the span of
{aj}j∈[l] and Rn by using the Gram-Schmidt orthogonalization process [72, Section
6.4]. Alternatively, if A has full row rank one can use L := I −A>(AA>)−1A, see
e.g., [73]. We use this projection operator to define our next method called the
subspace-constrained algorithm:

fk+1 = fk − γkL
(
C(fk) + d

(
fk −ΠFineq

(fk)
)

+ β̂Nk
)
, (6.16)

where the initial iterate f0 ∈ Faff . In the above, d > 0 is a parameter to be specified
later in the convergence result, the error sequence {β̂Nk} is as defined in (6.7), and
L ∈ Rn×n is as defined in (6.15).

Due to the presence of L in the above algorithm, the direction in which the iterate
moves in each iteration is projected onto the subspace S. Hence, fk ∈ Faff for all
k. We formally establish this in the below result. Furthermore, convergence to a
neighbourhood of the set Fineq is achieved through the term fk −ΠFineq

(fk). That is,
the higher the value of the design parameter c, the closer the limit of {fk} is to Fineq.
Together, these mechanisms ensure that we keep iterates close to F and ultimately
drive them to a neighbourhood of f∗.

Proposition 6.3.3. (Convergence of subspace-constrained algorithm (6.16)): Let C as
defined in (6.4) be a strictly monotone, continuous function, and let F be a compact convex
set of the form (6.5). For the algorithm (6.16), assume that the step-sizes sequence {γk}
satisfies (6.8) and that the sequence {Nk} is such that there exists Btraj ∈ R satisfying
‖fk‖ ≤ Btraj and {β̂Nk} is bounded with probability one. Then, for any ε > 0, there exist
dε(Btraj) > 0 and Nε(Btraj) ∈ N such that d ≥ dε(Btraj) and Nk ≥ Nε(Btraj) for all k
imply that the iterates of (6.16) satisfy, with probability one,

lim
k→∞

‖fk − f∗‖ ≤ ε.
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Proof. First we show that fk ∈ Faff for all k. To see this, recall that ALv = 0 for any
v ∈ Rn. Using this in (6.16) implies Afk+1 = Afk for all k. Consequently, for all k,
we have Afk = Af0 = b and therefore fk ∈ Faff .

Analogous to the proof of Proposition 6.3.1, it can be established that {fk} con-
verges with probability one, in the sense of (6.10), to a trajectory of the following
dynamics

˙̄f(t)=−L
(
C
(
f̄(t)

)
+c
(
f̄(t)−ΠFineq

(
f̄(t)

))
−e(t)

)
, (6.17)

with the initial state f̄(0) ∈ Faff . Here, e(·) is a uniformly bounded measurable map
satisfying ‖e(t)‖ ≤ B for all t. We will use the above fact to establish convergence of
the sequence {fk} by analysing the asymptotic stability of (6.17). Note thatA ˙̄f(t) = 0

for all t, and therefore a trajectory f̄(·) of (6.17) satisfies f̄(t) ∈ Faff for all t ≥ 0 as
f̄(0) ∈ Faff . Now consider the Lyapunov candidate

V (f̄) =
1

2
‖f̄ − f∗‖2,

where f∗ is the unique solution of VI(F , C), that follows from strict monotonicity.
As was the case for the previous result, we will first analyse the evolution of V
along (6.17) when e ≡ 0. Therefore, we define the notation Xe≡0 : Rn → Rn to
represent the right-hand side of (6.17) with e ≡ 0. The Lie derivative of V along Xe≡0

is

∇V (f̄)>Xe≡0(f̄) = −(f̄ − f∗)>L
(
C(f̄) + d

(
f̄ −ΠFineq

(f̄)
))
. (6.18)

Since f̄, f∗ ∈ Faff , we have A(f̄ − f∗) = 0 and so (f̄ − f∗) ∈ S . Consequently, for any
vector v ∈ Rn, we have

(f̄ − f∗)>v = (f̄ − f∗)>
(
ΠS(v) + ΠS⊥(v)

)
= (f̄ − f∗)>ΠS(v) = (f̄ − f∗)>Lv.

Using the above equality in (6.18) gives

∇V (f̄)>Xe≡0(f̄) = −(f̄ − f∗)>
(
C(f̄) + d

(
f̄ −ΠFineq

(f̄)
))
. (6.19)

We first upper bound the second term on the right-hand side of the above equality.
We have

−d(f̄ − f∗)>
(
f̄ −ΠFineq

(f̄)
)
,

= −d
(
f̄ −ΠFineq(f̄) + ΠFineq(f̄)− f∗

)>(
f̄ −ΠFineq(f̄)

)
,

= −d‖f̄ −ΠFineq(f̄)‖2 + d
(
f∗ −ΠFineq(f̄)

)>(
f̄ −ΠFineq

(f̄)
)
≤ 0, (6.20)
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where for the inequality we have used
(
f̄ −ΠFineq

(f̄)
)>(

f∗ −ΠFineq
(f̄)
)
≤ 0 for any

f̄ ∈ Rn (see [74, Thm. 3.1.1]). Note that the inequality (6.20) is strict whenever
f̄ 6= ΠFineq(f̄). We now turn our attention towards the first term in (6.19). Due to
strict monotonicity of C and the fact that f∗ ∈ SOL(F , C), we obtain

−(f̄ − f∗)>C(f̄) < −(f̄ − f∗)>C(f∗) ≤ 0 (6.21)

whenever f̄ ∈ F and f̄ 6= f∗. The above inequality along with (6.20) shows
∇V (f̄)>Xe≡0(f̄) ≤ 0 for any f̄ ∈ F . However, recalling the approach in the proof of
Proposition 6.3.1, what we require in order to establish convergence is the existence
of δ > 0 such that

∇V (f̄)>Xe≡0(f̄) ≤ −δ for all f̄ ∈ Fε, (6.22)

where Fε := {f ∈ Faff | ‖f − f∗‖ ≥ ε}. We obtain this bound below. Note that the
strict inequality (6.21) along with continuity of C imply that for any f ∈ F \ {f∗},
there exists εf > 0 such that

−( qf − f∗)>C( qf) < 0 for all qf ∈ Cεf (f), (6.23)

where we recall that Cεf (f) is the open εf -ball centred at f . Now let Fε := F \ Cε(f∗).
Since F is compact, so is Fε. Using this property and (6.23), we deduce that there
exists ε0 > 0 such that for every f ∈ Fε we have

−( qf − f∗)>C( qf) < 0 for all qf ∈ Cε0(f). (6.24)

Next define

∆ε0 := {f̄ ∈ Faff \ Cε(f∗) | f̄ 6∈ Cε0(Fε) and ‖f̄‖ ≤ Btraj}.

Here, Cε0(Fε) is the open ε0-ball of the set Fε andBtraj > 0 is used as an upper bound
on any trajectory f̄(·) of (6.17). Note that ∆ε0 is compact. Therefore, there exists
BC > 0 satisfying

− (f̄ − f∗)>C(f̄) ≤ BC for all f̄ ∈ ∆ε0 . (6.25)

Furthermore, by definition, if f̄ ∈ ∆ε0 , then f̄ 6∈ F and f̄ ∈ Faff . Thus, f̄ ∈ ∆ε0

implies f̄ 6∈ Fineq. That is, for such a point, the inequality (6.20) holds strictly. This
along with compactness of ∆ε0 implies that there exists BΠ > 0 such that

− (f̄ − f∗)>
(
f̄ −ΠFineq

(f̄)
)
≤ −BΠ for all f̄ ∈ ∆ε0 . (6.26)

Using (6.25) and (6.26) in (6.20) and setting d > BC
BΠ

yields

∇V (f̄)>Xe≡0(f̄) < 0 for all f̄ ∈ ∆ε0 . (6.27)
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Now consider f̄ satisfying f̄ /∈ ∆ε0 ∪ Cε(f∗) and ‖f̄‖ ≤ Btraj. Note that such a point
belongs to Faff ∩ Cε0(Fε) ∩ CBtraj

(0). Thus, by (6.24), we have −(f̄ − f∗)>C(f̄) < 0

for such a point. This fact combined with (6.27) leads us to the conclusion that

∇V (f̄)>Xe≡0(f̄) < 0 for all f̄ ∈ Fε.

Since the left-hand side of the above equation is a continuous function and Fε is
compact, we deduce that (6.22) holds. The rest of the proof is then analogous to the
corresponding section of the proof in Proposition 6.3.1.

Remark 6.3.4. (Practical considerations of (6.16)): In Proposition 6.3.3, for small
values of ε, one would require a large value of d to ensure convergence. This may
result in large oscillations of fk when γk remains large. Such behaviour can be
prevented by either starting with small values of γk or increasing d along iterations,
until it reaches a predetermined size. The result is then still valid but the convergence
can only be guaranteed once d reaches the required size.

We note that the required assumption of boundedness of {fk} can be ensured by
constraining the iterates in {fk} to lie in a hyper-rectangle containing F (cf. [65, Page
40]). However, on the boundary of the hyper-rectangle, one would have to make use
of steps of the form (6.7) to ensure that the iterates remain in the feasible set. •

6.3.3 Multiplier-driven algorithm

Although the projection required for the subspace-constrained algorithm is less in-
volved than that of the projection algorithm, it does involve projection onto Fineq,
which can still be computationally burdensome. Our next algorithm overcomes this
limitation. We assume F to be of the form (6.5) and introduce a multiplier vari-
able λ ∈ Rs≥0 that enforces satisfaction of the inequality constraint as the algorithm
progresses. In order to simplify the coming equations we introduce the notation
H(f, λ) := C(f) +Dq(f)>λ, where Dq(f) is the Jacobian of q at f . The multiplier-
driven algorithm is now given as

fk+1 = fk − γkL
(
H(fk, λk) + β̂Nk

)
,

λk+1 =
[
λk + γkq(fk)

]+
.

(6.28)

Here L is as defined in (6.15). Also recall that β̂Nk is the error due to empirical
estimation of F . The next result establishes the convergence properties of (6.28) to a
KKT point of the VI (see Section 6.1 for definitions) and thus to a solution of the VI.

Proposition 6.3.5. (Convergence of the multiplier-driven algorithm (6.28)): Let C, as
defined in (6.4), be a strictly monotone, continuous function, and let F be a compact convex
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118 6. CVaR-Based variational inequalities

set of the form (6.5), where functions qi, i ∈ [s], are affine. Assume that the LICQ holds
for f∗ ∈ SOL(F , C), and let (f∗, λ∗, µ∗) be an associated KKT point. For algorithm (6.28),
assume that the step-size sequence {γk} satisfies (6.8) and let {Nk} be such that {β̂Nk},
{fk}, and {λk} are bounded with probability one. Then, for any ε > 0, there exists an
Nε ∈ N such that if Nk ≥ Nε for all k, then, with probability one,

lim
k→∞

‖fk − f∗‖ ≤ ε.

Proof. Analogous to the proof of Proposition 6.3.1, the first step establishes conver-
gence with probability one of the sequence

{
(fk, λk)

}
, in the sense of (6.10), to a

trajectory
(
f̄(·), λ̄(·)

)
of a continuous time dynamical system. To express the system

we define the following notation: For q, λ ∈ R, the operator [q]+λ equals q if λ > 0

and it equals max{0, q} if λ ≤ 0, and for the vectors q, λ ∈ Rn, the i-th element of the
vector [q]+λ is given by [qi]

+
λi

. The sequence
{

(fk, λk)
}

then converges to the trajectory
given by

˙̄f(t) = −L
(
H
(
f̄(t), λ̄(t)

)
+ e(t)

)
, (6.29a)

˙̄λ(t) =
[
q
(
f̄(t)

)]+
λ̄(t)

, (6.29b)

with initial condition f̄(0) ∈ Rn and λ̄(0) ∈ Rl≥0. Note that as a consequence
of (6.29b), λ̄ is contained in the non-negative orthant along any trajectory of the
system. The map ē(·) is uniformly bounded and so, as before, we have ‖e(t)‖ ≤ Be
for all t. The proof of convergence of the iterates to a continuous trajectory is similar
to that of [65, Theorem 5.2.2] and is not repeated here in the interest of space. Note
that, as was the case for Proposition 6.3.3, multiplication with the matrix L ensure
that fk, f̄(t) ∈ Faff for all k and t ≥ 0. Next, we analyse the convergence of (6.29).
We will occasionally use x̄ as shorthand for (f̄, λ̄). Define the candidate Lyapunov
function

V (f̄, λ̄) :=
1

2

(
‖f̄ − f∗‖2 + ‖λ̄− λ∗‖2

)
, (6.30)

where f∗ is the unique solution of VI(F , C) and there exist µ∗ ∈ Rl such that
(f∗, λ∗, µ∗) is an associated KKT point.We analyse the evolution of (6.30) for the
case e ≡ 0. Denoting the right-hand side of (6.29) for this case by Xe≡0, the Lie
derivative of V along (6.29) is

∇V (x̄)>Xe≡0(x̄) = −(f̄ − f∗)>H(f̄, λ̄) + (λ̄− λ∗)>
(
q(f̄) + [q(f̄)]+

λ̄
− q(f̄)

)
. (6.31)

Here we have dropped the matrix L from the term (f̄ − f∗)>LH(f̄, λ̄), which is
justified by the same argument used for deriving (6.19). Note

(
[q(f̄)]+

λ̄

)
i

=
(
q(f̄)

)
i

if λ̄i > 0 for any i. Also, if λ̄i = 0, then λ̄i − λ∗i ≤ 0. Consequently we find that
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(λ̄ − λ∗)>
(
[q(f̄)]+

λ̄
− q(f̄)

)
≤ 0. Since q is affine, we have Dq(f̄) = Dq(f∗) for all

f̄ ∈ Rn. Combined with strict monotonicity this gives, for f̄ 6= f∗,

0 < (f̄ − f∗)>
(
H(f̄, λ̄)−H(f∗, λ̄)

)
= (f̄ − f∗)>

(
H(f̄, λ̄)−H(f∗, λ∗) +Dq(f∗)>λ∗ −Dq(f∗)>λ̄

)
.

(6.32)

From (6.2) we have −H(f∗, λ∗) = A>µ∗. Since we have f̄, f∗ ∈ Faff it follows
that −(f̄ − f∗)>H(f∗, λ∗) = 0. Then, using the assumption that q is affine, (6.32)
gives us −(f̄ − f∗)>H(f̄, λ̄) < (λ∗ − λ̄)>

(
q(f̄) − q(f∗)

)
Combining these deriva-

tions, and writing W (f̄) for the right-hand side of (6.31) we get that for f̄ 6= f∗,
W (f̄) < (λ̄− λ∗)>q(f∗). From (6.2) we have λ∗>q(f∗) = 0 and λ̄>q(f∗) ≤ 0, which
then implies∇V (f̄, λ̄)Xe≡0(f̄, λ̄) < 0 for almost all t with f̄(t) 6= f∗. The rest of the
proof is analogous to the corresponding section of the proof of Proposition 6.3.1.

Remark 6.3.6. (Implementation aspects of Proposition 6.3.5): In Proposition 6.3.5
we require boundedness of {fk}, {λk}. When upper bounds on ‖λ∗‖ are known
beforehand, projection onto hyper-rectangles can ensure boundedness of {λk}, while
the result remains valid, (cf. [65, Page 40, Theorem 5.2.2]). For boundedness of {fk},
see Remark 6.3.4. •

6.4 Estimation error, sample sizes and accuracy

In all of the provided algorithms, the convergence depends on the bias of the estima-
tor, given by bNk := E[β̂Nk ]. When F is assumed to be strongly monotone, we can
give an explicit bound on ‖bNk‖ sufficient for ensuring convergence.

Corollary 6.4.1. Assume that C is strongly monotone with constant c, and define

bNk := E[β̂Nk ]

In addition let the conditions of Proposition 6.3.1 (respectively Proposition 6.3.3 and 6.3.5)
hold, and let {fk} be generated by (6.7) (respectively (6.16) and (6.28)). Then

‖bNk‖ < εc

implies limk→∞ ‖fk − f∗‖ ≤ ε with probability one.

Proof. In the proof of Proposition 6.3.1 we derive that the derivative of the Lyapunov
function satisfies

dV

dt
(t) ≤ −δ −

(
f̄(t)− f∗

)>
e(t).
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120 6. CVaR-Based variational inequalities

When F is strongly monotone we can replace −δ with −c‖f̄(t) − f∗
∥∥2. Using the

Cauchy-Schwarz inequality we then obtain

dV

dt
(t) = −c‖f̄(t)− f∗‖2 −

(
f̄(t)− f∗

)>
e(t),

≤ −c‖f̄(t)− f∗‖2 + ‖f̄(t)− f∗‖‖e(t)‖
= −c‖f̄(t)− f∗‖2 + ‖f̄(t)− f∗‖‖bNk‖
= ‖f̄(t)− f∗‖

(
‖bNk‖ − c‖f̄(t)− f∗‖

)
.

It is clear that this derivative is negative whenever ‖f̄(t)− f∗‖ > ‖bNk‖
c . This show

that the derivative is negative when ‖bNk‖ < εc and ‖f̄(t)−f∗‖ ≥ ε, which shows the
result for the case considering the projected algorithm. For the other two algorithms
the proof is identical.

The next step is to translate the bound on ‖bNk‖ into a bound on Nk. In order to
do so, we impose the condition that the random variables ci(f, u) are not supported
outside the range [z1, z2] for all f and i. We can then make use of the following result.

Lemma 6.4.2. (Relation between estimation error and sample size): Let C be given by
(6.4), where ci(f, u) ∈ [z1, z2], z2 ≥ z1, for all f, u and i. For bNk = E

[
C(fk)− ĈNk(fk)

]
we then have

‖bNk‖ ≤ 3

2

√
5nπ

Nkα
(z2 − z1).

Proof. Let Z be any random variable supported on an interval [a, b], and let N̂ be the
number of samples taken to obtain ĈVaRα[Z]. In [69, Chapter 6] it is shown that we
have E

[
ĈVaRα[Z]

]
≤ CVaRα[Z]. Therefore

‖E
[

CVaRα[Z]− ĈVaRα[Z]
]
‖ = E

[
CVaRα[Z]− ĈVaRα[Z]

]
≤ E

[
CVaRα[Z]− ĈVaRα[Z]

]
+
.

Here [x]+ := max(0, x). From [75, Theorem 3.1], we have the concentration bound

P
[

CVaRα[Z]− ĈVaRα[Z] ≥ z
]
≤ 3e

− 1
5α
(

z
z2−z1

)2
N̂
.

It follows that

E
[

CVaRα[Z]− ĈVaRα[Z]
]
+

=

∫ ∞
0

P
[

CVaRα[Z]− ĈVaRα[Z]
]
≥ z]dz

≤ 3

2

√
5π

N̂α
(b− a).
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6.5. Simulations 121

Setting Z = Ci(f, u), a = z1, b = z2 and N̂ = Nk, and taking into account that C(fk),
ĈNk(nk) and bNk are n-dimensional vectors instead of scalars, the above gives

‖bNk‖ ≤ 3

2

√
5nπ

Nkα
(z2 − z1).

Using the obtained relation between estimation error and sample size, we can
now give a lower bound on Nk that ensures convergence to Nε(f∗).

Corollary 6.4.3. (Sample size bounds under strong monotonicity): Assume that C
is strongly monotone with constant c. In addition let the conditions of Proposition 6.3.1
(respectively Proposition 6.3.3 and 6.3.5) hold, and let {fk} be generated by (6.7) (respectively
(6.16) and (6.28)). For ε > 0, if

Nk >
45nπ(z2 − z1)2

4αεcF
for all k ∈ N,

then limk→∞ ‖fk − f∗‖ ≤ ε with probability one.

6.5 Simulations

Here we demonstrate an application of the presented stochastic approximation
algorithms for finding the solutions of a CVaR-based variational inequality. The
example is an instance of a CVaR-based routing game (see Section 6.2.1) based on the
Sioux Falls network [76]. The network consists of 24 nodes and 76 edges. To each of
the edges, we associate an affine cost function given by ce(fe, ue) = te(1 + ue

100
ae
fe),

where fe is the flow over edge e, and te and ae are the free-flow travel time and
capacity of edge e, respectively, as obtained from [76]. The uncertainty ue has the
uniform distribution over the interval [0, 0.5] for all edges connected to the vertices
10, 16, or 17. For the rest of the edges, ue is set to zero. This defines the cost functions
for all edges, and consequently defines the costs of all paths through the network as
well. We consider three origin destination(OD) pairs O =

{
(1, 19), (13, 8), (12, 18)

}
,

and for each of these paths we select the ten paths that have the smallest free-flow
travel time associated with them. The set of these 30 paths we denote as P . The
demands for each OD-pair are given by d1,19 = 300, d13,8 = 600, d12,18 = 200. We aim
to find a CVaR-based Wardrop equilibrium which is equivalent to finding a solution
of the VI problem defined by a map C(f) := Af + b+ CVaRα[ξ], and a feasible set

F = {f ∈ R30 | f ≥ 0,
10∑
i=1

fi = 300,
20∑
i=11

fi = 600,
30∑
i=21

fi = 200}
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Figure 6.1: Plot illustrating the convergence of the algorithms for the routing example explained in
Section 6.5. The initial condition for all algorithms is set as f0 defined as (f0)i = 30 for i ∈ {1, . . . , 10},
(f0)i = 60 for i ∈ {11, . . . , 20} and (f0)i = 20 for i ∈ {21, . . . , 30}.

. Here, f, b ∈ R30, A ∈ R30×30, and α = 0.05. The exact values of A and b and the
distribution of ξ are constructed using the cost functions and the network structure,
see [77, Section 6] for details.

In Figure 6.1, we see the evolution of the error for each of the different algorithms.
The stepsize sequence for the projected, subspace-constrained, and multiplier-driven
algorithms are γk = 100

100+k , γk = 200
200+k , and γk = min( 100

100+k ,
1
2 ), respectively. In

addition, for the subspace-constrained algorithm we initially let c depend on k, to
prevent unstable behaviour. We used c = min( 1

γk
, 200). For the multiplier driven

algorithm, for similar reasons, we used a modified step-size sequence for updating
the multipliers λ given by γkλ = 2γk for k < 1000 and γkλ = 0.5γk, otherwise. The
figure shows that all algorithms converge to a neighbourhood of the solution of the
variational inequality, albeit requiring a different number of iterations. Specifically,
the number of iterations taken by the projected algorithm to converge is two orders
of magnitude less than that of the subspace-constrained and multiplier-driven algo-
rithms. The quality of convergence is summarized in Table 6.1, where we can see
both the accuracy of the achieved convergence as well as the effect of increasing the
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6.6. Conclusions 123

Samples per iteration 25 50 100
Projected 0.3875 0.2062 0.1157
Subspace constrained 0.3780 0.2015 0.1332
Multiplier-driven 0.3889 0.1987 0.1064

Table 6.1: Table illustrating the performance of algorithms in the regime where
iterates have converged to a significant level of accuracy. For the row related to the
projected method, each number denotes the average error ‖F (hk) − F (h∗)‖ over
iterates k after the error has become less than the value 0.6, 0.3 and 0.15, respectively,
using 25, 50 and 100 samples in each iteration respectively. That is, using 25 samples
in each iteration, the average error after the error hits a value 0.6 is 0.3875. The
number of total iterations for the projected method is 1000. Similar average errors
are denoted for subspace-constrained and multiplier-driven methods but the total
number of iterates used are 50000 and 100000, respectively.

sample sizes. It is important to note that the errors shown in Fig. 6.1 and Table 6.1 are
in terms of the deviation in the value of the map ‖C(fk)− C(f∗)‖, rather than the
deviation in the solution ‖fk − f∗‖. This is because the solution f∗ is not unique for
the formulated VI. However, for any two solutions f∗, qf∗ ∈ SOL(F , C) we do have
C( qf∗) = C(f∗).

6.6 Conclusions

In this chapter we have studied variational inequalities involving a map that contains
the conditional value at risk of uncertain costs. We have proposed three different
algorithms for approximating the solution of these CVaR based VIs, and shown
that the estimates produced by these algorithms converge asymptotically to the
set of solutions of the VI, where any desired level of accuracy can be achieved by
appropriately selecting the sample size used in estimating the CVaR of the unknown
cost. We have also supplied an explicit relation between the achieved accuracy and
the sample size. We have then compared the performance of these algorithms when
employed to find the set of equilibria of a routing game example.



627714-L-bw-Verbree627714-L-bw-Verbree627714-L-bw-Verbree627714-L-bw-Verbree
Processed on: 8-1-2024Processed on: 8-1-2024Processed on: 8-1-2024Processed on: 8-1-2024 PDF page: 132PDF page: 132PDF page: 132PDF page: 132



627714-L-bw-Verbree627714-L-bw-Verbree627714-L-bw-Verbree627714-L-bw-Verbree
Processed on: 8-1-2024Processed on: 8-1-2024Processed on: 8-1-2024Processed on: 8-1-2024 PDF page: 133PDF page: 133PDF page: 133PDF page: 133

Chapter 7

Conclusions

In this thesis we studied some of the difficulties encountered when aiming to design
and regulate routing games. In this conclusion we recall our main contributions and
discuss some of the potential directions of future research.

7.1 Contributions

In Chapter 3 we investigate how the Wardrop equilibrium(WE) of a routing game is
influenced by the total amount of demand that needs to be routed over the network.
For the specific case of networks with affine cost functions over the edges we give a
rigorous and complete characterization of how the set of WE evolves as the demand
increases. Making use of the fact that the non-negative real line is divided into a finite
number of intervals on which the evolution of the set of WE remains constant, we
show how these results can be used to obtain an explicit expression for the WE in the
final interval, as well as the lower endpoint of this final interval, without having to
compute any WE for lower values of demand. In Chapter 4 we build upon the result
of Chapter 3 to analyse the relationship between the total demand and the presence
of Braess’s paradox(BP). We have given several sufficient conditions for the presence
of BP, which are computationally feasible to check. Some of these conditions relate
in an interesting manner to the results from Chapter 3 on how information about
WE in the final interval can be obtained. As a result some of these conditions supply
very efficient methods for detecting sets of paths in the network that are ’suspect’,
meaning that they either cause BP at some level of demand, or can be removed from
the routing game without changing the cost under WE at any level of demand. We
also give a necessary and sufficient condition for the presence of BP, which is difficult
to check in full, but still provides an efficient method to obtain upper-bounds on the
achievable cost under WE for all demands, such that whenever the WE-cost exceeds
such an upper bound, BP is known to occur. Finally we show how the obtained
results grant a different perspective on BP. Instead of the paradox being a purely
negative phenomenon, it turns out it is more a matter of balance. Any decrease in
efficiency caused by a set of paths at some demand is accompanied by an increase
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126 7. Conclusions

in efficiency at another level of demand. Whether removing a set of paths from the
network is beneficial or not, thus requires investigation of the effects at different
levels of demand, as well as a choice of a measure that quantifies the value of a set of
paths to the game.

In Chapter 5 we have studied routing games subject to uncertainty, in which
participants of the routing game make use of a traffic information system(TIS) that
supplies information about the current state of the network. The aim of a TIS is to
minimize the average cost of the participants, and it can influence the game by selec-
tively supplying information. We have studied how the potential for optimization
by the TIS depends on the prior belief of the participants about the current state
of the network. We have shown that under mild conditions, a TIS is able to use
its information provision strategy to identify this prior belief based on observed
equilibria, which then allows the TIS to achieve optimal performance by updating its
information provision strategy. We also provided a design method for an information
provision strategy that will allow the TIS to fully identify the prior belief.

In Chapter 6 we have explored the subject of variational inequalities(VIs) in which
the involved mappings are the Conditional-Value-at-Risk(CVaR) of an uncertain cost,
a framework that, among other things, can be used to model routing games with
risk-averse participants. We have adapted three different algorithms for solving VIs
to mka them suitable for solving CVaR-based VIs using stochastic approximation,
where samples are used to estimate the CVaR of the uncertain costs. We have shown
that each of these algorithms asymptotically converges to a neighbourhood of the
solution, where the size of this neighbourhood can be made arbitrarily small by
making the sample size sufficiently large. We have also given an explicit upper
bound on the number of samples required to achieve a given level of accuracy, and
have compared the performance of the three methods using an example of a routing
game.

7.2 Future work

There are several potentially interesting research directions in which the material of
this thesis can be extended. Starting with the results of Chapter 3, the most obvious
step is to drop the assumption that the cost functions are affine, and consider more
general (continuous, non-decreasing) cost functions. This is especially true since
many of the functions that are important to modelling of traffic networks are not
affine [78], and it would be useful to further enable the analysis of routing games
involving these types of functions. For the specific case of strictly increasing cost
functions such an extension of our results concerning the characterization of the
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evolution of the set of WE can already be derived from results in [12], and using
the techniques presented in this thesis, an extension to non-decreasing functions
seems plausibly obtainable. We note however that when the assumption of affine
cost functions is dropped, there no longer necessarily exists a finite set of intervals
on which the evolution of the WE is constant, and results concerning the final of
these interval are therefore unlikely to be extended in this direction. Along similar
lines an extension of the results of Chapter 4 to a case considering more general cost
functions is also desirable. A number of the sufficient conditions for the presence of
BP may have parallels in this context, though it is in this case perhaps more feasible
to consider constraining the amount of demand a (set of) path(s) can facilitate instead
of complete removal of a path.

Another interesting question is to what extent the results of Chapters 3 and 4,
and specifically the necessary and sufficient condition for the presence of BP, can be
used to derive subsets of paths that give restrictive or optimal upper bounds on the
WE-cost, such the exceeding these bounds reveals the presence of BP. We note that
this closely relates to finding the optimal set of edges in a network for minimizing the
cost under WE, which has been proven to be an NP-hard problem [30]. Therefore
this is expected to be a very difficult question to answer, but there is some intuition
in the result on computing all WE in the final interval that is worth exploring. For
instance, a simplistic idea would be to simply remove one or more of the paths that
is used in the final interval, and has a relatively high contribution to the free flow
cost βM derived from (3.22). Any result on why this does or does not work could
provide useful insights.

For the material presented in Chapter 5, one of the major shortcomings is the
assumption that all participants share the same prior. However, we have already
shown that the potential for public signalling schemes to address learning multiple
unknown priors is limited. For future research we are thus interested in the ques-
tion of whether different types of information provision strategies, such as private
signalling schemes, can potentially address this problem.
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Appendix A

Example of a routing game not representable
by a graph

Consider a routing game defined over the network in Figure A.1, whereCek(fek) = fek
for all k ∈ [6]. We have

P = {p1, p2, p3, p4, p5, p6, p7, p8}
:=
{

(e1, e2, e3), (e1, e2, e6), (e1, e5, e3), (e1, e5, e6),

(e4, e2, e3), (e4, e2, e6), (e4, e5, e3), (e4, e5, e6)
}
,

with a path-cost function given by C(f) = Af where

A =



3 2 2 1 2 1 1 0

2 3 1 2 1 2 0 1

2 1 3 2 1 0 2 1

1 2 2 3 0 1 1 2

2 1 1 0 3 2 2 1

1 2 0 1 2 3 1 2

1 0 2 1 2 1 3 2

0 1 1 2 1 2 2 3


.

vo vd

e1

e4

e2

e5

e3

e6

Figure A.1: Example for constructing a routing game not representable by a graph.
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130 A. Example of a routing game not representable by a graph

Now consider the modified game over only the first seven paths. That is, a routing
game with a path-cost function given by qC( qf) = qA qf where

qA =



3 2 2 1 2 1 1

2 3 1 2 1 2 0

2 1 3 2 1 0 2

1 2 2 3 0 1 1

2 1 1 0 3 2 2

1 2 0 1 2 3 1

1 0 2 1 2 1 3


.

Our goal is now to show that there is no graph G that represents this routing game.
We argue by contradiction, so let qG be a graph where qvo and qvd are the origin en
destination in this graph and let qC be an associated set of cost functions over the
edges such that the the resulting path-cost function is given by qC( qf) = qA qf . Note that
this implies that there are only seven paths from origin to destination in this graph qG.
From the structure of A we can deduce the following:∑

ek∈p1

qαek = 3,
∑

ek∈p1∩p2

qαek = 2

∑
ek∈p1∩p7

qαek = 1,
∑

ek∈p2∩p7

qαek = 0.

From this we can deduce there exist sets of edges, suggestively denoted E3 and E1,2,
such that

E1,2 ⊆ p1 ∩ p2, E1,2 ∩ p7 = ∅,
∑

ek∈E1,2

qαek = 2,

E3 ⊆ p1 ∩ p7, E3 ∩ p2 = ∅,
∑
ek∈E3

qαek = 1,

and
E1,2 ∪ E3 = {ek ∈ p1 | qαek > 0}.

Similarly, we can show that there exist sets of edges, denoted E1,3 and E2 such that

E1,3 ⊆ p1 ∩ p3, E1,3 ∩ p6 = ∅,
∑

ek∈E1,3

qαek = 2,

E2 ⊆ p1 ∩ p6, E2 ∩ p3 = ∅,
∑
ek∈E2

qαek = 1,

and
E1,3 ∪ E2 = {ek ∈ p1 | qαek > 0}.
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Combining these observations with the fact that
∑
ek∈p2∩p3

qαek = 1, it follows that in
fact there exist sets of edges E1, E2 and E3 such that

E1 ⊆ p1 ∩ p2 ∩ p3, E1 ∩ (p6 ∪ p7) = ∅,
∑
ek∈E1

qαek = 1,

E2 ⊆ p1 ∩ p2 ∩ p6, E2 ∩ (p3 ∪ p7) = ∅,
∑
ek∈E2

qαek = 1,

E3 ⊆ p1 ∩ p3 ∩ p7, E3 ∩ (p2 ∪ p3) = ∅,
∑
ek∈E3

qαek = 1.

and
E1 ∪ E2 ∪ E3 = {ek ∈ p1 | qαek > 0}.

Repeating this line of reasoning for p4 and p5 we find

E1 ⊆ p1 ∩ p2 ∩ p3 ∩ p4, E1 ∩ (p5 ∪ p6 ∪ p7) = ∅,
E2 ⊆ p1 ∩ p2 ∩ p5 ∩ p6, E2 ∩ (p3 ∪ p4 ∪ p7) = ∅,
E3 ⊆ p1 ∩ p3 ∩ p5 ∩ p7, E3 ∩ (p2 ∪ p3 ∪ p4) = ∅.

Further analysing the structure imposed by qA using the same type of arguments, we
find that there must also exist sets of edges E4, E5, and E6 such that

E4 ⊆ p5 ∩ p6 ∩ p7, E4 ∩ (p1 ∪ p2 ∪ p3 ∪ p4) = ∅,
E5 ⊆ p3 ∩ p4 ∩ p7, E5 ∩ (p1 ∪ p2 ∪ p5 ∪ p6) = ∅,
E6 ⊆ p2 ∩ p4 ∩ p6, E6 ∩ (p1 ∪ p3 ∪ p5 ∪ p7) = ∅,

and ∑
ek∈E4

qαek =
∑
ek∈E5

qαek =
∑
ek∈E6

qαek = 1.

It follows that none of the sets in {Ek}k∈[6] overlap. Therefore, there exist at least six
edges in qG, which satisfy

qe1 ∈ p1 ∩ p2 ∩ p3 ∩ p4, qe1 /∈ p5 ∪ p6 ∪ p7,

qe2 ∈ p1 ∩ p2 ∩ p5 ∩ p6, qe2 /∈ p3 ∪ p4 ∪ p7,

qe3 ∈ p1 ∩ p3 ∩ p5 ∩ p7, qe3 /∈ p2 ∪ p3 ∪ p4,

qe4 ∈ p5 ∩ p6 ∩ p7, qe4 /∈ p1 ∪ p2 ∪ p3 ∪ p4,

qe5 ∈ p3 ∩ p4 ∩ p7, qe5 /∈ p1 ∪ p2 ∪ p5 ∪ p6,

qe6 ∈ p2 ∩ p4 ∩ p6, qe6 /∈ p1 ∪ p3 ∪ p5 ∪ p7.

For the next part, we assume that the edges qe1, qe2 and qe3 appear in that order in the
path p1. That is, when traversing p1, we first encounter qe1, then qe2 and finally qe3.
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132 A. Example of a routing game not representable by a graph

The upcoming arguments can be repeated for any other ordering to arrive at similar
contradictions.

Note that given this ordering, we know that there exists a path from qvout
1 to qvin

2 ,
and a path from qvout

2 to qvin
3 . In addition, since p5 traverses qe2 but not qe1 there must

exist a path from qvo to qvin
2 that doesn’t traverse qe1. Thus there exists a path that does

not contain qe1 but does contain qe2 and qe3. The only option is that this is p5, and that it
goes through the edges qe4, qe2, qe3 in that order. We see that there exists a path from qvo
to qvin

4 and from qvout
4 to qvin

2 . Next note that since p7 traverses qe3 but not qe1 and qe2 there
must exists a path from qvo to qvin

3 , and by similar arguments as before we find that qe4

and qe5 are part of this path. If this goes from qvo to qvin
5 and then from qvout

5 to qvin
4 then

there exists a path containing qe5, qe4, qe2, which is a contradiction. Thus this path goes
instead from qvo to qvin

4 and then from qvout
4 to qvin

5 . Thus there exists a path from qvout
4

to qvin
5 . With the same reasoning considering p4 instead of p7, we can see that there

must exist a path from qvout
5 to qvin

6 , and a path from qvout
6 to qvd. Taking all this together,

there exists a path containing qe4, qe5 and qe6, which is once again a contradiction. We
arrive at the conclusion that our premise is false, and that the given graph, origin and
destination and cost functions do not induce a routing game for which qC( qf) = qA qf ,
and therefore there exists no combination of a graph, a single origin and destination
pair and cost functions that does.
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Appendix B

Proof of Corollary 3.1.1

Corollary. (Piecewise constant evolution of active and used sets): Let P and C ⊂ K be
given. There exists a finite set of points D := (D0, D1, · · · , DM , DM+1) ⊂ R≥0 ∪ {+∞}
with D0 = 0, DM+1 =∞ and Dj > Dj−1 for all j ∈ [M + 1], and corresponding sets of
subsets of P denoted {J act

0 ,J act
1 , · · · ,J act

M } and {J use
0 ,J use

1 , · · · ,J use
M }, such that, for

all i ∈ [M ]0 and D ∈ (Di, Di+1), we have

Ract
D = J act

i , Ruse
D = J use

i .

Furthermore, J act
i 6= J act

j and J use
i 6= J use

j for all i 6= j.

Proof. The claim about active setsRact
D is shown in [9, Section 4]. That is, there exist

points D := (D0, D1, · · · , DM , DM+1) with D0 = 0, DM+1 = ∞ and Dj > Dj−1

for all j ∈ [M + 1] along with sets {J act
0 ,J act

1 , · · · ,J act
M } such that Ract

D = J act
i for

all i ∈ [M ] and D ∈ (Di, Di+1). Using this result and the defined points in D we
will show the existence of sets {J use

0 ,J use
1 , · · · ,J use

M } such that Ruse
D = J use

i for all
D ∈ (Di, Di+1) and all i. Pick some Di, Di+1 ∈ D. Let D ∈ (Di, Di+1) and p ∈ Ruse

D .
Consider any other demand D′ ∈ (Di, Di+1) with D′ 6= D. Associated to D and D′,
select T such that T ∈ (Di, Di+1) and D′ can be written as a convex combination of T
and D. That is, D′ = µD + (1− µ)T for some µ ∈ (0, 1). Since p ∈ Ruse

D , there exists
fD such that fDp > 0. Furthermore, fTp ≥ 0. SinceRact

D = Ract
T , from Lemma 3.1.2-2,

there exists fD
′ ∈ WD′ such that fD

′
= µfD + (1 − µ)fT and so fD

′

p > 0. Thus,
p ∈ Ruse

D′ . Since D and D′ were selected arbitrarily, we conclude that the used set
remains the same in the interval (Di, Di+1).

Now, for Di, Di+1, Dj , Dj+1 ∈ D with i 6= j let D−, D+ satisfy D− ∈ (Di, Di+1)

andD+ ∈ (Dj , Dj+1). Note that thereforeRact
D− 6= R

act
D+ . For the sake of contradiction

assume that Ruse
D− = Ruse

D+ . For any p ∈ Ruse
D− we know that Cp(fD

−
) ≤ Cr(fD

−
)

for all r ∈ P and fD
− ∈ WD− . Similarly Cp(f

D+

) ≤ Cr(f
D+

) for all r ∈ P and
fD

+ ∈ WD+ . Since C(·) is affine(see (3.2)) it follows that for fT = cocoµ(fD
−
, fD

+

)

with fD
− ∈ WD− , fD

+ ∈ WD+ , µ ∈ [0, 1] and T = cocoµ(D−, D+) we have that
Cp(f

T ) ≤ Cr(f
T ) for all p ∈ Ruse

D− . Also note that fTp > 0 implies fD
−

p > 0 or
fD

+

p > 0, which in turn gives us p ∈ Ruse
D− . In other words fT is a WE. Since

Ract
D− 6= R

act
D+ we can without loss of generality pick r ∈ P such that r ∈ Ract

D− and
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134 B. Proof of Corollary 3.1.1

r /∈ Ract
D+ . In other words, the cost of path p is minimal at the demand D−, but not

minimal at demand D+. Using (3.2) and the fact that fT is a WE it follows that the
cost of r is not minimal at demand T = cocoµ(D−, D+). Since D− ∈ (Di, Di+1) we
can set µ such that T ∈ (Di, Di+1). This would then imply thatRact

T 6= Ract
D− , which

contradicts the already established results concerning the active set. Therefore our
premise is false, which shows thatRuse

D− 6= R
use
D+ , finishing the proof.
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Appendix C

WE and WE-costs of routing games in
Example 4.3.6

Consider the original routing game in Example 4.3.6. The path-cost function is given
by

C(f) = Af + b =


1 0 1 1 1

0 1 1 1 1

1 1 3 2 3

1 1 2 3 3

1 1 3 3 4

 f +


7

7

1

1

0

 .

The WE for this game are given by

fD=



(
0 0 0 0 D

)>
D∈ [0, 1],(

0 0 D − 1 D − 1 2−D
)>

D∈ [1, 2],(
0 0 D

2
D
2 0

)>
D∈ [2, 4],(

3D−12
4

3D−12
4

12−D
4

12−D
4 0

)>
D∈ [4, 8],(

D−5 D−5 9−D 9−D D−8
)>
D∈ [8, 9],(

3D−7
5

3D−7
5 0 0 14−D

5

)>
D∈ [8, 14],(

D
2

D
2 0 0 0

)>
D∈ [14,∞).

For the modified game with path p5 removed the WE are given by

f̃D=



(
0 0 D

2
D
2

)>
for D∈ [0, 4],(

3D−12
4

3D−12
4

12−D
4

12−D
4

)>
for D∈ [4, 12],(

D
2

D
2 0 0

)>
for D∈ [12,∞).

For the last case, with paths p3, p4 and p5 the WE satisfy

qfD =
(

D
2

D
2

)>
,
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136 C. WE and WE-costs of routing games in Example 4.3.6

for D ≥ 0. The associated WE-costs are

λWE(D) =



4D for D ∈ [0, 1],

2D + 2 for D ∈ [1, 2],
5D
2 + 1 for D ∈ [2, 4],
D
4 + 10 for D ∈ [4, 8],

12 for D ∈ [8, 9],
2D
5 + 8 2

5 for D ∈ [9, 14],
D
2 + 7 for D ∈ [14,∞),

λ̃WE(D) =


5D
2 + 1 for D ∈ [0, 4],
D
4 + 10 for D ∈ [4, 12],
D
2 + 7 for D ∈ [12,∞),

qλWE(D) =
D

2
+ 7 for D ≥ 0.
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Appendix D

WE of routing game in Example 4.4.1

Consider the routing game in Example 4.4.1, defined by the path-cost function

C(f) = Af + b =


3 0 2 0

0 4 2 1

2 2 4 0

0 1 0 2

 f +


1

1

0

5

 .

The WE for this game are given by

fD=



(
0 0 D 0

)>
for D∈ [0, 1

2 ],(
8D−4

12
6D−3

12
2D−7

12 0
)>

for D∈ [ 1
2 ,

7
2 ],(

4D
7

3D
7 0 0

)>
for D∈ [ 7

2 ,
35
9 ],(

7D+15
19

3D+20
19 0 9D−35

19

)>
for D∈ [ 35

9 , 6],(
10D+27

29
4D+34

29
D−6
29

14D−55
29

)>
for D∈ [6,∞).
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Summary

We start this thesis with an analysis of how the set of Wardrop equilibria(WE) of a routing
game with affine cost functions is influenced by the total demand that needs to be routed over
the network. We give a rigorous analysis of the effects of changing demand on various aspects
of the game, such as the set of paths that carry flow and the cost under WE, culminating in a
full characterization of the set of directions in which the WE changes as the demand increases.
We also use these results to show how one can directly compute the WE flow for high levels of
demand. Next we turn our attention to the subject of Braess’s paradox(BP), and use the results
for varying demand to give different ways in which the evolution of the set of WE can reveal
the presence of BP. We also translate these results into a necessary and sufficient condition that
allows us to construct affine functions which serve as upper bounds on the WE-cost for all
levels of demand, such that exceeding one of these bounds implies the presence of BP. We then
discuss how our results reveal that BP is not a purely negative phenomenon. We show that
any inefficiency caused by a set of paths at some demand is related to an increase in efficiency
at some other level of demand, thus care should be taken with removing paths from a network,
even when it is known that they cause BP.

Then we turn our attention to routing games involving uncertain costs, in which the
participants rely on a central traffic information system(TIS) for information about the current
state of the network. The TIS tries to leverage its position to minimize the average travel time
of all agents. We show how the performance of the TISs strategies depends on the knowledge
it has about the prior belief that the population has about the state of the network, and give
mild conditions under which the TIS can use observations of the WE of the game to identify
this prior. We also provide a way in which the TIS can design its strategy to learn this prior.

Finally we take a look at the concept of variational inequalities(VIs), an important tool in
the study of routing games, and the challenges of computing the solutions of these VIs when
the involved mappings are given by the Conditional-Value-at-Risk(CVaR) of an uncertain
cost. We study three different stochastic approximation algorithms for solving these types of
problems, and show that they converge to a neighbourhood of the solution, where the size of
the neighbourhood can be tuned by controlling the number of samples taken at each iteration.
We also give an upper bound on the required sample size for achieving a given precision.
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Samenvatting

We beginnen met een analyse van de invloed die verandering in de totale vraag die over
een netwerk moet worden getransporteerd heeft op de set van Wardrop equilibria(WE) van
een navigatiespel. We geven een grondige analyse van het effect van een veranderende
vraag op verschillende aspecten van het spel, zoals de set aan paden waar verkeer aan wordt
toegewezen en de transportkosten die worden ervaren in een WE, en geven uiteindelijk een
volledige karakterisatie van de richtingen waarin de set van WE zich beweegt als de vraag
toeneemt. Ook gebruiken we deze resultaten om een direct methode te ontwikkelen voor het
berekenen van WE als de vraag hoog is. Vervolgens richten we ons op het fenomeen “Braess’s
paradox”(BP), en gebruiken de resultaten voor variërende vraag om verschillende manieren te
presenteren waarop de evolutie van de set van WE de aanwezigheid van BP kan onthullen.
We vertalen deze resultaten ook naar een noodzakelijke en afdoende voorwaarde voor de
aanwezigheid van BP, die ons toestaat lineare functies te construeren die we gebruiken als
bovengrens voor de kosten gegeven een WE. Dat betekent dat wanneer één van deze grenzen
wordt overschreden we zeker weten dat BP aanwezig is. Vervolgens bespreken we hoe onze
resultaten een nieuw perspectief geven op BP. In plaats van BP te zien als een puur negatief
fenomeen laten we zien dat het eerder een kwestie is van balans. Elk verlies aan efficiënte
veroorzaakt door een set aan paden op een niveau van de vraag gaat noodzakelijk gepaard met
een verhoogde efficiëntie op een ander niveau van de vraag. Voorzichtigheid is dus geboden
als men paden uit een netwerk wil verwijderen, zelfs als men weet dat ze BP veroorzaken.

Vervolgens richten we ons op navigatiespellen met onzekere kosten, waarin de deelnemers
vertrouwen op een centraal verkeersinformatiesysteem(TIS) die informatie vrijgeeft over de
huidige staat van het netwerk. Het TIS probeert zijn positie te gebruiken om de gemiddelde
reistijd te minimaliseren. We laten zien hoe de prestaties van de strategie van het TIS zijn
afhangen van de kennis die het heeft over de verwachting van de deelnemers over de huidige
staat van het netwerk. We geven ook milde voorwaarden waaronder het TIS observaties van
de equilibria kan gebruiken om kennis te verkrijgen van deze verwachting en laten zien hoe
de TIS een strategie kan ontwerpen om deze verwachting volledig vast te stellen.

Afsluitend kijken we naar variatiestellingen(VIs) die een belangrijk rol spelen in het
bestuderen van navigatiespellen en de uitdagingen die gepaard gaan met het berekenen van
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oplossing voor deze VIs wanneer de relevante functies de Conditionele Waarde op Risico
van een onzekere kostenfunctie. We onderzoeken drie verschillende stochastische benader-
ingsmethodes voor het berekenen van oplossing van dit type VIs en laten zien dat de algoritmes
convergeren naar de nabijheid van de oplossing, waar de uiteindelijke acuraatheid van de
convergentie kan worden gereguleerd door het aantal gebruikte waarnemingen vast te stellen.
We geven ook een explicitie bovengrens aan het vereiste aantal waarnemingen dat nodig is
om een bepaalde precisie te garanderen.
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