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Abstract
Analog models can be used to investigate aspects of a target system

we might not have easy empirical access to. Evidence from an analog
model has, under certain strict conditions, been used to argue for the con-
firmation of a target theory (Unruh (2008), Dardashti et al. (2017)). We
investigate what a Bayesian account of such confirmation might require,
and illustrate the details by discussing a water-wave analog system of the
quantum Casimir effect. We argue that the analogical reasoning involved
in this case cannot be sufficiently expressed by traditional Bayesian net-
works, and therefore employ an extension of (causal) Bayes nets to more
capably handle the case study. Our formalization of the concept of anal-
ogy provides a novel reconstruction of Bayesian confirmation from ana-
log models, which crucially preserves the essential symmetry involved in
analogies. Finally, we take our formal analysis of the Casimir effect case
to shed new light onto theoretical pre-unification via analogical reasoning.
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1 Introduction
A recent argument by Dardashti et al. (2017) introduces the notion of analog
simulation under certain syntactic isomorphisms to justify the claim that anal-
ogous phenomena in fluid ‘dumb hole’ simulations can confirm the hypothesis
of black hole Hawking radiation. The authors distinguish the notion of analog
reasoning in general from analog simulation and assert that a good theory of
confirmation will be able to incorporate confirmation from analog simulation:

It should be noted that here we are using confirmation in the most
general and intuitive sense of the term, and not making a specific
claim regarding the possibility of characterizing certain cases of
analogue simulation in terms of a particular philosophical model of
confirmation. Rather, we would insist that certain cases of analogue
simulation must be counted amongst the explananda for which the
models of confirmation are intended to provide the explanans. Thus,
from our perspective, if a philosophical model of confirmation proves
not to be able to accommodate analogue simulation, then so much
worse for the model. (Dardashti et al. 2017, p. 14)

The aim of this article is to discuss whether (and how) Bayesian Confirmation
Theory may be able to meet this challenge. One of the problems we will see for
a Bayesian account is that analogical relations are genuinely symmetric. If one
wishes to incorporate confirmation from an analog model, it will be crucial to
utilize a framework that handles this symmetry. A Bayesian framework should
also allow for the intuition that, although there is symmetry in analog relations,
scientists may confirm asymmetrically. That is, at any moment, confirmation
might only flow in one direction. Confirmation through a bi-directional relation
may be one-directional in practice.

In the following, we will first (Sec. 4) provide a background on analogical
reasoning (Sec. 2) and on Bayesian confirmation theory (Sec. 3). We then look
in more detail at the concept of analog simulation as developed in Dardashti
et al. (2017). We apply the idea of analog simulation to a case study of an ana-
log Casimir effect system, and check whether existing frameworks can model
the confirmatory probabilities from analogy seen in this case (Sec. 5). We ar-
gue that standard Bayesian networks cannot, and we suggest criteria we think a
formal representation of analogy should cover in order to be used for Bayesian
confirmation. These criteria are then formalized in an extension of the standard
Bayes net framework by introducing a symmetric relation to represent relevant
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sub-systems isomorphism (Sec. 6.1). In Sec. 6.2, we reassess the case study in
light of this extension and supplement this discussion with technical details on
the the relevant sub-systems isomorphism (Sec. 6.3). We comment on the rela-
tionship between analogical reasoning in science and theory pre-unification in
Sec. 7 and conclude with a summary in Sec. 8.

2 Analogical reasoning
The word analogy comes from the greek ἀναλογία, meaning proportion. Fol-
lowing the treatment found in Hesse (1966), an analogical argument can be
understood as very similar to solving proportion problems in mathematics. We
are given the relationships between two terms, and one more term from a second
relationship. From these three terms we can determine the fourth term. Using
fractional notation such problems are of the form

A
B

::
C
x

(2.1)

For simple mathematical ratios, we could have for example

2
3

::
x
9

(2.2)

where we read out “two is to three, as x is to nine”. Solving for x = 6
involves interpreting the :: as an equality, and we simply multiply the diagonals
getting 3x = 18. However, without some further clarification three possible
interpretations might seem equally likely, that x = 4, 6 or 8. The latter option
interprets the relationship between 3 and 9 as the addition of 6, and applies the
same to the numerator. The first option interprets the relationship as squaring
3, and thus squaring 2 is 4. By convention, and use in analogical reasoning, we
say that in this case x = 6 since it is the proportion that must remain the same—
that is, it is not the relationship between 3 and 9 but the structural relationship
between 2 and 3 that should be preserved on the right hand side for an analogical
relation.

This relational structure mapping is the key to analog relations according to
Gentner (1983). When we use the form of (2.1) to talk about scientific reasoning
from an analog model, we might read out “A is related to B, which is similar to C
related to D”. That is, there is some relation Rel1(A, B) that is similar to a relation
Rel2(C,D). This relational structure is what is mapped between representations
in an analogy, on Gentner’s account, and is denoted here by the double colon
notation ‘::’.
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3 Analogy and confirmation
The notion of theory confirmation in science is represented in the Bayesian
framework by confirmatory probabilities—that is, a theory obtains higher prob-
ability given confirming evidence compared to the theory without this evidence.
Hypothesis and evidence are considered to be random variables, visualized as
nodes in a network representation of these variables and their epistemic connec-
tions, so called DAGs—Directed Acyclic Graphs. For nodes H and E, we say
that E confirms H when P(H | E) > P(H). If H is a hypothesis and E some
evidence for the hypothesis, we would expect our subjective degree of belief1

in H to be positively influenced by an observation of relevant evidence. In a
causal Bayesian network representation of the situation, we intuitively expect
E to be a descendant of H—that is, there is some causal or other directed con-
nection between H and E. This aspect of a Bayesian Network will be slightly
revised later in order to accommodate our view of analog confirmation, since
analog evidence E′ is not, under minimal assumptions, a descendent of H nor
is it causally connected.

In a recent book, Paul Bartha makes explicit statements concerning analogical
arguments and Bayesian epistemology (Bartha 2010, p. 31):

For Bayesians, it may seem quite clear that an analogical argument
cannot provide confirmation. In the first place, it is not obvious how
to represent an analogical argument as an evidential proposition E.
Second, even if we can find a proposition E that expresses the infor-
mation about source and target domains used in the argument, that
information is not new. It is “old evidence,” and therefore part of
the background K. This implies that E ∧ K is equivalent to K, and
hence that

Pr(H | E ∧ K) = Pr(H |K) (3.1)

According to the definition, we don’t have confirmation. Instead,
we have an instance of the familiar “problem of old evidence” (Gly-
mour 1980). Third, and perhaps most important, analogical argu-
ments are often applied to novel hypotheses H for which the “prior”
probability Pr(H |K) is not even defined. Again, the definition is in-
applicable.

Bartha goes on to suggest that the role of analogy in Bayesian epistemology
is to raise prior probabilities of a considered hypothesis. While we agree that
analogical considerations may impact prior probabilities, we think that Bartha
has only discussed one way in which analogical reasoning may be used by

1The interpretation of probability being used is that they are subjective degrees of belief.
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scientists—and thus only one way in which analogies may shape Bayesian mod-
els. There is an epistemic difference between a situation in which a specific ana-
logical relation is granted by a scientist, and a situation in which the discovery
or establishment of an analogy is taken as evidence. The latter is arguably what
Bartha is referring to, whereas we will mainly be concerned with the former.

We argue that Bartha’s idea is captured in an epistemic network in which
the analogy is modeled as a node—a random variable representing the possi-
ble existence or non-existence of an analogical relation. Confirmation from an
analog model, on the other hand, grants the existence of an analogical relation.
We think this is better modeled as an informational link (a contour) between
theoretical domains. We will see how analogy does play a role in evidential
statements which do not succumb to the old evidence problem. Therefore, tra-
ditional Bayesian confirmation is also accounted for in our approach, showing
that analogical considerations can also impact posterior probabilities by taking
into account evidence from a model.

4 Analog simulation
In a recent paper on analogical inference in physics, Dardashti et al. (2017)
discuss analogies between experimentally accessible test setups and potentially
less accessible target system we want to gain insights about. The authors intro-
duce the formal concept of analog simulation for this purpose which shall be
introduced briefly in the following before it is applied for our case study.

Analog simulation bridges two basic frames: The source system is prepared,
manipulated, and observed to make inferences about the target system. Let us
introduce some terminology first to relate all concepts in a formal way:2

1. The target system T (a class of situations of interest) is to be modeled as
MT in a suitably chosen modeling framework LT ;

2. MT is constrained by certain background assumptions AT , summarizing
theoretical and empirical knowledge as well as the domain of conditions
DT to which the model is intended to apply;

3. MT can be used to predict phenomena ET and will in turn be validated by
evidence in accordance with ET ;

4. The accessible source system S is to be modeled as MS in a suitably
chosen modeling framework LS ;

5. MS is constrained by background assumptionsAS , containing the domain
of conditionsDS to which the model is intended to apply;

2In our interpretation, we deviate from Dardashti et al. (2017) in notational details.
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6. Just as on the T side,MS can be used to predict phenomena ES and will
in turn be validated by evidence in accordance with ES .

The source system S will now allow analog simulation of target T ’s behavior
if (i) there exist exploitable structural similarities between MS and MT suffi-
cient to define a syntactic isomorphism robust within the domains DS and DT ,
respectively, and if (ii) this isomorphism is prompted by and based on a set of
model-external empirically grounded arguments, abbreviated as meega.

AT

MT

ET

constrains

predicts

AS

MS

ES

constrains

predicts

syntactic

isomorphism

meega

prompt

Figure 1: The analog simulation scheme: Framework LT (left box) is used to
model target system T in modelMT ; source system S is accordingly treated in
framework LS (right box).

Figure 1 relates these elements in a conceptual graph: The rounded box on
the left side contains all elements of the target frame, while the right box con-
tains all elements of the source system. meega prompt the establishment of a
bridge between theoretical networks in the form of a syntactic isomorphism as
translation between the systems’ components.

For Dardashti et al. (2017), the terminology is illustrated with an example
from physics, where observations of phenomena ES in table-top fluid systems
boost confidence in theoretical assumptionsAT about gravitational phenomena
described in framework LT . The syntactic isomorphism (motivated by addi-
tional knowledge about the underlying physics of both frames) allows for the
transfer of knowledge about acoustic Hawking radiation in the fluid system to
Hawking radation in black holes.
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5 Water wave analog of the Casimir effect
The example of an analog model we will consider here is the table-top fluid
model of the Casimir Effect investigated by Denardo et al. (2009), a physical
or material analogy: The Casimir effect is produced between two very small
(and very thin) uncharged parallel metal plates that are placed close together in
a vacuum. At certain distances d the plates are pushed together, at others they
are pushed apart. In quantum theory there is a non-zero energy associated with
the ground state of each mode in the quantum vacuum h f /2 (where f is the
frequency of the harmonic oscillator associated with the mode and h is Planck’s
constant). We can account for such behavior in quantum electrodynamics by
calculating the relative difference in pressure between the force of electromag-
netic radiation outside the plates and inside the plates, since the closeness of the
plates excludes certain wavelengths in the background spectrum. The spectrum
of zero point frequencies is infinite both on the outside and inside of the plates,
but after renormalization Denardo et al. (2009, p. 1095) note that the result of
the calculation gives a force of π2~c/240d4 per unit area.

The water wave analog model that the authors construct consists of a table-
top bath which is vertically vibrated according to a range of frequencies (10-20
Hz) which excites surface waves. Two acrylic or PVC plates are hung in parallel
above the bath and dipped into the vibrating fluid bath (VFB). The surface waves
and VFB are analogous to the zero point fluctuations, providing an explanation
in terms of difference in pressure due to the exclusion of certain waves between
the plates.3

We can model the relationship between these two systems in the following
way according to the similarity relation discussed above. Say the phenomena
of two parallel plates being pushed together when dipped in the VFB is EF . To
differentiate, let us say that EQ is the similar effect on Casimir plates. The VFB
for the analog model is BF , and it has a causal relationship to EF in that it causes
the relative pressure due to wave motion to be greater on the surface area outside
the plates than on the surface of the interior. Thus far we can say—in the form
of a fractional notation:

EF

BF
::

EQ

XQ
. (5.1)

Our choice for XQ, if we had no other knowledge of the target system, would
arguably be an XQ that fulfills similar conditions as BF (that is, XQ should be
some causal explanation like BF , i.e., XQ = BF

′). It seems that our expectation
for an XQ = BF

′ is greater than other options—given that we have established

3Also mentioned in both Denardo et al. (2009) and Barrow (2002, §7) is a larger instance of
macroscopic ‘Casimir’ effects where parallel ships rolling on a swell will result in the destructive
interference of waves between the ships, thus allowing the relative pressure difference from the
waves on the outer surfaces to push the ships closer together.
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d

F

Figure 2: The abstract scheme underlying both the quantum Casimir and the
fluid Casimir effect; F indicates the attractive force, d the distance between the
two plates.

some justification for applying the analog model in the first place (i.e., we have
EF :: EQ).

Importantly, this set up is different from that considered in Dardashti et al.
(2017) since it is not the existence of a particular phenomenon that is the un-
known variable in the analogical argument. In their discussion, the phenomenon
of Hawking radiation is what is inaccessible—black holes are presumed to ex-
ist. Here, what is inaccessible is not the phenomenon (we already have observed
Casimir plates coming closer together). Rather, what is inaccessible is the back-
ground medium or field which is supposed to be our explanation of how the
observed phenomenon is produced—but which cannot be directly observed.4

What is confirmed in their example is the existence of Hawking radiation. What
is potentially confirmed here by the argument XQ = BF

′ is any quantum the-
ory of the vacuum which gives an ontology of non-zero energy density using a
mechanism or term that is similar to the vibrating fluid bath (i.e., a BF

′). We
will now refer to the quantum mechanism as BQ.

However, we know that the analogical relationship at least breaks down with
respect to the dimensions of the analog model and the target system. The au-
thors consciously note other deficiencies in the analogy (Denardo et al. 2009, p.
1095):

The analogy of our water wave system to the Casimir effect is not
exact. Because the water waves are driven, the energy density of the
spectrum is not infinite, so a regularization procedure is not needed.

4“Although [zero point energy] cannot be directly observed, the presence of the plates dis-
cretizes the spectrum between and transverse to the plates, which causes the imbalance of the
radiation force.”(Denardo et al. 2009, p. 1095)
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Furthermore, we are primarily concerned with the case of closely
spaced plates, which yields a force that is independent of the sepa-
ration distance d. This behavior is in contrast to the Casimir force,
which has a 1/d4 dependence due to the divergence of the ω3 spec-
trum at high frequencies.

Furthermore, there are terms in our formal representation of the fluid such as
viscosity and surface tension which have unclear analogical relationships with
the quantum world. However, in our view these are not particularly troublesome.
The analogy concerns the relative difference in pressure between the exterior
and interior of two parallel surfaces in an oscillating medium composed of a
range of frequencies.

Before introducing a Bayesian network in the next section which can appro-
priately model confirmation from BF , the analog model, we should first like to
know the kinds of probabilities that should hold in such a network in order to
ensure confirmation. As mentioned earlier, we can consider quantum electrody-
namics TQ to be the theory of electromagnetic radiation in a quantum vacuum—
the relevant theory for explaining the Casimir effect. Unfortunately, measuring
the zero point fluctuations directly is not possible, and thus—obviously—the
existence of such an ontology is independent from the theory. In other words,
since we have not observed BQ, then P(TQ | BQ) = P(TQ). This is a problem
since BQ is supposed to give us the causal explanation of EQ, and surely we
should have that P(TQ | EQ) > P(TQ)—i.e., that observing the Casimir effect
confirms a quantum theory of the vacuum.

Considering the analog model, however, it seems that as a subjective scientist
the explanation offered by the fluid system confirms (increases the probability
of) an analogous explanation in the target system. It seems that P(BQ | BF) >
P(BQ). It is also evident that P(BF | EF) > P(BF)—i.e., observing evidence pre-
dicted by a model of the bath system should confirm the model. In the end
we will see also that P(TQ | EF) > P(TQ), that the analog phenomenon con-
firms the target theory. This stems from the final positively correlated module
P(TQ | BQ) > P(TQ).

So the Bayesian network should allow the following assumptions to hold:

P(TQ | BQ) > P(TQ) (5.2)
P(BQ | BF) > P(BQ) (5.3)
P(BF | EF) > P(BF) (5.4)

In the example of the fluid analog model of the Casimir Effect, the theories of
fluid mechanics TF and quantum electrodynamics TQ have evidence domains of
macroscopic fluids EF and electromagnetic radiation in a vacuum EQ respec-
tively. The difference in orders of magnitude justifies the assumption that the
overlap between evidence of these theories is, under normal conditions, nonexis-
tent. This is in contrast with the overlapping evidence in the networks discussed
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in Dizadji-Bahmani et al. (2011). However, it is seen that after the analogical
argument is admitted into the network, both BF and EF are common descendants
of TF and TQ.

TQAuxQ

BQ BF

TF AuxF

EQ EF

Figure 3: A Bayesian network representing the relationship between the analog
Casimir effect EF and the Casimir effect EQ. The dashed edge marks analogy as
asymmetric link in order to capture the subjective sense in which P(TQ | EF) >
P(TQ), by making EF and BF descendants. Also P(TQ | BF) > P(TQ).

An analogy is made with the relative pressures of waves on parallel partitions
in the (practically) random ‘bath’—either surface waves in a macroscopic fluid
or electromagnetic radiation in a quantum vacuum. These waves are assumed
to be linear, since non-linear mechanics begin to appear upon sufficiently high
amplitude vertical oscillations of the fluid bath when droplets are ejected. See
Denardo et al. (2009) and Terwagne and Bush (2011), for example. Thus, the
limitation of the system to approximately sinusoidal waves is a relevant aspect
of the analogy that we can call an auxiliary condition. These and other auxiliary
conditions from the experimental set up that produces both the Casimir effect
and the analog effect, plus the respective relevant theories, gives us descriptions
of the fluid and quantum systems BF and BQ respectively, which are related
through the analogical argument given earlier. However, it still isn’t exactly
straightforward how to represent the analogical relationship between BF and BQ

in the network. A possible choice for directing an edge between these nodes
in the Bayesian network would be from BQ to BF: In this way, BF and EF are
descendants of TQ, but the arrow also introduces asymmetry in the graph.

6 Bridging models
The above network fails to capture the symmetry required of an analog relation.
It represents, if you will, only half of a superposition of two Bayesian networks,
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each yielding answers to queries for different inferential directions—if BF and
BQ behave analogously, evidence for either side should inform the respective
other side in a symmetric way. In this section we provide an alternative ac-
count of Bayesian confirmation, utilizing undirected edges to bridge theoretical
frameworks and preserve the symmetry of analog relations.

6.1 Directed and undirected relations
Our choice to direct the edge from BQ to BF in Fig. 3 is rooted in the epistemic
status and goals of a scientist (or philosopher) in a particular situation. Simply
put, we want to confirm TQ, not TF . If we wanted to confirm TF we would switch
the arrow the other way around. 5 So, EF and BF must be descendants. If the
arrow pointed in the other direction and they weren’t descendants, the collider
structure at BQ would d-separate TQ from BF and EF , giving us TQ ⊥⊥ BF , EF . In
other words, if the collider were present then P(TQ | BF) = P(TQ), where instead
we want that P(TQ | BF) > P(TQ).6

For a specific inquiry, confirmation from an analog model can be represented
in a DAG. Yet, we may wish to have confirmation flow the other way (e.g., to
TF) and our formal system should be prepared with the extra information on
hand to do this. If we were to use only the above DAG in our representation
of the problem, then we would lose the information relevant to the symme-
tries of an analogy and the potential to confirm in the opposite direction (i.e.,
P(TF | EQ) > P(TF)). Since we are not looking for a case-by-case account of
analog confirmation, we want to preserve this information in a more general
framework that ties in with Bayesian confirmation theory. As shown, a standard
Bayesian network is insufficient to adequately handle representing confirmation
from analog relations as we have construed them. The question remains: How
can intertheoretical, symmetric relations be integrated in a formal model from
which genuine (Bayesian) confirmation claims can be derived?

We suggest a new type of edge—a non-directed, non-causal, informational
link, capable of propagating information instantaneously. Furthermore, it is not
to be deactivated by (causal) interventions in the model. It should work like

5However, the unobservability of BQ may present some issues. For example, it seems like
it should be the case that P(TF | BQ) = P(TF). If we can’t observe BQ directly (this is the reason
the analogical argument was made in the first place) then we can’t condition on it like it is
observed evidence.

6This argument similarly goes for an edge between EQ and EF , were we to choose to express
the analogical relationship between the two frames at the evidential level. Also, our previous
discussion used analogical reasoning to map the structure between BF and EF to suggest BQ.
If the fluid bath was not granted as analogical, a mere similarity of evidence would arguably
not justify the strong intuition that we might want to confirm TQ. One might be getting similar
evidence from dissimilar systems—e.g., mere numbers from point measurements, similar but
unstructured. What is important is precisely the structural mapping between the descriptions of
systems.
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synonyms, mathematical inter-definitions, or logical relations (which certainly
all belong to the pool of knowledge we use for decision making). In standard
statistical modeling, extensionally equivalent variables would certainly be col-
lapsed into one single variable (node, respectively). For our purposes, though,
we would like to disambiguate in the model the intensional distinction between
connected variables. Consequently, the final model ought to contain two sepa-
rate nodes and mark these nodes as tightly, functionally dependent.

In briefly discussing the possibility of embedding such non-causal links into
causal Bayes net structures, Verma and Pearl acknowledge the usefulness of
such hybrid models:

The ability to represent functional dependencies would be a pow-
erful extension from the point of view of the designer. These de-
pendencies may easily be represented by the introduction of deter-
ministic nodes which would correspond to the deterministic vari-
ables. Graphs which contain deterministic nodes represent more
information than d-separation is able to extract; but a simple exten-
sion of d-separation, called D-separation, is both sound and com-
plete with respect to the input list under both probabilistic inference
and graphoid inference. (Verma and Pearl 1988, p. 75)

We propose to utilize this idea and build analogy on a relation between strictly
correlated variables. We understand analogy as a non-causal and non-directional
relation and construct it on top of a syntactic isomorphism (formalized as a 1-1
function) in extensions of Bayes net causal models. Such hybrid structures have
been discussed in philosophy as causal knowledge patterns (CKP) in Poellinger
(2012), as well as statistics (e.g., as chain graphs in Lauritzen and Richardson
(2001)). Poellinger’s CKP extend a standard causal model M = 〈U,V, F〉, where
U is a set of exogenous variables, V a set of endogenous variables, and F a set
of functional causal mechanisms—cf. e.g. (Pearl 2000, def. 7.1.1, p. 203).
Such extensions can be defined as quadruples K = 〈U,V, F,C〉, where C is a set
of epistemic contours, i.e., a set of 1-1 functions i j,k that take the value of some
variable V j and assign the value i j,k(V j) to some other variable Vk in the pattern.
Importantly, intervening on one of these entangled variables will not break the
contour (and will thus not determine any directionality).

Contours possess exactly the properties we want for our analog relations. Yet,
embedding entangled variables of this kind in Bayesian networks precisely ren-
ders them non-Markovian.7 In the general case, the inferential framework must
be tweaked to retain soundness,8 but in our special case with a single interthe-
oretical bridge, we extract from the larger project only the idea of utilizing an

7When Pearl claims that “[t]he Markovian assumption [. . . ] is a matter of convention, to
distinguish complete from incomplete models”(Cf. (Pearl 2000, p. 61) he naturally has Bayes
net causal models (with distinct variables) in mind, which we just dismissed.

8For consistent reasoning and efficient computation of causal knowledge patterns to remain
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undirected functional link to join two probabilistic chains (i.e., our two frames).
So, how can we spell out analogical inference across this newly introduced
bridge?

6.2 Analogical inference across symmetric links
In our proposal, the model-external postulate (or assumption, or also percep-
tion) “BQ is similar to BF (in certain known respects)” prompts the inclusion of
a translation relation rather than the insertion of a new node. Analogical rea-
soning begins with a consciously initiated domain comparison which we char-
acterize as the insertion of an inter-theoretical bridge.9 Figure 4 is a rendition
of the Casimir effect example discussed above with the contour i marking the
analogical relationship between the frames at the level of models BQ and BF .

TQ

BQ BF

TF

EQ

AuxQ AuxF

EF

i

Figure 4: Model-level analogy as epistemic contour i with the intertheoretical
bridge i between BQ and BF .

In this graph, the undirected edge between BQ and BF , along with the formal
explication we have introduced, provides a means for implementing analog con-
firmation as we have construed it. A scientist or an artificial system can obtain
P(TQ | EF) > P(TQ) while retaining the information of the more general undi-
rected edge as well as the ability at some later time to provide confirmation for
TF .10

possible at all, acyclicity, independence (as expressed in the graphical d-separation criterion),
and the identifiability of causal effects receive new explications. Poellinger (2012) introduces
a further graphical criterion, the principle of explanatory dominance, to define under which
conditions the Markov requirement can be reclaimed and CKPs utilized for causal inference.

9This insertion can formally be understood as a structural transformation by which two
frames are joined.

10While in this case we might not need or want to confirm TF , a general account should
provide for this.
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We might also wish to represent the analogical contour between TQ and TF

(Figure 5). However, this would be a much stronger claim since BQ and BF are
determined to an additional extent by auxiliaries. An analogy at the theory level
is, in some sense, an analogy that could be a step further towards unification
than one at the model level. We will return to (pre-)unification in Sec. 7.

TQ

BQ BF

TF

EQ EF

i

Figure 5: Theory-level analogy as epistemic contour i with the intertheoretical
bridge i between TQ and TF .

A potential option would also be to insert a collider structure between the
model levels representing an analogy. However, as we have argued, granted
analogies should not be represented as a node. It is unclear what the content of
the node would be, and the values it could take would arguably depend upon
a meta-level analysis of the network (i.e., it would be a self-referential node).
We think our approach of modeling the analogy as a functional relation is more
consistent with the case study, as well as mathematically useful for future appli-
cations of the method.

6.3 Translation via relevant sub-isomorphisms
We take analog contours to be an expression of a modeling relationship between
frameworks. It can be thought of formally as a translation relation based on a
relevant sub-isomorphism, which has been anticipated in the literature on mod-
els and representations in science, cf. Frigg and Hartmann (2012):11

One version of the semantic view, one that builds on a mathematical
notion of models (see Sec. 2), posits that a model and its target have

11We have included in our bibliography the complete references cited in this quote for com-
pleteness.
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to be isomorphic (van Fraassen 1980; Suppes 2002) or partially iso-
morphic (Da Costa and French 2003) to each other. Formal require-
ments weaker than these have been discussed by Mundy (1986) and
Swoyer (1991). Another version of the semantic view drops formal
requirements in favor of similarity (Giere 1988 and 2004, Teller
2001). This approach enjoys the advantage over the isomorphism
view that it is less restrictive and also can account for cases of in-
exact and simplifying models. However, as Giere points out, this
account remains empty as long as no relevant respects and degrees
of similarity are specified. The specification of such respects and
degrees depends on the problem at hand and the larger scientific
context and cannot be made on the basis of purely philosophical
considerations (Teller 2001).

We follow this line of reasoning and formulate a relevance filter in order to
capture the purpose-driven selection of theoretical entities to be translated. Of
course, basing analogy on a purpose-driven relevance concept makes the con-
cept of analog models context-specific. We embrace this fact and call BQ and
BF analog models relative to

1. a relevance filter Rlv;

2. a bijection between the relevant properties of BQ and BF (an isomorphism
between sub-structures of BQ and BF).

The filter function Rlv, an indicator function over the descriptive elements of
both frameworks, selects for each semantic category (for individual objects and
each set of n-ary relations between such objects) subsets of equal magnitude;
i.e., for each category:

||Rlv(BQ) || = ||Rlv(BF) || . (6.1)

If BQ and BF behave alike with respect to relevant parts (i.e., parts selected by
Rlv) that are described by PQ(x)Q and PF(x)F (with properties P of objects x in
the respective models), then the following formula explicates the analog relation
between frameworks via translation i:

∀PF , xF(PF(xF)↔ PQ(xQ)) . (6.2)

Note that this isomorphism might be the result of iteratively fine-tuning non-
bijective translations between the frameworks.12

12We are thankful to Mark Colyvan for valuable discussions about the nature of this mor-
phism.
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Having defined the propagation of information across the epistemic contour
in this way, tracing confirmatory support in Fig. 4 yields the following:

P(BF | EF) > P(BF) (6.3)
P(TQ | BQ) > P(TQ) (6.4)

P(i(BF) | BF) > P(i(BF)) (6.5)

where i(BF) represents specific information about the properties of BQ relevant
for the analogical inference (i.e., as chosen by the filter function).13 Eq. 6.5
exploits the characterization of contour i as 1-1 function: Learning BF tells us
more about the Rlv-selected properties and objects at the core of BQ, thereby
raising our degree of belief in those BQ that are compatible with i(BF). Now, by
transitivity, 6.3, 6.4, and 6.5 together entail

P(TQ | EF) > P(TQ), (6.6)

which was implied by our list of desiderata above—Eq. 5.2, Eq. 5.3, Eq. 5.4,
chained together. Formula 6.6 is an instance of Bayesian confirmation—this
time across theoretical frameworks, though, and it encodes what we set out to
achieve: Bayesian confirmation from an analog model.

7 Analogy and (pre-)unification
In her structure-mapping account of analogical reasoning, Dedre Gentner makes
an important distinction between mere similarity, analogy, and abstract generali-
ties or law-like statements. These represent different stages of learning about the
relationship between two domains, moving from early similarity comparisons,
to analogies, to generalizations:

This sequence can be understood in terms of the kinds of differ-
ences in predicate overlap discussed in this paper. In the structure-
mapping framework, we can suggest reasons that the accessibility
and the explanatory usefulness of a match may be negatively re-
lated. Literal similarity matches are highly accessible, since they
can be indexed by object descriptions, by relational structures, or
by both. But they are not very useful in deriving causal principles
precisely because there is too much overlap to know what is crucial.
Potential analogies are less likely to be noticed, since they require
accessing the data base via relational matches; object matches are
of no use. However, once found, an analogy should be more use-
ful in deriving the key principles, since the shared data structure

13As soon as one learns of a specific instantiation of i(BF), i.e., the relevant core of BQ, those
theoretical entities not in the Rlv mapping must be updated in line with consistency require-
ments.
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is sparse enough to permit analysis. [. . . ] To state a general law
requires another step beyond creating a temporary correspondence
between unlike domains: The person must create a new relational
structure whose objects are so lacking in specific attributes that the
structure can be applied across widely different domains. (Gentner
1983, p. 167-168)

This contextualizes our approach and the way in which analogy can be seen
as the pre-unification of two theoretical frames: The way we have modeled the
link between these frames may be understood as a “temporary correspondence
between two unlike domains”. The Casimir example discussed is arguably in the
middle of Gentner’s spectrum between bare similarity and abstract generality.
There are literal similarity matches—but some features in representations of the
respective domains must also be thrown out as not similar. There is relational
structure being mapped—but the objects still have enough specific attributes that
it seems unwarranted at this stage to make any conclusive generalization about
an entire class of domains.

That said, we can imagine that such a class could be built up in a case-by-case
manner, and eventually justify a unified claim regarding the structure of domains
in the class. Indeed, there are cases in science where strong or systematic analo-
gies can be thought of as almost unificatory (see Bartha (2013)). We think there
is strong motivation for interpreting contours at the level we have utilized them
(i.e., between model representations) as pre-unificatory analogies. This might
be contrasted with, for example, an approach that models the inter-theoretical
relationship as a sort of common cause (i.e., a parent node of both structures at
the uppermost theory level). We think that these two approaches can coexist,
representing different stages of epistemic modeling. An analog knowledge pat-
tern can precisely represent a scientist’s nuanced view of an inter-theoretic re-
lation before she might wish to consider that the theories under question should
somehow be unified into one theory.

8 Conclusion
The extended subjective Bayesian network presented here is able to account for
confirmation from analog models and analog simulation. Thus, slightly modi-
fied, Bayesian confirmation theory is able to meet the challenge offered in Dar-
dashti et al. (2017). Importantly, our account preserves the informational sym-
metries involved in analogical reasoning, as demonstrated in an application to a
case study from philosophy of physics, the Casimir effect. It should be reem-
phasized that, in this case, what is inaccessible about the target system is not the
phenomenon—both the target and analog systems have shown the plates moving
closer together—but rather the theoretical and ontological explanation of why
the target system produces the phenomenon. Thus, we are confirming a theory
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of a phenomenon by offering an explanation of an analogous phenomenon. We
should consider confirmation of the general class of quantum theories such that
with regard to the quantum vacuum they contain a BQ—which is analogous to
the vibrating bath in the analog model.

In this sense, a particular interpretation of the Casimir effect seems to be
implied by the conceptual aspect of the explanation: the argument XQ = BF

′

supports a field-theoretic explanation in terms of a spectrum of modes rather
than that the effect is due to Van der Waals force. This is perhaps a problem
for explaining the Casimir effect in terms of the Van der Waals force.14 Further-
more, there are many other systems which exhibit similar phenomena (Denardo
et al. 2009, p. 1100):

Casimir-type effects occur, in general, for two bodies in a homo-
geneous and isotropic spectrum of any kind of random waves that
carry momentum. A net attractive force occurs between two par-
allel plates in the typical case where the radiation force is reduced
between them.

The various analog models of Casimir-type effects seem to provide some sort
of unifying explanation, whereas an alternative explanation of the Casimir effect
in terms of the van der Waals force is in contrast to such models.15 However, the
systems are not all described by a single unifying theory—and thus the weaker
analogies between models might be taken to supply a form of pre-unificatory
explanations in the cases where well-defined structural similarities might even-
tually lead to theoretical unification. Grounded in an analytic approach towards
the concept of analogy, our constructive proposal provides a novel template for
making such epistemological advances explicit.
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