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Abstract: NeuroLF is a dedicated brain PET system with an octagonal prism shape housed in a
scanner head that can be positioned around a patient’s head. Because it does not have MR or CT
capabilities, attenuation correction based on an estimation of the attenuation map is a crucial feature.
In this article, we demonstrate this method on [18F]FDG PET brain scans performed with a low-
resolution proof of concept prototype of NeuroLF called BPET. We perform an affine registration
of a template PET scan to the uncorrected emission image, and then apply the resulting transform
to the corresponding template attenuation map. Using a whole-body PET/CT system as reference,
we quantitively show that this method yields comparable image quality (0.893 average correlation
to reference scan) to using the reference µ-map as obtained from the CT scan of the imaged patient
(0.908 average correlation). We conclude from this initial study that attenuation correction using
template registration instead of a patient CT delivers similar results and is an option for patients
undergoing brain PET.

Keywords: tomography; attenuation correction; image reconstruction; brain; PET; STIR;
Nifty-Reg; registration

1. Introduction

Image reconstruction in PET typically requires many correction steps to produce
a quantitative image from the measured coincidence pairs. These include hardware-
specific corrections such as detector efficiency and geometric normalization, but also
random coincidence correction, scatter correction and attenuation correction. On PET/CT
systems, the attenuation correction is routinely done by converting CT images to atten-
uation maps (µ-maps) corresponding to the relevant energy window around 511 keV.
PET/MR and PET-only systems need to obtain the µ-maps through other means. The most
common approaches [1,2] are to perform transmission scans [3], segmentation methods,
atlas-/template-based methods [4,5] and, more recently, methods working directly on
uncorrected PET data, such as simultaneous reconstruction of emission and attenuation [6]
and deep-learning [2].

NeuroLF is an ultracompact dedicated brain PET system designed to provide compa-
rable image quality to existing full-body PET systems with around 25 cm axial length. It
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consists of a patient positioning system and a scanning unit to position the scanner head
around the patient’s head. The system will make functional brain imaging more affordable
for diseases such as dementia, epilepsy, encephalitis, brain cancer and Parkinson. In Neu-
roLF it would be very attractive to import CT- or MR-based attenuation maps, but generally
the attenuation map will have to be computed based on the uncorrected reconstruction of
the PET emission data. Of the above-mentioned options, the atlas- or template-based one
was considered the most appropriate at this stage, since simultaneous reconstruction tech-
niques such as MLAA [6,7] and deep-learning approaches are technically more complex,
and sometimes require TOF which NeuroLF will not initially have. Additionally, atlas- and
template-based methods were shown to produce very good results [4,5], especially when
using templates instead of atlases. AI approaches will certainly be interesting for NeuroLF
in future, since they have already shown very promising results [2] and are improving
rapidly due to the active research field.

All methods compared in article [4] used the MR image for atlas or template regis-
tration, which has the benefit that they are independent of the radiotracer used for the
PET. NeuroLF does not usually have MR data for a scanned patient (only if they have
been acquired elsewhere and imported), which means that the template registration should
be performed from PET to PET. This article is investigating the feasibility and stability of
using a template-based approach for PET-only attenuation correction. We test the proposed
method on real patient data acquired with a prototype system (BPET) and different PET/CT
template [18F]FDG datasets. We show that the proposed method is stable, works with a
variety of templates, and that the resulting image quality is equivalent to using CT-based
attenuation correction.

2. Materials and Methods
2.1. Materials
2.1.1. PET Scanner

Since NeuroLF is still in development, this work on the attenuation correction is per-
formed on data obtained from a proof-of-concept prototype system called BPET (Figure 1),
which has a lower spatial and temporal resolution.
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BPET has an octagonal prism shape, with each of the eight modules housing 30
(axially) by 24 (transaxially) LYSO crystals with 10 mm length and face dimensions
of 4.1 mm × 4.1 mm. These are coupled to silicon photo-multiplier (SiPM) arrays that
read-out events using light-sharing, where 3 × 3 SiPMs are interpreting the signal from
6 × 6 crystals to assign measured events to the correct crystal using a light-sharing algo-
rithm. BPET has an axial length of 128 mm and a module to module flat-to-flat diameter
of 254 mm [8].

2.1.2. Collected Data

The data used in this article were collected during the first clinical trial of BPET, where
eight [18F]FDG patients first had their clinically prescribed scan with a whole-body PET/CT
system (which constitutes the reference PET in this article) and were subsequently scanned
with BPET. Four BPET patient scans were taken with light sharing disabled and were
excluded from the analysis, the other four will be referred to as patients P1, P2, P3 and
P4 from now on and are the BPET datasets used in this study. The reference PET and
CT pairs of the four excluded patients were instead used as independent template data
(named T1, T2, T3 and T4 henceforth). The reference PET images were computed by the
PET/CT system (Discovery MI, 6-ring configuration, GE Healthcare, Waukesha, WI, USA)
from a 5 min acquisition and included attenuation and scatter correction based on the CT.
The acquisition time for BPET was always 15 min, with activity differing for the imaged
patients. All data acquisitions were performed at University Hospital Zürich, with ethical
approval by KEK Zürich. The clinicaltrials.gov (accessed on 10 December 2022) identifier is
NCT04511546 [9].

2.2. Methods
2.2.1. Image Reconstruction

Images were reconstructed using the open-source Software for Tomographic Image
Reconstruction (STIR) [10], through its Python interface. We used the new scanner geometry
modelling feature of STIR called “BlocksOnCylindrical” which was recently developed to
reconstruct data obtained by non-cylindrical PET scanners [11,12]. The data were corrected
for random events (single rate method [13]), were normalized for geometry (obtained from
a scan of a homogeneous cylindrical phantom) and detector efficiencies (computed from
singles), and attenuation and scatter correction were performed using the attenuation maps
obtained with the method described in this article. The scatter correction was based on the
single scatter simulation functionality in STIR, and was scaled up by the average fraction
of total scatter events over single scatter events observed in Monte-Carlo simulations in
GATE (GEANT4 Application to Tomographic Emission) [14] for the BPET geometry and
cylindrical, water-filled phantoms of various diameters around 20 cm (this factor was 1.1).

2.2.2. Attenuation Map Computation

The attenuation map (µ-map) computation consisted of three steps: template prepara-
tion, PET-to-PET registration, µ-map deformation (Figure 2). All volumetric image registra-
tions and deformations were performed with the open-source software Nifty-Reg [15,16],
which uses a coarse-to-fine block matching to perform rigid and affine registrations. Alter-
native methods for registration were not investigated yet, but could be of interest [17–19].

Template preparation only needed to be performed once, and then the templates could
be reused for all PET reconstructions. First, the PET and CT scans of the same patient were
brought to the same image dimensions using the rigid registration option of the reg_aladin
executable in Nifty-Reg. Subsequently, the CT scan was translated to a µ-map with the STIR
class HUToMuImageProcessor which uses bi-linear scaling [20]. The intercepts and slopes
used for the bi-linear scaling were 0.096 cm−1 and 9.6 × 10−5 cm−1/HU for intensities
below 50 Hounsfield Units (HU), and 0.092 cm−1 and 5.11 × 10−5 above. Finally, the µ-map
was blurred with an isotropic 4.5 mm Gaussian 3D kernel to adapt its resolution to the
resolution of BPET [21]. For the results in Section 3.1, the reference CT and PET pair for the
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first of the independently scanned patients was used as the template (T1). To evaluate the
stability of the presented attenuation correction method, reference CT and PET pairs of the
other three independent FDG datasets were also tested as template data (T2, T3 and T4)
in Section 3.2.
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Figure 2. Diagram of the reconstruction workflow, where the template PET and uncorrected BPET
image are registered, and the equivalently deformed µ-map is used for attenuation (and scatter)
correction. The initial reconstruction is the BPET emission image that was reconstructed without
attenuation and scatter correction. The template dataset is a set of PET image and CT-generated µ-map
from the reference PET/CT scanner. The affine registration is the template PET after being registered to
the initial reconstruction, and the resulting µ-map was obtained by applying the same transformation
to the template µ-map. This µ-map was then used to perform the attenuation and scatter correction
to obtain the final reconstruction.

During reconstructions, the template data then needed to be adjusted to the patient’s
head geometry. Theoretically, this could have been performed in one step by registering
the template µ-map directly to the initial BPET reconstruction (without attenuation and
scatter correction). However, we found the data in the scalp region of the BPET images
was insufficient to provide Nifty-Reg with enough structural information to compute an
accurate registration. Therefore, the template [18F]FDG-PET image (with attenuation correc-
tion) was registered to the initial BPET image first (PET-to-PET), using the affine reg_aladin
implementation. The difference that the template PET image was attenuation and scat-
ter corrected, while the BPET image was not, did not noticeably impact the registration
because these corrections change intensity levels within the image, but not the location
of higher-level structural features such as brain lobes, scalp, and sinuses, which have the
strongest impact on the registration algorithm.

Finally, the template µ-map was deformed by applying the affine transformation ob-
tained in the PET-to-PET registration using the reg_resample executable in Nifty-Reg. This
deformation automatically resamples the template µ-map to the coordinate space and
dimensions of the BPET reconstructions, which makes it straight-forward to use in the STIR
reconstruction pipeline. The PET-to-PET registration and the µ-map deformation generally
took around 10 to 20 s, depending on the dimensions of the PET image and the template
PET and CT data.

For comparison, we also reconstructed images with the µ-map computed from the CT
of the same patients that were scanned with BPET. These were prepared as described in the
paragraphs above, with the only difference that all registrations were performed rigidly.

2.2.3. Image Quality Metrics

To assess the quality of the reconstructed BPET images, we compared them to the
reference PET scans obtained with the full-body PET/CT system prior to the BPET data
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acquisition. This was done by comparing the relative voxel intensities in a collection
of 67 volumes of interest (VOIs) defined on the AAL Merged Atlas [22,23]. For this, we
exported the PET (“SPM5 derived PET template”) and VOI atlas (“AAL Merged Atlas”)
images (Figure 3) from PMOD (PMOD Technologies, Zürich, Switzerland), and registered
the BPET and the reference PET image to the PMOD PET atlas using the affine implementa-
tion of reg_aladin. Then, the PMOD VOI atlas was used to index the VOIs in the BPET and
reference PET images to compute the average intensity within each VOI and divide it by
the average intensity in the union of all VOIs. The reference PET images were smoothed
with an isotropic 4.7 mm Gaussian 3D kernel (pre-registration), to approximately match the
resolution of BPET which is between 4 mm and 9 mm, depending on the axial location [8].
The BPET images were filtered with a median filter with a kernel size of 5 × 5 × 5, to
reduce salt and pepper noise observed in unfiltered reconstructions.
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Merged Atlas in PMOD. Colors indicate discrete VOI numbering from 1 to 71 (with four indices
not present).

The resulting 67 relative VOI intensities were then plotted against each other for BPET
and reference PET, and a linear regression was computed on the point cloud. A perfect fit
would result in a slope of 1 and an intercept of 0.

For the Bland–Altman analysis, the difference in relative VOI intensity (BPET minus
reference PET) was divided by their mid-point (labelled “mean VOI activity” on the x-axis).
The mean value of this scaled difference was computed and was plotted as a green bar
(for a perfect fit it would be 0), and 1.96 times the standard deviation (SD) were plotted
either side in orange to show the range within which 95% of the data lie (the closer the
lines, the better the fit). This plot is useful to evaluate the variability in the VOI activity
accuracy, as well as visualizing whether low or high activity regions are systematically
over- or underestimated. Finally, the Pearson correlation coefficient was computed across
all relative VOI intensities.

3. Results

In the first section, the first template dataset T1 was used for all reconstructions and
compared to the patient-specific attenuation map. In the second section, the differences
between templates T1–4 are analysed.

3.1. Comparison of Patient-Specific Attenuation Map vs. Generic Template Attenuation Map

The images reconstructed with the attenuation correction obtained from the patient-
specific CT reference scan had an average linear regression slope of 1.01 and an intercept of
−0.015 for the VOI comparison, with the reference scans obtained with a clinical GE scanner
(Figure 4). The largest mismatch with the reference images was observed for patient P3
with a slope of 1.07 and an intercept of −0.07. The average correlation of the relative VOI
values was 0.908.
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Figure 4. The VOI comparison of reconstructions using the patient-specific reference CT scan for
the attenuation correction. Shown left are the linear regression plots. Shown in the right column
are Bland–Altman plots indicating the 1.96 SD bars (orange) at either side of the mean intensity
ratio (green).

The images reconstructed with the estimated attenuation correction obtained by per-
forming an affine registration of the independent template PET/CT dataset T1 had an
average linear regression slope of 0.99 and an intercept of 0.00 for the VOI comparison with
the reference scans (Figure 5). The average correlation of the relative VOI values was 0.902.
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For all four patients, the reference image, the reconstructed BPET image with the
patient-specific µ-map, and the reconstructed BPET image with the µ-map computed
from the independent T1 template dataset are shown in Figures 6–9. In these figures, the
reference images are not smoothed. The BPET images are smoothed by a median filter with
kernel size 3 × 3 × 3 to reduce the salt and pepper noise.
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row the BPET reconstruction using an independent template µ-map fitted with the method presented
in this article.
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Figure 9. Slices through the reconstructed images for patient P4. Top row is the reference PET scan,
middle row the BPET reconstruction using the patient-specific µ-map (from CT of patient P4), bottom
row the BPET reconstruction using an independent template µ-map fitted with the method presented
in this article.

3.2. Requirements for Template Attenuation Map

For the results in the previous section, the reference CT and PET pair for the first of
the independently scanned patients was used as the template (T1). We now compare these
to the results with templates T2, T3 and T4. T2 gave similarly good results than T1, while
the other two templates gave good results for two patients and worse results for the other
two (Table 1). In the following paragraphs we will study these instances with worse image
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quality metrics in detail to understand the implications on the choice of template, but we
would like to note that the images obtained in these cases are still comparable to the ones
with the patient-specific µ-map (Figure 10).

Table 1. Summary of linear regression results for comparison of BPET reconstructions with reference
PET. The linear regression is given as a line equation with slope × x + intercept. The “correct µ”
column shows the results with the µ-map obtained from the CT of the patient that was imaged.

Patient ID Correct µ T1 T2 T3 T4

P1 0.97x + 0.02 0.93x + 0.05 1.00x − 0.01 0.98x + 0.01 0.97x + 0.01
P2 1.02x − 0.02 1.05x − 0.05 0.94x + 0.06 1.11x − 0.10 1 1.13x − 0.13
P3 1.07x − 0.07 1.04x − 0.04 0.95x + 0.04 1.23x − 0.22 1 1.11x − 0.11
P4 0.98x + 0.01 0.94x + 0.04 0.96x + 0.03 0.96x + 0.03 0.98x + 0.01

1 Accuracy likely impacted by incomplete head coverage of template PET-CT dataset.
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Figure 10. Slices through the reconstructed image for patient P3 with template T2. When compared
to the reconstructions in Figure 8, it becomes evident that the slightly lower correlation coefficient 0.8
does not indicate a lower image quality.

The cause for some of these outliers was likely the coverage of the template PET/CT
dataset: some reference scans were performed with the head tilted backwards, resulting in
a partial loss of the inferior occipital part of the head. When registering these templates
to the BPET reconstructions, the resulting attenuation map contains blank areas and is
therefore inaccurate (Figure 11). This can be easily remedied by using a template CT with
sufficient coverage.
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that a part of the neck is not covered by the reference PET/CT scan of template T3 (and to a lesser
degree also of template T1), and therefore results in a gap in the attenuation map.
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When looking at the correlation coefficient instead of the linear regression, patient
P1 always looks worse than the others, irrespective of the template dataset used (Table 2).
This is therefore not explained by the attenuation correction, but hints to another issue,
most likely data quality due to the cropping of parts of the cerebellum and a temporal lobe
(Figure 12). The only instance where the choice of template had a significant impact on the
correlation coefficient was the combination of patient P3 and template T2. To investigate
this instance where the correlation was lower, the VOIs were colored according to the
intensity difference between reference PET and BPET (Figure 13). There are two regions
in the lower front of the brain (left and right gyrus rectus) that experience the largest
deviations by a margin. These regions also experience the largest deviations when other
templates are used (Figure 14), but the relative difference to other areas is smaller. In
this frontal region of the brain, the T2 template had more pronounced paranasal sinuses
compared to the other templates (Figure 11), which could explain the larger deviations.
Nonetheless, the reconstructed images do not differ noticeably from the ones obtained with
another template (Figure 10).

Table 2. Pearson correlation coefficients between BPET reconstructions and reference PET. The
“correct µ” column shows the results with the µ-map obtained from the CT of the patient that
was imaged.

Patient ID Correct µ T1 T2 T3 T4

P1 0.851 0.855 0.881 0.830 0.834
P2 0.932 0.936 0.918 0.912 0.928
P3 0.916 0.904 0.803 0.885 0.919
P4 0.934 0.913 0.919 0.924 0.925
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Figure 12. This figure shows the relative VOI deviations for patient P1 with the patient-specific
attenuation map in the first row. The middle row shows the smoothed reference PET and the last
row the median-filtered BPET reconstruction. Most regions with the largest errors (left cerebellar
hemisphere and left fusiform gyrus) were near the area that was outside the BPET field of view due
to inaccurate positioning of the patient.
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Figure 13. This figure shows the relative VOI deviations when using template T2 for patient P3. By
far the highest absolute difference between the BPET image and the reference PET is observed in
the lower anterior of the brain (left and right gyrus rectus) (a). These two VOIs with the highest
deviations can be seen on the linear regression plot (b) on the lower right.
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Figure 14. This figure shows the relative VOI deviations when using template T4 for patient P3. As
in Figure 13, the left and right gyrus rectus VOIs experienced the largest deviations (a). However,
these two VOIs with the highest deviations are less pronounced than in Figure 13, as also noticeable
on the linear regression plot (b).

4. Discussion

We have presented the use of template PET/CT image pairs for computing an atten-
uation map during PET image reconstruction. The template PET was registered to the
uncorrected image reconstruction of a dedicated brain PET-only scanner, and the same
deformation was applied to the template CT to obtain the µ-map. We showed good quality
reconstructions for four different patients, and using four different independent template
PET/CT pairs, indicating that this technique works reliably for [18F]FDG brain PET scans.
A couple of specific combinations of patient and template data resulted in a slightly worse
linear regression fit or lower correlation coefficient, but the resulting images only looked
marginally inferior. To reduce the likelihood of such outliers, the template dataset with
the best scores across the total test data can be chosen—since good scores across all test
patients can indicate a more general geometry that fits well with most head geometries.

The data used in this paper were obtained from the proof-of-concept prototype BPET.
Based on clinical results and clinician’s feedback for BPET, NeuroLF was designed with a
larger axial field-of-view, smaller light-sharing group, smaller crystals for higher spatial
resolution, an updated readout ASIC, more SiPM readout area for improved light sampling
and therefore improved timing resolution, and overall usability improvements. Each of
the eight NeuroLF modules will house 48 (axially) by 32 (transaxially) LYSO crystals of
configurable length 10 mm, 15 mm or 20 mm, and face dimensions of 3.19 mm × 3.19 mm.
These are coupled to SiPM arrays that read-out events using light-sharing, where four
SiPMs are used to identify events in a 4 by 4 grid of crystals. NeuroLF will also have a larger
field of view with an axial length of 163 mm and module to module flat-to-flat diameter of
268 mm. We are planning to collect more FDG data with NeuroLF, to repeat this analysis
on a larger sample size and with better image quality compared to BPET.
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Obviously, brain PET scans are not limited to [18F]FDG. We intend on repeating this
analysis with other radiopharmaceuticals, in particular for [18F]-based Aß-tracers, [18F]-
based tau-tracers, [18F]FET, or [11C]MET. Initial results with affine registration of PET
images of these tracers look promising.

Nifty-Reg also supports a non-linear deformable registration [24], which was tested
initially as part of the work presented here. However, this was more time-consuming
and produced less reliable results as the more constrained affine registration used here.
Furthermore, the good results obtained with the affine registration of four different template
datasets indicate that the attenuation map used in brain PET does not need to be extremely
accurate, as long as it contains all relevant tissues in the approximate locations. However,
we have observed ±10% intensity variations in reconstructions using different templates.
These only affect quantification accuracy, but we are working on methods to mitigate
this effect.

While the results presented in this article suggest that a single template is sufficient,
there is a potential risk of failure for uncommon input data (e.g., [25]). As with any
computational attenuation correction method, it is very difficult to make these methods
account for all such eventualities, hence it is good practice to compare attenuation corrected
reconstructions with unusual activity distributions to reconstructions without attenuation
correction. Methods of detecting unusual data automatically will be investigated in the
future. Furthermore, it may be worthwhile to compute the quality of registration, to spot
potential outliers or to select the best among a group of available templates. This could
even be extended to computing local quality measures and fusing multiple templates [26],
at the cost of computation time. Alternatively, consistency conditions could be used to
select the best template [27].
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