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Health-related quality of life is linked to the
gut microbiome in kidney transplant
recipients

J. Casper Swarte 1,2,20, Tim J. Knobbe 2,20, Johannes R. Björk 1,3,
Ranko Gacesa 1,3, Lianne M. Nieuwenhuis1, Shuyan Zhang 1,
Arnau Vich Vila 1,3, Daan Kremer 2, Rianne M. Douwes1,2, Adrian Post2,
Evelien E. Quint4, Robert A. Pol4, Bernadien H. Jansen1, TransplantLines investi-
gators*, Martin H. de Borst 2, Vincent E. de Meijer 5, Hans Blokzijl1,
Stefan P. Berger 2, Eleonora A. M. Festen1,3, Alexandra Zhernakova3,
Jingyuan Fu3,6, Hermie J. M. Harmsen 7, Stephan J. L. Bakker 2,21 &
Rinse K. Weersma 1,21

Kidney transplant recipients (KTR) have impaired health-related quality of life
(HRQoL) and suffer from intestinal dysbiosis. Increasing evidence shows that
gut health and HRQoL are tightly related in the general population. Here, we
investigate the association between the gut microbiome and HRQoL in KTR,
using metagenomic sequencing data from fecal samples collected from 507
KTR. Multiple bacterial species are associated with lower HRQoL, many of
which have previously been associated with adverse health conditions. Gut
microbiome distance to the general population is highest among KTR with an
impaired physical HRQoL (R = −0.20, P = 2.3 × 10−65) and mental HRQoL
(R = −0.14, P = 1.3 × 10−3). Physical and mental HRQoL explain a significant part
of variance in the gutmicrobiome (R2 = 0.58%, FDR = 5.43 × 10−4 and R2 = 0.37%,
FDR = 1.38 × 10−3, respectively). Additionally, multiple metabolic and neu-
roactive pathways (gut brainmodules) are associatedwith lowerHRQoL.While
the observational designof our studydoes not allowus to analyze causality, we
provide a comprehensive overview of the associations between the gut
microbiome and HRQoL while controlling for confounders.

Kidney transplantation is the preferred treatment of patients with end-
stage kidney disease and improves survival after transplantation
compared with patients who are treated with dialysis1,2. However,
health-related quality of life (HRQoL) of kidney transplant recipients
(KTR) still remains lower after transplantation compared with the
general population, especially regarding physical HRQoL2. Improving
HRQoL in the long term after transplantation would greatly improve
the outcomes of kidney transplantation.

The gut-brain axis refers to the bidirectional communication
between the gut and the brain, which plays a role in regulating mood,

behavior, and overall well-being. The gut and the central nervous
system are known to communicate via neural, immunological and
chemical pathways3. Therefore, it is not surprising that gut health and
HRQoL are tightly connected4. The gut microbiome can influence the
central nervous system via the gut-brain axis5,6 with, for example,
bacterial cell wall components7 or short chain fatty acids8. Translation
of these mostly animal-based studies to human subjects remains dif-
ficult, although it has previously been shown that modifying dietary
fiber intake is associated with improved mental HRQoL9, which could
be mediated by the gut microbiome10.
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Recently, a cross-sectional study in the general population iden-
tified the gutmicrobiome as a factor associatedwithHRQoL11. Multiple
microbial genera and their neuroactive functions appear to be asso-
ciated with domains of HRQoL in the general population11. However, it
is currently unknown if these associations are also present in KTR.
Previous studies have also shown that KTR suffer from gut dysbiosis
whichwas associatedwith increasedmortality after transplantation12,13.

In this study, we aimed to identify any relationship between gut
microbiome dysbiosis and impaired HRQoL among KTR, using shot-
gunmetagenomic sequencing data. Thismethod allows to analyze gut
microbial composition, metabolic function and neuroactivemetabolic
modules, and to link those to both physical andmental components of
HRQoL assessed from 507 KTR part of the TransplantLines Biobank
and Cohort study14. We included cross-sectional data of KTRwhowere
at least 1 year after transplantation to reflect the population of KTR at
medium- to long-term after transplantation. Understanding the link
between the gut microbiome and HRQoL could help improve the
quality of life of KTR and likely also other solid organ transplant
recipients.

Results
HRQoL of kidney transplant recipients
Of the 751 KTR that provided a fecal sample in the TransplantLines
Biobank and Cohort study, HRQoL data were available for 507 (68%)
recipients. The average age was 57 ± 13 years, and 45% of the recipients
were female. The median time after transplantation was 5.0 years [IQR
1.0-12.0] (Supplementary Fig. 1), average estimated glomerular filtra-
tion rate (eGFR) at inclusion was 53 ± 18mL/min/1.73m2, and 71% of
KTR were dependent on dialysis before transplantation. Most KTR
(46%) used triple immunosuppressive therapy consisting of pre-
dnisolone, tacrolimus and mycophenolate mofetil, 19% KTR were on a
different triple immunosuppressive therapy consisting of pre-
dnisolone, a calcineurin inhibitor and a proliferation inhibitor, and 35%
were on a double immunosuppressive therapy. The average physical
HRQoL (physical component score) was 68.7 ± 22.2 (range: 3.8–100.0)
and the average mental HRQoL (mental component score) was
76.4 ± 17.7 (range: 15.9–100.0). More extensive characteristics, results
of physical assessments and patient reported outcome measures are
presented in Supplementary Data 1. We analyzed the association
between HRQoL components and phenotypes that have previously
been shown to potentially confound gut microbiome analyses15, and
accounted for these covariates (age, bodymass index, sex, stool water
content, diabetes, dialysis-dependency before transplantation, anti-
hypertensive treatment, proton pump inhibitors, laxatives and anti-
biotics) in all downstreamanalyses (SupplementaryData 2).We did not
have theBristol stool scale available for all KTR, however, wemeasured
stool water content which is a proxy for stool consistency and transit
time16. For comparison 151 healthy controls who provided a fecal
sample and responded to the SF-36 questionnaire were included that
participated in the TransplantLines study14.

Variation in HRQoL is associated with gut microbial composi-
tion in kidney transplant recipients
The SF-36 assesses HRQoL using 8 domains: general health, physical
health, role limitations due to impairment of physical health, pain,
emotional well-being, role limitations due to emotional problems,
impaired social functioning and impaired vitality17. These scores are
summarized in the physical and mental component score (hereafter
PCS and MCS, respectively) reflecting physical and mental HRQoL.
Each domain has a possible range between 0 and 100 with a score of 0
representing a perceived worse health and a score of 100 representing
a perceived perfect health. KTR score lower on all HRQoL features
compared with 151 healthy controls from the TransplantLines study
(Wilcoxon, P < 1.43 × 10−7; Supplementary Fig. 2). While PCS and MCS
capture different domains of HRQoL they are strongly correlated

(r =0,69, Spearman, P = 1.08 × 10−77). We found that the mean stan-
dardized PCS score (standardized based on the mean and standard
deviation of the United States general population)18 of our KTR
population was 44.5 (SD 10.7), and the mean standardized MCS score
was 52.8 (SD 8.6). Using the Dutch population to standardize the PCS
andMCS scores,mean standardizedPCS andMCS scoreswere 45.2 (SD
10.2) and 50.6 (SD 8.9), respectively. As a score of 50 is regarded as the
mean HRQoL-score of the general population18, this implies that the
HRQoL of KTR is on average lower in PCS and higher in MCS than the
general population. In total 303 (60%) of KTR had a score <50 on the
PCS and 137 (27%) of KTR had a score <50 on theMCS. Thus, there is a
large variation in how population experiences physical HRQoL (PCS
range: 3.8–100.0) and mental HRQoL (MCS range: 15.9–100.0). We
captured this variation by discretizing both scores into quartiles for
depiction (Fig. 1a, b; PCS: Q1[3.8–50.0]; Q2[50.0–75.6]; Q3[75.6–87.5];
Q4[87.5–100.0] and MCS: Q1[15.9–68.0]; Q2[68.0–81.9];
Q3[81.9–89.0]; Q4[89.0–100]).

To assess the relationshipbetweengutmicrobial composition and
HRQoL, we analyzed beta diversity and performed principal compo-
nent analysis (PCA) on clr-transformed relative abundances which
produces the Aitchison distance (the gold standard for compositional
data19). PCA is a dimension reduction technique for high dimensional
data (e.g. bacterial species in the present analysis)20. We observed
significant associations between PC1 and all HRQoL-domains and the
summary scores (PCS and MCS) of these domains (Spearman corre-
lation on continuous HRQoL scores, P < 0.05; Supplementary Data 3).
Figures 1a, b reveals an interesting pattern: an association between PC1
and the quartiles of the component scores of HRQoL. Consequently,
we found that PC1 was significantly different between the lowest (Q1)
and the highest quartile (Q4) of each component scores of HRQoL
(PCS: P = 7.2 × 10−6; MCS: P = 1.2 × 10−2; Fig. 1c, d).

A previous study showed that all domains of HRQoL are asso-
ciatedwith interindividual variation in gutmicrobiome composition of
a general population11. To analyze whether HRQoL explained inter-
individual variation in the gut microbiome in our KTR population, we
performed Permutational Multivariate Analysis of Variance (PERMA-
NOVA) on Aitchison distances. Similarly, to the previous study by
Valles-Colomer et al., we found that all domains of HRQoL, apart from
the emotional wellbeing domain, explained variation in the gut
microbiome of KTR that was statistically significant (FDR <0.05; Fig. 2,
Supplementary Data 4). We found that the domain physical function-
ing explained themost variance (R2 = 0.63%, FDR = 5.43 × 10-4) followed
by PCS (R2 = 0.58%, FDR = 5.43 × 10-4) and MCS (R2 = 0.37%,
FDR = 1.38 × 10-3). In comparison to the variance explained by factors
such as proton pump inhibitor (PPI) use and age (PPI use: R2 = 1.10%,
FDR = 1.00 × 10-4; age:R2 = 0.56%, FDR= 1.00 × 10-4), HRQoLexplained a
moderate amount (Fig. 2, Supplementary Data 4).

Previously identified disease-associated species are associated
with a lower HRQoL
The Dutch Microbiome Project—a characterization of the gut micro-
biome of 8208 individuals from the northern Netherlands—revealed
that many bacterial species are associated with self-reported disease21.
The 507 KTR in the current study14 are from the same geographical
region but were not part of the Dutch Microbiome Project. To further
characterize the observed differences in gutmicrobial composition (as
mainly characterized by PC1) between the quartiles of the component
scores of HRQoL (PCS and MCS; Fig. 1a, b), we compared bacterial
species that loaded strongly onto PC1 with bacterial species that were
associated with disease status in the Dutch Microbiome Project.
Interestingly, we observed a striking similarity with species driving the
variation in PC1 exhibited negative correlations with disease-
associated species, and positive correlations with species not asso-
ciatedwith disease21 (Fig. 1e). This suggests that similar species that are
associated with disease in the general population are associated with
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lower HRQoL in KTR. A complete list of the correlation between spe-
cies loading onto different PCs and HRQoL features can be found in
Supplementary Data 3.

To further analyze these findings, we quantified gut microbial
dysbiosis of each KTR. We use the same definition of gut microbial
dysbiosis that we previously found to be predictive of mortality after
transplantation13, which is defined as the microbiome distance

between each KTR to the average of the general population. We
investigated whether the extent of dysbiosis is associated with lower
HRQoL, and indeed found that the distance between each KTR and the
general population was significantly associated with physical HRQoL
(PCS: r = -0.20, P = 2.3 × 10-6), mental HRQoL (MCS: r = −0.14,
P = 1.0 × 10−3) and all eight domains of HRQoL (r < −0.10, P < 0.01),
apart from the mental health domain (Supplementary Data 5, Fig. 1c,

c d

0.6

0.7

0.8

0.9

0 25 50 75 100
Physical component score

D
is

ta
nc

e 
to

 g
en

er
al

 p
op

ul
at

io
n 

co
nt

ro
l

0.6

0.7

0.8

0.9

25 50 75 100
Mental component score

D
is

ta
nc

e 
to

 g
en

er
al

 p
op

ul
at

io
n 

co
nt

ro
l

e

R=-0.20, P=2.3x10-6 R=-0.14, P=1.3x10-3

Quantile 1 Quantile 2 Quantile 3 Quantile 4 Quantile 1 Quantile 2 Quantile 3 Quantile 4

−20

0

20

−40 −20 0 20
PC1, 7.5% variance

PC
2,

 4
.6

%
 v

ar
ia

nc
e

a

−20

0

20

−40 −20 0 20
PC1, 7.5% variance

PC
2,

 4
.6

%
 v

ar
ia

nc
e

b

PC1

C
lo

st
rid

iu
m

 b
ol

te
ae

 | 
U

nh
ea

lth
y

C
lo

st
rid

iu
m

 c
lo

st
rid

io
fo

rm
e 

| U
nh

ea
lth

y
R

um
in

oc
oc

cu
s 

gn
av

us
 | 

U
nh

ea
lth

y
C

lo
st

rid
iu

m
 s

ym
bi

os
um

 | 
U

nh
ea

lth
y

C
lo

st
rid

ia
le

s 
ba

ct
er

iu
m

 1
 7

 4
7F

A
A

 | 
U

nh
ea

lth
y

Fl
av

on
ifr

ac
to

r p
la

ut
ii 

| U
nh

ea
lth

y
C

lo
st

rid
iu

m
 a

sp
ar

ag
ifo

rm
e 

| U
nh

ea
lth

y
C

lo
st

rid
iu

m
 h

at
he

w
ay

i |
 U

nh
ea

lth
y

A
na

er
ot

ru
nc

us
 c

ol
ih

om
in

is
 | 

U
nh

ea
lth

y
C

lo
st

rid
iu

m
 c

itr
on

ia
e 

| U
nh

ea
lth

y
E

gg
er

th
el

la
 u

nc
la

ss
ifi

ed
 | 

U
nh

ea
lth

y
La

ch
no

sp
ira

ce
ae

 b
ac

te
riu

m
 1

 4
 5

6F
A

A
 | 

U
nh

ea
lth

y
La

ch
no

sp
ira

ce
ae

 b
ac

te
riu

m
 5

 1
 5

7F
A

A
 | 

U
nh

ea
lth

y
O

sc
ill

ib
ac

te
r u

nc
la

ss
ifi

ed
 | 

U
nh

ea
lth

y
C

lo
st

rid
iu

m
 ra

m
os

um
 | 

U
nh

ea
lth

y
La

ch
no

sp
ira

ce
ae

 b
ac

te
riu

m
 2

 1
 5

8F
A

A
 | 

U
nh

ea
lth

y
C

lo
st

rid
iu

m
 n

ex
ile

 | 
U

nh
ea

lth
y

E
gg

er
th

el
la

 le
nt

a 
| U

nh
ea

lth
y

Ve
ill

on
el

la
 p

ar
vu

la
 | 

U
nh

ea
lth

y
R

um
in

oc
oc

cu
s 

to
rq

ue
s 

| U
nh

ea
lth

y
A

na
er

ot
ru

nc
us

 u
nc

la
ss

ifi
ed

 | 
U

nh
ea

lth
y

K
le

bs
ie

lla
 p

ne
um

on
ia

e 
| U

nh
ea

lth
y

Ve
ill

on
el

la
 a

ty
pi

ca
 | 

U
nh

ea
lth

y
P

se
ud

of
la

vo
ni

fra
ct

or
 c

ap
ill

os
us

 | 
U

nh
ea

lth
y

S
tre

pt
oc

oc
cu

s 
an

gi
no

su
s 

| U
nh

ea
lth

y
S

tre
pt

oc
oc

cu
s 

pa
ra

sa
ng

ui
ni

s 
| U

nh
ea

lth
y

S
tre

pt
oc

oc
cu

s 
m

iti
s 

or
al

is
 p

ne
um

on
ia

e 
| U

nh
ea

lth
y

B
ac

te
ro

id
es

 fr
ag

ili
s 

| U
nh

ea
lth

y
S

tre
pt

oc
oc

cu
s 

th
er

m
op

hi
lu

s 
| H

ea
lth

y
S

tre
pt

oc
oc

cu
s 

sa
liv

ar
iu

s 
| U

nh
ea

lth
y

S
tre

pt
oc

oc
cu

s 
ve

st
ib

ul
ar

is
 | 

U
nh

ea
lth

y
La

ch
no

sp
ira

ce
ae

 b
ac

te
riu

m
 3

 1
 5

7F
A

A
 C

T1
 | 

U
nh

ea
lth

y
S

tre
pt

oc
oc

cu
s 

au
st

ra
lis

 | 
U

nh
ea

lth
y

R
um

in
oc

oc
ca

ce
ae

 b
ac

te
riu

m
 D

16
 | 

U
nh

ea
lth

y
S

ub
do

lig
ra

nu
lu

m
 s

p 
4 

3 
54

A
2F

A
A

 | 
U

nh
ea

lth
y

La
ct

ob
ac

ill
us

 s
al

iv
ar

iu
s 

| U
nh

ea
lth

y
A

ci
da

m
in

oc
oc

cu
s 

un
cl

as
si

fie
d 

| U
nh

ea
lth

y
C

lo
st

rid
iu

m
 le

pt
um

 | 
U

nh
ea

lth
y

B
ifi

do
ba

ct
er

iu
m

 d
en

tiu
m

 | 
U

nh
ea

lth
y

H
ol

de
m

an
ia

 fi
lif

or
m

is
 | 

U
nh

ea
lth

y
La

ch
no

sp
ira

ce
ae

 b
ac

te
riu

m
 1

 1
 5

7F
A

A
 | 

U
nh

ea
lth

y
B

ifi
do

ba
ct

er
iu

m
 a

ng
ul

at
um

 | 
H

ea
lth

y
H

ol
de

m
an

ia
 u

nc
la

ss
ifi

ed
 | 

U
nh

ea
lth

y
La

ch
no

sp
ira

ce
ae

 b
ac

te
riu

m
 8

 1
 5

7F
A

A
 | 

H
ea

lth
y

B
ac

te
ro

id
es

 p
le

be
iu

s 
| H

ea
lth

y
M

its
uo

ke
lla

 u
nc

la
ss

ifi
ed

 | 
H

ea
lth

y
M

its
uo

ke
lla

 m
ul

ta
ci

da
 | 

H
ea

lth
y

C
at

en
ib

ac
te

riu
m

 m
its

uo
ka

i |
 H

ea
lth

y
B

ifi
do

ba
ct

er
iu

m
 c

at
en

ul
at

um
 | 

H
ea

lth
y

B
ac

te
ro

id
es

 c
la

ru
s 

| H
ea

lth
y

E
ub

ac
te

riu
m

 e
lig

en
s 

| H
ea

lth
y

B
ac

te
ro

id
es

 e
gg

er
th

ii 
| H

ea
lth

y
R

um
in

oc
oc

cu
s 

la
ct

ar
is

 | 
H

ea
lth

y
Fa

ec
al

ib
ac

te
riu

m
 p

ra
us

ni
tz

ii 
| H

ea
lth

y
Pa

ra
ba

ct
er

oi
de

s 
di

st
as

on
is

 | 
H

ea
lth

y
B

ut
yr

iv
ib

rio
 c

ro
ss

ot
us

 | 
H

ea
lth

y
S

ut
te

re
lla

 w
ad

sw
or

th
en

si
s 

| H
ea

lth
y

P
ha

sc
ol

ar
ct

ob
ac

te
riu

m
 s

uc
ci

na
tu

te
ns

 | 
H

ea
lth

y
S

ub
do

lig
ra

nu
lu

m
 u

nc
la

ss
ifi

ed
 | 

H
ea

lth
y

A
kk

er
m

an
si

a 
m

uc
in

ip
hi

la
 | 

H
ea

lth
y

B
ac

te
ro

id
es

 c
ac

ca
e 

| H
ea

lth
y

R
os

eb
ur

ia
 h

om
in

is
 | 

H
ea

lth
y

P
re

vo
te

lla
 c

op
ri 

| H
ea

lth
y

C
op

ro
co

cc
us

 c
at

us
 | 

H
ea

lth
y

E
ub

ac
te

riu
m

 re
ct

al
e 

| H
ea

lth
y

O
xa

lo
ba

ct
er

 fo
rm

ig
en

es
 | 

H
ea

lth
y

R
um

in
oc

oc
cu

s 
br

om
ii 

| H
ea

lth
y

B
ilo

ph
ila

 u
nc

la
ss

ifi
ed

 | 
H

ea
lth

y
D

es
ul

fo
vi

br
io

 p
ig

er
 | 

H
ea

lth
y

D
or

ea
 lo

ng
ic

at
en

a 
| H

ea
lth

y
C

op
ro

co
cc

us
 c

om
es

 | 
H

ea
lth

y
B

ifi
do

ba
ct

er
iu

m
 a

do
le

sc
en

tis
 | 

H
ea

lth
y

A
lis

tip
es

 fi
ne

go
ld

ii 
| H

ea
lth

y
Pa

ra
pr

ev
ot

el
la

 c
la

ra
 | 

H
ea

lth
y

Pa
ra

pr
ev

ot
el

la
 u

nc
la

ss
ifi

ed
 | 

H
ea

lth
y

B
ar

ne
si

el
la

 in
te

st
in

ih
om

in
is

 | 
H

ea
lth

y
C

ol
lin

se
lla

 a
er

of
ac

ie
ns

 | 
H

ea
lth

y
A

lis
tip

es
 in

di
st

in
ct

us
 | 

H
ea

lth
y

B
ac

te
ro

id
al

es
 b

ac
te

riu
m

 p
h8

 | 
H

ea
lth

y
A

lis
tip

es
 p

ut
re

di
ni

s 
| H

ea
lth

y
A

lis
tip

es
 s

en
eg

al
en

si
s 

| H
ea

lth
y

A
lis

tip
es

 s
ha

hi
i |

 H
ea

lth
y

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

DMP

DMP diseaseDMP no disease

Fig. 1 | Disease-associated bacterial species in the gut microbiome of KTR are
associated with HRQoL. a, b Principal component analysis on the clr-transformed
species reflecting the Aitchison distances between KTR. The physical component
score (a) and themental component score (b) are divided into quartiles (KTR were
divided into quartiles (Q1, Q2, Q3, Q4) based on their PCS and MCS with Q1 con-
taining the lowest HRQoL scores andQ4 the highest HRQoL scores). The large dots
represent centroids per group and the dashed circles represent 95% confidence
ellipses. c, d Correlation plot with spearman correlation and 95% confidence
interval for the physical component score (c) the mental component score (d) and

the distance to general population controls. This dysbiosis score was calculated
previously by calculating the Aitchison distance from KTR with 1183 age-, sex- and
BMI-matched general population controls13. e Heatmap depicting significant cor-
relations between species that have previously been associated with disease vs. no
disease in the Dutch microbiome project (DMP)21. Species that are associated with
no disease in the DMP (green squares) were consistently, positively and sig-
nificantly associated with principal component 1 (i.e. higher HRQoL) in our study
while the opposite effect was observed for species that were associated with dis-
ease in the DMP.
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d). The distance to our general population was highest in the first (Q1)
compared to the last quartile (Q4) of the HRQoL component scores
(PCS: P = 4.9 × 10-6; MCS: P = 7.0 × 10-2). We next quantified species-
level alpha diversity. However, we did not find any significant asso-
ciations between species richness, Shannon diversity, or the Simpson
index and the different HRQoL domains (P >0.05; Supplemen-
tary Fig. 3).

Multiple gut microbial species are associated with HRQoL
To test the relationship between HRQoL and the gut microbiome, we
used elastic net regularization, an approach that performs both vari-
able selection and regularization22. This technique is favorable when

you have a large number of independent variables (in our case bac-
terial species, metabolic pathways or gut brain modules) that are
strongly correlated23–25. We used a 10-fold cross-validation approach
with a 75–25% train-test split (seeMethods) to test howwell ourmodels
generalized on “untouched” data. In the following text, we are only
reporting microbial features whose coefficients (β’s) were selected by
the model (i.e. those with an effect size larger than zero). We included
all potential confounder variables that we described previously in the
elastic net model. The same analysis was performed in a cohort of 151
healthy controls to disentangle a KTR-specific signal.

Themodel forphysical HRQoL (PCS) included thehighest number
of bacterial species 33 (16%) while the model for mental HRQoL (MCS)
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included 15 (7%)bacterial species, aspresented inFig. 2. In total, 14 (7%)
species were included in both the physical andmental HRQoLmodels.
The strongest and most consistent signals were found for Faecali-
bacterium prausnitzii, which was associated with higher physical
(β =0.93) andmental (β =0.27) HRQoL (Fig. 3, Supplementary Data 6),
similar to what has previously been observed in the general
population11. F. prausnitzii is one of themost common gut bacteria and
tends to be less abundant in the gut microbiome of individuals with
disease21. Multiple bacteria were associated with physical HRQoL, of
whichDialister succinatiphilus (β =0.39),Bacteroides thetaiotaomicron
(β =0.34), Roseburia intestinalis (β = 0.34) and Bacteroides pectino-
philus (β =0.33) were most strongly positively associated, and Bifido-
bacterium angulatum (β = -0.53), Escherichia coli (β = -0.53),
Clostridium sp_L2_50 (β = -0.49), Enterococcus faecalis (β = -0.40), Lac-
tobacillus rhamnosus (β=-0.40) and Lactobacillus crispatus (β = -0.36)
were most strongly negatively associated with physical HRQoL (Fig. 3,
Supplementary Data 6). Interestingly, multiple Bacteroides (n = 4),
Bifidobacterium (n = 4), Clostridium (n = 5) and Lactococcus (n = 6)
species were less abundant in the gut microbiome of KTR with a lower
physical HRQoL, and Klebsiella pneumoniae (β = -0.17) and Strepto-
coccus parasanguinis (β = -0.09) were more abundant in KTR with a
lower physical HRQoL (Supplementary Data 6). We found that the
same 14 (7%) species were included in both the model for physical
HRQoL and mental HRQoL. However, 24 species included in the
mental HRQoLmodel were not included in the physical HRQoLmodel,
including; Lactobacillus johnsonii (β = -0.33), Odoribacter unclassified

(β = -0.24), Bifidobacterium longum (β =0.18) and Anaerostipes hadrus
(β =0.14; Fig. 3, Supplementary Data 6). Most of the observed asso-
ciations between HRQoL and the gut microbiome appear to be spe-
cific to KTR as many of the associations were not observed in the
control cohort (Fig. 3, Supplementary Data 6). To contrast these
results, we also performed an association analysis with a simple linear
regressionmodel per species. For this analysis, we constructed three
models: (i) a model without confounders; (ii) a model with micro-
biome associated covariates (i.e. stool water content, antibiotics,
laxatives, proton pump inhibitors); and finally (iii) a model including
all confounders (age, sex, BMI, eGFR, stool water content, antibiotics,
antihypertensive treatment, diabetes, dialysis, laxative, proton pump
inhibitors). This analysis revealed many significant associations
between HRQoL features and gut microbial species, many of which
were also included in the elastic net model. For example, similarly to
the elastic net, this analysis also found a significant positive asso-
ciation between F. prausnitzii, R. intestinalis and Bacteroides the-
taiotaomicron and physical HRQoL. Similarly, Clostridium
clostridioformewas also found by this analysis to be associated with a
decreased physical HRQoL (Supplementary Data 7). However, com-
paring the results from the elastic net and this analysis also revealed
many differences, which are to be expected. Importantly, compared
to simple linear regression, elastic net incorporates L1 and L2 reg-
ularization which means that a large number of correlated predictor
variables can be modeled while minimizing overfitting and reducing
bias due to multicollinearity26.
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Next, we analyzed which metabolic pathways were associated
with physical and mental HRQoL. In total, 41 (12%) pathways were
included in the model for physical HRQoL and 5 (2%) pathways were
included in the model for mental HRQoL (Fig. 2), 4 (1%) of these
pathways were included in both the model for physical and mental
HRQoL. For physical HRQoL, the strongest positive signals we
observed were for inosine biosynthesis (PWY6124, β = 1.65), rhamnose
biosynthesis (β = 1.41), stachyose degradation (PWY6527, β =0.90),
pyruvate fermentation pathway (PWY7111, β = −0.52). We also
observed 10 quinone biosynthesis pathways which were lower in KTR
with a lower physical HRQoL (Fig. 3, Supplementary Data 8). Interest-
ingly, KTR with lower physical HRQoL also had a lower abundance of
butyrate producing pathways (PWY5676, β = −0.19). We found five
metabolic pathways that were associated with physical HRQoL which
were also observed in the general population (Supplementary Data 8).
No other pathway related associations were observed in our control
population. In Supplementary Data 9 we report per species associa-
tions between all tested phenotypes and the aforementioned three
simple linear regression models.

The gut microbial neuroactive potential is associated
with HRQoL
To analyze the relationship between the central nervous system and
the gut microbiome beyond taxonomic associations, Valles-Colomer
et al. developed the omixerRPM package11. This framework reclassifies
KEGG orthologs27 into gut-brain modules (GBM) which are microbial
pathways that metabolize molecules that potentially interact with the
human nervous system11. Because self-reported HRQoL is a subjective
measure, we hypothesized that neuroactive compounds in the gut can
potentially influence an individual’s perceivedHRQoL. This hypothesis
is partly driven by the observation of a relationship between the neu-
roactive potential and HRQoL in the general population11. We applied
this framework on our metagenomic sequencing data and found 56
gut-brain modules (GBMs) which primarily correspond to neuroactive
compound production and degradation11. We applied the same elastic
net approach, as described above, to test the relationship between
HRQoL and GBMs. In total, 25 (45%) GBMs were selected by the model
with physical HRQoL (PCS) and 7 (13%) GBMs were selected by the
model with mental HRQoL (MCS; Fig. 2), with 10 (18%) GBMs being
shared across bothmodels. KTRwith a higher physical HRQoLhad less
abundant pathways for isovaleric acid synthesis I (GBM034, β = −1.35),
less menaquinone synthesis (GBM041, β = −0.97), less GABA synthesis
(GBM022, β = –0.71) and butyrate synthesis (GBM053, β = −0.47) while
having higher pathways abundance for acetate synthesis (GBM043,
β = 5.86), β-estradiol degradation (GBM031, β = 1.46) and glutamate
synthesis (GBM007,β=0.85) (Fig. 3, Supplementary Data 10). KTRwith
a bettermental HRQoLhad less abundant pathways formenaquinone
synthesis (GBM041, β = −1.48), quinolinic acid synthesis (GBM032,
β = −1.06) and inositol synthesis (GBM037, β = −0.38), while having
more abundant pathways for acetate synthesis (GBM043, β = 1.03),
glutamate synthesis (GBM007, β = 0.89; Fig. 3, Supplementary
Data 10). Associations with multiple species in the post-transplant
microbiome and HRQoL are presented in Fig. 3, in which we also
present associations with physical and mental health. The results we
observed in KTR were highly consistent with the results found by
Valles-Colomer et al11. in the general population suggesting that
neuroactive compounds which could potentially be produced by gut
bacteria play a role in KTR’s perceived HRQoL. Two GBM that were
associated with vitality and seven GBM that were associated with
general health attribution were also observed in our general popu-
lation cohort (Supplementary Data 10). No other pathway related
associations were observed in our general population. In Supple-
mentaryData 11 we report per species associations between all tested
phenotypes and the aforementioned simple linear regression
models.

Other physical and mental health related phenotypes and the
gut microbiome
We next aimed to support the associations we found between the gut
microbiome and HRQoL using multiple assessments of physical and
mental health which are also available in the TransplantLines Biobank
and Cohort study14. Using these more objective assessments, we were
able to further support some of the associations between HRQoL and
the gut microbiome we report above. Assessments reflecting physical
health were: physical activity per week; clinical frailty (clinical frailty
scale); feeling of severe fatigue (CIS20R questionnaire); 2-min walk
test; 4-meter walk test; timed up and go test; sit to stand test; and
handgrip strength14. Assessments reflectingmental health were: use of
antidepressants; feeling of anxiety (STAI−6 questionnaire); and severe
depressive symptoms (PHQ9 questionnaire). Although data regarding
HRQoL were available in all 507 KTR, the additional physical and
mental health assessments were available in a lower number of KTR
(Supplementary Data 1).

We found that KTR who were clinically well (based on the frailty
scale) scored higher on PC1 and had a lower microbiome distance to
general population (1183 matched controls13, see Methods) compared
with clinically vulnerable (Wilcoxon, P =0.02 and P = 1.60 × 10−2,
respectively) and clinically frail (Wilcoxon, P =0.02 and P = 4.60 × 10-2,
respectively) KTR (Fig. 4a and c). Handgrip strength positively corre-
lated with PC1 and negatively with themicrobiome distance to general
populations (Fig. 4D). KTR who performed worse on the 4-meter walk
test had a lower Shannon diversity (Spearman, R = −0.08, P = 0.02,
Fig. 4d). Furthermore, microbiome distance to the general population
was lower for KTR who were less physically active or reported severe
fatigue (Wilcoxon, P < 2.20 × 10-16). KTR with severe symptoms of
depression, who used antidepressants or who suffered from anxiety
exhibited lower Shannondiversity andhighermicrobiomedistances to
the general population (P < 2.20 × 10-16, Fig. 4b, c). While this analysis
further supports some of our findings regarding the association
between HRQoL and the microbiome distance to general population,
including Shannon diversity, the findings of this analysis were not
highly consistent with the differential abundance analysis (Fig. 3).

Discussion
The current study provides strong support for an association between
the gut microbiome and HRQoL in a large population of KTR. We
found that gut microbial composition and HRQoL are associated in a
similar manner as previously observed in the general population11. In
addition, we found that bacterial species which were associated with
lower HRQoL have previously been associated with disease in the
Dutch microbiome project21. Moreover, the average microbiome dis-
tance to our general population was higher among KTR with an
impaired HRQoL. We identified 33 bacterial species associated with
physical HRQoL and 15 associated with mental HRQoL. Other asso-
ciations regarding measures of physical and mental functioning sup-
port some of our reported associations between the gut microbiome
and HRQoL among KTR.

Several studies have shown associations between the gut micro-
biome and HRQoL in other populations9,11,28–32. In this study we show
that this association is also present among KTR. This is particularly
important in this population given that many KTR suffer from gut
dysbiosis12,13,33 and because their HRQoL is generally impaired2. Inter-
estingly, our results are in line with results found in the general
population and in patients with depression11. Similar to observations in
the general population11, we found that the presence of F. prausnitzii
was most strongly and consistently associated with higher HRQoL. F.
prausnitzii is one of themost commongut bacteria and tends to be less
abundant in the gut microbiome of individuals with disease21. Other
bacteria that were associated with higher HRQoL were Dialiser succi-
natiphilus (physical HRQoL) and Coprococcus comes (mental HRQoL),
which are also in agreement with the observations from the general

Article https://doi.org/10.1038/s41467-023-43431-8

Nature Communications |         (2023) 14:7968 6



population11. Notably, no association was found between any Butyr-
ivibrio spp. and mental HRQoL, which was observed in the general
population. Alongside F. prausnitzii, we found more butyrate produ-
cing bacteria to be positively associated with HRQoL: Roseburia
hominis, Alistipes putredinis, Eubacterium hallii, R. intestinalis and R.
inulinivorans34. Butyrate has multiple beneficial effects on human
health, especially gut health by regulatory role in transepithelial fluid
transport, amelioratingmucosal inflammation andoxidative stress and
reinforcing the epithelial defense barrier35. Although we did not

measure fecal butyrate levels, these results suggest that gut microbial
butyrate production could play a role in HRQoL in KTR. Multiple stu-
dies with participants from multiple populations, among which
patients suffering from diabetes or chronic kidney disease, and
patients undergoing hemodialysis or peritoneal dialysis and the gen-
eral population9,28,29,31,32,36, report a positive effect on HRQoL after
administration of a pre- and/or probiotics. Given the association
between the gut microbiome and HRQoL among KTR found in this
study, we hypothesize that pre- and/or probiotics may also have
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positive effects on HRQoL among KTR. Future interventional studies
are warranted to confirm the potential benefit of pre- and/or probio-
tics on HRQoL among KTR. Interestingly we found that patients who
are less physically active or who reported severe fatigue have a larger
distance to the general population in terms of their gut microbiome
composition. This could potentially be a reflection of poor general
health and dysbiosis as a consequence of polypharmacy, antibiotics
use and comorbidities37. We found multiple gut brain modules that
were associated with HRQoL which suggests that gut microbial pro-
ducts could potentially play a role in perceived HRQoL via the gut-
brain axis. However, it was rather surprising that only one gut brain
module was uniquely associated with the MCS. This could potentially
be attributed to the strong correlation between the PCS and MCS.

An important limitation of the current study is that we cannot
infer causality or directionality in the reported associationbetween the
gut microbiome and HRQoL. However, it provides an overview of
associations in the largest cross-sectional cohort of KTR with meta-
genomic sequencing data. Another limitation of the current study was
the lack of support for more objective phenotypes regarding physical
and mental well-being that were collected in the TransplantLines Bio-
bank and Cohort study. Mental health was only assessed through self-
report and not by health-care professional assessed diagnosis. Most of
these phenotypes were only available in half of the KTR due to the
design of the TransplantLines Biobank and Cohort study14 which limits
the interpretability of these associations. Data regarding diet was not
available for all KTR in the current study and therefore, we could not
disentangle the effect of diet in the observed associations between the
gut microbiome and HRQoL. Future studies should include diet to
further study these associations. We used elastic net analysis to
accommodate for the high number of covariates (HRQoL features,
other physical and mental health related phenotypes, confounders,
bacterial species, metabolic pathways and gut brain modules) and
account for the collinearity of gut microbiome features. However, we
also reported per species analysis using a generalized model as this is
more commonly used method. Please note that the findings between
these two methods can differ substantially since the constructed
model with one included bacterial species can be substantially differ-
ent from a model with all included bacterial species. Lastly, it is pos-
sible that the gut microbiome associations we observed are merely
covariation with HRQoL and general health (which is known to be
associatedwith the gutmicrobiome15,21). However, the gutmicrobiome
couldbe a potentiallymodifiable factor to increaseHRQoL although, it
should be noted that the effect sizes are moderate or the gut micro-
biome could function as a potential biomarker for KTR at risk for a low
HRQoL. This cannot be disentangled with the current study design.
More controlled studies are needed to further examine the relation-
ship between the gutmicrobiome inHRQoL inKTR. Future studies that
aim to study HRQoL and the gut microbiome in an experimental set-
ting should use methods such as real time PCR to better approximate
bacterial count to properly characterize the effect size as we were
constrained by relative abundance from metagenomic sequencing
data in the current study38. In such a study, supplementation of buty-
rate producing species in the form of probiotics could considered as
we found a lower abundance of butyrate producing species and
pathways in KTR with lower HRQoL.

In conclusion, gut microbial features are significantly associated
with HRQoL features in KTR. Both summary scores of the physical and
mental domains of HRQoL were significantly associated with compo-
sition of the gut microbiome. In addition, bacterial species that
encompass principal component one were all, with strikingly con-
sistent directionality, previously associated with unhealthy individuals
(with disease21).While the observational studydesign does not allowus
to analyze causality, we provided a comprehensive overview of the
associations between the gut microbiome and HRQoL while adjusting
for confounders. Our workwill aid future studies in selecting potential

modifiable gut microbial factors which could potentially improve the
HRQoL for KTR.

Methods
Study design
All cross-sectional data of KTR from the ongoing, prospective, Trans-
plantLines Biobank and Cohort study14 (Trial registration number
NCT03272841) that provided a fecal sample was included. A detailed
description of the TransplantLines study has been published
previously14. Briefly, from June 2015 all (potential) adult solid organ
transplant recipients and kidney donors at the University Medical
Center Groningen (UMCG), The Netherlands, were invited to partici-
pate. All feces samples collected by KTR till August 2019were analyzed
(n = 751). Of this cohort of KTR, HRQoL data were available in 507 KTR.

In order to calculate gut microbial distance to general population
controls, 1183 age-, sex- and BMI-matched control subjects from the
DMP were used21. Fecal samples from TransplantLines and DMP were
processed with the same DNA extraction protocols and sequencing
platform(seebelow). All participants signed an informedconsent form
prior to sample collection. TransplantLines (METc 2014/077) and
Lifelines (METc 2017/152) were approved by the local institutional
ethics review board (IRB) from the UMCG. Both studies adhere to the
UMCG Biobank Regulation and are in accordance with the World
Medical Association (WMA) Declaration of Helsinki and the Declara-
tion of Istanbul.

Phenotypic data
Demographic and clinical data were extracted from the patient files.
Diabetes was defined according to criteria of the American Diabetes
Association39, and eGFR was calculated using the Chronic Kidney Dis-
ease Epidemiology Collaboration equation40. During a study visit,
medication use was verified, anthropometrics were measured, clinical
frailty was scored using the clinical frailty scale and hand grip strength
was measured. Clinical frailty scores were classified in three groups:
clinically well (score 1 to 3), clinically vulnerable (score 4) and clinically
frail (score 5 or higher). According to the TransplantLines Biobank and
Cohort’ study design, additional physical assessmentswere performed
in a part of the participants, among which the 2-min walk test, 4-meter
walk test, timed-up-and-go test and sit-to-stand stand test. All assess-
ments were described in detail previously14. Patient reported outcome
measurements were assessed using questionnaires. HRQoL was
assessed using the well-validated SF-36, which assesses HRQoL by 36
questions and results in domain scores of which a physical andmental
component score, reflecting physical and mental HRQoL, can be
calculated17,18. The PCS was calculated by taking the average of the
general health, physical health, role limitations due to impairment of
physical health and pain scores. The MCS was calculated by taking the
average score of the emotional well-being, role limitations due to
emotional problems, impaired social functioning and impaired vitality
scores. Feeling of fatigue and anxiety were assessed using the
CIS20R41,42 and STAI643, respectively. Severe fatigue was defined as a
score > = 35on the subscale ‘fatigue severity’42, and anxietywasdefined
as a score > 5044. Depressive symptomswereassessedusing the PHQ-9,
and major depression was defined as a score > = 1045.

Sample selection and gut microbiome data generation
Fecal sample collection and subsequent processing. Patients were
asked to collect a fecal sample the day prior to the study visit. A
FecesCatcher (TAGHemi VOF, Zeijen, TheNetherlands)was sent to the
patients at home. Feceswere collected and stored in appropriate tubes
and frozen at home (at −18 °C) immediately after collection. The par-
ticipant transported the frozen fecal sample in cold storage (with ice
cubes or in a cooler) to the study visit the following day. Subsequently,
the fecal sample was immediately stored at −80 °C. Participants in the
DMP project produced, collected, and froze fecal samples at home

Article https://doi.org/10.1038/s41467-023-43431-8

Nature Communications |         (2023) 14:7968 8



using standardized stool collection kits provided by the UMCG. At
home frozen (at −18 °C) fecal samples were collected by UMCG per-
sonnel and transported on dry ice and stored at UMCG at −80 °C until
DNA extraction. Stool water content was analyzed by freeze-drying for
48 h under 0.5 bar at −50 °C.

DNAextraction. Microbial DNAwas extracted usingQIAampFast DNA
Stool Mini Kit (Qiagen, Germany) according to the manufacturer’s
instructions. The QIAcube (Qiagen, Germany) automated sample pre-
paration system was used for this purpose. Library preparation was
performed using NEBNext® Ultra™ DNA Library Prep Kit for Illumina
for samples with total DNA amount <200ng, as measured using Qubit
4 Fluorometer, while samples with DNA yield >200ng were prepared
using NEBNext® Ultra™ II DNA Library Prep Kit for Illumina®. Libraries
were prepared according to the manufacturer’s instructions. Metage-
nomic shotgun sequencing was performed using Illumina HiSeq
2000 sequencing platform and generated ~8Gb of 150 bp paired-end
reads per sample (mean 7.9 gb, st.dev 1.2 gb). Library preparation and
sequencing were performed at Novogene, China.

Metagenomic data processing. Illumina adapters and low-quality
reads (Phred score < 30) were filtered out using KneadData (trimmo-
matic options: “LEADING:20 TRAILING:20 SLIDINGWINDOW:4:20 MIN-
LEN:50”; v0.5.1)46. Then Bowtie2 (default settings, v2.3.4.1)47 was used to
remove reads aligned to the human genome (hg19). The quality of the
reads was examined using FastQC toolkit (v0.11.7) with a minimal read
depth of 10million reads after quality control. Taxonomy alignment was
done by MetaPhlAn2 (default settings, v2.7.2)47,48 with the database of
marker genes mpa_v20_m200. MetaCyc pathways were profiled by
HUMAnN2 (default settings, v0.11.1)49. KEGG orthologs were obtained
fromMetaCyc using the humann_regroup_table script. Next, weused the
omixerRPM r-package (v0.3.2) to reclassify KEGGorthologs into gut brain
modules.11 Samples were further excluded in case of a eukaryotic or viral
abundance >25% of total microbiome content or a total read depth <10
million. In total, we identified 1132 taxa (17 phyla, 27 class, 52 order, 98
family, 231 genera and 705 species) and 586 metabolic pathways. After
filtering for a prevalence of 10% and relative abundance threshold of
0.01%, 384 taxa (8 phyla, 14 class, 20 order, 40 family, 83 genera and
219 species) and 351 metabolic pathways. Hereafter, total-sum normal-
ization was applied. Analyses were performed using locally installed
tools and databases on CentOS (release 6.9) on the high-performance
computing infrastructure available at UMCG and University of Gronin-
gen (RUG). An example of scripts used for microbiome process is
available at https://github.com/GRONINGEN-MICROBIOME-CENTRE/
TransplantLines.

Statistical analysis
Centered log-ratio normalization was used due to the compositional
nature of themetagenomic sequencing data19. We used two times the
minimum relative abundance as zero-imputation method for the
centered log-ratio normalization. To assess differences between
levels of categorical variables, we performed a Wilcoxon rank sum
test in case of two levels and a kruskal wallis rank sum test in case of
three or more levels. Associations between principal components
and phenotypes were assessed using spearman correlation on all
HRQoL measures. A Mann–Whitney U-test was used to assess dif-
ferences between quartiles of HRQoL scores. PCA was performed
using Euclidean distance between clr-transformed abundances
(Aitchison distance50) of bacterial species. The Shannon diversity
index was calculated using the vegan (v2.6.5)51 package in R, of which
also the ADONIS function was used with 9999 permutations to assess
the proportion of explained variance for each phenotype on the
Aitchison distance matrix.

Association analysis between HRQoL gut microbial features
(species, metabolic pathways and gut brain modules) and was

performed using elastic net regression using the caret (v6.0.91) pack-
age in R and a generalized linearmodel (GLM) using the stats (v4.1.3) in
R. Elastic net regression was performed to account for correlation
between bacterial species and better accommodate the compositional
ecosystem of the gut microbiome. We used a 10-fold cross-validation
with 20 resampling iterations to train the prediction models for pre-
diction of HRQoL and other phenotypes. In total, 75% of the dataset
was used as a training set and 25% as a test set. Elastic net regression
was then used with a generalized linear model (family = gaussian for
numerical variables and family = binomial for categorical variables)
and a tunelength of 30. All potential confounders (Age, sex, BMI, eGFR,
stool water content, antibiotics, antihypertensive treatment, diabetes,
dialysis, laxative, proton pump inhibitors) that were available in the
current study were included in the elastic net and GLM analysis. In the
elastic net analysis confounders were not forces into the model but
instead could be penalized. This approach was taken to find the best
predictive model per HRQoL feature. We accounted for multiple
testing using Benjami-Hochberg correction and an FDR <0.05 was
considered as significant.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw microbiome metagenomic sequencing data are publicly
available at the NIH’s Sequence Read Archive (SRA) under accession
number PRJNA1035431. Due to patient confidentiality, the clinical data
associated with the metagenomic datasets are not publicly available
but can be made available upon request. Access to this clinical dataset
requires a minimal access procedure consisting of a request per email
(datarequest.transplantlines@umcg.nl). A response will be provided
within 2weeks. This access procedure is to ensure that the clinical data
are being requested for research/scientific purposes only and thus
complies with the informed consent signed by TransplantLines parti-
cipants, which specifies that the collected data will not be used by
commercial parties.
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