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13.1	� Introduction

As many types of cancer are life-threatening, tumour control has a high priority in 
cancer treatment. However, radical treatment is often limited by the surrounding 
healthy organs that may lose their functions. These relationships were already consid-
ered by Holthusen [1] who described the probability of achieving tumour control and 
developing normal tissue damage after radiotherapy as a function of radiation dose 
(Fig. 13.1). The ability to deliver a sufficient tumour dose with a tolerable level of side 
effects is characterised by the therapeutic window, which defines the target dose pre-
scription as well as dose limits for organs at risk (OARs)  [2]. Efforts have been made 
to widen the therapeutic window and to increase tumour control or to reduce the risk of 
side effects, e.g. by modified fractionation schemes, new technologies, or biological 
modulation  [3]. For these efforts, statistical modelling is essential, relating patient and 
treatment-specific risk factors that are associated with tumour radiosensitivity or nor-
mal tissue response to defined endpoints.

Statistical models for radiation treatment outcome are becoming increasingly 
specific and complex. This is caused by two factors. One is the growing amount of 
patient-specific data that are being collected and made accessible using electronic 
hospital information systems. With decreasing costs, an increasing number of 
patients receive in-depth analyses of their tumour tissue, generating multi-omics 
data that may comprise thousands to millions of parameters from genomic, methy-
lomic, proteomic, radiomic, histomic, and other analyses. In addition, longitudinal 
data are more commonly acquired, including repeated imaging or liquid biopsies. 
The second factor comprises advances in computer technology and 
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machine-learning algorithms, which allow for rapid analyses of these big data and 
their integration in statistical models.

These developments enable new possibilities: tumour control probability (TCP) 
models that classify patients into groups with a different risk of treatment failure are 
essential for biomarker-guided interventional trials. Information from normal tissue 
complication probability (NTCP) models can be considered in addition to physical 
parameters during treatment plan optimisation in order to reduce estimated risks of 
complication (biological treatment plan optimisation). Moreover, predictions of 
NTCP models may support clinicians in identifying the optimal treatment plan 
among different planning options or even among different treatment modalities. 
Another aim that is facilitated by statistical models is adaptive radiotherapy, where 
radiation treatment is altered during fractionated treatment depending on tumour 
and normal tissue responses [4, 5].

Since the clinical application of statistical models may substantially affect the 
treatment of patients, the question arises, what is a good model? A good model 
addresses a relevant question in a reliable and reproducible manner. It is interpre-
table. It should either be better than the clinical standard or equivalent to it, but more 
efficient. Hence, not every model reported in scientific literature will find clinical 
application. Models may lack generalisability outside the cohort in which they were 
originally developed. Other models may lack reproducibility due to incomplete 
reporting. Again, some models may not actually address clinically relevant prob-
lems. And finally, models may require data that are too expensive or time-consuming 
to obtain during clinical routine. To assess these intricacies and to increase the rate 
of successful translation of models into clinical practice, a general understanding of 
statistical modelling principles and their application is essential.

In this chapter, we therefore first outline general modelling principles, compris-
ing data types and endpoints, data pre-processing, modelling strategies, and valida-
tion procedures (Sect. 13.2). We then provide basic details on modelling tumour 
response and complication probabilities of normal tissue (Sect. 13.3). Finally, we 
present two relevant applications of outcome modelling in radiotherapy: the model-
based approach for assigning patients to photon or proton-beam therapy based on 
NTCP models (Sect. 13.4) and radiomics analyses using medical imaging data to 
predict tumour control (Sect. 13.5).

13.2	� Basic Modelling Principles

A model essentially describes the relationship between input variables (features) 
and an endpoint (outcome). In this section, we describe a modelling workflow and 
related approaches, see Fig. 13.2 for an overview.

13.2.1	� Data

In recent years, the amount and complexity of available data in radiation oncology 
have increased substantially. Besides demographic, tumour or treatment-related 
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Fig. 13.2  Schematic representation of the described modelling workflow. Data are divided into 
two separate cohorts. The development cohort is used to create the model, which is subsequently 
validated on unseen data in the validation cohort. The model development process consists of 
several steps, including data pre-processing and feature selection, which produces additional 
parameters. Such parameters (e.g. scale and shift parameters for normalisation of features) are 
transferred to the validation cohort so that data in both cohorts are pre-processed in the same man-
ner. CV cross-validation

factors, dosimetric parameters and pathological findings, increasingly complex fea-
tures from the analyses of tumour tissue or liquid biopsies and from medical imag-
ing are available. These data are used to predict specific endpoints that may be 
categorical (e.g. severity grades of side effects), numerical (e.g. hypoxic fraction of 
the tumour), or survival data (containing an event time and an event indicator, e.g. 
progression-free survival). Depending on the outcome type, different modelling 
strategies have to be applied, see Sect. 13.2.5.

The quality of a model is highly dependent on the quality of the data. In general, 
high-quality data must meet the following criteria:

	1.	 Cover Patient Heterogeneity: The cohort used to develop the model should 
represent the population to which it will be applied. For example, a TCP model 
created using a cohort of patients with locally advanced head and neck squamous 
cell carcinoma (HNSCC) may not be reliable for predicting TCP of patients with 
early-stage HNSCC or of patients with pancreatic cancer.

	2.	 Completeness: Complete data have no or very few missing feature values. 
Features that contain many missing values will typically fail to relate to the 
outcome.

A. Dutz et al.
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	3.	 Uniform Labelling: The outcome is measured in the same manner for all sam-
ples. For example, progression-free survival should be measured from the same 
starting date, e.g. from the start of radiotherapy or diagnosis, but not both. 
Likewise, follow-up should be conducted similarly for all patients and radiation-
induced side effects should be reported using the same grading system and eval-
uation criteria.

	4.	 Reproducible Acquisition: For example, tumour tissue or OARs should be seg-
mented according to standardised clinical guidelines so that extracted parame-
ters can be compared between patients. Imperfect reproducibility can be 
somewhat mitigated by ensuring that sufficient data are available to identify 
robust parameters.

The above requirements are generally not easy to fulfil. Covering patient hetero-
geneity requires a sufficient sample size in order to still detect relevant effects. 
Moreover, these cohorts should preferably be obtained from different institutions to 
allow for identifying and correcting institutional biases, e.g. due to different equip-
ment, treatment workflows, or follow-up procedures. Uniform labelling and repro-
ducible acquisition require standardised protocols and guidelines for prospective 
application and data curation for retrospective studies.

In particular, dosimetric parameters and image features depend on the delinea-
tion of OARs and target structures. This should be performed according to stan-
dardised contouring guidelines to assure uniform structures. Automated contouring 
may also be considered. To ensure consistent evaluation of outcomes and reduce 
inter-observer variability, data on side effects should be collected prospectively 
using standardised tests or grading systems (e.g. Common Terminology Criteria for 
Adverse Events [CTCAE]) by continuously trained clinical staff. Predefined long-
term follow-up should be preferred, taking care to ensure the completeness of the 
outcome data. In addition, prospective scoring of various potential predictor vari-
ables such as patient-, disease-, and treatment-specific data is required.

Meeting these requirements can be greatly facilitated by the use of digital infor-
mation systems, such as electronic health records. In addition, structured databases 
may link the different available clinical systems, e.g. PACS, DICOM servers, bio-
banks, study databases, and others. This enables standardised and structured data 
acquisition as well as curation and annotation of data, which in the end facilitates 
sharing and linking of data with other institutions and thereby the collection of 
larger datasets.

13.2.2	� Data Analysis Strategy

The most important concern of modelling, after identifying the question and the 
required data, is the strategy used to analyse the data. The analysis strategy defines 
which data are used to develop the model, and which data are used to subsequently 
validate it. Validation is important because it has to be demonstrated that the model 
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works as expected. Assessment of the model should be unbiased [6]. Before we 
describe different analysis strategies, it is important to consider what interrelated 
sources of bias may occur in an analysis:

	1.	 Overfitting: Given sufficient features, models can learn to predict the outcome 
for development samples without error. This comes at a trade-off, as such mod-
els will typically fail to accurately predict the outcome for new samples, i.e. the 
model overfits the development data (Fig. 13.3). Overfitting is typically associ-
ated with increasing model complexity, i.e. the use of a large number of features 
relative to the sample size, or model algorithms that can capture high-dimensional 
data, or both. For linear regression models, ten events per feature are often rec-
ommended to prevent overfitting as a simple rule [7].

	2.	 Underfitting: Underfitting is the opposite of overfitting. A model underfits when 
an increase in model complexity would have noticeably improved accuracy of 
model predictions for new samples (Fig.  13.3). Underfitting is relatively 
uncommon.

	3.	 Structural Information Leakage: Information leakage occurs when informa-
tion concerning the validation data is used during model development. As a 
result, the error in predictions on the validation dataset will be smaller than with-
out leakage. Leakage occurs in many forms, e.g. the presence of identical sam-
ples in development and validation datasets or feature selection based on the 
combined dataset. Structural information leakage can be entirely prevented 
through careful data curation and appropriate methodology.

	4.	 Developer-Driven Information Leakage: Developer-driven information leak-
age occurs when the person responsible for developing a model uses results 
obtained from the validation dataset, e.g. to select a particular model, tweak 
modelling parameters, or select important features. Developer-driven informa-
tion leakage is more pernicious than structural leakage because it is difficult to 
prove or disprove. The best way to avoid this issue is to limit access to the valida-
tion dataset entirely until a model has been completely developed. To a lesser 
extent, this issue may also be addressed by registering the protocol for the mod-
elling experiment, registering the data prior to the experiment, and automating 
parameter selection and other modelling steps.
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Fig. 13.3  Over- and 
underfitting during model 
development. The 
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Four different types of analysis are described in the TRIPOD guidelines 
(Transparent reporting of a multivariable prediction model for individual prognosis 
or diagnosis) and assessed in terms of their level of evidence [8]:

Type 1: The development data used to create the model are also used to validate the 
model. An important limitation of this approach is the tendency to produce opti-
mistic biases due to overfitting and information leakage.

Type 2: The available dataset is split into development and validation subsets. 
While the validation performance will be more realistic than for type 1 analyses, 
these approaches are still limited because general characteristics may be shared 
across development and validation sets. Hence, the model is not necessarily 
generalisable.

Type 3: A separate dataset is used to externally validate the model. This dataset is 
recruited separately, e.g. from a different study in the same institution, or from a 
different institution. The latter is preferable because this demonstrates model 
behaviour and performance in the presence of potential institutional biases.

Type 4: A model is first developed (and published) and then applied to a new data-
set. Type 4 analyses provide the most reliable assessment of model performance, 
as it avoids information leakage.

Type 3 and 4 analyses represent external validation. Models should preferably be 
assessed using these analyses as the results tend to be more representative of actual 
model performance. For model development, we moreover recommend splitting the 
development dataset into internal development and validation subsets, e.g. using 
repeated (stratified) cross-validation. The internal validation subsets can be used to 
evaluate whether a model would over- or underfit by comparing model errors 
between the subsets. Therefore, they can be used to guide the choice for different 
modelling parameters, e.g. to choose a particular modelling algorithm or a signature 
of features included in the model.

13.2.3	� Data Pre-Processing

Before models can be created, data should be pre-processed. This typically includes 
steps such as transformation, normalisation, and missing value imputation [9]. 
Though there is no fixed approach to pre-processing, we propose the following.

First, features and samples that have a large fraction (e.g. >10%) of missing val-
ues as well as constant features can be removed. Several modelling algorithms 
assume that numerical features follow a normal distribution. Hence, the remaining 
features can be power-transformed to make them follow a normal distribution more 
closely. A typical transformation is logarithmic transformation, but Box-Cox [10] or 
Yeo-Johnson power transformations [11] offer a more flexible approach.

Normalisation is used to ensure that each numerical feature has a similar value 
range, as modelling algorithms can be sensitive to features with greatly varying 
value ranges. Common methods are standardisation, which centres values at 0 by 
subtracting the mean value and scales their range by dividing by the standard 
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deviation, and rescaling, which limits feature values to a [0,1] or [−1,1] interval by 
dividing a feature by the range of its values.

Normalisation is also a common preliminary step to batch normalisation. These 
methods are used to reduce technical sources of variation between the samples 
(batch effects), e.g. due to different imaging devices or protocols [12, 13]. All nor-
malisation methods that can be used over the entire data set, can also be employed 
for batch normalisation, e.g. standardisation [14] or the ComBat algorithm [15]. 
However, batch normalisation may obfuscate or enhance batch effects due to actual 
differences in patient outcome between cohorts.

Remaining missing values may cause statistical issues and some modelling algo-
rithms will fail to work if they are present. Therefore, they need to be addressed. One 
method is simply omitting all samples with missing values. However, this may bias 
results and leads to the loss of other, perhaps more relevant, information [16]. It is 
generally better to impute missing data, for which various methods exist [17, 18].

Another issue that may be addressed during pre-processing is imbalance in out-
come classes. For example, low-grade radiotoxicity is generally more prevalent than 
high-grade toxicity. As a consequence, a model that predicts the probability of side 
effects may overemphasise the more frequent low-grade toxicity (majority class) and 
be insensitive to the rare high-grade toxicity (minority class). Balancing the outcome 
classes mitigates this issue, which requires either undersampling the majority class 
or oversampling the minority class [19, 20]. Both undersampling and oversampling 
have disadvantages. Undersampling is at the expense of removing samples, whereas 
oversampling requires the generation of synthetic data. The SMOTE [21] and 
ADASYN [22] algorithms are commonly used for oversampling. Class imbalances, 
however, may also be considered outside of pre-processing, e.g. through modelling 
algorithms that can handle class imbalance [23, 24].

13.2.4	� Feature Selection

In modern clinical datasets, the number of features can well exceed the number of 
samples. However, only some of these features will be important for the outcome. 
We can make the modelling process more efficient by first excluding non-
reproducible features, further reducing the dimensionality of the problem, and only 
then determining the importance of the remaining features.

In particular, in datasets where the number of features exceeds the number of 
samples considerably, some features may be highly dependent on the specific exper-
imental conditions and are thus not reproducible in repeated experiments or by other 
centres. Such features should be excluded. For example, through repeated measure-
ments, it has been established that radiomics features computed from medical imag-
ing have varying degrees of reproducibility [25]. Feature reproducibility may be 
identified from the literature, by performing repeated measurements, through the 
use of phantom data, or perturbation of image data in case of radiomics [26]. 
Sometimes it is not possible to assess robustness and care should be taken in the 
interpretation of the obtained results.

A. Dutz et al.
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Dimensionality reduction may be approached by projecting the actual feature 
space to a lower-dimensional feature space, e.g. by principal component analysis or 
linear discriminant analysis [27]. As an alternative, unsupervised clustering algo-
rithms may be applied to remove highly correlated features. Such features carry 
essentially the same information and are thus redundant. Moreover, the presence of 
redundant features may lead to correlation bias [28]. Hence, such features can be 
replaced by a single cluster feature [29, 30]. Clusters are formed by computing the 
similarity between pairs of features using certain metrics, such as Spearman’s rank 
correlation coefficient (for numerical features) or McFadden’s pseudo R2 (for any 
feature type), as input to cluster algorithms [31]. Each cluster can then be repre-
sented by a single feature, e.g. the central feature, a meta-feature such as the mean 
value across all features in the same cluster or the feature that is most strongly 
related to the outcome.

The remaining features are used in feature selection, aiming to identify the most 
important features that show the strongest association with the endpoint and should 
be incorporated into a model [32–34]. However, feature selection results may be 
sensitive to the underlying dataset [35, 36]. To improve the stability of results, fea-
ture selection can be repeated using resampled subsets of the data [37–39]. Feature 
importance in each subset is then aggregated over the ensemble of subsets to obtain 
an ensemble feature importance [40]. The final number of included features (signa-
ture size) can be determined during hyperparameter optimisation, which is described 
in the next section. Some modelling algorithms, such as LASSO regression [41] and 
model-based boosting [42, 43], perform feature selection internally. Still, such algo-
rithms may benefit from filtering irrelevant features and removing redundant ones.

13.2.5	� Model Training

Modelling algorithms try to learn the relationship between features and the out-
come. Hundreds of algorithms have been devised [44] and their applicability may 
depend on the type of the considered outcome, see Table 13.1. We generally recom-
mend starting with the use of simple algorithms such as generalised linear models 
[52] or algorithms based on the least absolute shrinkage and selection operator [41]. 
The models created by such algorithms are easily understood and reported, and they 
can be used as baseline models. Given sufficient samples, more complex algorithms 
such as random forests [53] and extreme gradient boosting [54] may produce mod-
els that give better results.

Complex algorithms are characterised by the presence of many model hyperpa-
rameters, such as the number of decision trees in a random forest or the learning rate 
in extreme gradient boosting. However, even simple models have one or more 
hyperparameters, such as the signature size. Hyperparameters need to be provided 
manually or determined from the data through an optimisation process. An advan-
tage of automatic optimisation is that it avoids manual bias. Grid search is a com-
mon method that samples the hyperparameter space at specified positions, and 
trains and evaluates a model at each position. This works well for simple models 
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Table 13.1  Common models and metrics for model discrimination based on categorical, numeri-
cal, and survival endpoints

Categorical endpoint
Numerical 
endpoint Survival endpoint

Example models Logistic regression
Support vector machines
Neural networks
Random forest

Linear 
regression
Random forest
Neural 
networks

Cox regression
Boosted-tree regression
Survival random forest

Discrimination 
metrics

Area under the receiver 
operating characteristic curve 
(AUC) [45]

Mean-squared 
error

Concordance Index [46]

Balanced accuracy [47] Root-mean-
squared error

Censoring-Corrected 
Concordance Index [48]

Brier score [49] Explained 
variance

Integrated Brier Score 
[51]

Matthews correlation 
coefficient [50]

Median 
absolute error

Sensitivity
Specificity

with few hyperparameters. For high-dimensional hyperparameter spaces, a grid 
search is no longer efficient. Random search [55] or sequential model-based optimi-
sation [56, 57] is more efficient alternatives. The optimal model hyperparameters 
are then used to create a final model from the available development samples.

13.2.6	� Model Evaluation and Interpretation

Model evaluation shows whether a model has acceptable performance characteris-
tics and whether it generalises well. Models are evaluated on validation samples, 
e.g. from an external validation dataset. A comparison with development samples 
may moreover indicate the presence of overfitting and insufficient data heterogene-
ity in the development data.

There are at least three areas that should be evaluated for a model: model dis-
crimination, model calibration, and model benefit. In addition, model stratification 
should be assessed for survival endpoints.

An assessment of model discrimination shows how well the model can predict 
the outcome of samples, and whether it discriminates better than at random. This is 
done by comparing the predicted outcome with the observed outcome using one or 
more appropriate metrics (Table 13.1). Note that many metrics for categorical end-
points, that are commonly used in clinical settings, are sensitive to class imbalances 
in the underlying samples, e.g. sensitivity, specificity, and accuracy [58]. These met-
rics should be interpreted with caution.

Even though a model may discriminate well, this does not mean that it is well-
calibrated [59]. Well-calibrated models have the ability to accurately predict class 
probability (categorical endpoint), survival probability at a time T (survival end-
point), or value (numerical endpoint) for each sample. For example, a well-calibrated 
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NTCP model can be used to accurately estimate the probability of the considered 
radiotoxicity. A well discriminating but not well-calibrated model is capable of dis-
tinguishing between samples with and without toxicity, but the predicted probabili-
ties do not correspond to those observed.

Another important part of model evaluation is a comparison with existing mod-
els or the clinical standard, or if these do not exist, with null or random models. If a 
new model is to be translated to the clinic, it should improve upon existing alterna-
tives in terms of predictive power or cost. Additionally, clinical usefulness can be 
assessed using decision–curve analysis [60–62]. This analysis can be used to deter-
mine whether a model would improve decision-making.

Also, the ability of the model to stratify patients into risk groups is clinically 
relevant and should be assessed [63]. For this purpose, one or more thresholds are 
determined from the development data and used to form different risk strata. The 
difference between these strata can then be evaluated by an appropriate significance 
test [64].

The assessments discussed above only describe model characteristics. Another 
important aspect of modelling, one that is often overlooked, is model provenance. 
Many complex modelling algorithms are black boxes in practice. Understanding 
why an algorithm came to a certain prediction is relevant for any clinical model 
because it may point out particular biases or incompleteness of the model [65]. The 
following aspects of a model can be investigated, though this list is not final:

	1.	 What Is the Importance of Each Feature for the Model? This can be answered 
in different ways. For example, in regression models, individual coefficients can 
be evaluated, e.g. odds ratios for logistic models. A model-agnostic approach 
expresses feature importance by comparing the discriminatory performance of 
the developed model between the given dataset and a dataset in which the con-
sidered feature is randomly permuted [66].

	2.	 How Does Each Feature Affect the Outcome? Explaining how the outcome 
depends on a feature value may help to elucidate non-linear behaviour or to 
illustrate potential biases in the model, i.e. feature values that lead to unexpected 
outcome values. The relationship between a feature and the outcome may, for 
example, be illustrated by partial dependence plots [67] or individual conditional 
expectation plots [68].

	3.	 Which Features Are Similar? Similar features, such as highly correlated ones, 
contain mostly the same information. Newly identified important features for a 
particular outcome should be compared for similarity with established features.

13.2.7	� Model Application

After successful evaluation and potential further prospective validation, models 
may be applied to identify patient subgroups, for example in interventional clinical 
trials that test the efficacy of treatment modification. Stratified block randomisation, 
taking the most important confounders into account, should be preferred but may 
not always be applicable, as discussed in Sect. 13.4. A suitable primary endpoint 
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and the final statistical test have to be chosen, e.g. accounting for competing risks, 
censored data, and patient drop-out. For sample size planning, a realistic estimate of 
the expected effect and variability in the primary endpoint is decisive. Monitoring 
should be performed following good clinical practice including site initiation, 
interim monitoring, and closeout. Standard operating procedures and procedures for 
homogenised data acquisition and storage need to be defined in case of several par-
ticipating centres in order to avoid site-specific bias and missing data. Advanced 
biomarker-specific trial designs may enhance the success probability of the trial and 
combine the steps described above [69, 70].

13.3	� Introduction to TCP and NTCP Models

In this section, we introduce classic TCP and NTCP models and outline their appli-
cation in biological treatment plan optimisation and evaluation.

13.3.1	� Poisson Model of Tumour Control Probability

Tumour control probability models are used in radiotherapy to estimate the proba-
bility of an effective tumour treatment with the planned dose. Common TCP models 
assume that tumour control is achieved when no single clonogenic cell of the tumour 
survives after irradiation. They are often based on the linear-quadratic model, which 
describes the surviving fraction SF of an original cell population irradiated with 
dose D by

	 SF =
− +( )e D Dα β 2

	 (13.1)

Here, α and β are tissue-specific parameters describing the mechanisms of cell 
damage [71]. Combining the surviving fraction SF with the number N0 of clonogens 
per tumour before irradiation, the average number of surviving clonogens per 
tumour N0∙SF is obtained. Since the elimination of cells by radiation is a random 
process and the probability of single cells to survive is low, TCP can be approxi-
mated by a Poisson distribution for the case of zero surviving clonogens. The stan-
dard model of tumour control is [72]

	 TCP
SF= −e N0 · 	 (13.2)

This function describes a sigmoidal curve increasing from 0 to 100% with 
increasing dose. It can be characterised by the dose TCD50, at which 50% of the 
tumours are controlled, and by the normalised dose–response gradient (or slope) γ50, 
defining the steepness of the TCP curve at the 50% response level. Under a single-
hit assumption (β = 0), the Poisson TCP model can be quantified by [73]

	 TCP
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To determine TCD50 and γ50, clinical studies with varying prescribed dose but 
fixed number of fractions or dose per fraction have been conducted for several 
tumour entities. These parameters were tabularised, e.g. by Okunieff et  al. [74]. 
Extensions of this model including tumour repopulation, incomplete repair, hypoxia, 
and non-uniform dose distributions were considered [75–77].

13.3.2	� Modelling of Normal Tissue Complication Probability

NTCP models aim to predict the probability of complications based on the dose 
distribution in associated irradiated organs. For this purpose, the three-dimensional 
dose distribution is often reduced to a few simple metrics that can be derived from 
a dose-volume histogram (DVH). Some of the different methods for modelling clin-
ical outcome data of retrospective patient cohorts and their dose distributions are 
described as follows [78].

	1.	 DVH-Reduction Models: Based on the data published by Emami et al. [79], the 
empirical Lyman-Kutcher-Burman (LKB) model was developed. The LKB 
model describes the dose-response as a function of irradiated volume by reduc-
ing the DVH to a single metric to estimate model parameters for specific OARs 
[80–83]. The model includes TD50, m and n as parameters. The parameter 
TD50(V) is the tolerance dose for uniform irradiation of a partial volume V of an 
OAR at which 50% of patients are likely to experience a specific toxicity. The 
parameter m represents the slope at the steepest part of the dose-response curve. 
The parameter n describes the volume effect of the investigated OAR [84]. 
Serially structured organs such as the spinal cord show n ≈  0, while parallel 
organs are characterised by n ≈ 1. Taking fractional irradiation into account, the 
LKB-NTCP model for a uniform dose D to a volume V of an OAR is given by

	

NTCP dLKB =








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(13.6)

where VOAR represents the entire volume of the considered OAR.
However, dose distributions to OARs are non-uniform. The inhomogeneous 

dose distribution can be reduced to a single metric that produces the same prob-
ability of a given side effect as a corresponding uniform dose distribution. Such 
a metric is the widely used generalised equivalent uniform dose gEUD given by
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where Di is the dose defined for each dose bin i in a differential DVH. vi is the 
volume in a dose bin i and a is a volume parameter that is equivalent to 1/n. This 
‘homogeneous’ dose can then be applied as D = gEUD in the LKB model in 
Eq. (13.5).

	2.	 Tissue-Architecture Models: These more mechanistic models are based on the 
functional architecture of the tissue by introducing functional subunits of an 
OAR. These can be anatomical substructures, such as nephrons of the kidney, or 
the largest cell group that still functions as long as it comprises a surviving clo-
nogen [78]. These functional subunits can be arranged in serial or parallel order, 
or in a combination of both. In parallel organs, functional subunits are perform-
ing rather independently so that side effects occur after the irradiated volume 
exceeds a critical value. Side effects that arise from irradiation of parallel organs 
depend on the mean dose deposited in these organs (e.g. liver, lung, or kidney). 
Källman et  al. [85] suggested the relative seriality model, in which an organ 
consists of several serial and parallel structures whose reaction is described by 
Poisson statistics. The volume effect is characterised by a parameter s indicating 
the relative seriality of the organ, i.e. the proportion of serial subunits of an 
organ. A serial organ is characterised by large values (s ≈ 1) and parallel organs 
by small values (s ≪ 1). Other models based on the assumption that NTCP can 
be determined by functional subunits are for example the critical volume model 
[86] or the critical element model [87].

	3.	 Multiple-Metric Models: The above-mentioned models predict the complica-
tion probability for one specific side effect based on the dose to a corresponding 
OAR. However, some complications are caused by the irradiation of different 
OARs, e.g. swallowing dysfunction following the irradiation of superior pharyn-
geal constrictor muscle and the supraglottic larynx [88] or heart valvular dys-
function by the irradiation of heart and lung [89]. To correct for this in LKB 
models, an interaction gEUD variable for both OARs can be introduced [89]. 
Moreover, side effects may also be related to dose-independent clinical param-
eters, such as age, radiation technique, gender, or chemotherapy [88, 90]. 
Multivariable logistic regression models are appropriate to include both clinical 
and dosimetric parameters. They are defined by

	
NTCP eLogistic = +( )− ( ) −

1
1g x
, 	 (13.8)

	
with g x x

i

p

i i( ) = +
=
∑β β0

1
	

(13.9)

Here, βi denote model coefficients and xi are the p individual explanatory 
variables.
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Example: Logistic NTCP models for acute side effects after cranial proton-
beam therapy were developed and validated in independent patient cohorts treated 
at three different proton therapy centres, based on methodology described in Sect. 
13.2 [91]. Alopecia grade ≥  2 showed a strong association to the dose–volume 
parameter D5% of the skin in repeated cross-validation performed on the develop-
ment cohort (AUC = 0.82, Fig. 13.4a). The corresponding NTCP model (Table 13.2) 
was applied to the two remaining validation cohorts, which showed similar AUC 
values (0.77 and 0.85, Fig. 13.4b). While the calibration slopes were close to one in 
validation, the intercept deviated from zero, possibly due to centre-specific differ-
ences in toxicity assessment (Fig. 13.4c).

13.3.3	� Application: Biological Treatment Plan Optimisation 
and Evaluation

During the last decades, fluence modulated beam delivery techniques, such as 
intensity-modulated radiation therapy (IMRT) and volumetric modulated arc ther-
apy (VMAT), successively replaced conventional 3D-conformal radiotherapy (3D-
CRT). The greatest benefit of these inverse planning techniques is the multiplicity 
of dynamically adjustable machine parameters, allowing the creation of highly con-
formal treatment plans. In contrast to 3D-CRT, dose distributions in OARs can be 
adjusted to a much larger degree. Additionally, hardware and computing technolo-
gies evolved rapidly. Hence, more complex dose calculation algorithms could be 
translated into clinical routine.

To account for these developments, more and more advanced approaches for 
creating and evaluating treatment plans have to be designed. One of these approaches 
currently discussed among clinicians and medical physicists is biological treatment 
planning. This approach replaces the commonly used physical dose–volume param-
eters, which are only surrogates for biological effects, with biological measures 
during treatment plan optimisation and evaluation.
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Fig. 13.4  NTCP models for acute alopecia grade ≥2 after cranial proton-beam therapy. (a) regres-
sion curve, (b) receiver operating characteristic curves, and (c) calibration plot are displayed. AUC 
values for each cohort are given in brackets. Data points and error bars represent mean and stan-
dard deviation of patient sets. Adapted from Dutz et al. [91]
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Table 13.2  NTCP model for acute alopecia grade ≥2 after cranial proton-beam therapy, from 
Dutz et al. [91]

Model parameters Model coefficients (95% confidence interval) p-value
Skin D5% in Gy(RBE) 0.081 (0.05 – 0.11) <0.001
Constant −0.94 (−2.91 to −0.27)

RBE: relative biological effectiveness

V
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e

Dose

a b

Dose

Fig. 13.5  Concept of biological optimisation for (a) a serial organised OAR and (b) a parallel 
organised OAR. The DVH curve is influenced by a single gEUD objective that achieves the same 
volume effect as multiple physical dose–volume objectives represented by the bars. Their different 
weights are expressed by the bar lengths. Adapted from [94]

For biological treatment plan optimisation, one approach is to use multivari-
able NTCP models directly in the objective function [92]. More common in mod-
ern treatment planning systems are optimiser functions that implement a 
biological objective, e.g. based on gEUD (Eq. 13.7), as the main optimisation 
parameter that adjusts the DVH curve as a whole instead of several physical 
dose-volume objectives [93]. For serial OARs, a high volume parameter (a > 10) 
is used to prevent dose maxima, while for parallel OARs, a low parameter value 
(a = 1) is used to reduce the mean dose [94]. In contrast to single physical dose-
volume objectives (e.g. Dmax), biological objectives influence the entire DVH 
curve, see Fig. 13.5.

In order to adequately apply these biological functions, the tissue-specific param-
eter a has to be known for all OARs. Using the relationship a = 1/n, it can be deter-
mined from published LKB models, e.g. in Luxton et al. [95]. Before application in 
clinical routine, these parameters should be calibrated on clinic-specific data. In 
case a cannot be calibrated, different generic initial values depending on the type of 
OAR (parallel or serially organised) have been recommended to be used for plan 
optimisation, e.g. outlined in the AAPM task group report 166 [93]. However, the 
use of these non-calibrated initial parameters requires an additional uncertainty 
analysis. For treatment plan selection and evaluation, EUD can be used to rank ten-
tative treatment plans. Also, TCP/NTCP models can be used to make patient-specific 
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predictions of outcome and then select a specific treatment plan. Although several 
dose–response models have been developed and are continuously updated, they 
continue to be very simplistic [96]. For some clinical situations and tumour entities, 
several competing models may be available. For example, the predictions of models 
for the same side effect but developed based on data from different tumour entities 
may differ (e.g. lung or heart toxicity for lung and breast cancer patients). Hence, 
clinicians should determine the appropriate biological models for each tumour 
entity, clinical setting, and radiation modality.

Some treatment planning systems may already include a library of models or 
model parameters with default values. However, these published models have been 
developed at other institutions including different patient populations, treatment 
planning systems, dose calculation algorithms, fractionation schemes, etc. The 
patient characteristics may differ substantially such that further variables may affect 
the considered endpoint. Thus, TCP/NTCP models used in biological plan evalua-
tion have to be calibrated based on the institutional situation before use. This 
requires a comprehensive collection of outcome data and large patient cohorts. If 
multivariable models are to be implemented that contain additional clinical vari-
ables (e.g. comorbidities, age, or concomitant therapies), this information must also 
be available. Since this complex calibration for different tumour entities and OARs 
is not feasible for most clinics, partial biological optimisation is currently used, 
combining biological and physical objectives.

The main limitation of biological treatment planning lies in the uncertainties of 
the biological models. Due to the increasing amount of patient-specific data and the 
development of advanced modelling strategies, a reduction of these uncertainties 
seems feasible. This would allow for implementing such biological techniques 
widely into clinical practice in the future.

13.4	� Case 1: Patient Selection for Proton-Beam Therapy: 
The Model-Based Approach

One example for the application of NTCP models is the patient assignment to 
proton-beam therapy (PBT). Although the number of operating PBT facilities is 
increasing worldwide, the high technical and time expenditure leads to high costs of 
this treatment modality. Therefore, it is important to offer PBT to those patients who 
may benefit most from it compared to conventional photon therapy (XRT).

Randomised controlled trials (RCT) are considered as the highest evidence for 
practice change in oncology. However, there are challenges in performing RCTs to 
compare different radiotherapy techniques or modalities. The heterogeneity between 
centres in terms of treatment planning systems, quality assurance, training skills, 
image guidance techniques, treatment adaptation, immobilisation strategies, etc., 
may be so pronounced that it may be difficult to generalise results from RCTs into 
clinical routine [97, 98]. In addition, for trials comparing PBT and XRT in terms of 
reduced late side effects, the considered endpoints may manifest many years after 
radiotherapy. Thus, results from large long-term RCTs may be obsolete as 
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radiotherapy (and PBT in particular) is still a rapidly evolving technology [99]. To 
reduce the number of patients and thus the duration of the study, a proper pre-
selection of eligible patients is necessary.

A feasible approach to meet these challenges and to identify patients suitable for 
PBT is based on comparative NTCP modelling, the so-called model-based approach 
[99]. In the Netherlands and Denmark, it has already been implemented in clinical 
practice for patients with various tumour sites, including HNSCC, non-small cell 
lung cancer, breast cancer, and mediastinal lymphoma. This section discusses the 
principles of the two-phase model-based approach as proposed by Langendijk et al. 
[99] and applications.

13.4.1	� Principles of the Model-Based Approach

The model-based approach consists of two phases: model-based selection and vali-
dation. The first phase, in turn, comprises three steps: development and validation 
of NTCP models, patient-specific plan comparison, and estimation of the clinical 
benefit of PBT. The individual steps are explained in more detail below.

13.4.1.1	� Phase α: Model-Based Selection
Patients are selected according to their reduction of side effect probabilities under 
PBT compared to XRT. If this reduction exceeds a given threshold, those patients 
will be suitable for PBT treatment. The side effect probabilities for each patient are 
estimated using NTCP models.

	1.	 Development and Validation of NTCP Models: NTCP models have to be 
developed and externally validated for different entities and relevant side effects 
that may occur following XRT or PBT.  General aspects on development and 
validation of NTCP models are described in Sect. 13.3.2. Most NTCP models 
have been derived from data of patients treated with XRT. NTCP models can 
already differ between various XRT techniques [88, 100, 101]. Since dose distri-
butions of XRT and PBT may show even stronger differences, XRT-based mod-
els need to be validated on prospectively collected PBT patient data. In case of 
negative validation, the development of technique-specific NTCP models may 
become necessary. Continuous NTCP validation and updating may be imple-
mented, for example, in the framework of a rapid learning health care system 
[102, 103].

	2.	 Individual in silico Planning Comparative Studies: For each patient, two 
treatment plans are created, one with protons and the other with a state-of-the-art 
XRT technique. The values of the dosimetric parameters that are supposed to be 
important in the selected NTCP models should be reduced, if possible, during 
treatment planning.

	3.	 Estimation of the Clinical Benefit: The in silico treatment plans and NTCP 
models are used to estimate the difference (ΔNTCP) in side effect probabilities 
between XRT and PBT:
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Fig. 13.6  Model-based approach according to [99]. (a) An equal dose difference between proton 
and photon treatment plan may translate into different NTCP reductions in a univariable model. (b) 
In a multivariable model including dosimetric predictors of two different OARs, the NTCP differ-
ence may be even higher if PBT is able to reduce dose to both OARs simultaneously

	 ” NTCP NTCP NTCPXRT PBT= − 	 (13.10)

Figure 13.6a shows that a similar dose difference between a photon and a 
proton treatment plan may lead to different NTCP reductions, depending on the 
slope of the NTCP curve at the considered dose values. In a multivariable model 
including dosimetric predictors of two different OARs, the difference in NTCP 
between the proton and photon plan may be even higher if PBT is able to spare 
both OARs simultaneously [88], see Fig. 13.6b. A patient is finally selected for 
PBT if the extent of NTCP reduction in the PBT plan compared to XRT exceeds 
a given threshold. This threshold depends on the severity of the side effects, with 
lower thresholds for more severe toxicities. For toxicities of CTCAE grade 2, 3, 
and 4–5, the Dutch Society of Radiation Oncology suggests thresholds of 10%, 
5%, and 2% points, respectively [97]. In some cases, multiple side effects are 
considered in the selection procedure (NTCP profiles). Here, both the NTCP 
difference of every single endpoint as well as the summarised NTCP difference 
for all considered endpoints must exceed different thresholds [97]. If the NTCP 
difference remains below the recommended threshold, the patient is treated with 
state-of-the-art XRT.

13.4.1.2	� Phase β: Model-Based Clinical Evaluation
The initial hypothesis of reduced side effects after PBT compared to XRT is evalu-
ated during model-based clinical validation. Patients who were selected for PBT 
during phase α are enrolled in prospective clinical evaluation studies and are treated 
with the proton treatment plan created during step 2. The finally observed toxicity 
rates of patients treated with PBT are then compared to the initially predicted pro-
ton NTCP values to detect possible shortcomings of the applied NTCP models 
[97]. Furthermore, it can be tested whether the observed toxicity rate following 
PBT is indeed lower than the estimated NTCP values for XRT (calibration in the 
large [104]).
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Fig. 13.7  Schematic overview of model-based clinical evaluation according to [99]

Moreover, the real outcome of PBT and XRT can be compared directly using 
prospectively collected patient data from cohorts treated with one of the treatment 
modalities (Fig. 13.7). Both patient groups of such clinical trials need to be selected 
according to the same selection procedure. The control group includes patients who 
would have been candidates for PBT but were still treated with XRT, e.g. historical 
cohorts [99] or patients treated in radiotherapy centres without access to PBT.

13.4.2	� Application: Proton-Beam Therapy for Head 
and Neck Cancer

The model-based approach for patient selection for PBT has been introduced into 
clinical practice in some European countries. Arts et  al. [105] investigated the 
impact of treatment accuracy, in terms of setup and range uncertainties, on the 
selection procedure based on a cohort of 78 patients with oropharyngeal cancer. 
They analysed the number of patients selected for PBT based on four NTCP mod-
els and using the above-mentioned ΔNTCP thresholds of 10% and 5% points for 
grade 2 and grade 3 side effects, respectively (Table 13.3). To analyse the impact 
of the treatment accuracy, three different planning target volume (PTV) margins 
for IMRT plans as well as five different setup and range robustness settings for 
intensity modulated proton-beam therapy (IMPT) were applied. In a setting of a 
3 mm PTV margin for IMRT and 3 mm setup and 3% range error for IMPT, a total 
of 77% of patients were selected for PBT if the corresponding threshold was 
exceeded in at least one of the four NTCP models. For all models, the more robust 
the IMPT plans were for the same PTV margin, the fewer patients were selected for 
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Table 13.3  Investigated NTCP models predicting side effects following the irradiation head and 
neck cancer patients in the study by Arts et al. [105]

Side effect and 
NTCP model

Severity 
grade

Time 
after RT Model predictors Model type

Tube feeding 
dependence
Wopken et al. [106]

3 6 months Mean dose of the superior and 
inferior PCM, contralateral 
parotid, and cricopharyngeal 
muscle

Logistic 
regression 
model

Advanced T stage

Weight loss (moderate/severe)
Accelerated radiotherapy
Chemoradiation
Radiotherapy plus cetuximab

Reduced parotid 
flow
Dijkema et al. 
[107]

2 1 year Mean dose in parotid glands LKB model

Patient-rated 
problems 
swallowing solid 
fooda

Christianen et al. 
[88]

2 6 months Mean dose superior PCM and 
supraglottic larynx  
Age

Logistic 
regression 
model

Patient-rated 
xerostomiaa

Beetz et al. [108]

2 6 months Mean dose contralateral parotid 
gland  
Baseline xerostomia score

Logistic 
regression 
model

LKB Lyman–Kutcher–Burman; PCM pharyngeal constrictor muscle; RT radiotherapy
aAssessed with the head-and-neck cancer-specific quality of life questionnaire EORTC 
QLQ-H&N35

PBT.  With the same robustness settings of the IMPT plan, more patients were 
selected for PBT the greater the PTV margin of the IMRT plan. The study by Arts 
et al. [105] showed that, in addition to the choice of an appropriate threshold for 
each severity grade, treatment accuracy also affects the proportion of patients 
selected for PBT.

13.5	� Case 2: Radiomics

Medical imaging is commonly acquired prior to and during radiation treatment. It 
may contain information on disease diagnosis or treatment outcome and thereby 
improve corresponding TCP or NTCP models. It can thus enable further treatment 
personalisation, e.g. by selecting patients for specific treatments [109]. In a 
radiomics analysis, information is extracted from each image and quantitatively 
assessed. Radiomics draws upon mathematically well-defined (‘hand-crafted’) fea-
tures, automated feature generation based on deep learning algorithms, or both 
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Fig. 13.8  Schematic representation of image processing and feature calculation. MR magnetic 
resonance, SUV standardised uptake value, PET positron emission tomography. Adapted from [29]

[110, 111]. Radiomics has been applied to numerous tasks in radiation oncology 
including TCP and NTCP modelling for several tumour entities [112–115].

13.5.1	� The Radiomics Workflow

A radiomics analysis using hand-crafted features consists of several steps, as illus-
trated in Fig. 13.8 and explained in the following.

	1.	 Image Acquisition and Reconstruction: A patient is scanned in a medical 
imaging device according to a specific protocol. Software, usually provided by 
the vendor, then converts the acquired image data into something interpretable 
by human readers.

	2.	 Segmentation: This usually aims to characterise part of an image, e.g. the pri-
mary tumour or different OARs. Clinical experts or (semi-)automatic algorithms 
segment or delineate the image to identify the regions of interest (ROIs).

	3.	 Image Processing: Image processing primarily harmonises images across 
patients. For example, voxels (3D pixels) in images of different patients are resa-
mpled to the same dimensions to decrease variability of radiomics features 
related to different voxel sizes in the reconstructed images [116]. Another com-
ponent of image processing is the use of image filters, e.g. to remove noise or 
emphasise edges, blobs, or directional structures [117]. A general image pro-
cessing scheme for radiomics is described by the Image Biomarker Standardisation 
Initiative (IBSI) [118].

	4.	 Radiomics Feature Computation: After image processing, radiomics features 
are computed from the ROI. This generates a feature value for each image. Many 
common features were standardised by the IBSI, and described in their docu-
mentation [118].

	5.	 Modelling: The previous steps yield radiomics feature values that are easily 
converted to a tabular format. The modelling component of a radiomics analysis 
is therefore not specific to radiomics but follows the principles described earlier 
in this chapter.

Radiomics based on deep learning is quite similar, but the radiomics feature 
computation and modelling steps are typically replaced entirely by a deep learning 
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algorithm. Manual segmentation may not be required, as a deep learning network is 
capable of learning what aspects and regions of the image are of interest, given suf-
ficient data. Some image processing is usually required because of constraints on 
the input of deep learning algorithms.

13.5.2	� Application: Radiomics for Adaptive Treatment

One way to personalise radiotherapy is to monitor the treatment progress and adapt 
treatment correspondingly [4]. Treatment progress may potentially be monitored by 
medical imaging and its comprehensive radiomics analysis. This particular subfield 
of radiomics is called delta-radiomics because radiomics features are computed 
from images acquired at different time points [119, 120].

We have previously performed a delta-radiomics analysis to assess whether com-
puted tomography (CT) imaging during treatment can be used to classify patients 
with locally advanced HNSCC into a high and a low-risk group for loco-regional 
recurrence [121]. We will describe this study here as an example of how radiomics 
could be used for adaptive treatment.

The study involved three patient cohorts, a development cohort (n = 48), a valida-
tion cohort (n = 30), and a cohort that was only used to assess the robustness of 
radiomics features (n = 18). The patients in the development and validation cohort 
were followed up for several years, and loco-regional recurrence was recorded. 
Patients in these cohorts were scanned prior to treatment (CT0) and during the sec-
ond week of treatment (CT2). Based on the primary tumour contours, we computed 
1583 radiomics features with the IBSI-compliant software MIRP [122] for every 
imaging dataset.

We identified 269 robust features, which we computed from CT0 and CT2. 
Furthermore, we computed the difference between the two time points, i.e. 269 
delta features. The three feature sets were compared for modelling loco-regional 
control (LRC) in a TRIPOD type 3 survival analysis: using CT0-features only, CT2-
features only, and the combined set including delta features. Modelling followed the 
steps outlined in Sect. 13.2. Features in the development cohort were pre-processed 
by standardisation and subsequent clustering of similar features (Spearman correla-
tion ρ > 0.90). We then determined variable importance by performing feature selec-
tion using six different methods on 1000 bootstraps of the data and aggregated the 
feature ranks. Subsequently, we optimised model hyperparameters for six different 
algorithms through grid search in a cross-validation scheme. Models were then 
trained on 1000 bootstraps of the development cohort and combined into an ensem-
ble model for each combination of feature selection method and learner. In total, we 
created 36 ensemble models, based on earlier findings that indicated that a combina-
tion of different methods should be assessed to reduce the risk of accidental findings 
[29]. Furthermore, it could be assessed whether an increase in model complexity 
justifies a decrease in model explainability by better performance.

We then validated all models in the validation dataset, see Fig. 13.9. Model per-
formance was assessed using a concordance index (C-index; 0.5: random, 1.0 
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Fig. 13.9  Concordance indices of radiomics models (0.5: random, 1.0: perfect discrimination) 
based on treatment planning CT images (left panel) and on CT images after the second week of 
treatment (right panel). The performance of several survival models based on imaging features 
selected from different feature selection algorithms is shown for the validation cohort. For details, 
see [121]

perfect discrimination) [46]. Stratification into low- and high-risk groups for loco-
regional recurrence was evaluated using a log-rank test. We found that models based 
on the CT2 (C-index: 0.73 ± 0.04, mean ± standard deviation over all models) and 
combined feature sets (0.70 ± 0.05, not shown) exceeded the performance of mod-
els using CT0 only (0.62 ± 0.04). The combined feature set (p = 0.06) and CT2 only 
(p = 0.005) enabled better performance compared to CT0.

Our results indicate that imaging obtained during treatment can be more suited 
to identify patients at lower or higher risk of tumour recurrence than pre-treatment 
imaging. Though this effect should be validated in a larger dataset, the results do 
show the potential for image-guided treatment adaptation. For instance, if the 
tumour has a very low risk of recurring, treatment may be stopped early, while in 
case of a high recurrence risk, the patient and clinician may choose to pursue an 
extended radiation treatment. In the future, such options for treatment adaptation 
may become available for patients with a clear prognosis based on precise and vali-
dated models.

13.6	� Summary and Outlook

Due to the growing amount of patient-specific data and corresponding advances in 
computer technology and adapted machine-learning algorithms, models predicting 
tumour control or normal tissue complications are becoming increasingly complex, 
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which in turn may allow for more accurate predictions. This brings forward new 
fields of application, e.g. in personalised radiotherapy, for model-based patient 
selection or biological treatment planning.

It is thus essential to understand the basic principles of model development and 
validation, which we have presented in this chapter. We outlined important aspects 
of data quality, data pre-processing, feature selection, model development, model 
evaluation, and model validation. The application of these concepts was presented 
for NTCP modelling within the model-based approach selecting patients for photon 
or proton-beam therapy and for adaptive TCP modelling based on radiomics analy-
ses from pre-treatment and in-treatment CT imaging.

In future, data science and artificial intelligence may play a central role in the 
development of high-precision radiotherapy. For these developments, homogeneous 
patient cohorts of sufficient sample size are required. This necessitates the forma-
tion of large cooperative networks pooling their data or federated learning strategies 
with decentralised data storage [123]. Furthermore, data publication according to 
the FAIR principles [124] will ensure the continued improvement of models on 
radiation treatment outcome.

References

1.	Holthusen H.  Erfahrungen über die Verträglichkeitsgrenze für Röntgenstrahlen und deren 
Nutzanwendung zur Verhütung von Schäden. Strahlentherapie. 1936;57:254–69.

2.	Karger CP.  Klinische Strahlenbiologie. In: Schlegel W, Karger CP, Jäkel O, editors. 
Medizinische Physik: Grundlagen—Bildgebung—Therapie—Technik. Berlin, Heidelberg: 
Springer; 2018. p. 451–72.

3.	Baumann M, Krause M, Overgaard J, et al. Radiation oncology in the era of precision medi-
cine. Nat Rev Cancer. 2016;16:234–49. https://doi.org/10.1038/nrc.2016.18.

4.	Ajdari A, Niyazi M, Nicolay NH, et  al. Towards optimal stopping in radiation therapy. 
Radiother Oncol. 2019;134:96–100.

5.	Beaton L, Bandula S, Gaze MN, Sharma RA. How rapid advances in imaging are defining the 
future of precision radiation oncology. Br J Cancer. 2019;120:779–90.

6.	Zwanenburg A, Löck S.  Why validation of prognostic models matters? Radiother Oncol. 
2018;127:370–3.

7.	van Smeden M, de Groot JA, Moons KG, et al. No rationale for 1 variable per 10 events crite-
rion for binary logistic regression analysis. BMC Med Res Methodol. 2016;16:163.

8.	Moons KGM, Altman DG, Reitsma JB, et al. Transparent reporting of a multivariable predic-
tion model for individual prognosis or diagnosis (TRIPOD): explanation and elaboration. 
Ann Intern Med. 2015;162:W1–73.

9.	García S, Luengo J, Herrera F.  Data preprocessing in data mining. Berlin: Springer 
International Publishing; 2015.

10.	Box GEP, Cox DR. An analysis of transformations. J R Stat Soc Series B Stat Methodol. 
1964;26:211–52.

11.	Yeo I, Johnson RA. A new family of power transformations to improve normality or sym-
metry. Biometrika. 2000;87:954–9.

12.	Orlhac F, Boughdad S, Philippe C, et  al. A postreconstruction harmonization method for 
multicenter radiomic studies in PET. J Nucl Med. 2018;59:1321–8.

13.	Orlhac F, Frouin F, Nioche C, et al. Validation of a method to compensate multicenter effects 
affecting CT radiomics. Radiology. 2019;291:53–9.

13  Modelling for Radiation Treatment Outcome

https://doi.org/10.1038/nrc.2016.18


310

14.	Chatterjee A, Vallières M, Dohan A, et al. Creating robust predictive radiomic models for 
data from independent institutions using normalization. IEEE Trans Radiat Plasma Med Sci. 
2019;3:210–5.

15.	Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using 
empirical Bayes methods. Biostatistics. 2007;8:118–27.

16.	Greenland S, Finkle WD. A critical look at methods for handling missing covariates in epide-
miologic regression analyses. Am J Epidemiol. 1995;142:1255–64.

17.	Donders ART, van der Heijden GJMG, Stijnen T, Moons KGM. Review: a gentle introduc-
tion to imputation of missing values. J Clin Epidemiol. 2006;59:1087–91.

18.	Luengo J, García S, Herrera F.  On the choice of the best imputation methods for miss-
ing values considering three groups of classification methods. Knowl Inf Syst. 2012;32: 
77–108.

19.	He H, Garcia EA. Learning from imbalanced data. In: IEEE Transactions on Knowledge and 
Data Engineering; 2008. pp 1263–1284.

20.	Krawczyk B. Learning from imbalanced data: open challenges and future directions. Prog 
Artif Intell. 2016;5:221–32.

21.	Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP.  SMOTE: synthetic minority over-
sampling technique. J Artif Intell Res. 2002;16:321–57.

22.	He H, Bai Y, Garcia EA, Li S. ADASYN: adaptive synthetic sampling approach for imbal-
anced learning. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE 
World Congress on Computational Intelligence); 2008. pp 1322–1328.

23.	Kubat M, Holte R, Matwin S. Learning when negative examples abound. In:  Machine learn-
ing: ECML-97. Berlin, Heidelberg: Springer; 1997. p. 146–53.

24.	O’Brien R, Ishwaran H.  A random forests quantile classifier for class imbalanced data. 
Pattern Recogn. 2019;90:232–49.

25.	Zwanenburg A. Radiomics in nuclear medicine: robustness, reproducibility, standardization, 
and how to avoid data analysis traps and replication crisis. Eur J Nucl Med Mol Imaging. 
2019;46:2638–55.

26.	Zwanenburg A, Leger S, Agolli L, et al. Assessing robustness of radiomic features by image 
perturbation. Sci Rep. 2019a;9:614.

27.	Cunningham JP, Ghahramani Z. Linear dimensionality reduction: survey, insights, and gen-
eralizations. J Mach Learn Res. 2015;16:2859–900.

28.	Tolosi L, Lengauer T. Classification with correlated features: unreliability of feature ranking 
and solutions. Bioinformatics. 2011;27:1986–94.

29.	Leger S, Zwanenburg A, Pilz K, et al. A comparative study of machine learning methods for 
time-to-event survival data for radiomics risk modelling. Sci Rep. 2017;7:13206.

30.	Park MY, Hastie T, Tibshirani R. Averaged gene expressions for regression. Biostatistics. 
2007;8:212–27.

31.	Kaufman L, Rousseeuw PJ.  Finding groups in data: an introduction to cluster analysis. 
Hoboken: John Wiley & Sons; 2009.

32.	Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res. 
2003;3:1157–82.

33.	Li J, Cheng K, Wang S, et  al. Feature selection: a data perspective. ACM Comput Surv 
(CSUR). 2018;50:94.

34.	Saeys Y, Inza I, Larrañaga P.  A review of feature selection techniques in bioinformatics. 
Bioinformatics. 2007;23:2507–17.

35.	Haury A-C, Gestraud P, Vert J-P. The influence of feature selection methods on accuracy, 
stability and interpretability of molecular signatures. PLoS One. 2011;6:e28210.

36.	Kalousis A, Prados J, Hilario M. Stability of feature selection algorithms: a study on high-
dimensional spaces. Knowl Inf Syst. 2007;12:95–116.

37.	Abeel T, Helleputte T, Van de Peer Y, et al. Robust biomarker identification for cancer diagno-
sis with ensemble feature selection methods. Bioinformatics. 2010;26:392–8.

38.	Meinshausen N, Bühlmann P.  Stability selection. J R Stat Soc Series B Stat Methodol. 
2010;72:417–73.

A. Dutz et al.



311

39.	Saeys Y, Abeel T, Van de Peer Y. Robust feature selection using ensemble feature selection 
techniques. In: Daelemans W, Goethals B, Morik K, editors. Machine learning and knowl-
edge discovery in databases. Berlin, Heidelberg: Springer; 2008. p. 313–25.

40.	Wald R, Khoshgoftaar TM, Dittman D, et al. An extensive comparison of feature ranking 
aggregation techniques in bioinformatics. In: 2012 IEEE 13th International Conference on 
Information Reuse Integration (IRI); 2012. pp 377–384.

41.	Tibshirani R. Regression shrinkage and selection via the Lasso. J R Stat Soc Series B Stat 
Methodol. 1996;58:267–88.

42.	Bühlmann P, Hothorn T. Boosting algorithms: regularization, prediction and model fitting. 
Stat Sci. 2007;22:477–505.

43.	Hofner B, Boccuto L, Göker M. Controlling false discoveries in high-dimensional situations: 
boosting with stability selection. BMC Bioinformat. 2015;16:144.

44.	Fernández-Delgado M, Cernadas E, Barro S, Amorim D. Do we need hundreds of classifiers 
to solve real world classification problems? J Mach Learn Res. 2014;15:3133–81.

45.	Hand DJ, Till RJ. A simple generalisation of the area under the ROC curve for multiple class 
classification problems. Mach Learn. 2001;45:171–86.

46.	Pencina MJ, D’Agostino RB.  Overall C as a measure of discrimination in survival anal-
ysis: model specific population value and confidence interval estimation. Stat Med. 
2004;23:2109–23.

47.	Brodersen KH, Ong CS, Stephan KE, Buhmann JM.  The balanced accuracy and its pos-
terior distribution. In: 2010 20th International Conference on Pattern Recognition; 2010. 
pp 3121–3124.

48.	Uno H, Cai T, Pencina MJ, et al. On the C-statistics for evaluating overall adequacy of risk 
prediction procedures with censored survival data. Stat Med. 2011;30:1105–17.

49.	Brier GW.  Verification of forecasts expressed in terms of probability. Mon Weather Rev. 
1950;78:1–3.

50.	Matthews BW. Comparison of the predicted and observed secondary structure of T4 phage 
lysozyme. Biochim Biophys Acta. 1975;405:442–51.

51.	Gneiting T, Raftery AE. Strictly proper scoring rules, prediction, and estimation. J Am Stat 
Assoc. 2007;102:359–78.

52.	Nelder JA, Wedderburn RWM. Generalized linear models. J R Stat Soc Ser A. 1972;135: 
370–84.

53.	Breiman L. Random forests. Mach Learn. 2001;45:5–32.
54.	Chen T, Guestrin C. XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd 

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2016. 
pp 785–794.

55.	Bergstra J, Bengio Y. Random search for hyper-parameter optimization. J Mach Learn Res. 
2012;13:281–305.

56.	Feurer M, Klein A, Eggensperger K, et al. Efficient and robust automated machine learning. 
In: Cortes C, Lawrence ND, Lee DD, et al., editors. Advances in neural information process-
ing systems 28. New York: Curran Associates, Inc.; 2015. p. 2962–70.

57.	Hutter F, Hoos HH, Leyton-Brown K. Sequential model-based optimization for general algo-
rithm configuration. In: Coello CAC, editor. Learning and intelligent optimization. Berlin, 
Heidelberg: Springer; 2011. p. 507–23.

58.	Japkowicz N, Stephen S. The class imbalance problem: a systematic study. Intell Data Anal. 
2002;6:429–49.

59.	Van Calster B, McLernon DJ, van Smeden M, et al. Calibration: the Achilles heel of predic-
tive analytics. BMC Med. 2019;17:230.

60.	Vickers AJ, Cronin AM, Elkin EB, Gonen M. Extensions to decision curve analysis, a novel 
method for evaluating diagnostic tests, prediction models and molecular markers. BMC Med 
Inform Decis Mak. 2008;8:53.

61.	Vickers AJ, Elkin EB.  Decision curve analysis: a novel method for evaluating prediction 
models. Med Decis Mak. 2006;26:565–74.

13  Modelling for Radiation Treatment Outcome



312

62.	Vickers AJ, van Calster B, Steyerberg EW. A simple, step-by-step guide to interpreting deci-
sion curve analysis. Diagn Progn Res. 2019;3:18.

63.	Royston P, Altman DG. External validation of a Cox prognostic model: principles and meth-
ods. BMC Med Res Methodol. 2013;13:33.

64.	Mallett S, Royston P, Waters R, et al. Reporting performance of prognostic models in cancer: 
a review. BMC Med. 2010;8:21.

65.	Doshi-Velez F, Kim B. Towards a rigorous science of interpretable machine learning; 2017. 
arXiv [stat.ML].

66.	Fisher A, Rudin C, Dominici F.  All models are wrong, but many are useful: learning a 
Variable’s importance by studying an entire class of prediction models simultaneously. J 
Mach Learn Res. 2019;20:1–81.

67.	Friedman JH.  Greedy function approximation: a gradient boosting machine. Ann Stat. 
2001;29:1189–232.

68.	Goldstein A, Kapelner A, Bleich J, Pitkin E.  Peeking inside the black Box: visualizing 
statistical learning with plots of individual conditional expectation. J Comput Graph Stat. 
2015;24:44–65.

69.	Antoniou M, Kolamunnage-Dona R, Jorgensen AL.  Biomarker-guided non-adaptive trial 
designs in phase II and phase III: a methodological review. J Pers Med. 2017;7:1.

70.	Lin J-A, He P. Reinventing clinical trials: a review of innovative biomarker trial designs in 
cancer therapies. Br Med Bull. 2015;114:17–27.

71.	Joiner MC. Quantifying cell kill and cell survival. In: Joiner MC, van der Kogel A, editors. 
Basic clinical radiobiology. 4th ed. Boca Raton: CRC Press; 2009.

72.	Bentzen SM. Dose–response relationships in radiotherapy. In: Joiner MC, van der Kogel A, 
editors. Basic clinical radiobiology. 4th ed. Boca Raton: CRC Press; 2009.

73.	Warkentin B, Stavrev P, Stavreva N, et al. A TCP-NTCP estimation module using DVHs and 
known radiobiological models and parameter sets. J Appl Clin Med Phys. 2004;5:50–63.

74.	Okunieff P, Morgan D, Niemierko A, Suit HD. Radiation dose-response of human tumors. Int 
J Radiat Oncol Biol Phys. 1995;32:1227–37.

75.	Roberts SA, Hendry JH.  A realistic closed-form radiobiological model of clinical tumor-
control data incorporating intertumor heterogeneity. Int J Radiat Oncol Biol Phys. 
1998;41:689–99.

76.	Sanchez-Nieto B, Nahum AE. The delta-TCP concept: a clinically useful measure of tumor 
control probability. Int J Radiat Oncol Biol Phys. 1999;44:369–80.

77.	Webb S, Nahum AE.  A model for calculating tumour control probability in radiotherapy 
including the effects of inhomogeneous distributions of dose and clonogenic cell density. 
Phys Med Biol. 1993;38:653–66.

78.	Gulliford S.  Modelling of Normal tissue complication probabilities (NTCP): review of 
application of machine learning in predicting NTCP. In: El Naqa I, Li R, Murphy MJ, edi-
tors. Machine learning in radiation oncology: theory and applications. Cham: Springer 
International Publishing; 2015. p. 277–310.

79.	Emami B, Lyman J, Brown A, et al. Tolerance of normal tissue to therapeutic irradiation. Int 
J Radiat Oncol Biol Phys. 1991;21:109–22.

80.	Burman C, Kutcher GJ, Emami B, Goitein M. Fitting of normal tissue tolerance data to an 
analytic function. Int J Radiat Oncol Biol Phys. 1991;21:123–35.

81.	Kutcher GJ, Burman C. Calculation of complication probability factors for non-uniform nor-
mal tissue irradiation: the effective volume method gerald. Int J Radiat Oncol Biol Phys. 
1989;16:1623–30.

82.	Kutcher GJ, Burman C, Brewster L, et al. Histogram reduction method for calculating com-
plication probabilities for three-dimensional treatment planning evaluations. Int J Radiat 
Oncol Biol Phys. 1991;21:137–46.

83.	Lyman JT. Complication probability as assessed from dose-volume histograms. Radiat Res 
Suppl. 1985;8:S13–9.

84.	Gulliford SL, Partridge M, Sydes MR, et  al. Parameters for the Lyman Kutcher Burman 
(LKB) model of Normal tissue complication probability (NTCP) for specific rectal complica-
tions observed in clinical practise. Radiother Oncol. 2012;102:347–51.

A. Dutz et al.



313

85.	Källman P, Agren A, Brahme A. Tumour and normal tissue responses to fractionated non-
uniform dose delivery. Int J Radiat Biol. 1992;62:249–62.

86.	Niemierko A, Goitein M. Modeling of normal tissue response to radiation: the critical volume 
model. Int J Radiat Oncol Biol Phys. 1993;25:135–45.

87.	Niemierko A, Goitein M. Calculation of normal tissue complication probability and dose-
volume histogram reduction schemes for tissues with a critical element architecture. 
Radiother Oncol. 1991;20:166–76.

88.	Christianen MEMC, Schilstra C, Beetz I, et al. Predictive modelling for swallowing dysfunc-
tion after primary (chemo)radiation: results of a prospective observational study. Radiother 
Oncol. 2012;105:107–14.

89.	Cella L, Palma G, Deasy JO, et al. Complication probability models for radiation-induced 
heart valvular dysfunction: do heart-lung interactions play a role? PLoS One. 2014;9:e111753.

90.	Wijsman R, Dankers F, Troost EGC, et al. Multivariable normal-tissue complication model-
ing of acute esophageal toxicity in advanced stage non-small cell lung cancer patients treated 
with intensity-modulated (chemo-)radiotherapy. Radiother Oncol. 2015;117:49–54.

91.	Dutz A, Lühr A, Agolli L, et  al. Development and validation of NTCP models for acute 
side-effects resulting from proton beam therapy of brain tumours. Radiother Oncol. 
2019;130:164–71.

92.	Kierkels RGJ, Korevaar EW, Steenbakkers RJHM, et  al. Direct use of multivariable nor-
mal tissue complication probability models in treatment plan optimisation for individualised 
head and neck cancer radiotherapy produces clinically acceptable treatment plans. Radiother 
Oncol. 2014;112:430–6.

93.	Li XA, Alber M, Deasy JO, et al. The use and QA of biologically related models for treatment 
planning: short report of the TG-166 of the therapy physics committee of the AAPM. Med 
Phys. 2012;39:1386–409.

94.	Fogliata A, Thompson S, Stravato A, Tomatis S, Scorsetti M, Cozzi L. On the gEUD biologi-
cal optimization objective for organs at risk in photon optimizer of eclipse treatment planning 
system. J Appl Clin Med Phys. 2018;19(1):106–14. https://doi.org/10.1002/acm2.12224.

95.	Luxton G, Keall PJ, King CR. A new formula for normal tissue complication probability 
(NTCP) as a function of equivalent uniform dose (EUD). Phys Med Biol. 2008;53:23–36.

96.	Niemierko A. Biological optimization. In: Bortfeld T, Schmidt-Ullrich R, De Neve W, Wazer 
DE, editors. Image-guided IMRT. Berlin, Heidelberg: Springer; 2006. p. 199–216.

97.	Langendijk JA, Boersma LJ, Rasch CRN, et al. Clinical trial strategies to compare protons 
with photons. Semin Radiat Oncol. 2018;28:79–87.

98.	Widder J, van der Schaaf A, Lambin P, et  al. The quest for evidence for proton therapy: 
model-based approach and precision medicine. Int J Radiat Oncol Biol Phys. 2016;95:30–6.

99.	Langendijk JA, Lambin P, De Ruysscher D, et al. Selection of patients for radiotherapy with 
protons aiming at reduction of side effects: the model-based approach. Radiother Oncol. 
2013;107:267–73.

100.	Beetz I, Schilstra C, van Luijk P, et al. External validation of three dimensional conformal 
radiotherapy based NTCP models for patient-rated xerostomia and sticky saliva among 
patients treated with intensity modulated radiotherapy. Radiother Oncol. 2012b;105: 
94–100.

101.	Troeller A, Yan D, Marina O, et al. Comparison and limitations of DVH-based NTCP models 
derived from 3D-CRT and IMRT data for prediction of gastrointestinal toxicities in prostate 
cancer patients by using propensity score matched pair analysis. Int J Radiat Oncol Biol 
Phys. 2015;91:435–43.

102.	Lambin P, Roelofs E, Reymen B, et  al. “Rapid learning health care in oncology”—an 
approach towards decision support systems enabling customised radiotherapy. Radiother 
Oncol. 2013;109:159–64.

103.	Lambin P, Zindler J, Vanneste B, et al. Modern clinical research: how rapid learning health 
care and cohort multiple randomised clinical trials complement traditional evidence based 
medicine. Acta Oncol. 2015;54:1289–300.

13  Modelling for Radiation Treatment Outcome

https://doi.org/10.1002/acm2.12224


314

104.	Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models: 
a framework for traditional and novel measures. Epidemiology. 2010;21:128–38.

105.	Arts T, Breedveld S, de Jong MA, et al. The impact of treatment accuracy on proton therapy 
patient selection for oropharyngeal cancer patients. Radiother Oncol. 2017;125:520–5.

106.	Wopken K, Bijl HP, van der Schaaf A, et al. Development of a multivariable normal tissue 
complication probability (NTCP) model for tube feeding dependence after curative radio-
therapy/chemo-radiotherapy in head and neck cancer. Radiother Oncol. 2014;113:95–101.

107.	Dijkema T, Raaijmakers CPJ, Ten Haken RK, et  al. Parotid gland function after radio-
therapy: the combined Michigan and Utrecht experience. Int J Radiat Oncol Biol Phys. 
2010;78:449–53.

108.	Beetz I, Schilstra C, van der Schaaf A, et al. NTCP models for patient-rated xerostomia and 
sticky saliva after treatment with intensity modulated radiotherapy for head and neck cancer: 
the role of dosimetric and clinical factors. Radiother Oncol. 2012a;105:101–6.

109.	Morin O, Vallières M, Jochems A, et al. A deep look into the future of quantitative imaging 
in oncology: a statement of working principles and proposal for change. Int J Radiat Oncol 
Biol Phys. 2018;102:1074–82.

110.	Hatt M, Le Rest CC, Tixier F, et  al. Radiomics: data are also images. J Nucl Med. 
2019;60:38S–44S.

111.	Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the bridge between medical imaging 
and personalized medicine. Nat Rev Clin Oncol. 2017;14:749–62.

112.	van Dijk LV, Brouwer CL, van der Schaaf A, et al. CT image biomarkers to improve patient-
specific prediction of radiation-induced xerostomia and sticky saliva. Radiother Oncol. 
2017;122:185–91.

113.	van Dijk LV, Langendijk JA, Zhai T-T, et al. Delta-radiomics features during radiotherapy 
improve the prediction of late xerostomia. Sci Rep. 2019;9:12483.

114.	van Dijk LV, Noordzij W, Brouwer CL, et al. 18F-FDG PET image biomarkers improve pre-
diction of late radiation-induced xerostomia. Radiother Oncol. 2018a;126:89–95.

115.	van Dijk LV, Thor M, Steenbakkers RJHM, et al. Parotid gland fat related magnetic resonance 
image biomarkers improve prediction of late radiation-induced xerostomia. Radiother Oncol. 
2018b;128:459–66.

116.	Shafiq-Ul-Hassan M, Zhang GG, Latifi K, et al. Intrinsic dependencies of CT radiomic fea-
tures on voxel size and number of gray levels. Med Phys. 2017;44:1050–62.

117.	Depeursinge A, Al-Kadi OS, Ross Mitchell J. Biomedical texture analysis: fundamentals, 
tools and challenges. Cambridge: Academic Press; 2017.

118.	Zwanenburg A, Vallières M, Abdalah MA, et al. The image biomarker standardization ini-
tiative: standardized quantitative radiomics for high-throughput image-based phenotyping. 
Radiology. 2020;295:328–38.

119.	Carvalho S, Leijenaar RTH, Troost EGC, et al. Early variation of FDG-PET radiomics fea-
tures in NSCLC is related to overall survival-the “delta radiomics” concept. Radiother Oncol. 
2016;118:S20–1.

120.	Cunliffe A, Armato SG 3rd, Castillo R, et al. Lung texture in serial thoracic computed tomog-
raphy scans: correlation of radiomics-based features with radiation therapy dose and radia-
tion pneumonitis development. Int J Radiat Oncol Biol Phys. 2015;91:1048–56.

121.	Leger S, Zwanenburg A, Pilz K, et al. CT imaging during treatment improves radiomic mod-
els for patients with locally advanced head and neck cancer. Radiother Oncol. 2019;130:10–7.

122.	Zwanenburg A, Leger S, Starke S, Löck S.  Medical image radiomics processor. Version 
1.0URL; 2019b. https://github.com/oncoray/mirp

123.	Jochems A, Deist TM, van Soest J, et al. Distributed learning: developing a predictive model 
based on data from multiple hospitals without data leaving the hospital—a real life proof of 
concept. Radiother Oncol. 2016;121:459–67.

124.	Wilkinson MD, Dumontier M, Aalbersberg IJJ, et al. The FAIR guiding principles for scien-
tific data management and stewardship. Sci Data. 2016;3:160018.

A. Dutz et al.

https://github.com/oncoray/mirp

	13: Modelling for Radiation Treatment Outcome
	13.1	 Introduction
	13.2	 Basic Modelling Principles
	13.2.1	 Data
	13.2.2	 Data Analysis Strategy
	13.2.3	 Data Pre-Processing
	13.2.4	 Feature Selection
	13.2.5	 Model Training
	13.2.6	 Model Evaluation and Interpretation
	13.2.7	 Model Application

	13.3	 Introduction to TCP and NTCP Models
	13.3.1	 Poisson Model of Tumour Control Probability
	13.3.2	 Modelling of Normal Tissue Complication Probability
	13.3.3	 Application: Biological Treatment Plan Optimisation and Evaluation

	13.4	 Case 1: Patient Selection for Proton-Beam Therapy: The Model-Based Approach
	13.4.1	 Principles of the Model-Based Approach
	13.4.1.1	 Phase α: Model-Based Selection
	13.4.1.2	 Phase β: Model-Based Clinical Evaluation

	13.4.2	 Application: Proton-Beam Therapy for Head and Neck Cancer

	13.5	 Case 2: Radiomics
	13.5.1	 The Radiomics Workflow
	13.5.2	 Application: Radiomics for Adaptive Treatment

	13.6	 Summary and Outlook
	References




