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A B S T R A C T   

Background: Stroke diagnosis is dependent on lengthy clinical and neuroimaging assessments, while rapid 
treatment initiation improves clinical outcome. Currently, more sensitive biomarker assays of both non-coding 
RNA- and protein biomarkers have improved their detectability, which could accelerate stroke diagnosis. This 
systematic review and meta-analysis compares non-coding RNA- with protein biomarkers for their potential to 
diagnose and differentiate acute stroke (subtypes) in (pre-)hospital settings. 
Methods: We performed a systematic review and meta-analysis of studies evaluating diagnostic performance of 
non-coding RNA- and protein biomarkers to differentiate acute ischemic and hemorrhagic stroke, stroke mimics, 
and (healthy) controls. Quality appraisal of individual studies was assessed using the QUADAS-2 tool while the 
meta-analysis was performed with the sROC approach and by assessing pooled sensitivity and specificity, 
diagnostic odds ratios, positive- and negative likelihood ratios, and the Youden Index. 
Summary of review: 112 studies were included in the systematic review and 42 studies in the meta-analysis 
containing 11627 patients with ischemic strokes, 2110 patients with hemorrhagic strokes, 1393 patients with 
a stroke mimic, and 5548 healthy controls. Proteins (IL-6 and S100 calcium-binding protein B (S100B)) and 
microRNAs (miR-30a) have similar performance in ischemic stroke diagnosis. To differentiate between ischemic- 
or hemorrhagic strokes, glial fibrillary acidic protein (GFAP) levels and autoantibodies to the NR2 peptide 
(NR2aAb, a cleavage product of NMDA neuroreceptors) were best performing whereas no investigated protein or 
non-coding RNA biomarkers differentiated stroke from stroke mimics with high diagnostic potential. 
Conclusions: Despite sampling time differences, circulating microRNAs (< 24 h) and proteins (< 4,5 h) perform 
equally well in ischemic stroke diagnosis. GFAP differentiates stroke subtypes, while a biomarker panel of GFAP 
and UCH-L1 improved the sensitivity and specificity of UCH-L1 alone to differentiate stroke.   

Introduction 

Rapid establishment of ischemic stroke diagnosis, preferably in the 
pre-hospital setting, accelerates treatment and improves clinical out-
comes (TIME=brain).1 Biomarkers that differentiate ischemic- from 
hemorrhagic stroke and strokes from stroke mimics (i.e., conditions with 

a clinical stroke presentation but a different underlying pathology) 
potentially fit this profile. Ideally, stroke biomarkers should have high 
accuracy across a variety of populations and are rapidly assessed with a 
point-of-care (POC) device. Various blood biomarker candidates have 
been investigated so far but it remains unclear whether they can be used 
as a POC test in prehospital or acute clinical settings.2 
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Categories of potential acute stroke biomarkers are plasma non- 
coding RNAs (ncRNAs), such as microRNAs (miRNAs) or circu-
latingproteins and -metabolites, although the reviews until now have 
been restricted to the analysis of single categories of biomarkers. These 
reviews have demonstrated high accuracy for plasma miRNAs, partic-
ularly in differentiating acute from subacute ischemic stroke,3 while 
plasma proteins differentiated ischemic stroke from hemorrhagic 
stroke4 and ischemic stroke from stroke mimics.5 However, there has 
been no study so far, that has compared ncRNAs with established protein 
biomarkers in stroke. In other cardiovascular disease pathologies, like 
myocardial injury, a comparative assessment of ncRNAs and protein 
biomarkers identified that the combination of miRNAs with proteins 
(cardiac troponins) yielded the highest area under the curve values for 
myocardial injury.6 Because ncRNAs,7 and particularly microRNAs,8 

have shown potential for implementation in (pre-)hospital clinical set-
tings, their potential in comparison to protein biomarkers to diagnose 
and differentiate acute stroke needs to be analysed. 

This systematic review and meta-analysis compares the performance 
of circulating non-coding RNAs versus proteins to diagnose and differ-
entiate acute stroke (i.e., within 24 h of ictus). We compare single bio-
markers and biomarker-panels to assess the effect of time-from-stroke- 
onset on the diagnostic performance of different biomarkers (Supple-
mental Results). 

Methods 

Information sources and study selection 

The systematic review was conducted conforming to PRISMA 
guidelines.9 The review was not registered. We performed a systematic 
search of PubMed, EMBASE, Web of Science, and Cochrane and included 
studies published from 1-1-1974 to 19-8-2022. The full search strategy 
can be found in Supplemental File 1. Additional studies were identified 
by screening bibliographies of relevant review studies. Titles and ab-
stracts of the studies that were identified through the systematic search 
were screened by one of the reviewers (BWF, TTMN, or MLvdB). In case 
of doubt, studies were included in the full-text screening. All full-text 
articles were screened independently by three reviewers (BWF, TTMN, 
MLvdB). Cases of disagreement were discussed or a fourth independent 
reviewer, blinded from the scoring of the three reviewers (BWF, TTMN 
and MLvdB), could be consulted to reach consensus. 

Criteria for eligibility of studies 

Criteria for study eligibility were formulated using the PICO frame-
work.10 The population (P) was defined as patients with ischemic stroke, 
hemorrhagic stroke, or stroke mimic. The intervention (I) was defined as 
the measurement of any stroke-diagnosing blood biomarker within 24 h 
ictus. The comparison (C) had to be with either i.) healthy controls ii.) 
stroke mimics or iii.) hemorrhagic stroke. When studies described a 
comparison to a transient ischemic attack (TIA), without any corre-
sponding lesions found on neuroimaging, they were excluded due to 
diagnostic uncertainty. The outcome (O) was a measure of the diagnostic 
accuracy of biomarker(s). Studies were excluded if i.) the full text was 
not written in the English language, ii.) they did not include original 
research, iii.) they described an animal or postmortem study, iv.) they 
did not concern a stroke population or a comparison as defined above, 
v.) they did not study a blood biomarker, vi.) the time from stroke onset 
to sampling was more than 24 h or not reported, vii.) they did not 
describe a diagnostic study viii) studies were determining prognostic 
biomarkers, ix.) they reported on a case series (n <10), or x.) the blood 
sample was collected after thrombolysis or thrombectomy given the 
confounding effect of stroke treatments on circulating biomarker 
levels.11 

Data extraction and assessment of the methodological quality of studies in 
the systematic review 

Data were extracted by either one of three reviewers (BWF, TTMN, 
MLvdB). All data were collected and subsequently entered in RevMan5.4 
(Cochrane). The following data items were collected from each study if 
available: year of publication, digital object identifier (doi), title, jour-
nal, country, study setting, inclusion period, study scene, study design, 
study groups, control groups, sample size, age, sex, baseline NIH Stroke 
Scale (NIHSS) score, time from stroke onset to admission or venipunc-
ture (Supplemental Results), inclusion criteria, exclusion criteria, con-
trol group characteristics, aim of the study, biomarker class, unbiased 
approach (i.e. unbiased screening efforts to find new biomarkers with 
novel techniques), specific biomarker(s), clinical outcome measures, 
neuro-imaging modality, infarct and/or hemorrhage volume, reference 
test, biofluid type, time from stroke onset to first and any consecutive 
sample collection, methods of sample collection, methods of sample 
analysis, sensitivity, specificity, positive predictive value (PPV), nega-
tive predictive value (NPV), confidence intervals, cut-off values, area 
under receiver operating characteristic curve (AUROC), main findings 
and the risk of bias. In cases where a ROC curve was provided, but not 
the sensitivity and specificity, we determined sensitivity and specificity 
manually by selecting the point on the ROC curve where the sensitivity 
equals the specificity, namely at the intersection of the ROC curve with 
an overlaid diagonal line from the top left to the bottom right. The 
square root of the area from the bottom right of the graph to the inter-
section is then equal to the sensitivity and specificity.12 In addition, we 
assessed sample timing to determine which biomarker can be used in 
preclinical or clinical settings in which the time window of sampling 
should be less than 4.5 h. 

Quality assessment of studies in the systematic review 

We used the QUADAS-2 items to assess the risk of bias and the 
applicability to the general population with the following four meth-
odological points: patient selection, the index test, the reference stan-
dard used, and the flow of patients through the study or timing of the 
index test.13 Each study was evaluated independently by three reviewers 
(BWF, TTMN, MLvdB) and a fourth reviewer was consulted in the case of 
discrepancies. Publication bias and/or selective reporting were not 
formally assessed. 

Statistical analysis and data synthesis of studies in het meta-analysis 

Articles investigating biomarkers that were included in at least 2 
separate studies (two studies to allow for pooling, fitting the predefined 
inclusion and exclusion criteria) were included in the meta-analysis. We 
conducted exploratory analysis by plotting estimates of sensitivity and 
specificity from included studies in forest plots and in receiver operating 
characteristic (ROC) curves. Parameters for the summary curve and 
summary point were determined by bivariate model fitting.14 The het-
erogeneity of studies was assessed through visual examination of the 
forest plot and the SROC plot for each biomarker. The Youden Index 
(sensitivity + specificity – 1, a common summary measure of the ROC 
curve that demonstrates the maximum potential of a biomarker) was 
assessed to investigate the overall performance of biomarkers. A Youden 
Index > 0.5 was considered clinically relevant.15 Bivariate model fitting, 
diagnostic odds ratios (DOR), positive- and negative likelihood ratios, 
pooled estimates of sensitivity and specificity, and the corresponding 95 
% CIs in the meta-analysis were determined using the R version 3.2.3, as 
described by Partlett and Takwoingi.16 Data processing and statistical 
analysis were conducted using Review Manager version 5.4 (Cochrane 
Collaboration, Copenhagen, Denmark). 
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Results 

Description and characteristics of studies 

We identified a total of 4252 studies. After removing duplicates, 
2565 studies were screened by title and abstract of which 2074 were 
excluded because they did not meet our criteria. Following the initial 
screening, 491 studies were assessed for eligibility based on the full-text, 
after which a further 379 were excluded. Finally, we included 112 
studies in the systematic review. An overview of the study selection is 
shown in Fig. 1 and a summary of the study characteristics can be found 
in Supplemental Table 1. After removing the articles investigating a 
biomarker that was not investigated by any other study, 42 articles were 
included in the meta-analysis (Table 1). All studies were executed in an 
in-hospital setting, except for three studies that were (also) done in the 
pre-hospital setting.17-19 Most of the studies (n = 58) had a case-control 
design and 36 studies had a cohort design. Furthermore, 18 studies had a 
hybrid design, although the analysis also included a comparison of 
ischemic stroke compared to hemorrhagic stroke. Final diagnosis 
assessment (i.e. ischemic stroke, hemorrhagic stroke or stroke mimic 
diagnosis) was validated by a combination of MRI and CT (n = 53), MRI 
alone (n = 18), CT alone (although not specified whether there should 
be large vessel occlusion or perfusion deficit) (n = 29), transcranial 
doppler (n = 1), or was not specified (n = 8). Lastly, 99 studies were 

single-center studies, and 13 studies were multicenter. 

Identified biomarker subtypes 

A total of 94 plasma miRNAs were reported when validated (i.e. 
following validation experiments after their expression was initially 
identified in test cohorts). 8 miRNA-studies used microarrays and 1 
study used RNA-sequencing of identified microRNAs. The most often 
studied plasma miRNAs were miRNA-16 (n = 6), let-7b (n = 4), miRNA- 
106b-5p (n = 4), miRNA-126 (n = 4), and miRNA-21-5p (n = 4). Two 
studies tested plasma microRNA panels, with either 3 (miRNA-125a-5p, 
miRNA-125b-5p and miRNA-143-3p) or 5 (miRNA-126, miRNA-130a, 
miRNA-222, miRNA-218 and miRNA-185) plasma microRNAs each, 
both in which compared ischemic- versus hemorrhagic stroke. One study 
reported a combination of 10 plasma miRNA molecules, also with the 
ischemic- versus hemorrhagic stroke. Finally, three studies combined 
plasma miRNAs with plasma proteins.20,21,22 Proteins that were most 
often studied were S100 calcium-binding protein B (S100B) (n = 26), 
GFAP (n = 18), high-sensitivity C-reactive protein (hs-)CRP (n = 19), 
matrix metalloproteinase-9 (MMP-9) (n = 15), interleukin-6 (IL-6) (n =
12), brain natriuretic peptide (BNP) (n = 10), and D-dimer (n = 10). 
Protein panels that were most often studied were GFAP and ubiquitin 
C-terminal hydrolase L1 (UCH-L1) (n = 2) and the panel s100B, MMP-9, 
beta-nerve growth factor (BNGF), von Willebrand factor (vWF), and 

Fig. 1. Flow diagram of the identified, in- and excluded articles at each stage.  
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monocyte chemoattractant protein-1 (MCP-1) (n = 3 studies, although 
this panel was tested using different comparisons such as ischemic stroke 
compared to controls, hemorrhagic stroke compared to controls, and 
strokes compared to controls). 

Methodological assessment of studies 

64 studies (56.6 %) showed a high risk of bias in the patient selection 
domain (Fig. 2). A small majority of the studies consisted of case-control 

studies (n = 58 studies) which can be over- or underrepresented in 
different groups because of the retrospective nature of the data. 
Furthermore, a high risk of bias was also seen in the index test domain in 
37 studies (33 %). The most common reason for studies to score high risk 
of bias for the index test was that cut-off values were not pre-specified. A 
low risk of bias was seen in the reference standard domain in 84 studies 
(75 %), while an unclear risk of bias was seen in the flow and timing 
domain in 63 studies (56.3 %). Most studies demonstrated a low risk of 
bias in the domain of applicability concerns based on reference stan-
dards (94 %), patient selection (94 %), and index test (99 %). Given the 
variation across studies, and since there were insufficient studies in all 
three comparisons, we did not perform meta-regression by including 
each potential source of heterogeneity as a covariate in the bivariate 
model as planned. 

Youden’s Index of included studies 

When we calculated the Youden’s Index for each biomarker and each 
comparison, we observed that most reported miRNAs were assessed for 
the comparison of ischemic stroke to healthy controls or stroke mimics. 
These identified miRNAs displayed a higher average Youden’s Index 
(0.77, 95 %CI 0.71–0.83) compared to protein biomarkers (0.56, 95 %CI 
0.47–0.64) (Fig. 3A). When hemorrhagic stroke was compared to con-
trols, the mean Youden’s Index for protein biomarkers was 0.53 (95 %CI 
0.29–0.77) (Fig. 3B). A comparable value was identified for proteins 
(0.54, 95 %CI 0.44–0.64) when hemorrhagic strokes were compared to 
ischemic strokes (Fig. 3C). The Youden Index for the comparison of 
stroke versus stroke mimics for circulating proteins was 0.2 (95 %CI 
0.14–0.26) (Fig. 3D). 

Biomarkers for the diagnosis of ischemic stroke 

The forest plot and SROC curve of biomarkers differentiating 
ischemic stroke from controls are depicted in Figs. 4 and 7A, respec-
tively. In total, 10 studies were included in the meta-analysis including 
1028 patients with ischemic stroke, 46 patients with a stroke mimic, and 
915 controls. The pooled diagnostic odds ratios of S100B (21.19, 95 % CI 
12.52–29.85), IL-6 (33, 95 % CI –25.44 to 91.46), ischemia-modified 
albumin (IMA) (15.80, 95 % CI 1.46–30.14) and miRNA-30 (30.67, 

Table 1 
Summary of characteristics for each biomarker in the meta-analysis.  

Biomarker Number 
of studies 

Number of 
patients 

Number 
of 

controls 

Timing of 
sample 

collection 
(hrs) 

Studies 
with cut- 

off  

Ischemic stroke compared to controls 

S100B 3 352 407 6-12-24 2 
CRP 5 692 684 6-12-24-24- 

24 
1 

IMA 2 85 75 6-24 2 
Il-6 2 522 585 6-24 0 
NSE 2 298 290 24-24 1 
miR-30a 2 340 74 6–24 1  

Ischemic stroke compared to hemorrhagic stroke 

GFAP 12 1145 438 161 12-2-3-42- 
63-122-24 

11 

S100B 2 424 77 325 6-24 0 
CRP 2 287 67 325 24-24 1 
NR2aAb 2 80 41 307 3-24 1 
UCH-L1 2 250 109 73 4-4.5 2 
UCH-L1 +

GFAP 
2 250 109 73 4-4.5 2  

Stroke compared to stroke mimics 

MMP-9 2 958 127 3-24 2 
D-dimer 2 1104 127 6-24 2 

For the comparison ischemic stroke versus hemorrhagic stroke the column 
depicting number of patients was split into ischemic stroke and hemorrhagic 
stroke. The column timing of sample collection displays sample timing for each 
study separately. 

Fig. 2. Risk of bias assessment using the QUADAS-2 tool. The risk of bias and concerns regarding applicability for each individual study were scored as either high, 
unclear or, low. 
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95 % CI –5.73 to 67.07) demonstrated the potential for differentiating 
ischemic- from hemorrhagic stroke. Pooled estimates of sensitivity and 
specificity displayed similar values (Table 3). SROC curve analysis 
(Fig. 7) pinpoints variability for both CRP and IL-6 while the forest plot 
(Fig. 4) visualises variability for IL-6 only, particularly in the sensitivity 
and specificity, as identified in two studies.21,23 In one of these two 
studies, biomarkers levels were obtained within 6 h after ischemic stroke 
onset in a study in which they compared ischemic stroke patients (n =
262) to healthy controls (n = 200) and patient controls (n = 125), 
yielding significant AUC values, not only for IL-6 (0.96), but also for CRP 

(0.99), plasminogen activator inhibitor-1 (PAI-1) (0.99), P-selectin 
(0.91), and tumour necrosis factor alpha (TNF-α) (0.99).23 Furthermore, 
regarding miRNA-30a (DOR 30.67, 95 % CI –5.73 to 67.07 and sensi-
tivity 70–80 % and specificity 79–94), both the included studies 
compared 149 ischemic stroke patients with 74 controls.24,25 The latter 
study also identified a significant decrease for miRNA-126 in ischemic 
stroke patients (n = 197) with AUC values of 0.92, 0.94, 0.93, and 0.92, 
at 24 h, 1 week, 4 weeks and, 24 weeks respectively.25 Lastly, the pooled 
DOR of CRP levels in ischemic stroke (19.99) displayed a 95 % CI of 
–33.56 to 73.53 and the largest variability. 

Fig. 3. The Youden Index (a common summary measure of the ROC curve) was assessed to investigate the overall performance of biomarkers. Subgroup analysis of 
Youden’s Indices (Sensitivity + Specificity – 1) for different biomarker classes per comparison was plotted for (A) ischemic stroke versus controls (B) hemorrhagic 
strokes versus controls (C) hemorrhagic strokes versus ischemic stroke and (D) stroke versus stroke mimics. 

Fig. 4. Forest plot of single biomarkers for which sensitivity and specificity could be retrieved from at least two studies comparing ischemic strokes and healthy 
controls. For studies reporting subgroups at different times from onset, the subgroup with the indicated OTDT was used. Horizontal lines represent 95 % confidence 
intervals. TP= true positive; FP= false positive; FN= false negative; TN= true negative. 
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Ischemic stroke compared to hemorrhagic stroke 

The forest plot of biomarkers differentiating ischemic stroke from 
hemorrhagic stroke is depicted in Fig. 5 comprising of 17 studies that 
included 1778 ischemic stroke patients, 572 hemorrhagic stroke pa-
tients, and 733 controls. GFAP had a strong DOR (43.57, 95 % CI 
43.04–44.10) with a positive likelihood ratio of 8.48 (95 % CI 
8.41–8.54). Based on the SROC analysis, GFAP levels and NR2aAb (a 
peptide fragment of synaptic N-Methyl-D-aspartate receptors that passes 
the blood-brain barrier (BBB) after ischemia) were the best-performing 
biomarkers to differentiate ischemic stroke from hemorrhagic stroke, 
although the corresponding confidence intervals of the NR2aAb DOR 
indicates large variability (24.15, 95 % CI –80.15 to 128.45). This is 
mostly because only two studies investigated NR2aAb, in a total of 80 
ischemic stroke patients and 41 hemorrhagic stroke patients.26,27 

Regarding GFAP, sensitivity and specificity values ranged from 36 to 96 
% and 69 to 100 % respectively (Fig. 5). Particular heterogeneity was 
seen in the study that demonstrated that GFAP differentiated ischemic 
stroke and hemorrhagic stroke within 4.5 h of symptom onset with a 
sensitivity of 84.2 % and a specificity of 96.3 % (AUC 0.92).28 In another 
study, GFAP generated an AUC of 0.86 within 4.5 h of symptom onset, 
with a sensitivity of 61 % and a specificity of 96 % using a cut-off of 0.34 
ng/ml.29 Alternatively, GFAP also provided a sensitivity of 77.8 % and a 
specificity of 94.2 % among 59 hemorrhagic stroke patients and 148 
ischemic stroke patients (AUC 0.87, 95 % CI, 0.80– 0.94).30 Lastly, 
regarding protein panels, the combination of GFAP and UCH-L1 dis-
played a DOR of 16.52 (6.0–27.03) (Table 2) and a specificity of 82 % 
(Table 3). 

Fig. 5. Forest plot of single biomarkers for which sensitivity and specificity could be retrieved from at least two studies comparing ischemic strokes and hemorrhagic 
strokes. For studies reporting subgroups at different times from onset, the subgroup with the indicated OTDT was used. Horizontal lines represent 95 % confidence 
intervals. TP= true positive; FP= false positive; FN= false negative; TN= true negative. 

Table 2 
Calculated diagnostic accuracy analysis   

DOR LR+ LR- 

Ischemic stroke compared to controls 

S100B 21.19 (12.52–29.85) 4.55 (3.40–5.71) 0.22 (0.17–0.27) 
CRP 19.99 (–33.56 to 

73.53) 
4.50 (–1.66 to 

10.66) 
0.23 (–0.07 to 

0.52) 
IMA 15.80 (1.46–30.14) 3.02 (1.19–4.85) 0.19 (0.08–0.30) 
IL-6 33 (–25.44 to 91.46) 5.72 (–0.52 to 

10.92) 
0.17 (0.02–0.33) 

NSE 2.78 (1.55–4.00) 1.65 (1.26–2.04) 0.59 (0.46–0.72) 
MiR-30a 30.67 (–5.73 to 

67.07) 
7.16 (0.82–13.59) 0.23 (0.11–0.36) 

ischemic stroke compared to hemorrhagic stroke 

GFAP 43.57 (43.04–44.10) 8.48 (8.41–8.54) 0.194 
(0.193–0.196) 

S100B 5.23 (-6.38–16.83) 2.03 (–0.23 to 
4.29) 

0.39 (-0.05–0.83) 

CRP 6.19 (2.57–9.80) 2.55 (1.93–3.17) 0.41 (0.26–0.57) 
NR2aAb 24.15 (-80.15 to 

128.45) 
6.05 (–7.93 to 

20.03) 
0.25 (–0.27 to 

0.77) 
UCH-L1 18.83 (8.54–29.11) 6.89 (4.40–9.38) 0.37 (0.27–0.46) 
GFAP/UCH- 

L1 
16.52 (6.0–27.03) 4.40 (1.18–7.63) 0.26 (0.12–0.42) 

stroke compared to stroke mimics 

MMP9 2.30 (1.39–3.20) 1.45 (1.15–1.76) 0.63 (0.51–0.75) 
D-dimer 2.90 (2.14–3.67) 1.35 (1.22–1.48) 0.46 (0.38–0.54) 

DOR diagnostic odds ratio; LR+ positive likelihood ratio; LR- negative likelihood 
ratio. 
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Stroke compared to stroke mimics 

The sensitivity and specificity of biomarkers (Table 3) in the meta- 
analysis of stroke compared to stroke mimics (Fig. 6) were generally 
much lower than the other comparisons. As such, no specific biomarkers 
differentiated strokes from stroke mimics. Two biomarkers (D-dimer and 
MMP-9) were included and demonstrated moderate diagnostic accuracy 
(DOR ranging from 2.3 to 2.9, Table 2). One particular study tested a 
multi-biomarker panel to differentiate ischemic strokes (n = 941) from 
hemorrhagic strokes (n = 174) and stroke mimics.31 Logistic regression 
analysis showed that, when relevant clinical variables (age, sex, alcohol, 
dyslipidemia, atrial fibrillation, previous stroke, systolic blood pressure, 
and baseline NIHSS) were included in the regression model, none of the 
studied biomarkers independently associated with the discrimination 
between stroke and stroke-mimics. When baseline NIHSS was excluded 
however, only D-dimer emerged as a significant contributor to the model 
to differentiate stroke from mimics, while the AUC of the model was 
reduced from 0.81 to 0.76. The models proposed included several clin-
ical parameters, in addition to several blood biomarkers, and did not 
show clearly different AUC values for these comparisons in a validation 
cohort (0.74 for stroke compared to stroke mimics). Nonetheless, from a 
study among 915 patients with stroke compared to 90 patients with a 
stroke mimic, results could suggest that D-dimer levels may function as 
an independent predictor of stroke compared to mimics (OR = 2.97; 95 
% CI 1.72–5.16, sensitivity 81 %, specificity 38 %).32 

Discussion 

To the best of our knowledge, this is the first study combining a 
systematic review and meta-analysis of studies evaluating ncRNA- and 
protein biomarkers in acute stroke patients. The systematic review 

demonstrated a higher Youden Index of microRNAs, compared to pro-
teins for ischemic stroke diagnosis regardless of the time window of 
sampling. In the meta-analysis, we identified that miRNA-30a and 
several protein biomarkers, like IL-6 and S100B, were the best per-
forming biomarkers to distinguish ischemic stroke from controls. Pro-
tein biomarkers like circulating GFAP or UCH-L1, or their combination 
in a protein panel, provided the best differentiation of stroke subtypes. 
Future studies should compare plasma miR-30, or a panel combining 
miR-30 with IL-6 and S100B, to prehospital screening such as the FAST 
test. 

The acronym FAST (facial drooping, arm weakness, speech diffi-
culties and time) describes an emergency screening tool that has been 
used by the American Heart Association to educate the public on 
detecting symptoms of a stroke. Currently FAST triage is used in pre- 
hospital settings to clinically differentiate stroke from stroke mimics 
and a meta-analysis of 9 studies determined that it has a combined 
sensitivity of 0.77 [95 % CI (0.64–0.86)] and specificity of 0.60 [95 % CI 
(0.38–0.78)].33 Nonetheless, in practice, about 40 % of stroke code 
patients triaged with FAST appear to have a stroke mimic,34 while FAST 
also has poor diagnostic potential for posterior circulation stroke.35 

Therefore, novel biomarkers for stroke diagnosis should display higher 
diagnostic accuracy and robust positive likelihood ratios, not affected by 
disease prevalence. Given the high risk associated with incorrectly 
diagnosing a hemorrhagic stroke as ischemic, when proceeding with 
thrombolytics, specific target levels for sensitivity (detect ischemic 
stroke when truly present) and specificity (rule out hemorrhagic stroke 
when it is truly absent) should be robust. 

From the meta-analysis, one could conclude that the early sampling 
time of proteins (< 4,5 h) and subacute sampling time of microRNAs (<
24 h) perform similarly. In our results, miRNA-30a has the highest 
specificity (89 %) compared to other protein biomarkers for ischemic 
stroke diagnosis. A recently published systematic review of stroke 
miRNA biomarkers demonstrated that their performance, as a whole 
category, has a DOR of 16 (95 % CI: 10–26).36 In line with these results, 
our group previously published that another class of non-coding RNAs, 
namely tRNA-derived fragments were promising in their ability to 
distinguish between acute ischemic stroke, hemorrhagic stroke, and 
stroke-mimics.7 Although these findings were exploratory, we could 
confirm them in an independent database of ischemic stroke and stroke 
mimic patients.21 

With regard to the performance of circulating proteins in our study, 
IL-6 levels in 522 stroke patients (Table 1) displayed high sensitivity (85 
%) and specificity (85 %) values for ischemic stroke diagnosis. This is in 
line with results from the most recently performed meta-analysis of 
stroke biomarkers in which IL-6 differentiated ischemic stroke from 
healthy controls, but not from stroke mimics or hemorrhagic stroke.37 

This meta-analysis also identified that brain natriuretic peptide and 
D-dimer differentiated ischemic stroke from healthy controls and stroke 
mimics or hemorrhagic stroke, a finding which we could not replicate 
due to different inclusion criteria of studies.37 In contrast, in our study 
we identified other proteins like CRP, S100B and IMA (albeit that the 
latter was identified among n = 85 patients) with summary sensitivity 

Table 3 
Calculated pooled estimates of sensitivity and specificity   

Sensitivity Specificity 

ischemic stroke compared to controls 

S100B 0.82 (0.78–0.86) 0.82 (0.77–0.86) 
CRP 0.82 (0.54–0.94) 0.82 (0.53–0.95) 
IMA 0.86 (0.76–0.93) 0.71 (0.51–0.86) 
IL-6 0.85 (0.70–0.93) 0.85 (0.69–0.94) 
NSE 0.63 (0.57–0.69) 0.62 (0.53–0.70) 
MiR-30a 0.79 (0.66–0.88) 0.89 (0.75–0.96) 

ischemic stroke compared to hemorrhagic stroke 

GFAP 0.824 (0.823–0.826) 0.903 (0.902–0.904) 
S100B 0.75 (0.57–0.88) 0.63 (0.27–0.88) 
CRP 0.70 (0.58–0.80) 0.73 (0.67–0.77) 
NR2aAb 0.78 (0.25–0.98) 0.87 (0.44–0.98) 
UCH-L1 0.67 (0.58–0.75) 0.50 (0.41–0.59) 
GFAP/UCH-L1 0.78 (0.59–0.90) 0.82 (0.61–0.93) 

stroke compared to stroke mimics 

MMP9 0.65 (0.62–0.68) 0.55 (0.46–0.64) 
D-dimer 0.82 (0.80–0.83) 0.39 (0.34–0.45)  

Fig. 6. A forest plot of single biomarkers for which sensitivity and specificity could be retrieved from at least two studies comparing real stroke and stroke mimics. 
For studies reporting subgroups at different times from onset, the subgroup with the indicated OTDT was used. Horizontal lines represent 95 % confidence intervals. 
TP= true positive; FP= false positive; FN= false negative; TN= true negative. 
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values ranging from 82 to 86 %. Moreover, the pooled results from 12 
studies including 1145 stroke patients demonstrated that GFAP differ-
entiated stroke patients into ischemic stroke or hemorrhagic stroke 
within 6 h with a sensitivity of 82 % and specificity of 90 %, a finding 
previously identified in the study by Misra et al.37 However, in order for 
their routine use in clinical practice, these biomarkers also need to be 
fast and feasible in the (pre-)hospital setting. An important example of 
the application of stroke biomarkers is a recent study that tested the 
combination of GFAP with the Prehospital Stroke Score (PreSS) in the 
pre-hospital setting (< 4.5 h of symptom onset) thereby identifying 
stroke mimics and differentiating patients with large-vessel occlusion 
(LVO) from non-LVO patients.38 

Another important question in our analysis was the performance of 
single biomarkers versus biomarker panels. Previous research demon-
strated that GFAP and NR2aAb should always be included, in whatever 
possible combination of biomarkers, given they are the most promising 
brain-specific biomarkers related to stroke.39 One particular study 
demonstrated that the combination of GFAP and NR2aAb differentiated 
stroke with a sensitivity and specificity of 94 % and 91 %, a significant 
improvement of the performance of each biomarker separately.26 

However, the performance of GFAP differs depending on the severity of 
hemorrhagic stroke18 and our analysis shows that GFAP had the best 
performance when assessed within 6 h. Furthermore, since in stroke 
TIME=BRAIN, ideal biomarkers should be able to rule out hemorrhagic 
stroke with POC testing in a short time window.40 Still, the included 
studies into NR2aAb investigated different time windows27 or identified 
a rather low diagnostic accuracy.26 Therefore, we think other promising 
combinations of biomarkers should also be studied, such as the combi-
nation of GFAP with levels of ubiquitin C-terminal hydrolase L1 
(UCH-L1). Results from our meta-analysis suggest they perform better 
together compared to both biomarkers separately with a pooled diag-
nostic odds ratio of 16.52 (95 % CI 6.0–27.03), a positive likelihood 
ratio of 4.40 (95 % CI 1.18–7.63) (Table 2) and a specificity of 82 % 
(Table 3). 

Our review has several limitations. First, although we excluded 
TIA’s, studies exhibited some degree of heterogeneity regarding the 
establishment of stroke diagnosis and control groups that were used 
(either stroke mimics, healthy controls, or risk factor-matched controls). 
Another limitation when conducting a meta-analysis is the technical 
variability of immune-based protein assays. These can be a source of bias 
and inconsistent results across studies. In the meta-analysis however, 29 
out of 42 studies have published assay cut-off values (Table 1) while 
assay cut-offs that maximized the sensitivity and specificity were also 
published. Furthermore, regarding sample size, studies were often 

conducted using small sample sizes and the identified biomarkers in 
these small cohorts were not validated in independent patient cohorts 
(except for GFAP, S100B, and CRP) nor were results corrected for 
multiple testing to reduce the risk of false positive (or negative) results. 
In addition, some studies did not perform ROC analysis, or ROC analysis 
was performed in discovery- but not in validation or replication cohorts. 
Lastly, future stroke biomarker studies should include stratification of 
biomarkers expression values by sex or race. 

Conclusion 

We conclude that acute sampling time (< 4.5 h) of circulating pro-
teins and late sampling time of circulating microRNAs (< 24 h) has 
promising performance in diagnosing ischemic stroke. Promising bio-
markers (Graphical Abstract) should be validated prospectively and 
replicated in larger unselected cohorts representing the various clinical 
subgroups of stroke-code patients. In addition, the statistical signifi-
cance of biomarker performance should be corrected for multiple testing 
in both the discovery and validation phases, to reduce the risk of false 
positive results. This will improve diagnostic accuracy and thereby po-
tential clinical applicability. To be clinically applicable, these studies 
should also focus on early time windows and biomarkers should be 
tested against a background of other (pre-hospital) triage tools. 
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