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a b s t r a c t 

In this research note, we show that a simple application of Breiman’s work on optimal stopping in 1964 

leads to an elementary proof that (s, S) policies minimize the long-run average cost for periodic-review 

inventory control problems. The method of proof is appealing as it only depends on the fundamental con- 

cepts of renewal-reward processes, optimal stopping, dynamic programming, and root-finding. Moreover, 

it leads to an efficient algorithm to compute the optimal policy parameters. If Breiman’s paper would 

have received the attention it deserved, computational methods dealing with (s, S) -policies would have 

been found about three decades earlier than the famous algorithm of Zheng and Federgruen (1991). 

© 2023 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The optimality of (s, S) policies for the single-item inventory 

odel is one of the classical results in the inventory control lit- 

rature. It is discussed in virtually any book on inventory theory. 

carf (1959) provided a first optimality proof. This work has later 

een extended to a variety of inventory systems, e.g., finite or in- 

nite planning horizons and long-run average cost or discounted 

ost objectives. However, for about 30 years there was no efficient 

rocedure available to compute the optimal policy parameters. The 

rst relatively simple optimality proof and construction were given 

y Zheng (1991) and Zheng & Federgruen (1991) . We refer the 

eader to Beyer et al. (2010) for an interesting and detailed dis- 

ussion on the subsequent developments. 

The aim of the current research note is to show that a simple 

roof and construction of the long-run average optimal (s, S) pol- 

cy could have been found in the 1960s if Breiman ’s (1964) ideas 

n optimal stopping were applied to inventory control. The ap- 

roach to the proof and construction is particularly elegant. It does 

ot depend on ingenious (but somewhat specific) concepts such as 

f K-convexity. Instead, it builds on the fundamental concepts of 

mbedding an optimization problem into a one-parameter family 

f problems, renewal-reward processes, optimal stopping, dynamic 

rogramming, and root-finding. Hence, it has the potential to be- 

ome a standard approach for inventory textbooks. 

The paper is organized as follows. In Section 2 , we introduce 

he inventory problem and model. In Section 3 , we provide a brief 

verview of Breiman’s study. In Section 4 , we provide the opti- 
∗ Corresponding author. 
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ality proof and an efficient algorithm to compute the optimal 

olicy. In Section 5 , we discuss how the presented approach re- 

ates to the existing literature and establish directions for further 

esearch. 

. Inventory problem and model 

We consider a periodic-review inventory system with backlog- 

ing. The demands per period { Y n } form a sequence of independent 

andom variables each distributed as the common non-negative 

nd integer-valued random variable Y . We let Y be the lead time 

emand if there is a (constant) replenishment lead time. The prob- 

bility mass of Y is given by p j = P ( Y = j ) . We write (P f )(i ) =
 [ f (i − Y ) ] = 

∑ 

j≥0 p j f (i − j) . 

Let I n be the (post-replenishment) inventory level at the start of 

eriod n . The inventory process I = { I n } is controlled by an inven-

ory policy π that decides whether to order or not, and if so, the 

rder quantity. In case no replenishment is placed at period n , the 

nventory level in the next period is I n +1 = I n − Y n , otherwise, it is

 n +1 > I n − Y n . We say that a new replenishment cycle starts every 

eriod in which a replenishment occurs. Like this, the inventory 

ystem progresses from one cycle to the next under policy π . 

We let c(·) be the inventory (holding and shortage) cost func- 

ion. The system incurs an (end-of period) expected cost L (i ) = 

P c)(i ) when the inventory level is i at the start of the period. 

e assume that c(·) is such that L (i ) is quasi-convex and be- 

omes sufficiently large when i → ±∞ to ensure that it is not 

ptimal to let the inventory drift to ±∞ , either by not ordering 

t all or by ordering too much on average. Besides the inventory 

ost, the system incurs a fixed replenishment cost K ≥ 0 for each 

eplenishment. 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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We define the long-run average cost under policy π as 

 π = lim sup 

m →∞ 

E π

[ 

1 

m 

m ∑ 

n =1 

( c(I n − Y n ) + K 1 { I n > I n −1 − Y n −1 } ) 
] 

here 1 {·} is the indicator function, I 0 is the (known) starting in- 

entory level and Y 0 := 0 . 

In the remainder of the paper we will be concerned with three 

bjectives. The first is to show that there is a policy that achieves 

he minimal long-run average cost, in other words, there exists a 

olicy π ∗ with long-run average cost 

 π ∗ = inf 
π

V π . (1) 

The second is to prove that the optimal policy π ∗ has an (s, S) 

tructure. That is, it is optimal to start each cycle at the same in-

entory level S and only place an order when the inventory be- 

omes less than or equal to s . The third is to devise an efficient

rocedure to compute the optimal policy parameters s and S. 

. An overview of Breiman’s study 

In our analysis, we use several ideas of Breiman (1964) to 

chieve the objectives mentioned above. But before doing so, it 

eems fitting to provide a brief overview of the relevant parts of 

reiman’s study. Sections 10.1–10.4 introduce the concept of an 

ptimal stopping problem. Section 10.5 explains that any stopping 

ule for a Markov chain can be characterized by two disjoint sub- 

ets of the state space: a stopping set D and a continuation set C.

vidently, the rule tells us to continue when the chain is in C and 

o stop when it hits D . Section 10.7 uses dynamic programming 

o find the value function i → V (i ) which provides us with the ex-

ected payoff starting in some state i until stopping, under the op- 

imal rule. Once V is known, the optimal stopping set can be iden- 

ified as the set of states i in which V (i ) is equal to the reward

f stopping directly in state i . The problem of finding the optimal 

topping set can be greatly simplified if there exists a set of un- 

avorable states in which a penalty must be paid to continue and 

he chain can never leave this set by continuing. Section 10.9 de- 

nes this as an entrance fee problem. Now, stopping rules cannot 

e immediately applied to repetitive problems where the system 

an return to the origin and start anew at the expense of a fee. To

andle such cases, Section 10.13 discusses renewal rules and Sec- 

ion 10.14 explains how to use renewal reward theory to reduce 

nding an optimal renewal rule for a repetitive problem to finding 

n optimal stopping rule for just one cycle. The work culminates 

n Theorem 10.5 which shows that optimal control rules for re- 

ewal problems can be found by embedding such problems in a 

ne-parameter family of stopping-rule problems. 

For the purposes of our study, we apply the aforementioned 

deas in the reverse order. That is, we initially consider the prob- 

em of minimizing the total cost over a single replenishment cy- 

le and embed it into a one-parameter family of optimal stop- 

ing problems. Then, we reduce this problem to an entrance-fee 

roblem and characterize the associated optimal policy. Next, we 

how there exists a parameter value for which this optimal pol- 

cy minimizes the long-run average cost when applied repetitively 

ver consecutive replenishment cycles. This suffices to prove that 

he long-run average cost optimal policy is an (s, S) policy. Finally, 

e develop an efficient numerical method to compute the opti- 

al policy parameters. In the following, we provide the details of 

his sketch and provide references to specific sections of Breiman 

1964) . 

. Proof and construction of an optimal policy 

Suppose that we receive a reward g > 0 per period to cover the 

ost we make to operate the inventory system. In this case the ex- 
922 
ected inventory cost per period is L (·) − g rather than L (·) , so that

hen L (i ) − g < 0 we make a net profit. Now consider a cycle in

hich the inventory level starts at i and we have a rule τ that tell 

s when to stop the cycle. We can write the expected cost over 

his cycle as v (i, τ ) = K + E i 

[∑ τ
n =1 (L (I n ) − g) 

]
. 

We now consider the problem of finding the stopping time that 

inimizes the expected cycle cost for a given starting inventory 

evel. Following Breiman (1964 , Section 10.5), we can formulate 

his problem as an optimal stopping problem in which the goal is 

o compute the value function 

 (i ) = inf 
τ

v (i, τ ) = K + inf 
τ

E i 

[ 

τ∑ 

n =1 

(L (I n ) − g) 

] 

. (2) 

To solve this optimal stopping problem we introduce two cru- 

ially important sets, namely the stopping and continuation sets. 

hese are respectively defined as 

 = { i : i ≤ s } and C = { i : L (i ) − g < 0 } (3)

here 

 = min C − 1 . (4) 

Notice that the optimal stopping problem is trivial if C is empty. 

hen it is optimal to stop right away at any inventory level, and, 

e have v (·) = K. Therefore we assume henceforth that g is suffi- 

iently large so that C is non-empty. It is clear from its definition 

hat C is closed and bounded as the expected cost function L (i ) 

s quasi-convex and becomes sufficiently large when i → ±∞ . This 

uggests that s is well-defined and D is non-empty. 

We now characterize the optimal stopping rule for starting in- 

entory levels in D and C. It is evident that it is optimal to stop

n D , as it immediately follows by the definition of D and the quasi-

onvexity of L that L (i ) − g > 0 for all i ∈ D . Hence, the inventory

rocess can never escape from D without issuing a replenishment 

rder. The following lemma is directly based on Breiman (1964 , 

ection 10.9) and establishes the optimal stopping rule for inven- 

ory levels in C. 

emma 4.1. The optimal stopping rule τ that solves (2) for i ∈ C is 

= inf { n : I n ∈ D } . (5) 

The results presented above are critical as they show that the 

ptimal stopping rule is the same for all starting inventory levels 

n D and C. That is, it is optimal to stop when the inventory process

its D . We remark that we have not yet considered the optimal 

topping time for inventory levels that are neither in D or C. It will 

e clear later on that such inventory levels are not relevant for the 

nalysis of the optimal inventory control policy. 

Having established the optimal stopping time that minimizes 

he expected cycle cost, we now turn our attention to the optimal 

tarting inventory level. The value function v gives the expected 

ycle cost. Hence, we can minimize the expected cycle cost by ini- 

iating the cycle at an inventory level where v attains its minimum. 

It follows from Breiman (1964 , Section 10.7) that the value 

unction v can alternatively be expressed as the solution of the dy- 

amic programming equation 

 (i ) = min { K, L (i ) − g + (P v )(i ) } . (6)

This equation can easily be solved from left to right, provided 

he stopping and continuation sets. That is, on D we take v (i ) = K

nd on C we use v (i ) = L (i ) − g + (P v )(i ) where (P v )(i ) only de-

ends on v (·) to its left as demand is non-negative. 

The next lemma uses the above characterization of the value 

unction and provides an upper bound for its minimizer. 

emma 4.2. There is a minimizer S of v that lies in C. 
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roof. We establish the proof by showing that L ( S ) − g < 0 , which

mplies that S ∈ C. Let us first observe that v (i ) = K on D and

 (i ) < K on C. The former is evident. The latter follows from 

 (i ) − g < 0 which suggests v (i ) ≤ L (i ) − g + (P v )(i ) < (P v )(i ) ≤
 K = K. Thus we immediately have that the minimizer S can- 

ot be in D and it should satisfy v (S) < K. Then, it follows

rom (6) that v (S) = L (S) − g + (P v )(S) . We proceed by contradic-

ion. Suppose L (S) − g > 0 . Then we must have v (S) = L (S) − g +
P v )(S) > (P v )(S) . But this cannot be true as the expectation of a

unction cannot be strictly lower than its minimum. Finally, sup- 

ose L (S) − g = 0 . Then we must have v (S) = L (S) − g + (P v )(S) =
P v )(S) = 

∑ 

j≥0 p j v (S − j) . There are two possibilities. First, we

ay have min j≥0 { v (S − j) } < v (S) < max j≥0 { v (S − j) } . This cannot

e true as it suggests that the minimum of v (·) must lie to the

eft of S. Second, we may have v (S) = v (S − j) for all j ≥ 0 with

p j > 0 . This cannot be true if there is a j ≥ 0 with p j > 0 such

hat S − j ∈ C. Otherwise, we can apply the same reasoning to S − j.

his completes the proof. �

The policy that solves the optimal stopping problem is also an 

pplicable policy for the original problem (1) . The next lemma 

heds light onto the average cycle cost of such a policy. 

emma 4.3. Let (S, τ ) be the policy that solves the optimal stopping 

roblem given a reward g. If the expected cycle cost of this policy is 

egative (positive), then its average cycle cost 

K + E S 

[∑ τ
n =1 L (I n ) 

]
E S [ τ ] 

s smaller (larger) than g. 

roof. Suppose that the average cycle cost v (S) is negative. Then 

e have from (2) that 

 > v (S) = K + E S 

[ 

τ∑ 

n =1 

(L (I n ) − g) 

] 

= K + E S 

[ 

τ∑ 

n =1 

L (I n ) 

] 

− gE S [ τ ] 

hich implies that the long-run average cost is smaller than g. The 

ame reasoning applies to the opposite claim. �

Lemma 4.3 immediately translates into a method for finding 

 policy with minimum average cycle cost. It is evident that the 

xpected cycle cost is decreasing in g. Hence, by solving a series 

f optimal stopping problems with different rewards one can con- 

erge to a reward g ∗ for which the expected cycle cost is zero. The

verage cycle cost of this policy will be exactly g ∗. We discuss this

rocedure further at the end of this section. 

The policy that minimizes the average cycle cost can be used 

ycle after cycle. It is clear that the long-run average cost of the 

olicy is independent of the starting inventory level, as the inven- 

ory process reaches the stopping set from any inventory level in 

nite time at finite cost. Then, we have from the renewal-reward 

heorem that its long-run average cost is equal to its average cy- 

le cost. We do not yet know whether this policy is the long-run 

verage cost optimal policy that solves (1) . Breiman (1964 , Sec- 

ion 10.14) shows that this is indeed the case. 

emma 4.4. Let g ∗ be the reward such that the expected cycle cost 

f the policy that solves the associated optimal stopping problem is 

ero. Then, this policy is also the long-run average cost optimal and 

ts long-run average cost is g ∗. 

roof. In Breiman ’s ( 1964 , Section 10.14) terminology, the inven- 

ory control problem (1) is a binary decision renewal problem with 

rigin S. The cost to return to the origin is K, the incentive fee
923 
s −L (i ) , and the time of return to the origin is 0. With this, the

laim directly follows from Breiman (1964 , Theorem 10.5). �

We can now establish the optimality of (s, S) policies as an im- 

ediate consequence of the result presented above. 

heorem 4.5. The long-run average cost optimal policy is an (s, S) 

olicy. 

roof. It is sufficient to show that the policy that solves the op- 

imal stopping problem for any given reward g is an (s, S) policy. 

he optimal policy always initiates a cycle at the same inventory 

evel in S in C, and it stops whenever the inventory process hits D . 

his is clearly an (s, S) policy with s as the right boundary of D ,

nd S as the minimizer of v on C. �

We have thus far achieved the first two objectives mentioned 

n the previous section. We now consider the third objective and 

evise an efficient procedure to compute the optimal policy pa- 

ameters. The procedure proceeds with the steps described below. 

1. Define bounds g − and g + such that the optimal long-run aver- 

age cost g ∗ is an element of (g −, g + ] . For instance, g − = min L (i )

and g + = g − + K are sensible options because if g < g − the re-

ward is smaller than the minimum achievable cost per period 

and if g > g + the reward is larger than the average cost under 

the optimal base stock policy. 

2. Use a root finding algorithm to choose g ∈ (g −, g + ] . 
3. For the current g, identify D , C, and, s as in (3) and (4) . Com-

pute v (·) on C with the dynamic programming Eq. (6) and find 

S where it attains the minimum. 

4. Terminate if v (S) is sufficiently close to zero (for a more refined 

termination criterion see Corollary 4.7 ). Otherwise, if v (S) < 0 

set g + = g and if v (S) > 0 set g − = g, and return to Step 2. 

The procedure outlined above is computationally efficient as it 

onverges exponentially fast and requires only a line search over a 

imited domain in each iteration. It is also conceptually simple and 

an be coded in a few lines. 

Finally, we establish a result that leads to a simple and more 

fficient termination criterion for our procedure. 

emma 4.6. Suppose there exists an optimal policy that solves the 

ptimal stopping problem for rewards g − and g + with g − < g + . Then

his policy also solves the optimal stopping problem for any g ∈ 

g −, g + ) . 

roof. Because the optimal policies are the same for the rewards 

 − and g + , the continuation set C must be the same for g − and g + .
hen, it follows from (3) that C is also the same for any g ∈ 

g −, g + ) . This in turn implies that the stopping time τ is the same

or g ∈ [ g −, g + ] . Hence, it suffices to show that the value function

s minimized at the same S for all rewards on [ g −, g + ] . 
To denote the dependence on the reward g ∈ (g −, g + ) , we

se a subscript and write the value function as v g (i ) = K +
 i 

[∑ τ
n =1 (L (I n ) − g) 

]
, where τ is the (common) optimal stopping 

ime. Then, we see that 

v g − (i ) − v g (i ) = (g − g −) E i [ τ ] , 

 g − (i − 1) − v g (i − 1) = (g − g −) E i −1 [ τ ] . 

f we subtract these equations, we obtain 

 g − (i ) − v g − (i − 1) = v g (i ) − v g (i − 1) + (g − g −)(E i [ τ ] − E i −1 [ τ ] ) .

bserve that g − g − > 0 and E i [ τ ] − E i −1 [ τ ] ≥ 0 . Therefore, we 

ave v g − (i ) − v g − (i − 1) ≥ v g (i ) − v g (i − 1) for all i ∈ C. Also, by as-

umption, S is a minimizer of v g−, hence, v g−(S − 1) ≥ v g−(S) , 

hich in turn implies that 0 ≥ v g−(S) − v g−(S − 1) . Combining this 

ith the previous inequality, we obtain 

 ≥ v g − (S) − v g − (S − 1) ≥ v g (S) − v g (S − 1) , 
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hich immediately shows that S − 1 cannot be a minimizer of v g . 
We can use similar reasoning to see that as S is a minimizer 

or v g + , then S + 1 cannot be the minimizer for v g . �

orollary 4.7. If the lower and upper bounds of g yield the same pol- 

cy, then this policy is optimal. 

. Discussion 

In this paper, we showed that simple methods to establish the 

xistence and characterization of optimal policies and efficient nu- 

erical procedures to compute optimal policy parameters could 

ave been developed much earlier if stochastic inventory problems 

ere looked through the lens of optimal stopping theory, based 

n Breiman’s (1964) results. To that end, we focused on the clas- 

ical periodic-review stochastic inventory problem with convex in- 

entory costs under the long-run average cost criterion—a prob- 

em which has been subjected to detailed scrutiny (see e.g. Beyer & 

ethi, 1999; Feng & Xiao, 20 0 0; Iglehart, 1963; Tijms, 1986; Veinott 

 Wagner, 1965; Zheng, 1991; Zheng & Federgruen, 1991 ). We now 

onclude with a brief discussion on how the presented approach 

elates to the existing literature. 

Our approach combines and builds upon concepts of renewal- 

eward processes, optimal stopping, dynamic programming, and 

oot-finding; yet it follows a rather simple recipe. That is, de- 

ompose the overall inventory problem into replenishment cycles—

hich is possible due to the renewal-reward structure of the 

roblem—and formulate the sub-problem associated with a sin- 

le replenishment cycle as a parametric optimal stopping problem. 

he cycle decomposition and parametric optimization ideas have 

lready been used for the very problem we consider in this study. 

heng (1991) uses cycle decomposition in his proof of the opti- 

ality of (s, S) policies. Feng & Xiao (20 0 0) employ cycle decom-

osition and parametric optimization in their method of finding 

ptimal (s, S) policies. Their computational method is perfectly in 

ine with the procedure outlined in the current manuscript, despite 

hey do not depart from the optimal stopping characterization of 

he underlying problem. They also present further algorithmic re- 

nements and conduct a detailed comparative study that shows 

heir method outperforms Zheng & Federgruen’s (1991) well- 

nown algorithm with respect to computational efficiency. Like the 

forementioned studies, we rely on the renewal-reward structure 

f the inventory system. The point we deviate is formulating the 

arametric problem as an optimal stopping problem. This enables 

s to directly use Breiman ’s (1964) results in establishing the op- 

imality of (s, S) policies and computing the optimal policy pa- 

ameters. Bell (1970) considers the discounted cost counterpart of 

he problem and uses a very similar approach to ours where the 

ub-problem is formulated as an optimal stopping problem. This 

ermits him to limit the search space of optimal policy parame- 

ers and improve on Veinott & Wagner’s (1965) algorithm. In con- 

rast, we iteratively solve a sequence of optimal stopping prob- 

ems which eventually lead to the optimal policy. There are also 

tudies that use cycle decomposition and parametric optimization 

o establish proofs and computational methods of optimal poli- 

ies for problems beyond the periodic-review stochastic inventory 

roblem with convex inventory costs. For instance, Chen & Feng 

2006) consider inventory problems with non-quasi-convex costs, 

eng & Chen (2011) focus on joint inventory and pricing problems, 
924 
oreest & Wijngaard (2014) address production-inventory systems. 

erms et al. (2016) consider production-clearing systems. In all 

hese studies, the analysis rests on exploiting the renewal-reward 

tructure of the underlying inventory system, and follows by cy- 

le decomposition and parametric optimization where the sub- 

roblem is tailored to account for the specifications of the prob- 

em. 

We note that there also are other studies that approach inven- 

ory problems with methods of optimal stopping (see e.g. Berling 

 Martínez-de Albéniz, 2011; Frenk et al., 2019; Oh & Özer, 2016; 

zyoruk et al., 2022; Shi & Liu, 2020; Weiss, 1980 ). We do not pro-

ide a detailed account of these since they have little resemblance 

o our work as they do not use optimal stopping in conjunction 

ith the renewal-reward structure of the inventory systems. 
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