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Abstract

The rapid growth of biological data sets has created a pressing need for powerful compu-
tational tools to analyze and interpret this data. Deep learning, a subfield of artificial intelli-
gence, has emerged as a promising approach for tackling this challenge. In this thesis, the
applications of deep learning in biology, mainly focussing on image analysis and predicting
protein-protein interaction are explored. I describe the basic components of deep learning
models, including convolutional neural networks and modern attention-based networks, and
discuss their potential for analyzing complex biological data sets. I also examine the chal-
lenges of integrating and applying deep learning in a biomedical context, including issues of
data quality, model interpretability, and ethical considerations. Overall, this thesis highlights
the exciting potential of deep learning to transform the field of biological research and provides
a roadmap for future applications in this rapidly evolving field.
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1
What is deep learning?

Artificial Intelligence (AI) is a field in computer science with the goal of developing self-
reliant machines that can think and act like humans. These machines typically attempt to
mimic human behavior by simulating natural intelligence and performing tasks by learning and
problem-solving. Example applications of AI include self-driving vehicles such as Google’s
Waymo [1] and Apple’s Siri voice assistant [2]. A subfield of AI that uses algorithms to build
models capable of learning from data to improve performance at specific tasks is Machine
Learning (ML). Specifically, ML uses large amounts of data to make predictions based on
observed patterns. Algorithms belonging to ML can generally be classified into one of three
categories:

• Supervised learning: the prediction of "labeled" data, meaning the target variable is
known. In these algorithms, a function is learned to map feature vectors (inputs) to
labels (output) based on examples (input-output pairs).

• Unsupervised learning: the discovery of patterns in unlabeled data. These algorithms
can identify hidden features from data allowing patterns and similarities to become more
evident.

• Reinforcement learning: the training of an agent to complete a task in a changing en-
vironment. The agent must decide on actions based on environmental stimuli and is
rewarded based on how successful an action was relative to completing a given goal.
Example applications include agents surpassing human performance in board games
like Go (AlphaGo [3]) and video games like StarCraft II (AlphaStar [4]).

Representation learning techniques are a class of ML algorithms that aim to learn a useful
representation of the input data for a given task. The main goal of these techniques is to
automatically discover and extract meaningful and relevant features from the raw data, which
can then be used as the input for other machine learning algorithms. The learned representa-
tion should ideally capture the underlying structure and patterns in the data, making it easier

1



Chapter 1. What is deep learning?

Artificial Intelligence

Machine Learning

Deep
Learning

Representation
Learning

Figure 1.1: Venn diagram showing the relationship between artificial intelligence, machine
learning, representation learning, and deep learning.

to perform tasks such as classification, clustering, or prediction. Deep Learning (DL) is an
example of a representation learning technique (Figure 1.1) relying on neural networks with
multiple layers to automatically learn representations of data. Deep learning draws inspira-
tion from the structure and function of biological brains by stacking multiple layers of neurons.
These stacks are termed Artificial Neural Networks (ANNs) and enable these algorithms to
progressively extract higher-level features from the original input data. In the case of image
processing for facial recognition, the first layers might identify edges and borders while later
layers can identify concepts such as noses or eyes. This generally results in lower needs for
human intervention and larger data requirements.

While traditional machine learning algorithms are undoubtedly useful to solve problems,
they have been shown to struggle with more complex problems like Natural Language Pro-
cessing (NLP) and image recognition. Similarly, due to their simple nature, ML models do not
perform well with very large or unstructured datasets. Additionally, ML models rely on feature
engineering: the process of extracting input features from raw data using domain knowledge
in such a way as to improve model performance. Feature engineering needs to be performed
by humans and can often be time-consuming and very difficult. For example, defining how a
nose looks like in terms of pixel values. With deep learning, on the other hand, features are

2
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x1
w1

Weights Bias

Weighted
sum

Activation
function

OutputInputs

w2

w3

wn

b

Σ gg

x2

x3

xn

Figure 1.2: Overview of a neuron: the building block of artificial neural networks.

automatically extracted by the neural network without human intervention.

1.1 How do neural networks learn?

Artificial neural networks are composed of connected sets of individual neurons largely
inspired by the communication of biological neurons in brains. These neurons (Figure 1.2)
take inputs x1¨¨¨n and multiply them with input-specific weights w1¨¨¨n. Additionally, a bias term
b is added independent of any inputs allowing for affine transformations of inputs [5]. All of
these multiplications are combined by summation:

z “
nÿ

i“1

wixi ` b (1.1)

Since early work [6] showed that linear perceptrons are not sufficient to work as a universal
classifier, a nonpolynomial activation function gpzq is applied after this summation. This can be
interpreted as the network deciding when to and when not to "fire". These activation functions
introduce non-linearity into a network, allowing it to learn more complex relationships between
the input and output. Neurons are then chained together in different architectures allowing for
varied data representations. These deviate from biological connectionist models to improve
efficiency, trainability, and understandability. For example, ANNs are usually static while neural
pathways in brains are plastic [7].

3



Chapter 1. What is deep learning?

So far, these neural networks are only useful in the "forward" direction (from input to output).
To learn, however, there are three key steps: the computation of a loss term, "backpropaga-
tion" (from output to input), and updating gradients. Firstly, after an input is fed through the
network, the resulting output is compared to the label with a loss function (L) which reflects
the model’s goodness of fit:

Lpy, ŷq (1.2)

With y being the ground truth and ŷ the model’s prediction. Next, the backpropagation
algorithm computes the gradient of the loss function with respect to each weight:

BL
B✓k

“ Bak
B✓k

BL
Bak

(1.3)

Where ak is the activation (output) from layer k and ✓k are the parameters associated with
that layer (i.e. weights and biases). Since it is inefficient to compute the gradients for each
parameter from scratch, gradients are calculated for each layer moving back layer by layer.
This is done by propagating the gradients backward through the network using the chain rule
of calculus.
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This process allows us to compute the gradients of the loss function with respect to all
of the model parameters, which can then be used to update the parameters using gradient
descent. Taken together, backpropagation is a key algorithm in deep learning and has enabled
the development of complex neural networks that can learn from large amounts of data. This
computationally efficient method for computing gradients has enabled the training of deep
networks with hundreds of layers [8].

Lastly, weights are updated using gradient descent. The goal of gradient descent is to
find the values of the model parameters ✓ that minimize the loss function L. The algorithm
starts with an initial set of parameters (see Chapter 2.1.4) and iteratively updates them in
the direction of the negative gradient of the loss function. The size of each update step is
directed by the learning rate ↵. This process is repeated until the loss function is minimized
or a stopping criterion, such as time or performance, is met:
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Figure 1.3: Google search trends showing the relative interest over time in the term "deep
learning". Numbers represent search interest relative to the highest point between 2003 and
2023.
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Taken together, one training step involves two components: the forward pass and the back-
ward pass. During the forward pass, the input data is passed through the network and the
output is computed. During the backward pass, the gradients of the loss function with re-
spect to the output of each layer are computed and then propagated backward through the
network to compute the gradients of the loss function with respect to the model parameters.
These parameters are updated iteratively minimizing the loss function and increasing model
performance.

1.2 The Deep Learning Revolution: From AlexNet to Chatbots

Deep learning has seen a steady increase in Google search traffic (Figure 1.3) since the re-
lease of AlexNet [9] in 2012. This neural network architecture competed in the 2012 ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) [10] and greatly outperformed any com-
petitors using traditional machine learning approaches. This showed that deep learning has
come to be a practically feasible approach to solving challenging questions and sparked a
deep learning "revolution" that has continued ever since [11].

There have been countless milestones in improving network architectures and model per-
formance some of which will be discussed in later sections. Some example applications of
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deep learning in daily life include speech recognition systems [12] employed in Apple’s Siri or
Amazon’s Alexa, various image search systems [13] such as Google image search or recom-
mender systems [14] heavily employed in social media or content platforms such as Netflix.
Most recently, chatbots such as OpenAI’s ChatGPT [15] have rapidly gained popularity and
widespread adoption across the internet becoming the fastest-growing application to date
even surpassing the like of Instagram [16].

1.3 Exemplary applications in biology

Although ANNs have been inspired by biology, their application has long been kept in the
realm of computer science and commercial applications. Only recently have approaches and
tools emerged that use various kinds of deep learning architectures for use in biological re-
search. Biology is a prime field for leveraging deep learning due to the vast amounts of data
generated in pre-existing experimental runs. Two key areas that are especially data-rich are
genomics and image analysis.

One exemplary application in the field of genomics is the prediction of enhancer sequences
as has been done in DeepEnhancer [17]. The authors have trained a convolutional neural
network on large databases of experimentally derived sequences. By using such tools, ex-
perimentalists can focus more on validation and follow-up experiments rather than spending
time on expensive high-throughput screens (e.g. using ChIP-seq [18]). Similarly, Zeng and
Gifford [19] used CpGenie, a framework to learn Deoxyribonucleic acid (DNA) methylation
sites to help in identifying regulatory non-coding variants.

In the adjacent field of image analysis, there have been various successful applications to
improve a clinician’s understanding of raw biomedical images [20, 21]. Since most methods
can match or even surpass human performance, wrong decisions are greatly reduced and
help in improving patient outcome [22]. In a laboratory setting, tools such as DeepLabCut [23,
24], used for pose estimation in video data, enable more efficient and accurate analyses of
behavioral imaging data.

1.4 Problem statement

Deep learning holds great potential of revolutionizing all aspects of life. While there has
been significant progress in leveraging deep learning in some fields, such as computer vision
and natural language processing, its application in biology is still in its early stages. However,
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the availability of a fast-growing array of open-source tools is making it easier than ever to
get started with deep learning in biology. In light of these developments, this thesis aims to
explore the potential of deep learning in biology through two case studies. First, how deep
learning can be used in improving light-microscopy image analysis, and second in predicting
the interaction of two proteins. Furthermore, shortcomings will be discussed that are currently
hindering widespread adoption.
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A quarter of a cubic millimeter might sound minuscule but it can fit the entirety of a Drosophila
melanogaster (common fruit fly) brain [25, 26]. This roughly equates to 200’000 cells [27].
Modern high aperture microscopes have enabled researchers to image this impressive struc-
ture at a resolution of „200nm. Since multiple brains are typically imaged per experimental
condition, a single fluorescent color imaging session can quickly produce data in the terra-byte
range – far too much for manual analysis. Due to rapid advances in microscope technology,
researchers are often left with a large pile of data. However, where humans might struggle,
computer algorithms can be used to identify features in an image.

2.1 Introduction to convolutional neural networks

In recent years, deep learning has seen a rapid rise in popularity, and it has become the go-
to approach for various tasks. One of the areas where deep learning has shown remarkable
success is computer vision. Convolutional Neural Networks (CNNs) are a class of deep neural
networks that have revolutionized image analysis and are now the standard tool for various
image-based tasks. The success of CNNs in image analysis has been largely due to their
ability to automatically learn spatial hierarchies of features from image pixels, thus making
them capable of handling large and complex datasets. The use of CNNs in image analysis will
be the focus of subsequent discussions, including their structure, variations, and the various
successful applications where they have been employed.

2.1.1 Basic components of a convolutional neural network

As described in Chapter 1, all ANNs rely on the neuron as building blocks. In the case of
CNNs, while the general concept is the same, they differ in a few key ways. The convolution
operation is a mathematical operation that applies a filter, known as a kernel, to an input signal
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Figure 2.1: An example convolution operation with kernel size 3ˆ3, stride 1, and no padding.
Adapted from: indoml.com.

or image. The filter consists of a small matrix of weights that are learned by the network
during training. The convolution operation works by sliding the filter over the input data, one
small region at a time, and computing the dot product between the filter weights and the
values in the corresponding region of the input data (Figure 2.1). This dot product produces a
single output value, which represents the presence or absence of a certain feature in the input
data. The output values are then collected into a new output matrix, called a feature map,
which represents the locations of features in the input data. More specifically, the convolution
operation works as follows:

• The input data is represented as a matrix, with the values in the matrix corresponding to
the pixel intensities in the image. Most applications use 2D input images but networks
can also be applied to 3D [28] stacks or videos [22].

• The filter is a smaller matrix of weights, typically with dimensions that are much smaller
than the input data such as 1ˆ1, 3ˆ3, or 5ˆ5. The filter is initialized at the begin-
ning of training (see Chapter 2.1.4), and its weights are updated during training using
backpropagation.

• The filter is then placed at the top left corner of the input matrix and its weights are
multiplied element-wise with the values in the corresponding region of the input matrix
(Figure 2.1).

• The resulting products are then summed up to produce a single output value, which is
placed in the corresponding location in the output feature map.

• The filter is then shifted to the right by one or more pixels (known as the stride), and the
same operation is performed on the new region of the input matrix, producing another
output value in the feature map.
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Figure 2.2: An overview of a convolutional layer ranging from input through a ReLU activation
function to an output. Adapted from: indoml.com.

• This process is repeated for every possible position of the filter over the input matrix until
the entire input matrix has been processed.

• The resulting feature map represents the presence or absence of a certain feature in
the input data, and is passed on to the next layer in the CNNs for further processing.

• Depending on the filter size as well as other parameters such as padding or stride size,
the feature map will typically have a different size compared to the input [29].

Overall, the convolution operation allows the CNNs to learn spatial features from input data,
such as edges, corners, and shapes, that are important for most computer vision tasks.

Commonly used activation functions are Rectified Linear Units (ReLU) [30] and all of their
derivates such as Gaussian Error Linear Units (GELUs), leaky ReLUs, and Exponential Linear
Units (ELUs). ReLU follows the simple formula of:

fpzq “

$
&

%
z, if z ° 0

0, otherwise
(2.1)

Most derivatives slightly differ in their negative term (e.g. leaky ReLU uses a small, non-
zero, constant gradient �). One problem arising as networks become increasingly deep is
the vanishing gradient problem. This refers to the phenomenon where the gradients of the
loss function with respect to the weights become extremely small, making it difficult for the
network to learn. This is a big issue in deep networks since the gradients are backpropagated
through many layers. As the gradients are multiplied together (see Chapter 1.1), they can
become exponentially small, especially when using activation functions such as sigmoid or
tanh that saturate at the extremes of the input range. When the gradients become too small,
the network stops learning, and its performance plateaus. ReLUs have become popular since
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Figure 2.3: An example max pooling operation with size 2 and stride 2. Adapted from: in-
doml.com.

they help mitigate this problem. Additionally, since ReLU has a constant gradient of 1 for all
positive input values it allows for faster and more stable training. Another benefit of ReLU is
that it is computationally efficient to compute, both in terms of memory usage and processing
time making it well-suited for large-scale applications such as video processing [31].

Each convolutional kernel is only able to capture local context. Since images typically
have different (relative) context sizes, pooling layers are often added after convolutional layers
to downsample feature maps and aggregate spatial information. This helps to reduce the
dimensionality of the feature maps and makes the network more computationally efficient.
Common pooling operations include max pooling and average pooling, which respectively
select the maximum or average value within a local region of the feature map (Figure 2.3).

2.1.2 Improvements in regularization

Generalizability is a crucial factor in evaluating the effectiveness of a model. It refers to the
model’s ability to perform well on new, unseen data, beyond the data it was trained on. This is
important because a model that only performs well on the training data, but fails to generalize
to new data, is of little practical value. To help evaluate a model’s generalizability, the typical
way to split data is into three subsets:

• Training set: used to train the model’s parameters and the largest subset.

• Validation set: used to tune the model’s hyperparameters. Hyperparameters are pa-
rameters that are set by the user, rather than learned from the data. They affect the
behavior and performance of the model such as the learning rate ↵.
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• Test set: to evaluate the model’s performance after training and hyperparameter tuning.

Overfitting is another common problem that occurs when a model is too complex and mem-
orizes the noise or patterns in the training set, rather than the underlying relationships in the
data. This can result in poor performance on new data, and the model is said to be overfit-
ted. To prevent overfitting, regularization techniques can be employed, which add penalties or
constraints to the optimization objective to constrain the model’s capacity.

Batch normalization is a technique that normalizes the input of each layer to have zero
mean and unit variance over a batch of samples [32]. This helps to mitigate the effects of
covariate shift, which can cause the distributions of activations to change during training and
make the optimization process more difficult. By stabilizing the distributions of activations,
batch normalization can improve the speed and stability of training and lead to better gener-
alization.

L1 and L2 norm regularization add a penalty term to the loss function during training to
encourage the weights to be small. L1 regularization adds the sum of the absolute values
of the weights, while L2 regularization adds the sum of the squares of the weights. These
penalties can help prevent overfitting by reducing the complexity of the model and encouraging
it to learn simpler patterns.

Dropout randomly drops out a fraction of the activations in a layer during training [33]. This
can help prevent overfitting by forcing the network to learn more robust features that are not
overly dependent on any single activation. Dropout is effective in a variety of tasks and can
improve the generalization performance of neural networks.

Other methods include data augmentation where new training data is generated from ex-
isting data by applying random transformations (e.g. mirroring, rotating, and shifting [34]) as
well as early stopping where the training process is stopped once the performance on the
validation set starts deteriorating past a set criterion.

2.1.3 Improvements in network architecture

Modern CNN architectures have come a long way since the groundbreaking AlexNet ar-
chitecture was introduced in 2012 [9]. While AlexNet achieved unprecedented accuracy on
the ImageNet dataset, subsequent architectures have further improved its performance by in-
troducing several key innovations. One major trend in modern CNN architectures is the use
of smaller convolutional filters, typically 3ˆ3, rather than the 11ˆ11 filters used in AlexNet.
This has several advantages, including a reduction in the number of parameters in the model,
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which helps to reduce overfitting and improve generalization, and the ability to capture more
fine-grained features in the input data.

Another key innovation is the use of deeper architectures, with more layers than AlexNet.
This has been made possible by the development of new techniques for training deep neural
networks, such as batch normalization (see Chapter 2.1.2), which helps to mitigate the van-
ishing gradient problem that can occur in very deep networks (see Chapter 2.1.1). Deeper
architectures have been shown to be better at capturing high-level, abstract features in the
input data, and have achieved state-of-the-art performance on a variety of computer vision
tasks [8]. Other innovations in modern CNN architectures include the use of residual (also
termed skip) connections, which allow information to bypass certain layers in the network and
can help to alleviate the vanishing gradient problem by allowing gradients to flow more easily
through the network. Some modern CNN architectures such as ResNet [8] and DenseNet [35]
have favored the usage of skip connections to preserve spatial information and have moved
away from using pooling layers (see Chapter 2.1.1).

Modern CNN architectures have significantly improved the performance of the original
AlexNet architecture by introducing a range of innovative techniques for capturing fine-grained
features, training deep networks, and improving generalization. Two network architectures in
particular have pushed the boundaries of performance:

• Inception [36, 37], introduced in 2014, uses multiple parallel convolutional layers with
different filter sizes and pooling operations to capture features at different scales, which
allows it to extract more diverse and informative features from the input data. Addi-
tionally, it uses 1ˆ1 convolutions to reduce the dimensionality of the input and save
computational resources, which improves the model’s efficiency. This architecture also
won the 2014 ILSVRC classification challenge.

• ResNet [8], introduced in 2015, uses residual connections to enable information to skip
certain layers in the network, allowing it to learn from both the original input and the
residual error of the network’s prediction. This enables ResNet to train much deeper
networks with up to hundreds of layers while avoiding the vanishing gradient problem.
This architecture achieved state-of-the-art performance on a range of computer vision
tasks and won the 2015 ILSVRC.

Recently, attention-based models (discussed in more detail in Chapter 4.2) have become
popular for image classification [38]. These models use an attention mechanism to focus on
important regions of the image. One example of this is the SENet [39], which uses a squeeze-
and-excitation module to selectively amplify important features.
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Overall, these architectures have significantly improved the performance of CNNs com-
pared to AlexNet by using innovative techniques such as residual connections, parallel convo-
lutional layers with multiple filters, and attention. These techniques help to address the issues
of vanishing gradients, overfitting, and computational efficiency and have made CNNs even
more powerful for image analysis and other applications.

2.1.4 Improvements in optimization

Weights in neural networks can be set (initialized) to any values before training. In the
past, initializations were often done randomly or with fixed values, which often led to vanishing
or exploding gradients, making them more prone to failure and training overall less reliable.
Modern weight initializations such as Normal, Xavier [40], and He [41] provide more stable
and efficient training. Normal weight initialization randomly samples weights from a standard
normal Gaussian distribution. Xavier initialization, on the other hand, scales the weights based
on the number of input and output neurons to ensure the variance of the activations is constant
across layers. This helps to ensure that the gradients are neither too small nor too large.
Finally, He initialization is similar to Xavier initialization but scales the weights differently to
account for the ReLU activation function commonly used in modern networks.

Similarly, there have been various improvements in the choice of optimizers. Compared to
the traditional Stochastic Gradient Descent (SGD), where weights are updated by subtract-
ing the gradient of the loss with respect to each weight multiplied by a learning rate (see
Chapter 1.1). Nesterov Accelerated Gradient (NAG) [42] is an extension of SGD that adds
a momentum term to the update rule. Momentum allows one to better handle noisy gradi-
ents and converge faster by adding a fraction of the previous update to the current update.
Adaptive Moment Estimation (Adam) [43] is a popular optimizer that uses a combination of
momentum and adaptive learning rates. Adam adapts the learning rates for each weight
based on their historical gradients, allowing for faster convergence and improved general-
ization. More recently, there have been strategies to manually [44] or automatically [45, 46]
change the learning rate. Here, the learning rate starts at a high value allowing the model
to explore parameter space effectively before decreasing gradually reducing to help converge
toward the optimal solution. The choice of method and the rate of decay will vary depending
on the specific problem and dataset characteristics.
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2.1.5 Types of tasks and applications

CNNs have become a popular and effective tool for many image-based applications, in-
cluding image classification, object detection, image segmentation, and more. These net-
works have demonstrated state-of-the-art performance on many benchmark datasets, as will
be further discussed below.

Image classification Image classification attempts to assign one or more classes to an
image (e.g. classifying cats and dogs). CNNs are the backbone of modern image classifica-
tion methods, and their success is attributed to their ability to learn hierarchical representations
of images. The previously described architectures Inception and ResNet, as well as countless
other approaches (VGGNet [47], EfficientNet [48], CoCa [49]), primarily belong into this cat-
egory. Image classification has demonstrated significant potential in improving the accuracy
and speed of medical image analysis for important applications such as early detection of
diseases like diabetic retinopathy [50] and COVID-19 [51]. By accurately identifying patterns
in medical images, image classification models can assist healthcare professionals in mak-
ing more informed and timely diagnoses, leading to better treatment options and ultimately,
improved patient care.

Object detection Object detection is a critical task in computer vision that involves identi-
fying and localizing objects within images. Modern object detection networks, such as R-CNN,
Faster R-CNN, You only look once, and Single Shot Detector, have significantly advanced the
field of computer vision by improving the accuracy and speed of object detection.

Region-Based Convolutional Neural Network (R-CNN) [52] was introduced in 2014 as one
of the first object detection models that used a Region Proposal Network (RPN) to identify
object regions before applying a CNN to classify the object within the region. The RPN pre-
dicts object proposals using a sliding window approach, generating proposals of various sizes
and aspect ratios, which are then refined by a Region of Interest (RoI) pooling layer. The
CNN then classifies the object within the RoI. Despite its high accuracy, R-CNN was slow and
inefficient due to its multi-stage approach. Fast R-CNN [53] improves upon R-CNN by using
the entire image as input to the CNN, and then using a RoI pooling layer to extract features
for each proposed region from the CNN’s output. This avoids the need to run the CNN sepa-
rately for each region proposal. Faster R-CNN [54] builds upon Fast R-CNN by replacing the
selective search algorithm with a RPN that learns to generate region proposals directly from
the CNN’s feature maps. This eliminates the need for a separate region proposal step and
further improves speed and accuracy.
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You only look once (YOLO) [55], introduced in 2016, was the first real-time object detection
model that achieved high accuracy while being computationally efficient. YOLO divides the
image into a grid and predicts the bounding box, class probabilities, and confidence score
for each grid cell. YOLO uses a single CNN to predict the output for the entire image in one
shot, making it extremely fast. Single Shot Detector (SSD) [56] is another real-time object
detection model that uses a single CNN to predict the bounding boxes and class probabilities
for multiple objects in an image. SSD applies convolutional filters of various sizes and aspect
ratios to feature maps from different layers of the network, allowing it to detect objects at
different scales and sizes.

Overall, these modern object detection networks have significantly improved the accuracy
and speed of object detection in computer vision. They use innovative techniques such as
region proposal networks, single CNNs, and grid-based predictions to improve efficiency while
maintaining high accuracy. These techniques have made object detection practical for a wide
range of applications, such as autonomous driving [57], surveillance [58], and robotics [59].

Image segmentation Segmentation models, such as U-Net and Mask R-CNN, are used
for pixel-level prediction of object boundaries and are widely used in biomedical imaging, au-
tonomous driving, and robotics. Segmentation models are usually differentiated between se-
mantic and instance segmentation. In semantic segmentation, a binary segmentation map is
returned on a class basis whereas instance segmentation also separates individual instances
(e.g. cells or people) from each other. They build on the advancements in CNNs and object
detection networks to achieve high accuracy and speed in semantic segmentation.

U-Net [60], introduced in 2015, is a fully convolutional network that combines a contracting
path (encoder) with an expansive path (decoder) to create a U-shaped architecture. The
contracting path consists of a series of convolutional layers followed by max-pooling layers
that progressively downsample the input image. The expansive path then consists of a series
of convolutional layers followed by up-sampling layers expanding the image back to its original
size. The contracting path is generally used to capture the context of the image, while the
expansive path captures the details of the objects. The output of the network is a binary,
class-based, pixel-wise prediction of the object boundaries.

Mask R-CNN [61], introduced in 2017, builds on the architecture of Faster R-CNN [54]
by adding a mask prediction branch to the output of the network. This allows for accurate
pixel-level segmentation of objects in an image. The mask branch consists of a series of
convolutional layers and upsampling layers that predict a binary mask for each object proposal.
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Other applications There are many other applications of CNNs including object track-
ing [62], scene labelling [63], action recognition [64], and pose estimation [65]. Taken together,
a multitude of advances have enabled CNNs to achieve state-of-the-art performance on a wide
range of computer vision tasks, and have helped to establish deep learning as a powerful tool
for image analysis and other applications.

2.1.6 Improvements in loss function

There are several common loss functions used for the different image-based tasks de-
scribed above. The choice of loss function depends on the specific task and the desired out-
put. For example, in image classification, the cross-entropy loss function is commonly used,
which measures the difference between the predicted probability distribution over classes and
the true class labels:

Lpy, ŷq “ ´ 1

N

ÿ
y logpŷq ` p1 ´ yq logp1 ´ pq (2.2)

Here, N is the number of samples in the dataset, y is the true label for that class (either 0
or 1) and ŷ is the predicted class probability. The first term computes the loss when the label
is 1, and the second term when the label is 0. The negative sign ensures loss is minimized.

For more complex tasks such as object detection, the loss function typically includes both
a classification loss and a localization loss, such as the RPN loss used in Faster R-CNN. In
image segmentation, the Dice loss and binary cross-entropy loss are commonly used, which
measure the similarity between the predicted segmentation and the ground truth segmentation
at a pixel-level for each class. Other loss functions such as Mean Squared Error (MSE) or
Mean Absolute Error (MAE) may also be used for regression-based tasks:

Lpy, ŷq “ 1

N

ÿ
py ´ ŷq2 (2.3)

MSE squares the difference between prediction and ground truth thus amplifying positive
and negative outliers equally leading to an overall regression to the mean.
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2.2 Common tasks and problems in image analysis

Image analysis has been a fundamental area of research for as long as computer vision
has been around. As the world becomes increasingly digital, the ability to extract meaningful
information from digital images has become a crucial area of research. Most methods have
been relying on mathematical operators to perform a wide range of tasks.

Image filtering is a common technique used for image enhancement, which aims to remove
noise and improve image quality. Filtering techniques can be broadly classified as spatial
and frequency domain-based methods. In the subfield of segmentation, the goal is to sepa-
rate RoIs such as cells in an image from the background. This task is challenging, especially
when objects have complex shapes, sizes, or similar intensities as the background. Several al-
gorithms have been proposed for segmentation, including thresholding, edge-based methods,
and clustering.

Object tracking is the process of following an object’s position and motion in successive
frames of a video sequence. Tracking algorithms can be classified into two categories: point-
based and region-based methods. Point-based methods track individual points or features in
successive frames, whereas region-based methods track the object’s entire RoI (which are
usually already segmented).

Image registration involves the alignment of two or more images that have been captured
from different viewpoints, at different times, or using different methods. This task is crucial
in many applications, including spatial transcriptomics to register images between readout
steps [66]. Registration algorithms aim to find a spatial transformation (e.g. rotation, shifting)
that aligns the images.

Spot detection is the process of locating individual fluorescent spots or particles in mi-
croscopy images. This task is commonly used in biological imaging to detect and quantify
biomolecules [67] or protein expression levels [68]. Spot detection algorithms use various
techniques primarily relying on user-defined thresholds [69, 70] to detect spots while reducing
false positives.

2.3 Image analysis is enhanced with deep learning

Fluorescence microscopy is a powerful technique for visualizing biological samples at high
resolution and has revolutionized our understanding of cellular processes. However, analy-
sis of fluorescence microscopy data can be challenging, especially when dealing with large
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datasets and complex structures. Deep learning models are capable of automatically learning
spatial features from raw image data and can be trained to perform a variety of image analysis
tasks, such as segmentation, classification, and object detection. One of the key advantages
of deep learning for fluorescence microscopy analysis is its ability to handle large datasets
with high variability. Some of the previously described traditional image analysis methods of-
ten require manual parameter tuning and feature engineering, which can be time-consuming
and subjective. This makes analyses less reproducible and overall prone to errors. In con-
trast, deep learning models can automatically learn relevant features from the data and can be
trained on large datasets to generalize to new samples. Another advantage of deep learning
for fluorescence microscopy analysis is its ability to handle complex structures and patterns.
For example, deep learning models can be trained to recognize and segment different cell
types, organelles, or subcellular structures based on their unique fluorescence patterns. This
can enable researchers to study cellular processes in more detail and to identify potential
biomarkers or therapeutic targets. A selection of deep learning-based tools that have greatly
improved image analysis are discussed below.

Cellular segmentation is a core task in nearly all biomedical image analyses. Two prominent
deep learning-based examples, namely Cellpose [71] and Stardist [72, 73] have been trained
on large datasets of fluorescence microscopy images and provide state-of-the-art segmenta-
tion performance on a wide range of biological samples. Both methods use slightly different
approaches to separate cells and can be applied to both 2D and 3D images. Specifically, Cell-
pose uses a flow field that encodes vertical and horizontal gradients for each cell, so that cells
near each other vertically can still be differentiated horizontally. Meanwhile, Stardist relies on
Star-convex polygons parametrizing radial distances from the center of the nucleus.

Two further exemplary uses for deep learning in biomedical image analysis are in the field of
denoising and lineage tracing. First, methods such as Noise2Void 1 [74] and 2 [75], as well as
CARE [76], use artificially or biologically generated data to train a network to predict de-noised
output images. Having less noisy images allows most downstream tasks to be more efficient
such as cellular segmentation and lineage tracing. By annotating segmentation maps, neural
networks such as DeepCell [77, 78, 79] can pick up features such as morphology, motion,
and local neighborhood to create cell lineages. These methods have been able to outperform
hidden Markov models on challenging datasets such as live imaging of cell division.
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3.1 Abstract

Traditionally, mathematical operators designed for idealized spots are used to perform the
detection of diffraction-limited spots in single-molecule microscopy images. This process ne-
cessitates manual adjustment of parameters which can be both time-consuming and unre-
liable. A novel neural network-based method, termed deepBlink, will subsequently be de-
scribed enabling automatic detection and localization of spots. It has been demonstrated
that deepBlink surpasses other state-of-the-art methods in accuracy when tested against six
publicly available datasets containing synthetic and experimental data.

3.2 Introduction

In various imaging applications within biomedical research, the detection, counting and
localization of sub-diffraction fluorescent signals (spots) is considered a crucial step. For
instance, particle tracking in live cell imaging data and quantification of mRNAs in single
molecule fluorescence in-situ hybridization (smFISH). Although developments in smFISH-
based spatial transcriptomics methodologies have enabled the quantification of thousands of
mRNAs in single cells, they have mainly focused on improving transcript barcoding strategies
for multiplexing [80, 81] while relying on conventional threshold-based detection methods.
Current spot detection methods face a challenge in accurately detecting and localizing spots
in single-molecule fluorescent microscopy images with varying background brightness levels
and spot qualities. The widely used TrackMate [70], for instance, is based on intensity thresh-
olds and requires ad-hoc adjustments of parameters on a cell-by-cell and image-by-image
basis, which are time-consuming and not always reproducible. Fully automated, user-friendly,
accurate, and reproducible spot detection and localization methods are currently not available.

Deep learning methods use ANNs to automatically learn features and patterns from raw
data. Despite the requirement of labeled data for deep learning, once a model is trained, it can
be used without further modifications or parameter adjustments. State-of-the-art for computer
vision applications is consolidated by the CNN through recent advances such as AlexNet [9].
Previously, CNNs were used for threshold-independent particle detection, but they were un-
able to localize particle positions with sub-pixel resolution [67, 82, 83]. This caused inaccurate
positional measurements, which hindered their application in high-resolution microscopy. Fur-
thermore, although the source code of some methods is available, none of them have been
made easily accessible for non-experts.

deepBlink is a Command Line Interface (CLI)-based tool designed for automatic detec-
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tion and localization of diffraction-limited spots. deepBlink utilizes neural networks to achieve
sub-pixel localization of spots in microscopy images. A benchmarking study was conducted
to compare deepBlink’s performance in spot detection with state-of-the-art methods across
multiple datasets having different signal-to-noise ratios (SNRs). It was demonstrated that
deepBlink provides more accurate and precise detection of spots.

3.3 Methodology

Training data

The creation of the datasets named "Microtubule", "Receptor", "Vesicle", "Particle", "sm-
FISH", and "SunTag" were carried out using different methods. The first three datasets were
derived from the International Symposium on Biomedical Imaging (ISBI) Particle Tracking
Challenge 2012 [84]. The dataset consisted of 1200 images and was split into training, val-
idation, and test sets, ensuring an equal distribution of SNRs and densities. The "Particle"
dataset was generated using the "Synthetic Data Generator" Fiji plugin (smal.ws) described
in Smal et al. [85]. A total of 576 images were generated with various SNRs and background
intensities to resemble small diffraction-limited particles. The "smFISH" dataset was created
from a pool of 643 manually annotated smFISH images published in Horvathova et al.[86]. Fi-
nally, the "SunTag" dataset was composed of 544 manually annotated live cell SunTag images
published in Mateju et al. [87].

Dataset labeling

The experimental smFISH and SunTag datasets were labeled with the help of TrackMate [70],
where each image underwent manual thresholding and any incorrectly detected spots were
corrected manually. The "All Spots statistics" tool was used to export the labels. Following the
labeling of all images, the deepBlink command deepBlink create was utilized to convert the
images and labels into a partitioned dataset file, which could be utilized for either training or
evaluation.

Network architecture

The U-Net architecture is the basis for deepBlink’s default network [60]. To reduce the fully
sized representation to a smaller one corresponding to the cell size, a second encoder was
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used whose depth can be adjusted for the configured cell size. The encoding steps include
a convolutional block, squeeze and excitation block, and spatial dropout (see Figure 3.1 and
Supplemental Table S1). The decoding steps followed the same layout, but dropout was not
employed. The architecture was implemented in Python version 3.7 using the TensorFlow
framework version 2.2.

Network training

The default settings provided by deepBlink config using the public CLI on version 0.1.0 were
used to train all models. The training was performed with a cell-size of 4, a dropout rate of
0.3, a batch size of 2, a learning rate of 0.0001, and the AMSGrad stochastic optimizer. The
training was conducted on a computer cluster with 64-bit CentOS Linux 7 (Core), 96 cores
(3926 threads) Intel(R) Xeon(R) Platinum 8168 CPU 2.70 GHz, 1007 GB RAM, and 8 Nvidia
GeForce RTX 2080 Ti Graphics Processing Units (GPUs) with 11 GB VRAM. On average, the
training took around 5 h per model, and all models were trained for 200 epochs.

Benchmarking of TrackMate

To determine the optimal parameters for TrackMate [70], a grid search was conducted on
the training and validation images from each dataset. Since TrackMate relies on manual
thresholding and is not a machine learning method, the grid search involved testing different
values of "Estimated blob diameters" in the "LoG" filter option in Fiji. The resulting quality
scores were normalized to the median of all images and divided into twenty quantiles. The F1
integral score was calculated for each image at each quantile. The parameters that yielded the
highest mean F1 score on the combined training and validation dataset (i.e., blob diameter and
absolute quantile value) were selected. Grid search is a hyperparameter tuning method where
multiple combinations of parameter values are tested to identify the optimal set of parameters
that produce the best performance.

Benchmarking of DetNet

As a publicly available implementation of DetNet [83] was not available, a model following
the training procedure described in the publication was implemented. It is worth noting that
the number of parameters in this implementation was 10 times larger than the original model.
Ground truth output masks were generated using the coordinate locations, with a single pixel
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Figure 3.1: Overview of the default neural architecture for deepBlink (components are de-
scribed in Supplemental Table S1). The figure was created using modified PlotNeuralNet
code (https://github.com/HarisIqbal88/PlotNeuralNet).
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of value one at the centroid position. To convert the output segmentation maps back to coor-
dinates, they were binarized, and calculated the centroids of each fully connected component.
To optimize the model, a hyperparameter search was conducted across twenty sigmoid shifts
↵, which were linearly distributed. The ↵ value that yielded the highest validation F1 score
was selected for evaluating the model on the test set.

Benchmarking of deepBlink

The training of deepBlink was performed using version 0.1.0 of the CLI. Each dataset was
trained separately without optimizing hyperparameters specific to the dataset. Afterward, the
models were evaluated on their corresponding test sets.

Benchmarking of execution time

The time to predict coordinates from an in-memory image was measured on a set of 512 ˆ
512 px images using Python’s datetime module. To ensure consistency, dependencies were
pre-loaded before benchmarking. The measurements were conducted on a MacBook Pro with
a 2.4 GHz Quad-Core Intel Core i5 and 16GB 2133 MHz LPDDR3 Memory. A total of seven
rounds of measurements were performed, with each round consisting of 100 images. Mean
and standard deviation was calculated across all rounds. It is worth noting that all methods
were benchmarked on the same set of images.

F1 integral score

To evaluate the detection and localization accuracy of the models, the F1 integral score
was selected as the metric. A linear distribution of 50 cutoff values ranging from 0 to 3 px was
created. At each cutoff value, the Hungarian method [88] was used to match the ground truth
and predicted coordinates with Euclidean distances below the given cutoff. The trapezoidal
rule was then used to integrate the F1 score curve (see Figure 3.4). The integrated value was
normalized to the maximum area, resulting in a minimum score of 0 and a maximum score of 1.
The algorithmic overview is described in Supplementary Algorithm 1, and the implementation
can be found in deepBlink’s source code under deepblink.metrics.f1_integral.
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Root mean square error

The definition of Root Mean Squared Error (RMSE) was as follows: at a cutoff value of 3
px, calculate the mean Euclidean distance of all predicted coordinates that are assigned to a
ground truth coordinate, which are considered true positive.

RMSEpŷ, yq “

gffe
nÿ

i“1

pŷi ´ yiq2
n

(3.1)

3.4 Results and discussion

Here, deepBlink is presented as a novel neural network-based tool for the detection and
localization of diffraction-limited spots. Images with varying background brightness levels and
spot qualities can be batch-processed using deepBlink without the need for manual thresh-
old adjustments. Spot detection and localization can be performed on images using a pre-
trained model through deepBlink’s interface (Figure 3.2, steps 5-9). To facilitate new users,
pre-trained models can be downloaded within deepBlink (Figure 3.2, step 4). Additionally,
custom models can be trained on labeled data (i.e. images and their corresponding spot-
coordinate annotations) through deepBlink (Figure 3.2, steps 1-3). The plug-and-play software
architecture with a central configuration file allows experienced deep learning practitioners to
easily adjust existing functionalities or add new ones to customize training. A video tutorial
(https://youtu.be/vlXMg4k79LQ) is provided with instructions on how to install and use deep-
Blink.
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Figure 3.2: An overview of deepBlink’s functionality. A pre-trained model is required for us-
ing deepBlink, which can be obtained by either training from scratch with custom images and
coordinate labels (1-3) or by directly downloading it (4). To predict spot coordinates on new
data, deepBlink takes in raw microscopy images (5) and the pre-trained model (6) and gen-
erates predictions (7), which are saved as a CSV file (8). The output CSV file can be easily
integrated into further analysis workflows (9). As an example, a smFISH analysis is shown
with blue indicating DAPI staining.

The U-Net-based network architecture [60] used by deepBlink maps raw microscopy data
onto smaller regions called "grid-cells". This approach is similar to the region-based bounding-
box predictions originally developed in the YOLO architecture [55]. The input xy coordinates
are converted into a nˆnˆ3 grid, where the first layer indicates whether a grid-cell contains a
spot or not, and the second and third layers provide the x and y positions, respectively, relative
to the grid-cell. While the size of the grid cells can be varied depending on spot density, a
size of 4 ˆ 4 pixels in the input image yields good results across all tested datasets (see
Figure 3.3). This size was found to strike a nice balance between too sparse labels leading to
a class imbalance favoring the "no spots" case, and having multiple spots in one grid cell that
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Figure 3.3: Relationship between cell size and F1 integral score at low, mid and high spot
densities for the Receptor dataset.

cannot be regressed to [89]. Images with higher spot densities perform better even at smaller
cell sizes, while larger cell sizes increase the risk of one grid-cell containing multiple spots. In
the datasets tested, a cell size of 4 resulted in only around 0.0003% of grid-cells containing
more than one spot (Figure 3.5). Each layer in the U-Net architecture contains standard 2D
convolutional layers as well as a squeeze and excitation block [39]. This is a form of attention
and will be discussed in the context of NLP.

For training, some key components are a small batch size of 2, the AMSGrad stochastic
optimizer [90], a large number of 200 training epochs, and a custom loss function. The batch
size determines the number of samples seen by the network per weight update. Here, a core
limiting factor not warranting any increases is the typical GPU memory size with large image
sizes (512 ˆ 512 px). However, smaller batch sizes have been shown to improve a model’s
generalizability [91]. The AMSGrad [90] optimizer was used which has been reported to fix a
convergence issue with Adam-based optimizers. Specifically, AMSGrad uses the maximum of
past squared gradients compared to Adam’s exponential average. Although not the most sig-
nificant impact, deepBlink still benefited from improved training stability and slightly enhanced
performance. A large number of 200 epochs (i.e. iterations over all training data) could be
chosen because of the heavy regularization employed which significantly reduced overfitting.
This ensures that most users will not have to manually train for longer periods based on the
dataset at hand. Lastly, a custom loss function was employed:
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Lclass “ 1 ´ 2|ŷclass ¨ yclass|
|ŷclass| ` |yclass|

Lloc “

gffe
nÿ

i“1

pŷloc,i ´ yloc,iq2
n

L “ Lclass ` 2 ¨ Lloc

The dice loss Lclass was applied to the first output layer corresponding to the spot prob-
ability. Compared with binary cross-entropy, the dice loss generally performs better in class
imbalances [92]. The RMSE error Lloc, the square root of the MSE penalizing larger errors
less severely, was applied to the spot coordinate returning layers. The final loss function,
denoted by L, was obtained by combining the individual loss functions with a weight of 2 as-
signed to the RMSE term. This implies that the localization error was given greater importance
in the overall loss function.

To measure the impact of these individual components in the network, ablation experi-
ments were conducted, wherein each element was removed to assess its effect on model
performance (Table 3.1). The most significant factor in improving model performance was the
usage of dice loss. The emphasis on localization loss over detection loss also contributed to
higher model performance. This may be due to the network’s greater difficulty in regressing
spot coordinates compared to detecting spot-containing grid-cells. Another significant factor
was the inclusion of the squeeze block, which allows for finer adjustments on critical features
by scaling convolutional feature maps [39]. Although other architectural blocks, such as incep-
tion [37] and residuals [8], have been used in similar computer vision tasks [93], they did not
result in significant performance improvements. Maintaining a constant number of filters (64)
across each layer of the network produced better results than the typical increase/decrease
in filters for each downsampling/upsampling step, respectively, indicating that higher-level fea-
tures found in deeper layers were less important for spot detection. This trade-off resulted in
the selection of 64 filters for the network. In addition, the reduction of overfitting by spatial
dropout layers [33] was reflected in decreased performance upon ablation. Finally, the bottom
skip connection may allow for easier gradient flow, similar to residual blocks, if skipped layers
do not contribute to overall accuracy.
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Table 3.1: Ablation table on the smFISH and Receptor datasets showing F1 integral scores
(mean ˘ standard deviation) and percentage decrease (%-dec) upon removal of singular
features. Features were sorted in descending order of mean percentage decrease. The
"Replacement" column describes how each feature was replaced.

smFISH Receptor Mean

Replacement Score %-dec Score %-dec %-dec

Full network 0.905 ˘ 0.145 0.683 ˘ 0.309
Dice Loss BCE 0.806 ˘ 0.196 10.990 0.639 ˘ 0.347 6.460 8.730
RMSE Weight 1{10 0.856 ˘ 0.129 5.450 0.675 ˘ 0.304 1.160 3.310
Squeeze Block Remove 0.893 ˘ 0.140 1.300 0.656 ˘ 0.317 3.930 2.620
Filters 2n 4 0.885 ˘ 0.145 2.200 0.673 ˘ 0.301 1.450 1.830
Spatial Dropout Dropout 0.900 ˘ 0.143 0.610 0.666 ˘ 0.309 2.430 1.520
RMSE Weight 1{2 0.890 ˘ 0.135 1.670 0.678 ˘ 0.307 0.700 1.190
Filters 2n 5 0.890 ˘ 0.144 1.610 0.680 ˘ 0.309 0.450 1.030
Bottom Skip
Connection

Remove 0.895 ˘ 0.170 1.120 0.680 ˘ 0.308 0.370 0.750

Batch Size 1 0.900 ˘ 0.148 0.570 0.677 ˘ 0.309 0.850 0.710
Filter
Arrangement

Symmetrical 0.897 ˘ 0.141 0.850 0.679 ˘ 0.309 0.560 0.710

Convolutional
Blocks

Residual 0.903 ˘ 0.147 0.210 0.675 ˘ 0.311 1.080 0.650

Optimizer ADAM 0.894 ˘ 0.154 1.190 0.682 ˘ 0.312 0.060 0.630
L2
Regularization

Remove 0.896 ˘ 0.165 1.020 0.682 ˘ 0.310 0.060 0.540

Conv2D
Activation

ReLu 0.897 ˘ 0.153 0.900 0.683 ˘ 0.312 -0.010 0.450

Convolutional
Blocks

Inception 0.898 ˘ 0.137 0.740 0.683 ˘ 0.309 0.000 0.370

Filters 2n 7 0.903 ˘ 0.146 0.200 0.680 ˘ 0.312 0.400 0.300
Batch Size 4 0.902 ˘ 0.150 0.330 0.682 ˘ 0.309 0.090 0.210

Once trained, to compare different models or methods, a metric independent of the loss
function is typically used. Here, since the scoring is performed on sets of xy coordinates which
has not been done before, a new metric termed the "F1 integral score" was created. The F1
integral score takes into account both spot detection accuracy (i.e. how many spots were
detected) as well as spot localization precision (i.e. how close to the ground truth true positive
spots are). The score ranges between zero and one with one being perfect prediction and all
spots assigned and zero being that no spots have been predicted within a 3px radius of the
ground truth. The algorithmic overview of the F1 integral score can be found in Supplemental
Algorithm 1, a more intuitive description is below:

• The Euclidean distance (
a

px1 ´ x2q2 ` py1 ´ y2q2) is calculated between all coordinate
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pairs.

• At a given pixel-cutoff, a linear sum assignment is performed linking one and only one
prediction to a ground truth based on the precomputed Euclidean distance.

• The resulting assignments are used to count true positives (tp), false positives (fp), and
false negatives (fn).

• These values are used to calculate the F1 score:
recall “ tp{ptp ` fn ` ✏q
precision “ tp{ptp ` fp ` ✏q
f1 “ p2 ˚ precision ˚ recallq{pprecision ` recall ` ✏q

• This is repeated for a total of 50 cutoffs linearly distributed between 0 and 3 pixels.

• The area below this resulting curve (pixel cutoff vs. F1 score) is calculated using the
trapezoidal rule of calculus. This value is normalized by the total area resulting in a
score between 0 and 1.

To evaluate deepBlink’s performance against previously published methods, a novel metric
called the "F1 integral score" was developed that considers both spot detection and localiza-
tion accuracy (see Methods and Figure 3.4). The F1 integral score ranges from zero to one,
with perfect prediction being represented by a score of one and no predicted spot within a
3px radius of the ground truth spot positions represented by a score of zero. Furthermore,
the classical F1 score with a 3px cutoff was used to evaluate detection efficiency together
with the RMSE to evaluate localization precision. The F1 score measures the accuracy with
which true positive spots are detected in a radius of 3px. The RMSE was calculated only for
true positive spots and increases as localization precision decreases, with perfect localization
being represented by an RMSE of zero.
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Figure 3.4: F1 score as a function of cutoffs on all datasets across and methods. Shaded
areas correspond to the confidence interval of 95%.

To assess the performance of deepBlink on a range of spot sizes, shapes, densities, and
SNRs, two microscopy datasets were employed that were manually labeled (smFISH [86] and
SunTag live cell single particle tracking [87]) and four synthetic datasets (a custom Particle
dataset generated using [85] and the Microtubule, Vesicle, and Receptor datasets from the
ISBI particle tracking challenge [84]). Figure 3.5 presents sample images from each dataset.
To minimize the labor-intensive nature of manual labeling, the number of labeled images re-
quired to achieve marginal improvements in performance when more images are added was
assessed. As seen in Figure 3.6 A and B, results show that a training set size of about 100
images is sufficient for achieving acceptable prediction quality on datasets with narrow SNR
distributions. However, datasets with broader SNR distributions require more labeled training
examples to capture the greater variability, as observed in Figure 3.6 A and C.

The performance of deepBlink was compared against a popular classical method and a
state-of-the-art deep learning-based method. The Laplacian of Gaussian (LoG) is used by
TrackMate [70], which requires the setting of manual thresholds on an image-by-image basis
for highly variable datasets. DetNet [83], a more recent deep learning-based method, has
been shown to perform well on the synthetic ISBI datasets. Hyperparameters for both bench-
marking methods (TrackMate and DetNet) were optimized on every dataset individually (see
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Figure 3.5: Representative images for all six datasets with their corresponding prediction.
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Figure 3.6: The impact of dataset size on the performance of the model. A displays the
correlation between the size of the training set and the F1 integral score on the identical
holdout test set, demonstrating this relationship for both the smFISH and Receptor datasets.
B and C present the distribution of SNR throughout the entire dataset for the smFISH and
Receptor datasets, respectively.
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Table 3.3: F1 integral score (mean ˘ standard deviation) results for three methods across six
datasets. Statistical significance was determined by a one-sided Wilcoxon signed-rank test
(deepBlink greater than) with **: p < 1e´2, ****: p < 1e´4. Size of test set: 129 smFISH, 105
SunTag, 64 Particle, 240 Microtubule, 240 Receptor, and 240 Vesicle.

TrackMate DetNet deepBlink

R
ea

l smFISH 0.865 ˘ 0.177 **** 0.442 ˘ 0.250 **** 0.905 ˘ 0.145
SunTag 0.652 ˘ 0.328 ** 0.036 ˘ 0.040 **** 0.712 ˘ 0.279

S
yn

th
et

ic Particle 0.941 ˘ 0.008 **** 0.828 ˘ 0.014 **** 0.944 ˘ 0.008

Microtubule 0.380 ˘ 0.228 **** 0.298 ˘ 0.149 **** 0.637 ˘ 0.261
Receptor 0.606 ˘ 0.344 **** 0.517 ˘ 0.258 **** 0.682 ˘ 0.310
Vesicle 0.459 ˘ 0.198 **** 0.520 ˘ 0.245 **** 0.732 ˘ 0.259

Average 0.651 ˘ 0.214 0.440 ˘ 0.159 0.769 ˘ 0.210

Methods) to improve the fairness of the comparison, while deepBlink parameters remained
consistent.

All datasets were analyzed, and it was found that deepBlink significantly outperformed other
methods on average (Table 3.3). It was observed that deepBlink demonstrated excellent per-
formance on all datasets for both detection (average efficiency above 85%, Supplementary
Table S2) and localization (average error below 0.5 pixels, Supplementary Table S3). The
performance of TrackMate, which utilizes LoG filters for detecting and localizing spots, slightly
exceeded deepBlink’s performance in detection efficiency on the Particle dataset and local-
ization precision on the Receptor dataset. However, deepBlink was found to outperform Track-
Mate on other particle-like datasets, namely the experimental smFISH and SunTag datasets,
presumably because experimental microscopy images have higher image-to-image variabil-
ity. In contrast, deepBlink outperformed DetNet, a more recent deep learning-based method,
across all datasets for both detection and localization. These findings indicate that deepBlink
is more accessible for a wide range of applications without the need for dataset-specific tuning.
Additionally, fitting a Gaussian function on the original input data initialized by deepBlink’s pre-
diction output did not demonstrate any improvement in localization (Supplementary Table S3),
further supporting deepBlink’s localization precision.

In addition to localization and detection performance, deepBlink was also compared to
TrackMate and DetNet in terms of execution time. The execution time of the methods was
compared on a set of sample images, and it was found that deepBlink was slightly slower than
TrackMate and DetNet (TrackMate: 30 ± 6 ms, DetNet: 253 ± 31 ms, deepBlink: 502 ± 27
ms). However, since TrackMate requires manual adjustment of parameters on an image-by-
image basis, the gain in execution speed is offset by the time required for manual parameter
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Figure 3.7: The F1 integral scores for all three methods were calculated at different spot
densities and image SNRs for the A Microtubule, B Receptor, and C Vesicle datasets.

adjustment. On the other hand, DetNet is marginally faster than deepBlink, but its performance
is markedly worse.

To investigate the effect of spot densities and SNRs on detection performance, the Micro-
tubule, Receptor, and Vesicle datasets were divided into categories based on official cate-
gories from the ISBI particle tracking challenge (see Methods). It was observed that spot
density and SNR generally do not affect the performance of deepBlink, except for very low
SNRs, where no model is able to perform well (Supplementary Table S4, Supplementary Fig-
ure S1, and Figure 3.7).

In summary, deepBlink enables the automated detection and accurate localization of diffraction-
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limited spots in a threshold-independent manner. The software comes with an easy-to-use CLI
that allows both novice and expert users to efficiently analyze microscopy data. All pre-trained
models can be downloaded free of charge, and the software has been benchmarked on six
publicly available datasets containing synthetic images, including smFISH and live cell (Sun-
Tag) imaging data. These datasets feature a variety of spot sizes, shapes, densities, and
SNRs. We demonstrated that deepBlink outperforms all benchmark methods in detection and
localization across these datasets. This improved detection efficiency and localization preci-
sion can enhance current particle tracking analyses and make image processing more reliable
and reproducibleSNRs.

3.5 Future developments in spot detection methods

Since deepBlink’s publication in 2021, there have been a handful of other methods that
perform similar functions but are substantially different to deepBlink:

• N2V2: N2V2 [75] provides an innovative new approach to denoise different types of im-
ages, compared to previous approaches [76], it does not require a set of high-resolution
images for training making it more suitable for biomedical imaging. N2V2 can be com-
bined with traditional, mathematical operator-based spot detection methods, however,
subsequent settings of parameters are still prone to wrongful detections in areas of
varying intensities as was the case in deepBlink’s benchmarking with TrackMate [70].

• Radial Symmetry-FISH (RS-FISH): RS-FISH [94] is an alternative Gaussian fitting
method. While improving the detection efficiency and processing speed compared to
other methods, there are two key differentiators. First, the continued reliance on thresh-
olds makes runtime detection subjective and prone to errors and negates the time ben-
efits achieved by a faster run-time. Secondly, their comparison with deepBlink did not
involve any custom-trained models and excluded benchmarking on the only real data,
which negated the key advantage of deepBlink.

• DeepSpot: DeepSpot [95] is another neural network-based architecture to enhance
spots specifically which aims to perform spot enhancement enabling traditional spot
detection downstream. In their benchmarking, deepBlink outperformed DeepSpot on
real data.

The biggest usability downside of the current version of deepBlink is the reliance on a pre-
trained model specific to the dataset at hand. While different microscope settings and cellular
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conditions are generally not an issue, it still poses a reasonable up-front investment to set up
a new analysis. There are two key approaches to address this shortcoming. First, a public
database should be established for all users to be able to contribute labelled datasets and (if
data privacy is an issue) the trained model. Secondly, unsupervised approaches may be ex-
plored to not specifically reduce data requirements in general but reduce time spent labelling
by simply providing images without and images with spots. Although unsupervised object de-
tection methods have shown great promise, they are still in the early stages of development
and have not yet reached the level of performance achieved by supervised approaches. As re-
search in this area continues, unsupervised methods will likely play an increasingly important
role in various computer vision tasks enabling an unsupervised future for deepBlink.

3.6 Example use cases of an automated pipeline

With the advent of modern fluorescence microscopy, large amounts of data can be created
with ease. To extract quantitative information, these images have to be analyzed objectively.
In the past, manual analysis was often the only option due to the lack of sophisticated com-
putational techniques and the complexity of the images themselves. When performed in a
fully automated fashion, it enables researchers to analyze large quantities of data in a shorter
amount of time and also eliminates the subjective bias that can be introduced by manual
analysis.

In the upcoming chapter, the diverse range of applications for deepBlink will be explored
in automated pipelines for various cellular microscopy datasets. All subsequent examples will
be using the Python Application Programming Interface (API). However, deepBlink has also
been made accessible via a straightforward CLI and a Konstanz Information Miner (KNIME)
node (for prediction purposes only).

3.6.1 Single molecule FISH analysis in cells

A prototypical experiment requiring analysis of imaging data is smFISH. The principle of
smFISH involves the use of short (typically 20-50nt long) oligonucleotide probes labeled with
fluorophores that hybridize to a complementary target sequence of interest (see Appendix C).
Each target Ribonucleic Acid (RNA) is visualized as a discrete fluorescent spot, and can thus
provide information on RNA abundance and localization. By designing probes specific to dif-
ferent RNA species using commercial solutions or open-source alternatives such as eFISHent
(see Appendix B), smFISH can be used to simultaneously visualize and quantify multiple RNA
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molecules in a single sample. The technique is highly sensitive and allows for the detection
of low-abundance transcripts, making it a valuable tool for studying gene expression and reg-
ulation at the single-cell level. Typical tasks in smFISH image analysis are cellular segmen-
tation, and detection of RNA foci as well as potential marker segmentations when combined
with Immunofluorescence (IF). An example analysis workflow relying on mathematical based
thresholding (here Otsu [96]) for cellular and marker segmentation as well as a custom-trained
deepBlink model for spot detection is shown in Figure 3.8. By lazily parallelizing this analysis,
a typical experimental dataset consisting of 200+ images can be run in less than 10 minutes
compared to multiple hours in a more manual approach.

Input image – 3 x 1200 x 1200 Spot detectionCellular segmentation Marker detection

Figure 3.8: An example image of an extensible FISH-IF analysis workflow including both
nuclear and cytoplasmic segmentation, spot detection, and segmentation of other channels.

3.6.2 Live cell SunTag analysis

Another common experiment using live cells is the analysis of stellar explosion SUperNova
tag (SunTag) data. For SunTag, a repeated array expressing short GCN4 peptides is inserted
into the mRNA of interest and - once translated - can be bound by co-expressed fluorescently
labeled antibodies. Simultaneously, mRNAs are visualized in a different fluorescent color
using the MS2-MCP system [97]. Once expressed, the SunTag system can be used to track
the movement and localization of target proteins on a sub-cellular scale, providing insights
into molecular dynamics and protein function (for more detail see Appendix A). This technique
has been used to study a variety of cellular processes including translation [98] and mRNA
trafficking [87]. For automated analysis of SunTag movies (Figure 3.9), only the cytoplasm
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of cells is segmented using Cellpose [71]. Next, in both MS2 and GCN4 channels, spots
are detected and tracked over time using two custom-trained deepBlink models. One key
advantage of using deep learning-based models is that they do not detect any false positive
spots in the high-intensity regions of the nucleus by selectively training on cytoplasmic spots
only. Thereby, traditionally difficult-to-segment nuclei do not have to be excluded. Lastly, spot
tracks are colocalized to provide insights into active translation sites.

Input image – 2 x 30 x 1024 x 1024 Cytoplasmic segmentation Spot detection and tracking Track co-localization

Figure 3.9: An example image illustrating the standard SunTag analysis workflow including
cytoplasmic segmentation, spot detection, and tracking in both the MS2 and GCN4 channel,
followed by track co-localization.

3.6.3 Single molecule FISH analysis in brain tissue

An expansion of traditional cellular smFISH involves the analysis of Drosophila
melanogaster brains. Here, rather than a single (typically projected) 2D plane, a 3D image is
required to capture the 3D organization of brains. Typical tasks involve the segmentation of
very densely packed cells, spot detection of smFISH signal, and marker segmentation to more
easily differentiate neurons. As shown in Figure 3.10, cellular segmentation is also done us-
ing Cellpose. Any non-deep learning-based tools are generally unable to differentiate closely
packed cells from one another. deepBlink is employed for spot detection by iterating over all
z-stacks followed by Non Maximum Supression (NMS). The basic idea behind NMS is to com-
bine all detected spots in the z-stacks after examining if they are overlapping. The suppression
of overlapping spots is done by keeping only the candidate with the highest intensity. A sim-
ple binary segmentation model can be trained to detect markers across all stacks, which can
be further optimized by using pre-trained models on large image collections, thereby reduc-
ing the need for extensive training labels. Here, an Inception achitecture [37] pre-trained on
ImageNet [10] was fine-tuned on manually labeled segmentation maps. By integrating these
components, researchers can analyze a considerable number of fly brains each day making
sample preparation and imaging the biggest bottleneck.
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Input image – 3 x 255 x 2048 x 2048 Spot detectionCellular segmentation Marker detection

Figure 3.10: An overview of an exemplary workflow to analyze Drosophila melanogaster
brains including cellular segmentation, spot detection, and marker detection.

Taken together, modern tools typically relying on deep learning are enabling researchers to
analyze images more efficiently and in a less biased fashion. This has led to various break-
throughs, where researchers can now study large quantities of images with more confidence
and accuracy [99, 100]. In addition, these tools have opened up new possibilities for identi-
fying subtle patterns and relationships that were previously undetected, allowing for deeper
insights into complex biological processes. As technology continues to advance and deep
learning models become more sophisticated, the potential for image analysis in research will
only continue to grow.
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Protein-protein interaction prediction

4.1 Protein structure prediction

The protein folding problem is one of the most challenging problems in computational bi-
ology involving the prediction of the 3D structure of a protein given only its amino acid se-
quence. The tertiary structure of a protein is essential for understanding its function and
facilitates designing specific drugs. The challenge arises from the fact that the number of
possible conformations a polypeptide can adopt is astronomically large, making an exhaus-
tive search computationally infeasible. Additionally, the energy landscape of protein folding is
complex, with multiple local minima, making it difficult to find the global energy minimum that
represents the correct folded structure. The problem is further complicated by the fact that
experimental techniques for determining protein structure, such as X-ray crystallography and
cryogenic electron microscopy, are time-consuming, expensive, and not always feasible for all
proteins. Therefore, developing accurate and efficient methods for predicting protein structure
from sequence data is a major research goal in computational biology.

Natural Language Processing (NLP) refers to the field of computer science concerned with
giving computers the ability to understand text and spoken words similar to the way human
beings can. Since protein sequence can be interpreted in a similar way replacing words with
amino acids, advancements in the field of NLP have opened up new possibilities for analyzing
and predicting protein structure.

4.2 Natural language processing

NLP is a highly versatile field with numerous applications. Examples of these applications
include spelling error identification, which can flag errors such as

::::::
theses, and machine trans-

lation, which utilizes an encoder-decoder architecture to translate text from one language
to another [101]. Here, the source language is typically encoded into a fixed-length vector
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representation, similar to the one used in U-Net models, and then decoded to generate a
translation in the target language. Advancements in NLP have led to significant improvements
in speech-to-text translation, making it more accurate and reliable. As a result, individuals
who may struggle with reading or have limited literacy skills can now benefit from modern
technology [102].

NLP models can also be combined with computer vision approaches to solve complex prob-
lems such as visual question answering and image captioning. In visual question answering,
an image and a natural language question are given to the model, which then provides an
answer to the question [103]. In image captioning, an NLP model generates a textual descrip-
tion of an image. This technology has been particularly helpful in allowing visually impaired
individuals to access news articles, social media posts, and other visual content that would
have been difficult to understand without assistance, helping to bridge the gap in accessibility
for these individuals [104].

4.2.1 Tokenization: from text to number

The first part in most NLP applications involves converting data into a numerical format for
models to understand. This process called tokenization breaks down raw text into smaller
meaningful units, called tokens. Tokens can be words, subwords, or characters, depending on
the specific task and the approach taken. The tokenization process typically involves several
steps. First, text is split into individual words or subwords, known as the tokenization unit. For
example, the sentence "I love playing basketball" could be split into "I", "love", "playing", and
"basketball" when the tokenization unit is set to words. In some cases, subword tokenization
can be used to handle words not present in the vocabulary or to better capture the underlying
meaning of the text. Here, words are split into smaller subunits based on their frequency
of occurrence. For example, the word "basketball" might be split into "basket" and "ball",
with each subword representing a separate token. After the tokenization unit is chosen, the
next step is to clean and normalize the text. This involves removing punctuation, special
characters, and other noise not relevant to the task at hand. For example, converting text to
lowercase and replacing words with their canonical forms (e.g. "am" to "are"). Once the text
has been cleaned and normalized, the final step is to map each token to a unique integer ID
corresponding to its position in the vocabulary.
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4.2.2 Embeddings: creating a vector representation

As part of the actual network, the embedding component of an NLP network refers to the
process of representing words or phrases in a continuous, high-dimensional space. Com-
pared with tokenization which divides text into individual units, embedding maps these tokens
to high-dimensional vectors, enabling them to be processed by NLP algorithms. One of the
most basic approaches to embedding is one-hot encoding. In this method, each word in the
vocabulary is assigned a unique vector of all zeros except for a one in the position corre-
sponding to the word’s index in the vocabulary. One-hot encoding is simple and efficient but
suffers from the curse of dimensionality since the resulting vectors are very high-dimensional
and sparse. More sophisticated approaches to embedding involve learning the embeddings
during training. Here, the embeddings are represented as vectors in a continuous space and
are updated using backpropagation, so that similar words are mapped to similar regions in the
embedding space. The resulting embeddings capture semantic relationships between words,
such as synonyms and antonyms.

Some early models such as Word2Vec [48], which consists of a shallow, two-layer neural
network use these embeddings to learn associations between words. This allowed for simple
word substitutions and analyses of semantic and syntactic relationships, where for example,
"King" - "Man" + "Woman" produces a vector representation close to "Queen".

4.2.3 Core NLP architectures

Recurrent Neural Networks (RNNs) are a class of neural networks designed for sequential
data processing that have a feedback loop that enables information to persist over time. The
core idea behind RNNs is to use the same set of weights contained in one "cell" across all
time steps to compute the output of the network (see Figure 4.1). At each time step, the input
is fed into the network, along with the previous hidden state A. The input can either be a new
token xt or the previous output yt´1 (e.g. in the case of text generation). The hidden state is
a vector that represents the network’s "memory" of previous inputs and is updated iteratively.
Computation, therefore, takes into account information across past events. The most common
type of an RNN cell is the Long-term short-term memory (LSTM) cell [105], which is designed
to address the problem of vanishing gradients that occur in traditional RNNs. LSTMs use
three gates termed input, forget, and output to control the flow of information through the cell,
allowing it to selectively remember or forget information over time. CNNs have also been
adapted for use in NLP tasks such as sentiment analysis [106], text classification [107], and
others by treating text as a 1D input signal.
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Figure 4.1: An overview of the functionality of a Recurrent Neural Network. Adapted from:
colah.github.io and stanford.edu

While RNNs have been applied successfully in many areas, they have some inherent limita-
tions such as slow computation due to repeated application of the same weights for each time
step and the inability to capture longer-term dependencies and future events, resulting in the
need to explore alternative options. As a solution, Transformer architectures have emerged
as a newer and widely-adopted alternative. They use an attention mechanism introduced by
Vaswani et al. in 2017 [108] to focus on the relevant parts of the input sequence during en-
coding and decoding. This enables them to capture long-range dependencies in text more
efficiently than RNNs or LSTMs. Specifically, the Transformer architecture is based on the
concept of self-attention. The self-attention layer takes a sequence of embeddings as input
and calculates a set of attention weights for each input token based on its relationship with all
the other tokens in the sequence. These attention weights are used to compute a weighted
sum of the embeddings, which is passed through a feedforward neural network to produce
the output for that token. The Transformer architecture also includes residual connections and
layer normalization helping to alleviate the vanishing gradient problem.

4.2.4 Modern examples of NLP networks

Modern architectures primarily rely on transformers due to their advantages described
above. Also, most architectures are improved using unsupervised pre-training strategies on a
large corpus of text such as Wikipedia [109] or parts of the Internet [110]. The following are
some of the most popular methods:

• Bidirectional Encoder Representations from Transformers (BERT) [103] uses bidirec-
tional training to generate pre-trained language representations. Specifically, it employs
masked language modeling and next-sentence prediction to generate contextualized
word embeddings by unsupervised training on a large corpus of text.
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• Embeddings from Language Models (ELMO) [111] is another transformer-based archi-
tecture that uses a deep bidirectional language model to generate contextual word em-
beddings. These embeddings capture both syntactic and semantic features of words.
This is done using a task called "language modeling", where it tries to predict the next
word in a sentence given the previous words.

• Generative Pre-trained Transformer (GPT) [112, 110] also tries to predict the next word
in a sentence using autoregression. Compared with ELMO, GPT is uni-directional only
allowing it to take into account the past tokens. Additionally, the changes in architecture
makes GPT suitable for language generation as compared to tasks like text classification
for BERT.

Other modern transformer-based architectures include XLNet [113], RoBERTa [114], and
T5 [115]. These models build on the success of BERT and GPT and use various techniques
such as masked language modeling and transfer learning to improve performance on a range
of tasks. One of the most prominent recent examples is ChatGPT [15] which revolutionized
the field of NLP by achieving state-of-the-art performance on a variety of tasks, including
language modeling, question answering, and dialog generation.

ChatGPT is a state-of-the-art language model that uses deep learning tech-
niques to generate human-like responses to textual inputs. Trained on a massive
amount of text data, ChatGPT is able to understand the context of a conversation
and generate coherent and relevant responses. It works by using a transformer
architecture, which allows it to handle long-range dependencies in text and learn
relationships between words and phrases. ChatGPT can be fine-tuned for specific
tasks, such as question-answering or text summarization, making it a versatile tool
for natural language processing applications. Overall, ChatGPT is a powerful tool
for generating human-like language and advancing the field of natural language
processing.

This paragraph above was generated by ChatGPT after asking "Describe chatGPT in one
paragraph" without any editing.

4.2.5 AlphaFold 2

AlphaFold 2 (AF2) is a transformer-based model predicting protein folding structures with
high accuracy [116]. It was developed by a team of researchers at DeepMind in London,
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and its performance has been described as a breakthrough in the field of computational bi-
ology [117]. The network comprises two main stages: the trunk, which processes the inputs
using a novel block called Evoformer to produce an array that represents a processed Multiple
Sequence Alignment (MSA) and an array that represents residue pairs; and the structure
module, which introduces an explicit 3D structure for each residue of the protein.

Specifically, the input amino acid sequence is embedded as a MSA and pair representa-
tion before iteratively being passed through the Evoformer block. Here, the network uses new
mechanisms to exchange information that enables direct reasoning about spatial and evo-
lutionary relationships. The structure module then operates on the pair representation and
the MSA representation from the trunk. This module is also run iteratively and outputs the
predicted atom coordinates and per-residue confidence scores. Extensive parametrization is
used to ensure that structures are physically feasible.

4.3 Predicting the effect of point mutations on bZIP domain-
containing protein-interaction

A key question in human genetics and evolutionary biology is how mutations in different
genes combine to alter phenotypes. Efforts to systematically map genetic interactions have
mostly made use of gene deletions [118]. However, most genetic variation consists of point
mutations of diverse and difficult-to-predict effects [119]. A comprehensive view of how point
mutations in two genes combine to alter a molecular phenotype is therefore required.

Using a new sequencing-based protein interaction assay - Deep-sequencing-based Protein
Fragment Complementation (deepPCA) - the effects of more than a million pairs of point muta-
tions were measured [120]. deepPCA is a method that uses the principles of protein fragment
complementation to detect Protein-Protein Interactions (PPIs) in living cells. In this approach,
both interaction partners are each fused to a complementary fragment of a methotrexate-
resistant Dihydrofolate (DHF) reductase reporter. When the two partners interact with each
other, they bring the two fragments of the reporter protein in close proximity, leading to the
reconstitution of a functional reporter protein. Since cells are grown in a selective medium
containing methotrexate, only cells containing the reconstituted reporter protein are resis-
tant to methotrexate and can grow. By paired-end deep sequencing, the changes in relative
populational input and output frequencies can be quantified. The resulting PPI score is a nor-
malized logarithmic Fold Change (logFC) score quantifying the interaction strength between
both proteins.
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Basic Leucine Zippers (bZIPs) domain-containing proteins (bZIP proteins) are a family of
eukaryotic transcription factors that play a crucial role in regulating gene expression. They
are comprised of two main parts: the leucine zipper and the DNA binding domain. The DNA
binding domain is typically made from a high proportion of basic amino acids, such as argi-
nine and lysine, which confer a positive charge to the protein and enable it to bind to DNA.
The leucine zipper is a conserved stretch of amino acids rich in leucine forming a coiled-coil
structure, which allows the protein to homo- or hetero-dimerize (reviewed in [121]). bZIP
proteins are involved in a variety of cellular processes, including cell growth [122], differentia-
tion [123], and stress response [124]. They regulate the expression of target genes by binding
to specific DNA sequences in the promoter region and recruiting other proteins to form tran-
scriptional complexes [125]. There are numerous bZIP proteins in mammals, including Maf,
cAMP response element-binding protein (CREB), CCAAT-enhancer-binding proteins (C/EBP),
and Activator protein 1 (AP-1). Each protein has a unique DNA-binding specificity and reg-
ulates a distinct set of target genes. For example, C/EBP proteins are involved in adipocyte
differentiation [123], while AP-1 proteins are involved in the response to environmental stres-
sors such as UV radiation and oxidative stress [124].

Due to their conserved nature and abundant interaction partners, bZIP proteins are a prime
candidate for investigating PPI. Specifically, a library of 54 wild-type human bZIP proteins was
screened in yeast against all point mutants in the leucine zipper domain (20 amino acids ˆ 40
positions ˆ 54 proteins « 38’000 mutants). This resulted in 1.6 million data points (sequence
pairs and their associated PPI score) usable for analysis.

4.3.1 Using AlphaFold 2 to predict the effect of point mutations

The simplest first approach to solving the problem of predicting PPI was to use AF2 to assist
in predicting the structure of each point mutant and use a simple linear model to combine
predicted free energy values. Specifically, all point mutants of the bZIP protein JunD were fed
through the network and refined. As can be seen from Figure 4.2A, an overlay of all JunD
mutants shows that the ↵ carbons do not differ largely from each other.

Next, to predict interaction scores between two example proteins of JunD and Fos, the
structures were predicted together using AlphaFold-Multimer [126]. After prediction, the un-
relaxed (direct output from the AlphaFold prediction model) and relaxed (minimization of “un-
relaxed” models with OpenMM+Amber forcefield, this is an optional step of the AlphaFold
pipeline) structure models were scored using Rosetta’s InterfaceAnalyzer [127]. This was
done for a total of 2500 sequence pairs and plotted against the experimentally derived logFC
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A B

Figure 4.2: A An overlay of all point mutant predictions by AlphaFold 2 of protein JunD. B
The correlation of delta G values extracted from the AlphaFold 2 prediction compared to the
ground truth experimental data.

in Figure 4.2B. As can be seen from the figure, predicted delta G values do not correlate
well with experimental scores confirming the initial expectation after the single mutant predic-
tion. Recent publications have also shown that AF2 is unable to predict the effect of point
mutations [128, 129].

4.3.2 Custom architecture search

To find a suitable model architecture, a variety of sweeps were formed which are subse-
quently described. The general architecture that was conceived is shown in Figure 4.3A. Two
sequences with tokenized amino acid sequences are passed into a network, embedded to
form a vector representation, and passed through a first set of layers with shared weights.
Subsequently, these sequence representations are combined and passed through a second
set of layers yielding a final output prediction score. The model was penalized with a MSE
loss with L1 norm against the mean logFC across experimental replicates:

MSEL1 “ 1

n

ÿ
p |y|∞

|y| ´ |ŷ|∞
|ŷ|q

2 (4.1)

All models were trained for 10 epochs with the Adam optimizer. Sweeps were performed
screening for different learning rates, model width (number of filters/heads), and model depth
(number of repetitive blocks). The score measured is the R2 score on the same validation
dataset. The R2 score, also known as the coefficient of determination, is a measure frequently
used to measure the goodness of fit of a regression model. It represents the proportion
of the variance in the dependent variable (i.e., the predicted score) that is explained by the
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independent variables (i.e., the ground truth). The R2 score takes values between 0 and 1,
where 0 indicates that the model explains none of the variability in the dependent variable, and
1 indicates that the model explains all of the variability in the dependent variable. A higher R2
score indicates a better fit of the model to the data. The R2 score can be calculated as follows:

R2 “ 1 ´
∞pyi ´ ŷiq2∞pyi ´ ȳq2 (4.2)

where ȳ is the mean of the actual values. The numerator represents the sum of squared
residuals (i.e., the difference between actual and predicted values), and the denominator rep-
resents the total sum of squares (i.e., the variance of the actual values). The mathematical
upper R2 score bound is difficult to define globally but since the experiment was performed
across multiple batches and replicates, sample means shared between batches can be scored
against each other. Depending on a threshold set for input read count, the expected maximum
R2 score lies around 0.85. Low read counts result in a higher variability and therefore make
the measured logFC less reliable.

Different core layer architectures were tested ranging from traditional RNNs, over modern
Transformers to CNNs. Unsurprisingly, as can be seen from Figure 4.3B, more modern Trans-
former and CNN architectures are significantly better than more dated RNN architectures.
However, Transformers on average perform worse than simple CNNs. This suggests that the
interaction between bZIP proteins can be efficiently captured simply by looking at local de-
pendencies rather than including more long-range interactions. All subsequent sweeps were
therefore performed using a standard CNN architecture.
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Figure 4.3: A The general architecture of the protein-protein interaction prediction model,
takes two sequences as input and passes them through multiple layers leading to a single-
valued output. B Results from an architectural sweep comparing Recurrent Neural Networks,
Transformers and, convolutional approaches. The highest validation R2 score is plotted for
each sweep. Higher values are better with the red column denoting the highest overall score.

Next, the type of embeddings were compared to one another. When running a sweep over
four different methods:

• One-hot previously described in Chapter 4.2.2 and illustrated in Figure 4.4

• Positional which adds basic information on the current sequence position to learned
token embeddings

• AminoAcid which works similarly to one-hot but instead of binary values uses a principle
component analysis describing physicochemical properties of the current amino acid

• Transformer uses the original sin/cos positional and token embeddings described in
Viswani et al. [108]. An example is shown in Figure 4.4

As is evident from Figure 4.4B, simpler methods perform better with one-hot taking a slight
lead. Preliminary experiments using a Transformer architecture and embedding layer did not
improve the score either.
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Figure 4.4: A The comparison of how one-hot encoding (top) and a learned embedding
(bottom) return a sequence.B Results from an input encoding sweep comparing simpler one-
hot and more complicated learned embeddings. The highest validation R2 score is plotted for
each sweep. Higher values are better.

Since the interaction dataset is very detailed, it can be split in different ways (see Fig-
ure 4.5). To explore different splits and therefore different levels of information the model can
see, five split methods were selected:

• Row which splits all data points randomly

• ID which keeps a mutation at a given position grouped. For example, all interaction data
points collected for JunD with a Leucine mutation in position 24 will only appear in the
train or validation set

• Mutation takes this a step further by keeping the same mutation and positional but join-
ing them between mutant proteins. In the previous example, all Leucine mutations at
position 24 will stay grouped.

• Position groups all mutations at a specific position and split them

• Protein groups the entire protein with all mutations and positions and splits them
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Figure 4.5: An overview of the different methods for splitting data ranging from more fine-
grained splitting of all data points (Row) to the coarsest protein-level split (Protein).

These splits were performed with 5-fold cross-validation with averages of run-replicates be-
ing plotted. An additional factor to consider is the number of reads in the input sample. As
is shown in Figure 4.6, the protein split routinely performs worst. However, all other methods
of splitting achieve similar scores between k-folds. This suggests that the model can predict
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Figure 4.6: Results from a dataset split sweep comparing different strategies of partitioning
data and filtering based on the total number of input reads across experimental replicates. The
model architectures and hyperparameters were kept consistent. The average and standard
deviation of validation R2 scores are plotted for a k=5 fold split. Higher values are better.

the effect of different positions and mutations within proteins but struggles to generalize to un-
seen protein sequences. Additionally, the increase in minimum read count improves validation
performance. However, higher minimum input read counts discards parts of the data making
generalizability even harder (as can be seen in the right-most protein split score).

Lastly, the best model’s predictions were plotted against the experimental ground truth (Fig-
ure 4.7). The best model consisted of 140 convolutional kernels with a kernel size of 15,
stacked three layers deep. The rather large kernel size coincides with two heptad repeats in
the bZIP proteins meaning that longer-range dependencies are generally not required. To pre-
vent overfitting, the model employed a 20% dropout rate and an L2 regularization with a weight
of 5e-7. A reasonable performance in the test dataset suggests that the model can generalize
well to unseen data and the model can capture underlying patterns and relationships between
the input features and the output variable. This indicates that the model is likely to generalize
well on new, unseen data. All plots show a deviation from a straight linear correlation around
a model prediction of zero. Taking into account input read counts (see Figure 4.8), low mean
read counts mainly accumulate in this area. This suggests that it is less of the model’s fault
for wrongful predictions but primarily for lower-quality experimental data.
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Figure 4.7: Correlation and R2 values showing the best model’s accuracy on the train, vali-
dation, and test dataset splits using the "Mutation" method and a minimum input read count
of zero.

Figure 4.8: Correlation and R2 values showing the best model’s accuracy on a random sam-
ple of 10’000 data points using the "Mutation" split method. The logarithm of average input
reads is shown as hue with all zero inputs represented as -2.

Taken together, after conducting extensive experimentation and testing, a suitable CNN
model architecture was identified that proved to be effective for predicting PPI. The model
was designed to take two sequences as input and map them onto a predicted interaction
score, based on their one-hot encodings. The best-performing model demonstrated excellent
performance during training, however, it was found to struggle with generalizing to new pro-
teins that it had not seen before, resulting in lower R2 scores during testing. This suggests that
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the model was not able to effectively capture the complex patterns and relationships present in
new protein sequences. To improve the model’s generalization performance, further research
and experimentation may be required. This could involve more extensive regularization or
data augmentation techniques to prevent overfitting, or exploring different model architectures
or hyperparameters to better capture the underlying patterns and relationships in the data.
Additionally, it may be useful to collect more diverse training data taken from a larger array of
proteins to improve the model’s ability to generalize.

4.3.3 Model introspection

Despite having a model reasonably suited for making predictions, one challenge with DL
models has always been to understand what they are learning [130]. To address this prob-
lem, a few approaches have been taken. First, weights associated with convolutional kernels
were inspected before and after training. Figure 4.9A shows the change in weights of the
first convolutional layer during the training process. For visualization purposes, a model with
a shorter kernel size of 7 was selected (Validation R2: 0.741). As can be seen, most ker-
nels have stayed relatively static but some (e.g. the fourth kernel in the first row) have had
weight changes. Due to the one-hot encoding employed, a Softmax can be applied revealing
which amino acids are weighted most heavily. The Softmax function converts these weights
into a probability distribution over the different amino acids in the sequence. As shown in
Figure 4.9B, this can be visualized as a sequence plot to illustrate the model’s "interest" at dif-
ferent positions. Compared to computer vision problems, where kernel visualizations result in
human-understandable image features, most of these plots are inherently difficult to compre-
hend. To further illustrate this problem, the left-most plot shows the kernel of a trained kernel
(standard deviation above 0.1), the central plot shows an untrained kernel, and the right-most
plot uses randomly generated probabilities.

Next, two models were trained only differing in their random seed for initialization. Both
reached an almost identical R2 score of 0.783±0.001. The activation maps from the first
convolutional layer were compared by feeding all wild type bZIP proteins through. As CNN
kernels are positionally invariant, traditional correlation methods cannot be used for compar-
ison. Instead, a Representational dissymilarity matrix (RDM) can be constructed to quantify
the similarity between the feature maps generated. The RDM is constructed by computing
the Euclidean distance between the activations. The resulting matrix provides a way to vi-
sualize the similarity relationships among the representations of each wild type bZIP protein.
Figure 4.9C shows RDMs between untrained (weights before the first optimization step) and
trained versions. As can be seen, there is more similarity in the same network as compared to
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A C

D

B

Figure 4.9: Model introspections performed on the first convolutional layer of a well-trained
model: A Kernel weight changes (before and after training). B Softmax (100) probabilities for
a trained, untrained, random kernel (from l.t.r.). C Representational dissimilarity matrix of the
activation maps from two models trained the same way but with different weight initialization.
Plotted are all wild type basic leucine zipper proteins. D Input optimization of the first layer.
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across different networks. This suggests that different representations can be found separate
from one another rather than all networks converging on a single "ground truth" source.

Lastly, the best artificial input sequence was predicted by minimizing the sum of squares
of the activation map (for a single protein). Initially, a random input sequence was Softmax
normalized to ensure only one amino acid was present at each position. The sequence was
then optimized using gradient descent to find the sequence that was most activated by the
given layer. Figure 4.9D shows that most positions in the sequence are occupied by leucine,
which is expected as bZIP proteins primarily rely on leucines to form dimers through coiled-
coil interactions. However, it is important to note that this particular protein would be unable
to form a leucine zipper in real life. The lack of a suitable "protein grammar" makes it difficult
to parameterize this input optimization and does not permit an easy, experimentally verifiable
search.

Taken together, the methods described show that even though the network can predict PPI
reasonably well, understanding how it learns remains difficult. One key challenge is finding
features for humans to interpret while having a limited understanding of protein grammar.
Nonetheless, the use of visualization techniques such as activation maps and RDMs provide
insights into the network’s ability to identify interaction partners. Additionally, the observation
that different networks do not converge on similar representations suggests that there may
be multiple solutions to the PPI prediction problem. Future work could explore ways to better
understand the learned features of the network, for example through adversarial attacks [131],
while also incorporating biological domain knowledge to guide the learning process.
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Modern microscopy methods have significantly contributed to improving our understanding
of biological systems by enabling the observation of structures and processes at increasingly
higher resolutions. However, with the increase in resolution comes an increase in data, which
poses a challenge for effective analysis and interpretation. To overcome this challenge, there
is a need for better analysis methods. Traditional mathematical operators are often used for
data analysis in microscopy studies, but have difficulties in enabling automated analysis and
can introduce thresholding bias. Furthermore, these methods can be time-consuming and
require significant expertise, which can limit their utility for large datasets. As a result, there
has been a growing interest in the use of DL tools for more efficient and accurate analysis
of microscopy data. Recently, several DL tools have been developed to enable automated
single-molecule analyses in microscopy studies. Two such tools are Cellpose and deepBlink.
Cellpose is a DL-based software that can segment cells with high accuracy. deepBlink, on
the other hand, is a DL-based software that can detect spots without the need for thresholds.
It has been shown to outperform traditional detection methods and can be used to analyze a
wide range of biological processes involving spot detection or tracking in live-cell data. Overall,
the use of DL tools in microscopy studies has the potential to revolutionize the way we analyze
and interpret data. By enabling more efficient and accurate analysis, these tools can help
researchers to gain new insights into biological systems and advance our understanding of
complex biological processes.

Additionally, an investigation was carried out on the impact of point mutations on interac-
tions between proteins belonging to the bZIP family. For the quantitative measurement of PPI,
a sequencing-based protein assay (deepPCA) was employed, which generated over a million
interaction scores of point mutations. An attempt was made to utilize AF2 for predicting the
structure; however, it proved to be unsuccessful. Instead, a custom DL-based model was
developed, which takes both amino acid sequences as input and returns a single interaction
score. The selected architecture yielded high accuracy, although it encountered challenges
while dealing with low-quality input data and did not exhibit good generalization ability to un-
seen proteins. Introspection of the results proved to be very difficult due to our lack of innate

59



Chapter 5. Summary and Outlook

understanding of protein grammar. These proof-of-concept experiments have demonstrated
the inherent advantages and drawbacks of DL models. The future applications of such models
could be facilitated for drug screenings where proteins could be designed to specifically target
other proteins, once data has been generated for a larger array of protein families.

Deep learning has shown great promise in biomedical research, particularly in image anal-
ysis and PPI prediction as described above. However, the successful integration and appli-
cation of deep learning in these domains are still subject to several key difficulties which are
discussed below in more detail.

Difficulty 1: Limited availability of high-quality data One of the primary difficulties in
biomedical research is obtaining large amounts of high-quality data for deep learning mod-
els. Privacy concerns, small sample sizes, and high variability in the data make it difficult
to generate the amount of data necessary to train deep learning models. This issue can be
addressed by improving unsupervised techniques that utilize vast amounts of data generated
directly without the need for labels. Similarly, models can also be trained on a combination of
real and synthetic data.

Difficulty 2: Complex and heterogeneous data Biomedical data, particularly in the
realm of image analysis, can be incredibly complex and heterogeneous. Variations in imaging
settings, contrast, and tissue characteristics can make it challenging to design deep learning
models that can effectively handle this variability and generalize well to new samples. As such,
there is a need for the development of more capable models that can better adapt to these
complexities. One approach to addressing this challenge is to incorporate domain knowledge
into model development which can provide a better understanding of the underlying biological
processes, which can inform the design of more robust and effective models. Another strat-
egy is to leverage transfer learning techniques, which involve using pre-trained models as a
starting point for developing new models. Transfer learning allows for the transfer of knowl-
edge and features learned from one dataset or task to another, which can greatly improve the
performance of deep learning models.

Difficulty 3: Interpretability and transparency Deep learning models are often viewed
as "black boxes" that are difficult to interpret or explain, making it challenging to understand
why a certain prediction was made or to identify potential sources of bias in the model. This dif-
ficulty is particularly relevant in biomedical research, where the interpretability of the model’s
decision can be critical to understanding analyses or improving patient outcomes. One so-
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lution to this difficulty is to develop models with more transparent architectures that enable
the identification of the model’s decision-making process. An example of such difficulties was
described in the attempt to better understand the PPI model but ultimately lacked in under-
standing protein grammar.

Difficulty 4: Integration with existing workflows and technologies Deep learning
models can be computationally intensive and require specialized hardware, which can be
a challenge in biomedical research settings. For instance, segmenting a single Drosophila
melanogaster brain using Cellpose [71] can require up to 10 GPU minutes, which translates to
more than an hour on a CPU. To overcome this challenge, it is essential to develop lightweight
models that can run on lower-end hardware or leverage cloud computing resources. Although
integrating deep learning models into existing workflows and technologies can be difficult, de-
veloping open-source tools and frameworks that support deep learning integration can ease
the process. Researchers may be accustomed to specific workflows, which can make adapt-
ing to new systems both a technological and pedagogical investment. Therefore, it is important
to weigh the upfront investments required against the potential time savings in analyses and
improved system reliability.

Difficulty 5: Ethical considerations Finally, the use of deep learning models in biomed-
ical research raises important ethical considerations, such as privacy, fairness, and potential
harm. Addressing these issues requires careful consideration and the establishment of appro-
priate safeguards when designing and applying deep learning models in this context. Ethical
considerations are highly relevant when dealing with patient data, and models should be de-
veloped with a patient-centric approach that prioritizes ethical considerations.

In conclusion, deep learning has shown great promise in biomedical research, but several
key difficulties must be addressed for its successful integration and application in tasks such
as image analysis and PPI prediction. Addressing these difficulties requires interdisciplinary
collaboration between computer scientists, biologists, and ethicists to develop solutions that
advance biomedical research while addressing the challenges that come with it.

Deep learning has the potential to revolutionize biological research by providing powerful
tools for analyzing and interpreting complex biological data. The ability of deep learning al-
gorithms to learn complex patterns and relationships in data makes them well-suited for a
wide range of applications in biology, including image analysis, genomics, drug discovery, and
personalized medicine. One of the most promising applications of deep learning in biology is
the analysis of medical images. Deep learning algorithms have been used to analyze images
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from a variety of imaging modalities, including microscopy [71], magnetic resonance imag-
ing [132], and computer tomography scans [133], with impressive results. These algorithms
can detect patterns in the images that may not be visible to the human eye and can be used
to diagnose diseases [134], monitor disease progression [135], and evaluate the efficacy of
treatments [136].

Deep learning is also being applied to genomics research, where it is being used to ana-
lyze large-scale genomic data sets. These data sets include genomic sequences [17], gene
expression data [137], and epigenomic data [138], among others. Deep learning algorithms
can be used to analyze these data sets and identify patterns and relationships that may be
relevant to disease diagnosis, drug discovery, and personalized medicine. In drug discov-
ery, deep learning can be used to predict the properties of small molecules, including their
binding affinities to proteins [139], their pharmacokinetic properties [140], and their toxicity
profiles [141]. These predictions can help researchers identify promising drug candidates and
optimize their properties for clinical use.

Overall, deep learning has the potential to transform the field of biological research by
enabling the analysis of complex data sets and the discovery of new insights into biological
systems. As the field of deep learning continues to advance, we will likely see even more
exciting applications of these powerful algorithms in biology and medicine.
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6
Supplementary Figures

Table S1: Description of network blocks in tabular format. Parameters that were not specifi-
cally listed were set to the default values of TensorFlow version 2.2.

(a) List of parameters in every "Conv2D" layer.

Parameter Value

Kernel 3x3
Kernel initializer He et al.
Padding Same
Bias regularizer L2 10´6

Kernel regularizer L2 10´6

(b) Layers in the "Convolutional block".

Layer name Operator Input

conv2d_1 Conv2D input
activation_1 LReLU conv2d_1
conv2d_2 Conv2D activation_1
activation_2 LReLU conv2d_2
conv2d_3 Conv2D activation_2
activation_3 LReLU conv2d_3

(c) Layers in the "Squeeze and excitation block".

Layer name Operator Input

gap2d GlobalAveragePooling2D input
dense_1 Dense(units = max(n//8, 1)) gap2d
activation_1 LReLU dense_1
dense_2 Dense(units = n) activation_1
activation_2 Sigmoid dense_2
multiply Multiply activation_2, input

79



Chapter 6. Supplementary Figures

Algorithm 1: Algorithmic description of the F1 integral score
Data: Two lists of coordinates ŷ (prediction), y (ground truth)

Result: F1 integral score

Function hungarian_assignment(V, W, cost):
lw = len(W )

lv = len(V )

L = min(lw, lv)

Pw = permutations(W )

Pv = permutations(V )

return pw, vq for w P Pw, v P Pv such that
∞L´1

i“0 cost(wi, vi) is minimized

Function assignment(V,W , cost, cutoff):
pv, wq = hungarian_assignment(V,W , cost)

return [(vi, wi) for vi, wi in pv, wq if cost(vi, wi) § cutoff]

Function calculate_f1_at_cutoff(ŷ, y, cost, cutoff):

pred_true = assignment(ŷ, y, cost, cutoff) /* assignment of ŷ to y */

true_pred = assignment(y, ŷ, cost, cutoff) /* assignment of y to ŷ */

tp = len(true_pred)

fn = len(ŷ) - len(true_pred)

fp = len(y) - len(pred_true)

F1 = 2 ˚ pP ˚ Rq{pP ` Rq, where

$
’&

’%

P “ tp{ptp ` fpq
R “ tp{ptp ` fnq

return F1

min_cutoff = 0

max_cutoff = 3

num_cutoff = 50

cutoffs = linspace(min=min_cutoff, max=max_cutoff, num=num_cutoff )

scores = [calculate_f1_at_cutoff(ŷ, y, euclidean_dist, c) for c in cutoffs]

F1integral = trapezoidal_rule(scores )

F1integral score /= max_cutoff /* normalize between 0 and 1 */
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Chapter 6. Supplementary Figures

Table S2: F1 scores at 3px cutoff of deepBlink and benchmarking methods (mean ± standard
deviation). Shows values for three methods across six datasets. Higher value is better.

TrackMate DetNet deepBlink
R

ea
l smFISH 0.902 ˘ 0.183 0.595 ˘ 0.319 0.942 ˘ 0.141

SunTag 0.728 ˘ 0.362 0.050 ˘ 0.053 0.796 ˘ 0.297

S
yn

th
et

ic Particle 0.998 ˘ 0.002 0.977 ˘ 0.014 0.997 ˘ 0.002

Microtubule 0.623 ˘ 0.366 0.456 ˘ 0.169 0.795 ˘ 0.214
Receptor 0.683 ˘ 0.367 0.658 ˘ 0.288 0.776 ˘ 0.300
Vesicle 0.617 ˘ 0.216 0.674 ˘ 0.258 0.861 ˘ 0.213

Average 0.759 ˘ 0.250 0.568 ˘ 0.183 0.861 ˘ 0.195
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Chapter 6. Supplementary Figures

Table S3: RMSE values of deepBlink and benchmarking methods (mean ± standard devi-
ation). RMSE was only calculated on true positive spots. Shows values for three methods
across four synthetic datasets, where the exact spot position is known. Lower value is better.

TrackMate DetNet deepBlink + Gaussian deepBlink

Particle 0.167 ˘ 0.020 0.438 ˘ 0.016 0.207 ˘ 0.021 0.157 ˘ 0.020

Microtubule 1.017 ˘ 0.221 0.887 ˘ 0.228 0.850 ˘ 0.223 0.588 ˘ 0.339
Receptor 0.428 ˘ 0.255 0.661 ˘ 0.203 0.517 ˘ 0.302 0.435 ˘ 0.294
Vesicle 0.658 ˘ 0.324 0.684 ˘ 0.223 0.644 ˘ 0.312 0.459 ˘ 0.311

Average 0.568 ˘ 0.205 0.667 ˘ 0.167 0.554 ˘ 0.215 0.410 ˘ 0.241
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Chapter 6. Supplementary Figures

Table S4: F1 integral score (mean ˘ standard deviation) for images of SNR equal to one.
Shows values for three methods across three datasets.

Dataset Density TrackMate DetNet deepBlink

Microtubule Low 0.021 ˘ 0.017 0.064 ˘ 0.014 0.179 ˘ 0.022
Mid 0.018 ˘ 0.008 0.176 ˘ 0.015 0.253 ˘ 0.012
High 0.020 ˘ 0.006 0.145 ˘ 0.012 0.305 ˘ 0.007

Receptor Low 0.052 ˘ 0.029 0.059 ˘ 0.013 0.075 ˘ 0.013
Mid 0.050 ˘ 0.010 0.204 ˘ 0.013 0.253 ˘ 0.013
High 0.059 ˘ 0.010 0.175 ˘ 0.009 0.211 ˘ 0.010

Vesicle Low 0.113 ˘ 0.016 0.090 ˘ 0.011 0.221 ˘ 0.031
Mid 0.250 ˘ 0.016 0.249 ˘ 0.010 0.327 ˘ 0.013
High 0.246 ˘ 0.008 0.228 ˘ 0.008 0.353 ˘ 0.008
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Chapter 6. Supplementary Figures

Table S5: The set of optimized parameters used for each benchmarking method and for each
dataset.

(a) TrackMate

Dataset Diameter Quantile

smFISH 4.0 0.871
SunTag 1.0 0.170
Particle 4.0 0.001
Microtubule 4.0 1.091
Receptor 3.0 0.795
Vesicle 3.0 1.342

(b) DetNet

Dataset Alpha

smFISH 0.4737
SunTag 0.6842
Particle 0.5263
Microtubule 0.2105
Receptor 0.8946
Vesicle 0.5789
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Abstract

Recent advances in single-molecule imaging of mRNAs in fixed and living cells have enabled

the lives of mRNAs to be studied with unprecedented spatial and temporal detail. These

approaches have moved beyond simply being able to observe specific events and have begun

to allow understanding how regulation is coupled between steps in the mRNA lifecycle.

Additionally, these methodologies are now being applied in multicellular systems and animals to

provide more nuanced insights into the physiological regulation of RNA metabolism.

Keywords
fluorescence microscopy, transcription, splicing, RNA localization, translation, mRNA decay
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1. Introduction

When investigating a biological question, as with any other discipline that requires analyzing

information and problem solving, it is often prudent to consider how various experiments answer

the fundamental questions: Who, What, When, Where, How and Why? For instance, while

genetic screens are able to identify the proteins (who) involved in a process, they usually

provide limited detail into if these proteins assemble into a complex or if they function directly.

Similarly, biochemical approaches can resolve differences between distinct molecular

mechanisms (how), but almost always require the molecules involved to be already known.

While often overlooked, understanding when and where in a cell molecules interact can help

decipher the complexity that exists in biology. The recent developments in single-molecule

fluorescence microscopy methodologies for imaging individual mRNA transcripts, however, have

enabled researchers to move beyond obtaining only temporal and spatial information and have

begun to allow biochemical measurements to be made inside cells. This unique ability to directly

interrogate cellular biochemistry has already led to a number of unanticipated findings and will

continue to make significant contributions as these methodologies mature. In this review, we

have organized the sections into a summary of recent technological developments in RNA

imaging, the application of these techniques for investigating RNA biology with a particular focus

on new insights into how steps in the mRNA life cycle are coupled and the challenges of

applying these methodologies in multicellular systems and animals.

2. Recent developments for imaging single mRNAs in fixed and live cells

2.1. Single-molecule fluorescence in situ hybridization

While there have been tremendous advances since the initial development of single-molecule

fluorescence in situ hybridization (smFISH) by Singer and colleagues over 25 years ago, the

fundamental concept has remained unchanged since its introduction (Femino et al., 1998). In

this method, fluorescently-labeled antisense oligonucleotide probes are hybridized to a

transcript of interest under stringent conditions and non-specifically bound probes are removed

during washes resulting in the accumulation of sufficient fluorescent signal to enable detection

of individual RNAs within single cells (Figure 1a). Continued improvements in the cost and ease

of implementation, amplification of the fluorescent signal and scale of the number of transcripts
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that can be detected within each cell have resulted, in part, in the recent revolution in spatial

transcriptomics.

In order for smFISH to become more widely adopted by the community, easier access to

fluorescently labeled probes was a crucial first step. An important advance was the

development of ~20nt probes that were singly fluorescently-labeled at the 5′-end and could be

purchased commercially (Raj et al., 2006). While ~48 probes are necessary to achieve

single-molecule resolution, they facilitated experiments to be performed in a variety of

experimental systems (Raj et al., 2008). These probes, however, were still not affordable for

many labs and, consequently, more cost-effective approaches were developed. One approach

was to take advantage of the terminal deoxynucleotidyl transferase enzyme and

fluorescently-labeled dideoxy UTP to specifically add a fluorophore to the 3′-end of an

oligonucleotide (Gaspar et al., 2017). While this results in an untemplated uridine nucleotide at

the 3′-end, this addition can be taken into account during probe design and a single mismatched

base pair in this position has not been reported to affect hybridization specificity. An alternative

approach (single-molecule inexpensive FISH, smiFISH) was to design unlabelled primary

bipartite oligonucleotides that contained both a sequence for gene-specific hybridization and an

additional sequence complementary to a secondary oligonucleotide that was fluorescently

labeled (Tsanov et al., 2016). Recently, this strategy was further modified to use RNA primary

probes and the smFISH protocol was adapted to 96-well plates to enable higher throughput

screens with single-molecule resolution (Safieddine et al., 2023).

The use of bipartite primary oligonucleotides has also led to the development of signal

amplification strategies that enable smFISH experiments to be performed on a wider variety of

microscopy modalities and sample specimens. One of the first approaches was based on

harnessing the ability of in situ hybridization chain reactions (HCR) to amplify the signal by the

self-assembly of two fluorophore-labeled hairpin oligonucleotides with overhanging sequences

that initiate elongating chain reactions (Choi et al., 2010; Dirks & Pierce, 2004) (Figure 1a). In

the latest version, the protocol has been adapted to reduce background noise levels using

split-initiator probes that enable measurements in thicker tissue slices previously limited by

autofluorescence (Choi et al., 2018). Similarly, signal amplification by exchange reaction

(SABER) uses in vitro primer exchange reactions to synthesize long stretches of concatemers

that can be used with traditional fluorescently labeled probes (Kishi et al., 2019). Signal

amplification can also be obtained using branched DNA oligonucleotides that can form
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elaborate tree-like structures using four oligonucleotides (sequence specific probe, pre-amplifier,

amplifier and fluorophore-labeled) and sequential hybridizations (Battich et al., 2013) (Figure
1a). Another approach called ClampFISH uses amplification cycles relying on click chemistry

reactions with padlock probes to provide increased binding sites for readout probes (Dardani et

al., 2022). Compared with the previous generation of ClampFISH (Rouhanifard et al., 2018), it

no longer requires gene region-specific oligonucleotides to be modified in the padlock thus

reducing cost and protocol duration. An important consideration, however, for any amplification

approach is the increased potential for false-negatives as any hybridization or polymerization

step may not be completely efficient resulting in loss of accurate transcript numbers.

In order to detect multiple RNA species within a single cell, both sequential and multiplexed

smFISH approaches have been developed (Figure 1a). Initial experiments used only a few

spectrally distinct fluorescent dyes or pseudo-colors to detect ~10 distinct mRNAs (Levsky et al.,

2002; Lubeck et al., 2014). A major breakthrough that utilized an error-correcting barcode and

combinatorial labeling scheme (multiplexed error robust FISH, MERFISH) enabled the

identification of up to 140 mRNAs in individual cells (K. H. Chen et al., 2015). There have since

been improvements in the encoding scheme of MERFISH allowing transcriptome wide analyses

(1000s of mRNAs) with high detection efficiency and low misidentification rate (Xia et al., 2019).

These techniques can be used in combination with expansion microscopy to counteract physical

constraints imposed by diffraction limitations (F. Chen et al., 2015). Recent MERFISH-based

approaches have employed branched DNA probes to improve spot brightness (Xia et al.,

2019). Another approach (seqFISH) uses sequential labeling and a different encoding scheme

to measure transcriptome-level profiling of both nascent and mature mRNAs (Eng et al., 2019;

Shah et al., 2018). A multiplexed approach (split-FISH) has also been devised that uses two

primary sequence-specific probes that form the binding site for a bridging probe that can then

be detected with a fluorescent oligonucleotide in order to reduce background and false-positives

(Goh et al., 2020).

Thicker tissues have posed challenges due to longer reaction kinetics and increased

autofluorescence. Enhanced ELectric Fluorescence in situ Hybridization (EEL FISH) provides

an innovative approach to transfer RNA from tissue sections onto an indium tin oxide-coated

coverslip using electrophoresis (Borm et al., 2022). The tissue can then be digested allowing for

increased imaging acquisition while preserving spatial organization. Expansion-Assisted

Iterative Fluorescence in situ Hybridization (EASI-FISH) combines previously described
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methods including expansion microscopy and HCR with an automated data processing pipeline

to create a 3D characterization of different cell types in thick brain slices (Y. Wang et al., 2021).

Similarly, advances in image analysis allowed smiFISH to be used to investigate whole embryos

at single-molecule resolution (Calvo et al., 2021).

2.2 In situ sequencing technologies

A limitation of in situ hybridization techniques is that there is an inherent bias that only

transcripts that have been specifically selected prior to the experiment can be detected. DNA

sequencing, however, is a powerful discovery tool and a variety of approaches have enabled its

use directly on RNAs within cells. One of the first methods for in situ sequencing used padlock

probes, rolling circle amplification and sequencing by ligation chemistry (Ke et al., 2013) (Figure
1b). In this approach, transcripts were reverse-transcribed to cDNA using random decamer

primers to which either gap-filled or barcoded padlock probes were hybridized. The DNA circle

is subsequently amplified and bases are called through sequential rounds of sequencing by

ligation. This approach has been fully automated by employing a microfluidics platform thus

reducing protocol time and improving throughput (Maïno et al., 2019). Hybridization based in

situ sequencing using barcoded padlock probes (hybISS) is a similar padlock probe-based

sequencing approach using unique ID sequences on each padlock that can then be detected by

hybridization (Gyllborg et al., 2020). To improve the readout of cellular barcodes, BaristaSeq

coupled padlock probes with Illumina sequencing chemistry that resulted in a five-fold increase

in amplification efficiency (X. Chen et al., 2018). Spatially-resolved transcript amplicon readout

mapping (STARmap) utilized hydrogel tissue clearing, dual padlock probes to increase

specificity and in situ sequencing to detect between 160-1020 mRNA species into mm3 volumes

(X. Wang et al., 2018).

To fully leverage RNA sequencing to identify the position of all cellular transcripts, an alternative

approach without was developed called Fluorescent In Situ SEQuencing (FISSEQ) (J. H. Lee et

al., 2015). Here, RNA sequences are reverse-transcribed with the addition of

amine-modifications to crosslink cDNA fragments to the cellular protein matrix and adapter

sequence-tagged random hexamers. cDNA is amplified with CircLigases using rolling circle

amplification analogous to padlock-based approaches but also crosslinked to create a mesh of

amplicons. Imaging is performed by hybridization of a sequencing primer followed by the ligation

of a fluorescent octamer to investigate the adjacent dinucleotide pair. Three nucleotides are
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cleaved after imaging allowing ligation cycles to be repeated providing information for every fifth

base position. This process is then repeated with four other sequencing primers with a single

base offset filling in the previously hidden dinucleotide pairs. With seven cycles of

ligation-cleavage, 32 nucleotides can be interrogated. FISSEQ has also been coupled with

expansion microscopy to enable higher spatial resolution sequencing of RNAs in crowded

environments (Alon et al., 2021).

3. Imaging RNA molecules in live cells

3.1 Molecular Beacons

While conceptually similar to smFISH, several challenges needed to be overcome to promote

specific hybridization of a molecular beacon to its target mRNA in living cells (Figure 1c). In

order to prevent sequestration of molecular beacons in the nucleus, they have been combined

to either tRNA or siRNA-like scaffolds (A. K. Chen et al., 2010; Mhlanga et al., 2005). Another

approach is to use molecular beacons linked with particles such as quantum dots or NeutrAvidin

that are physically unable to enter the nuclear pore channels due to their size (Alami et al.,

2014; A. K. Chen et al., 2007). Recently, molecular beacons have enabled tracking of single

Camk2a, β-actin and Psd95 mRNAs in dendrites of primary rat hippocampal neurons

suggesting that this approach may become more routinely applied (Donlin-Asp et al., 2021;

Klimek et al., 2021).

3.2 Cas9 and Cas13-based RNA imaging

The discovery of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and the

CRISPR-associated protein 9 (Cas9) has led to a revolution in genome-engineering due to its

ability to program the Cas9 endonuclease to site-specifically cleave a DNA target (Ran et al.,

2013). This system was engineered to allow specific recognition of single-stranded RNA, by

directing Cas9 to an mRNA targeted by a guide RNA by providing a protospacer adjacent motif

(PAM) sequence as a separate oligonucleotide (O’Connell et al., 2014). By using a

nuclease-dead mutant of Cas9 (dCas9) fused to a fluorescent protein in combination with a

synthetic guide RNA and PAM sequence complementary to an mRNA of interest, the movement

of mRNAs can be monitored in live cells (Nelles et al., 2016) (Figure 1c). An alternative

approach to detect RNAs in live cells was developed using a different catalytically dead Cas
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protein (dCas13a) (Abudayyeh et al., 2017). The two approaches (dCas9 and dCas13a) were

combined to allow the imaging of two distinct RNA species in living cells and additional Cas

proteins have been identified for multi-color RNA imaging (Yang et al., 2019, 2022). While these

approaches hold tremendous promise for imaging endogenous mRNAs, their application for

single-molecule imaging requires further development.

3.3. Engineered RNA-protein complexes

The highly specific interaction between the MS2 bacteriophage coat protein and its cognate

RNA stem-loop was first developed to image the localization of ASH1 mRNA in yeast (Bertrand

et al., 1998). In this system, a reporter mRNA containing the ASH1 3′-UTR was modified to also

contain six MS2 stem-loops that could be bound by an MS2 coat protein (MCP), which was

engineered to prevent capsid formation, fused to GFP. Since interaction between MCP and its

stem-loops is orthogonal to any host RNA-protein complex, the system has been widely

adopted for imaging RNAs in a variety of experimental systems. This approach was further

refined to allow for single-molecule imaging of mRNAs (Fusco et al., 2003), sequence-optimized

to reduce recombination of the repetitive stem-loop and coat proteins sequences (Wu et al.,

2015), engineered to reduce accumulation of degradation intermediates in yeast (Tutucci et al.,

2018), limit background fluorescence using split fluorescent proteins (S. Y. Park et al., 2020; Wu

et al., 2014) and destabilization of reporter transcripts (W. Li et al., 2022) (Figure 1d).
Additionally, other RNA-protein complexes based on the PP7 bacteriophage coat protein

(Hocine et al., 2013; Larson et al., 2011), lambda N peptide (Daigle & Ellenberg, 2007), human

U1A (Brodsky & Silver, 2002) and bacterial BglG (J. Chen et al., 2009) have also been

engineered for single-molecule RNA imaging that has allowed multicolor experiments to be

performed in living cells.

3.4 Fluorogenic RNA Aptamers

The introduction of both a fluorescent RNA-binding protein and a modified reporter RNA can be

challenging in some experimental systems as both components must be expressed at

appropriate levels to allow for imaging of single mRNAs. RNAs, however, can be evolved

through multiple rounds of selection and amplification for specific properties including emission

of fluorescence upon binding a ligand (Tuerk & Gold, 1990). One of the first evolved RNAs

(aptamers) for live-cell imaging was Spinach, an aptamer that showed selective fluorescence
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upon binding to 3,5-difluoro-4-hydroxybenzylidene imidazolinone (DFHBI), which is a small

molecule that mimics the GFP fluorophore (Paige et al., 2011) (Figure 1d). Similar approaches

have been used to construct a palette of aptamers (Broccoli, Mango, Peach) with different

fluorescent properties (Dolgosheina et al., 2014; Filonov et al., 2014; Kong et al., 2021). A

modified Mango2 array enabled live-cell imaging of single RNAs with similar sensitivity to the

MS2-based system (Cawte et al., 2020). Recently, the RhoBAST aptamer was described that

binds to a fluorogenic rhodamine dye with rapid association and dissociation kinetics that is

suitable for super-resolution studies with 10-nm localization precision (Sunbul et al., 2021).

3.5 Imaging translation of single mRNAs

In order to distinguish an mRNA that has never been translated from one that has undergone at

least one round of translation, Translating RNA Imaging by Coat protein Knock-off (TRICK) was

developed (Halstead et al., 2015) (Figure 1e). In this approach, a transcript is fluorescently

labeled using both the PP7 (coding sequence) and MS2 (3′-UTR) systems with spectrally

distinct fluorescent proteins. In this experiment, the timing and location of the first round of

translation is directly observed by the displacement of the PP7 signal from the coding sequence

of the transcript by the translating ribosome resulting in singly MS2 labeled transcripts. Since

the PP7 coat protein (PCP) is fused to a nuclear localization sequence as well as a fluorescent

protein, the displaced PCP fusion protein does not accumulate in the cytoplasm and thereby

prevents rebinding after the first round of translation.

While TRICK is a sensitive measurement of the first round of translation, it is unable to monitor

additional rounds of translation. Two methodologies that rely on amplification of the fluorescent

signal of a single protein have enabled translation to be further characterized by monitoring the

signal arising from nascent polypeptides in polysomes (Pichon et al., 2016; C. Wang et al.,

2016; Wu et al., 2016; Yan et al., 2016). In the first approach, the SUperNova tag (SunTag)

cassette (Tanenbaum et al., 2014), which is a repetitive sequence consisting of 24 GCN4

epitopes, is placed at the N-terminus of a protein of interest (Figure 1e). The SunTag cassette is

then recognized as it emerges from the ribosome during translation and is bound by its cognate

single-chain antibody fused to GFP. An orthogonal system to SunTag based on a gp41 peptide

(MoonTag) and corresponding antibody has since been developed and has allowed the

heterogeneity of translation to be further characterized (Boersma et al., 2019). The second

approach utilized either 10 FLAG or HA epitopes that were grafted into a non-fluorescent GFP
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beta-barrel (Viswanathan et al., 2015) in order to image translation site dynamics (Morisaki et

al., 2016). The main difference between this approach and the one based on SunTag is that

recombinant anti-FLAG or anti-HA antibody fragments had to be bead-loaded into cells. An

HA-binding single-chain variable fragment that can be genetically encoded, however, was

developed which has expanded the possibilities of this approach (Zhao et al., 2019).

3.6 Single-molecule imaging of mRNA decay

Using fluorescence microscopy to image mRNA degradation is inherently challenging since the

process results in the loss of the molecule being studied. One approach called 3′-RNA end

accumulation during turnover (TREAT) uses a flaviviral RNA pseudoknot that blocks Xrn1

(Chapman et al., 2014), the cytoplasmic 5′-3′ exonuclease, to specifically stabilize a degradation

intermediate (Horvathova et al., 2017) (Figure 1f). Placement of these tandem pseudoknots

between PP7 and MS2 stem-loops in the 3′-UTR of a reporter mRNA enables both intact

transcripts (PP7 and MS2) and stabilized degradation fragments (MS2-only) to be visualized in

living cells. It should be noted that while MCP and PCP bound to their respective stem-loops

were found to inhibit Xrn1-mediated degradation in some contexts in yeast (J. F. Garcia &

Parker, 2015), this effect was not observed in either human (Horvathova et al., 2017) or mouse

cell lines (Kim et al., 2019).

4. Imaging coupling of steps in gene expression

4.1 Transcription factor-binding and transcription

Understanding the kinetics of transcription is crucial to dissect the molecular mechanisms that

underlie gene activation. Single-molecule imaging approaches have revealed that some genes

are constitutively transcribed whereas others are expressed in bursts of transcriptional activity

(Bahar Halpern et al., 2015; Chubb et al., 2006; Darzacq et al., 2007; Larson et al., 2011;

Zenklusen et al., 2008). To study how transcriptional activation is triggered, single-molecule

imaging technologies have been developed to measure the dynamics of transcription factor (TF)

binding to promoters (C.-Y. Lee & Myong, 2021; Liu & Tjian, 2018). Live imaging of transcription

sites (TS) is accompanied by technical challenges as it is usually performed in a single focal

plane and TS intensity vary due to both transcription and cell movement. Donovan et al. have

overcome these limitations by making use of an orbital tracking microscope to simultaneously
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track TSs and TFs in three dimensions (3D). To visualize transcription, the authors incorporated

PP7 stem-loops into the 5′-UTR of either GAL3 or GAL10 and for simultaneous visualization of

TF binding, they tagged Gal4 with a HaloTag (Figure 2a). By tracking TSs and TFs in 3D over

time, the authors were able to correlate TF binding with transcription activation at a single locus

(Donovan et al., 2019). Higher affinity TF binding sites resulted in longer TF dwell times at the

promoter and increased transcription (Donovan et al., 2019).

RNAPII occupancy and transcription activation at a specific locus has also been measured in

mammalian cells (Cho et al., 2016; J. Li et al., 2019). In a recent study using Target-Locking 3D

stimulated emission depletion (STED) nanoscopy (J. Li et al., 2019), a mini-gene system

(Tet-Off) was established to simultaneously image RNAPII (SNAP-Rbp1), nascent RNA (PP7)

and the genomic location (TetR-RFP) in human U2OS cells. This allowed a temporal and spatial

link between RNAPII accumulation and transcription activity and enabled visualization of the

different steps of the transcription cycle (initiation, elongation, termination). Using inhibitors to

block transcription initiation or promoter-proximal pause release into active elongation, it was

shown that the RNAPII signal follows kinetics similar to elongation and RNA release. This

indicated that RNAPII molecules accumulate at the mini-gene during elongation or termination,

instead of accumulating before initiation, as observed for the endogenous mouse 𝛽-actin gene

(Cho et al., 2016). These results may reflect gene-specific variability or differences between

artificial and endogenous promoters. Li et al. extended their analysis to mouse embryonic stem

cells, where nascent RNA (MS2) and RNAPII or different regulatory factors (RF) (SNAP) were

imaged, which allowed correlations between focal RF accumulation at enhancer regions,

RNAPII occupancy at the promoter and transcriptional activity to be measured (J. Li et al.,

2019). While these methods pave the way to dissect the complexity of gene expression

regulation in living cells, future developments will increase resolution even further to visualize

real-time promoter-enhancer interactions or follow single RNAPII molecules during a complete

transcription cycle.

It is still unclear how intranuclear localization of gene loci affects gene expression, but several

studies suggest that association to nuclear speckles (NS) enhances gene expression (Bhat et

al., 2023; Y. Chen et al., 2018; Y. Chen & Belmont, 2019; Faber et al., 2022; Guo et al., 2019;

Takei et al., 2021; L. Zhang et al., 2020). NSs are dynamic membraneless subcompartments in

the nucleus enriched for RNA processing factors and RNA (Fei et al., 2017; Hall et al., 2006;

Misteli et al., 1997). The main two components of nuclear speckles, and essential for their
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architecture, are the spliceosome-associated proteins SRRM2 and SON (Dopie et al., 2020; Ilik

et al., 2020). A transgene for the heat shock protein 70 (Hsp70) gene family associated with

NSs through a sequence element in its promoter that was independent of genomic location (Hu

et al., 2010). In a later study, the HSP70 locus (EGFP-LacI, strong signal), nascent HSPA1A

mRNA (MS2) and nuclear speckles (EGFP-SON, weak signal) were imaged simultaneously in

the same cells to show that NS-association is followed by increased mRNA expression (Khanna

et al., 2014) (Figure 2b). Interestingly, HSP70 locus association to NSs was dependent on

nuclear actin polymerisation, although the molecular mechanism remains unknown. The authors

also made the important observation that expression of MS2-coat protein (MCP) alters the

localization of transcripts containing MS2 stem-loops with respect to NSs. When MCP was

expressed, transcripts localized at the NSs periphery rather than inside NSs, as shown for cells

devoid of MCP (Khanna et al., 2014). This highlights how mRNA tagging can alter mRNA

localization and the importance for appropriate controls.

In order to provide a broader view of how genomic location impacts transcription, MERFISH was

used to image hundreds of endogenous RNAs, their genomic loci and NSs in the same cells.

This showed that proximity to NSs is associated with increased transcriptional bursting (Su et

al., 2020). Additionally, smFISH was used to show that p53, through direct DNA binding,

mediates localization of a subset of its target genes to NSs to boost their transcription by

increasing burst size (Alexander et al., 2021). Interestingly, this association to nuclear speckles

is facilitated by transcription-independent mechanisms as it was mediated through the DNA

binding domain of p53 rather than its transactivation domain. Future studies are required to

show which nuclear speckle-associated factors are responsible for this effect and it also remains

to be seen if locus localization to NSs is a general regulatory mechanism employed by TFs to

fine tune gene expression or if it is a function limited to specific TFs.

4.2. Transcription and splicing

Single-molecule imaging has allowed visualization of splicing in fixed and live cells by labeling

exons and introns with different fluorophores (Figure 2c). Vargas et al. found that splicing

mostly occurs co-transcriptionally but can be uncoupled when the intronic polypyrimidine tract

(Py) that precedes the 3′ splice site is embedded in a strong secondary structure (Vargas et al.,

2011). Substituting a strong for a weak Py also resulted in a slower splicing rate (Martin et al.,

2013). These experiments show that splice site accessibility and strength influence splicing
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efficiency, possibly reflecting changes in spliceosome recruitment dynamics. Increasing the

number of introns in a reporter mRNA led to increased splicing factor recruitment but delayed

splicing until after transcription termination but still in close proximity to the TS (Brody et al.,

2011). Recent work from the same group to study splicing factor dynamics in the nucleus using

live imaging, showed that increasing the availability of active splicing factors in the nucleoplasm

allows for more efficient splicing and faster transcript release from the TS (Hochberg-Laufer et

al., 2019). Coulon et al. found that transcript release from the TS is stochastic and the time

required to excise the last intron can occur either before or after the RNA leaves the TS, as a

result of kinetic competition between 3′-end processing and splicing. Interestingly, post-release

splicing was found to be faster than splicing at the TS. Kinetic competition was abolished upon

splicing factor (U2AF1) mutation, which resulted in strictly post-transcriptional splicing (Coulon

et al., 2014). In order to expand these studies to multiple genes, introns of endogenous human

genes were tagged (MS2/PP7) using a GeneTrap strategy (Wan et al., 2021). All 442 analyzed

genes showed transcriptional bursting but each burst was small, only producing a few

transcripts. Intron removal kinetics were highly variable, consistent with stochastic splice site

selection, and often occurred progressively by recursive splicing. By labeling a long intron of the

RAB7A gene with two different colors, it was shown that the upstream part of the intron (MS2)

was removed first and the downstream part (PP7) in a consecutive splicing reaction, in a

co-transcriptional manner (Wan et al., 2021). Consequently, while annotated splice sites define

the intron boundaries they are not the only splice sites that are used and thus reflect only a

fraction of splicing activity in the cell.

Given the diffraction limit for optical microscopy, it remains a debate whether RNAs localized

close to the TS are actually still bound to transcribing RNAPII or if they remain close to the gene

body even though transcription is concluded. A recent study to address this issue, using

smFISH combined with expansion microscopy, showed that the proportion of

post-transcriptionally spliced introns varies from intron to intron within a single gene and

between cells. Interestingly, all four tested human genes showed some degree of

post-transcriptional splicing (Coté et al., 2021). For long introns, 5′ and 3′ splice sites can be

separated by thousands of nucleotides, however, it remains unclear how these two ends are

brought into close proximity and how the transcription machinery facilitates this process.

Interactions between transcribing polymerase and components of the U1 snRNP have been

suggested to position the 5′ splice site close to the RNA exit site of RNAPII and thus close to the

newly transcribed 3′ splice site (Harlen et al., 2016; Nojima et al., 2018; S. Zhang et al., 2021). A
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recent study using smFISH combined with structured illumination microscopy (SIM) shows that

as pre-mRNAs emerge from transcribing RNAPII, introns are packaged into compact particles

with the 5′ and 3′ ends in close proximity (Figure 2d). By visualizing partially transcribed introns

using probe sets for different parts of a long intron, the authors show that the intron has a

looped conformation that is altered during transcription, reflected by a changing separation

between distal regions of the intron with the length to which the intron has been transcribed

(Adivarahan et al., 2021). This finding suggests that the intron 5′ end is indeed tethered to

transcribing RNAPII, consistent with the U1 snRNP-RNAPII tethering model. They further show

that this conformational organization is dependent on correct spliceosome assembly, as splicing

inhibition with Pladienolide B, leads to separation of intron 5′ and 3′ ends, consistent with a less

compact conformation of the intron.

Splicing factors are enriched in NSs, which led to the hypothesis that splicing occurs in these

nuclear compartments (Dias et al., 2010; Lamond & Spector, 2003; Spector & Lamond, 2011).

However, recent studies show that NSs can act as storage bodies that supply splicing factors to

sites of active transcription (Faber et al., 2022; Hasenson & Shav-Tal, 2020; Lewis & Tollervey,

2000). Interestingly, transcriptionally active gene loci have been shown to localize close to NSs

thereby enabling more efficient splicing of their nascent pre-mRNAs (Bhat et al., 2023; Takei et

al., 2021). Using a combination of crosslinking methods (RNA-DNA SPRITE and

psoralen-mediated crosslinking) (Calvet & Pederson, 1981; Quinodoz et al., 2022) and

seqFISH+ (Takei et al., 2021), Bhat et al. showed that spliceosome U snRNPs (U1, U2, U4, U6)

are more enriched on nascent pre-mRNAs expressed from genes that are close to NSs (Bhat et

al., 2023). To further validate their results, the authors developed a reporter-based assay to test

if splicing is enhanced through localization to NSs. The reporter pre-mRNA contained MS2

stem-loops in the intron and was designed to express GFP only when spliced. To bring this

construct into close proximity to NSs, it was integrated into cells that expressed MCP fused to

NS markers or non-speckle associated proteins as negative controls. Only when the pre-mRNA

was associated with NSs, but not when localized to the nuclear lamina or the nucleoplasm, its

splicing efficiency was enhanced (Bhat et al., 2023).

4.3 Splicing and RNA export

Using single-molecule imaging in live cells, it has been shown that mRNPs move from the TS to

the NPC via regular or corralled diffusion through interchromatin channels, whereas
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translocation through the pore is facilitated and rapid (Biswas et al., 2021; Grünwald & Singer,

2010; Mor et al., 2010; Politz et al., 1999; Shav-Tal et al., 2004). The latter occurs with the

5′-end entering the NPC first, as confirmed by smFISH with probes labeled with different colors

for the mRNA 3′-end, the middle of the transcript and the 5′-end (Ashkenazy-Titelman et al.,

2022; Daneholt, 2001) (Figure 2e). Mor et al. used single-molecule imaging to study how

splicing affects mRNA export. They compared reporter mRNAs of different lengths, with or

without introns, tagged with MS2 stem-loops. Intron-containing reporter mRNAs were spliced

co-transcriptionally and more efficiently exported compared to their intron-lacking counterparts,

however, splicing had no effect on nucleoplasmic diffusion rates of these mRNAs nor their

transit through the pore (Mor et al., 2010). The authors conclude that the transcripts without

introns are retained in the nucleus for longer due to the lack of suitable export signals.

4.4. RNA localization and translation

Localizing specific mRNA transcripts within relevant subcellular compartments is an important

mechanism by which gene expression is spatially regulated. This is perhaps most spectacularly

demonstrated in the developing Drosophila oocyte and embryo in which specific mRNAs are

spatially localized to define developmentally-relevant patterns of gene expression. Live imaging

of mRNA has been instrumental in uncovering the mechanistic basis of transcript localization

and a number of mechanisms have emerged including passive diffusion and localized

entrapment (Forrest & Gavis, 2003) or stabilization (Bashirullah et al., 2001), while in other

cases, transcripts are actively transported directly along the microtubules of the cytoskeleton

(Bullock & Ish-Horowicz, 2001; Weil et al., 2006; Zimyanin et al., 2008) (Figure 2f). mRNAs can

also be trafficked through indirect interactions with the cytoskeleton by hitchhiking on actively

transported lysosomes via ANXA11, which acts as a molecular tether (Liao et al., 2019). These

diverse localization mechanisms are orchestrated by cis-acting localization elements, which are

recognised by mRNA binding proteins that mediate interactions with the transport machinery as

well as regulatory proteins. Localization sequences are commonly found within the 3′-UTR and

alternative polyadenylation site usage can be used to generate 3′-UTR isoforms that specify

different localization patterns (Middleton et al., 2019).

Live translation site imaging has begun to reveal unexpected insights into the coupling of mRNA

localization and protein synthesis. For instance, the localization of mRNAs to SGs was

previously thought to universally repress translation, however, SunTag imaging revealed that SG
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localization did non inhibit translation and that elongation rates were similar for mRNAs in SGs

and in the cytosol of stressed as well as for mRNAs in unstressed cells (Mateju et al., 2020)

(Figure 2g). Similarly, mRNAs were thought to be transported in translationally-repressed

states, but live imaging experiments have revealed that mRNAs can engage in active transport

while being translated (C. Wang et al., 2016; Wu et al., 2016). Additionally, mRNAs were found

to localize with late endosomes in axonal projections and were actively translated on these

vesicles (Cioni et al., 2019). These experiments highlight the strength of live imaging

approaches in understanding translation regulation within cells.

4.5. Translation and RNA decay

Recent advances in single-molecule imaging methods have enabled the effect of translation on

mRNA decay to be measured with single-molecule resolution (Cialek et al., 2022; Dave et al.,

2023; Kobayashi & Singer, 2022). Dave et al. engineered a TREAT reporter mRNA construct

(Figure 2h) containing an iron-response element (IRE) (Hentze et al., 1987) in the 5′-UTR to

specifically activate translation of this construct by adding iron to the culture media (Dave et al.,

2023). Active translation of the reporter mRNA resulted in faster mRNA decay and by combining

smFISH, SunTag imaging and mathematical modeling, the study found that

translation-dependent decay is mediated by ribosome flux indicating that translation promotes a

basal level of mRNA decay. When this approach was applied to a reporter transcript that

contained a premature stop codon, it was found that mRNA degradation induced by the

nonsense mediated decay surveillance pathway was much faster than destabilization caused by

ribosome flux. Interestingly, the cellular abundance of these PTC-containing mRNAs could be

best modeled by both an NMD and a ribosome flux component indicating that both pathways

were contributing to the destabilization of these transcripts (Hoek et al., 2019). Interestingly,

when three let7 or miR21 miRNA binding sites were incorporated into the 3′-UTR, it was found

that these miRNAs could destabilize the reporter transcript without prior inhibition of translation.

Two other recent studies using single-molecule imaging, however, found that translation

inhibition occurs before mRNA decay suggesting that the identity of the specific miRNA, its

abundance or the target site within the mRNA could affect the mechanism of miRNA-mediated

repression (Cialek et al., 2022; Kobayashi & Singer, 2022).

5. Challenges in live imaging of RNAs in multicellular systems

16

Appendix A. A glimpse into the birth, life and death of single mRNAs in cells

101



The first efforts to image mRNAs live within a multicellular system were in Drosophila oocytes

(Forrest & Gavis, 2003; Jaramillo et al., 2008). In the 20 years since live mRNA imaging was

first established in multicellular systems, only a few papers from a small number of labs have

successfully followed suit. In short, this is because establishing the tools for live imaging

requires the optimization of several variables. Moreover, the imaging can be technically

challenging and there is no standardized software for analysis so individual labs must establish

their own image analysis pipelines. In this section, we discuss the major challenges of setting up

live mRNA and translation site imaging in multicellular systems and how to address them.

When designing a live imaging experiment, the first decision is which mRNA to visualize. To

date, candidates have been selected based on known localization patterns (β-actin) (Lionnet et

al., 2011; H. Y. Park et al., 2014), developmentally-induced (twist, eve) (Bothma et al., 2014;

Dufourt et al., 2021), or neuronal activity-induced (Arc) (Das et al., 2018; B. H. Lee et al., 2022)

expression patterns. Once a candidate transcript is selected, it needs to be engineered to

contain MS2 or PP7 stem-loops for mRNA imaging or SunTag epitopes for translation site

imaging. There are essentially two approaches: introducing reporter sequences into an

endogenous genomic locus or creating reporter transgenes. In the Drosophila embryo, many

developmentally-regulated genes are expressed in precisely-defined spatial and temporal

patterns to establish the blueprint of the adult fly (Gregor et al., 2014) and many of the promoter

and enhancer regions driving these expression patterns have been well-characterized. A

popular strategy for live mRNA imaging, therefore, has been to clone minimal promoter

fragments upstream of a MS2 reporter transcript (Bothma et al., 2014; Dufourt et al., 2021; H. G.

Garcia et al., 2013; Lucas et al., 2013; Pimmett et al., 2021). This requires that the promoter has

been determined and even then, reporter transgenes lack many endogenous regulatory

elements and can fail to fully recapitulate endogenous expression patterns (Bothma et al., 2014;

Dufourt et al., 2021; Lucas et al., 2013). Nonetheless, live transcription site imaging of reporter

transgenes in the early Drosophila embryo has been used for studying transcription dynamics

(Bothma et al., 2014; H. G. Garcia et al., 2013) and enhancer-promoter interactions (Lim &

Levine, 2021). Dual imaging of reporter genes, one containing an MS2 array and the other

containing a PP7 array, has revealed that single enhancers can co-activate the transcription of

linked genes separated by relatively large genomic distances (Fukaya et al., 2016; Levo et al.,

2022) or even when located on different homologous chromosomes (Heist et al., 2019; Lim et

al., 2018).
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The alternative to reporter transgenes is to integrate the MS2/PP7 and SunTag arrays into

endogenous loci. The integration of MS2 sequences into the endogenous 3′-UTR of the mouse

β-actin gene led to the first mouse model for live mRNA imaging (Lionnet et al., 2011). Initial

imaging experiments were limited to fibroblast cells and hippocampal neurons cultured from the

β-actin-MS2 mouse, but this was later expanded to brain slices imaged ex-vivo (H. Y. Park et al.,

2014). More recently, a second mouse model was generated integrating PP7 stem-loops into

the 3′-UTR of the activity regulated gene Arc (Das et al., 2018). Arc-PP7 transcription sites were

then imaged within the brain of head-fixed anesthetized mice following contextual fear

conditioning representing a landmark achievement for the field (B. H. Lee et al., 2022). The

introduction of exogenous sequences into a gene risks altering some aspect of its proper

expression, therefore, integration sites must be selected with care to avoid disrupting

functionally important sequences. One strategy for minimizing deleterious effects is to target

evolutionarily non-conserved regions of the gene in the 3′-UTR, though our current

understanding of cis-acting elements is limited. Consequently, there will always remain an

element of unpredictability that the insertion will alter proper expression and it is imperative to

compare endogenous spatial and temporal expression patterns with that of an modified allele.

Visualizing MS2 or PP7 labeled mRNA and SunTag nascent polypeptides requires the binding

of fluorescent coat proteins and single chain antibodies, respectively. The fluorescently-labeled

coat proteins that bind MS2/PP7 stem-loops contain a nuclear localization signal, which reduces

cytoplasmic background fluorescence and enables the labeling of nascent RNAs as soon as

they are transcribed. In contrast, the fluorescent single chain antibody fragments that bind

epitopes in nascent polypeptides are diffuse throughout the cytoplasm. Expression levels must

be controlled so that there are sufficient fluorescent proteins to saturate binding sites on mRNA

transcripts or nascent polypeptides, but not so many that background fluorescence precludes

the imaging of single molecules. It is trivial to sort cultured cells based on expression levels, but

in living animals this is more difficult. The optimization of fluorescent protein expression levels in

multicellular systems is achieved via the choice of promoter the transgene is expressed from

and may be different for cell types within an animal or tissue

The type of fluorophore attached to the coat protein or single chain antibody is also important.

To date, all live mRNA and translation site imaging studies in multicellular systems have

employed genetically-encoded fluorescent protein fusions (e.g. GFP, YFP, TagRFPT, mCherry
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etc.) (H. Chen et al., 2018; Dufourt et al., 2021; Fukaya et al., 2016; Heist et al., 2019; Hoppe et

al., 2020; B. H. Lee et al., 2022; Levo et al., 2022; Lim et al., 2018; H. Y. Park et al., 2014;

Pimmett et al., 2021; Trcek et al., 2020). Fluorescent proteins can be prone to aggregation and

they photobleach rapidly, which precludes the tracking of single mRNAs or nascent polypeptides

over extended timeframes (Dufourt et al., 2021). In contrast, the quantum yield and

photostability of organic fluorophores are far superior to that of fluorescent proteins. For this

reason, coat protein fusions with the HaloTag, which bind cell-permeable synthetic ligands

labeled with organic fluorophores, are a much better option for high-resolution imaging (Grimm

et al., 2015). Since the fluorescent ligand must be provided, this approach may not be suitable

for all experimental systems.

Imaging single-molecules within a tissue requires an objective with a long working distance and

high numerical aperture, but there is a tradeoff between these two parameters. Therefore, in

order to achieve high-resolution single-molecule imaging within a complex multicellular system it

may be necessary to increase the fluorescence of each single transcript. This can be achieved

by increasing the number of stem-loops and hence fluorescent molecules recruited to a single

transcript. A 128xMS2 array has been created (Tantale et al., 2016) and used to visualize single

transcripts in Drosophila embryos (Dufourt et al., 2021). Increasing the size of the stem-loop

insert, however, may increase the risk of introducing deleterious effects on some aspect of the

mRNAs lifecycle. Indeed, the 128xMS2 array caused the unanticipated persistence of

transcription foci through mitosis (Dufourt et al., 2021).

6. Microscopy developments for imaging RNAs in multicellular systems

Biological tissues strongly scatter light due to refractive index variations throughout a tissue,

which makes capturing the small amount of fluorescence emitted from mRNAs and nascent

polypeptides difficult when imaging deep into a tissue. In addition, biological tissues have high

levels of autofluorescence, which produces non-specific background signals. In fixed samples,

smFISH can be imaged by several imaging modalities. Widefield microscopy is often adequate

for thinner tissue samples or sections. Whereas for thicker samples, the optical sectioning

capability of confocal microscopy is preferable since fluorescence from beyond the imaging

plane is blocked by the pinhole, thereby reducing background fluorescence. Point scanning

confocal microscopy, however, can be slow when imaging sizable volumes with multiple

fluorescent channels. Multi-point scanning systems, such as the spinning disk, reduce image
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acquisition time considerably and may therefore be preferable. smFISH labeled mRNA has also

been imaged with structured illumination microscopy (SIM), a super-resolution microscopy

technique that uses periodic illumination patterns to achieve high spatial resolution (Heintzmann

& Huser, 2017). In the ribonucleoprotein granules of the Drosophila germplasm, SIM was used

to resolve the spatial distribution and organization of various densely-packed mRNA species

(Trcek et al., 2015).

Irrespective of the imaging setup, detecting the fluorescence emitted from single-molecules

located deep within tissues remains challenging. Currently the limit for imaging smFISH signals

is ~50μm. Imaging beyond this limit has been achieved only via the amplification of the

fluorescence signal associated with transcripts coupled with tissue clearing (Shah et al., 2016).

Clearing refers to a variety of techniques that aim to alter the optical properties of a tissue in

order to improve light propagation by minimizing inherent refractive index mismatches

(Richardson et al., 2021). Most clearing protocols aim to remove lipids and water from a sample,

replacing them with a solution that approximates the refractive index of the remaining tissue

components (Weiss et al., 2021). In order to reduce autofluorescence, tissues can be

photobleached prior to hybridization by exposing them to a broadband light source for 24h

(Duong & Han, 2013). In mammalian tissues, autofluorescence can also be reduced to some

extent by eliminating dietary sources of chlorophyll-containing substrates (H. Y. Park et al.,

2014). Alternatively, autofluorescence can simply be avoided by selecting dyes with emission

spectra outside of the major wavelengths of tissue autofluorescence.

Live mRNA imaging within multicellular systems is even more challenging than in fixed tissues.

To date, live mRNA imaging in multicellular systems has been achieved using either confocal

(H. Chen et al., 2018; Dufourt et al., 2021; Fukaya et al., 2016; Heist et al., 2019; Hoppe et al.,

2020; Levo et al., 2022; Lim et al., 2018; Pimmett et al., 2021; Trcek et al., 2020) or 2-photon

microscopy (B. H. Lee et al., 2022; H. Y. Park et al., 2014). While translation sites have been

imaged with light sheet microscopy (Dufourt et al., 2021). 2-photon microscopy can achieve

superior imaging depths and is widely used for imaging in vivo calcium responses deep within

living brains. 2-photon setups have even been miniaturized such that freely moving animals can

wear head-mounted scopes and calcium transients can be recorded while the animal performs

various behavioral tasks (Zong et al., 2022). Impressively, Arc-PP7 transcription sites in the

brain of head-fixed mice were imaged at a depth of 400μm using a 2-photon setup (B. H. Lee et

al., 2022).
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7. Outlook

While single-molecule methodologies for imaging RNAs in fixed and living cells have made

significant progress in recent years, there are still several challenges for the field.

Understanding the molecular mechanism used by trans-acting factors to regulate gene

expression at a single-molecule level is at the forefront of current experiments and the

combinatorial action of multiple proteins acting either independently or in complexes is largely

unknown. Additionally, experiments in animals are only beginning to shed light on how RNA

metabolism is regulated within tissues and how this activity is coordinated between different cell

types within an organ or between organs will be an important goal.

Acknowledgements

This work was supported by the Novartis Research Foundation (J.A.C), the SNF-NCCR RNA &

Disease Network #51NF40-182880 (J.A.C.) and an EMBO fellowship ALTF 793-2021 (E.G.).

We apologize to our colleagues whose work we were not able to discuss due to space

limitations.

Figure legends

Figure 1. An overview of methodologies used in single-molecule imaging in fixed cells using A)

single-molecule in situ hybridization or B) in-situ sequencing. Approaches to image C)

endogenous or D) exogenous reporter RNAs in live cells. Methodologies for imaging E)

translation or F) decay of single mRNAs.

Figure 2. Single-molecule imaging sheds light on the coupling of the different steps in mRNA

metabolism. a) Increased dwell time of the transcription factor (TF) at the gene promoter

correlates with increased transcriptional activity. b) Increased proximity of gene loci to nuclear

speckles (NSs) leads to increased transcription activity, faster recruitment of splicing factors and

more efficient splicing. c) Splicing is mostly co-transcriptional but some introns can be spliced

post-transcriptionally. Splicing enhances export and export of some mRNAs can be timed

through regulated intron retention. d) The intron 5' end is tethered to transcribing RNAPII and

introns are compact particles with 5' and 3' ends in close proximity. e) mRNA export through the
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nuclear pore complex is directional, 5'-end first. f) mRNAs can actively be transported to specific

locations in the cytoplasm for localized translation. g) Translation can occur in stress granules

(SGs). h) mRNA translation promotes decay.
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exogenous reporter RNAs in live cells. Methodologies for imaging E) translation or F) decay of single
mRNAs.
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increased transcription activity, faster recruitment of splicing factors and more efficient splicing. c)
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B
eFISHent: an efficient RNA smFISH probe

design tool

RNA fluorescence in-situ hybridization (RNA FISH) is a widely used technique en-
abling the visualization and localization of RNA in fixed cells or tissues. RNA FISH
uses a set of fluorescently labeled oligonucleotide probes that specifically bind to the
gene of interest. Here we present eFISHent, a CLI-based tool to allow non-experts to
design specific probes with an unprecedented level of customizability.

The development of single-molecule fluorescence in situ hybridization (smFISH) has rev-
olutionized the study of gene expression at the cellular level. This technique enables the
detection and quantification of individual RNA molecules in situ, allowing for the examination
of RNA expression patterns and dynamics with unprecedented resolution. However, designing
and optimizing the RNA probes required for smFISH can be a time-consuming and challeng-
ing process. Here, we introduce eFISHent, an efficient RNA smFISH probe design tool that
makes generating optimized probe sets for any RNA target of interest simpler than ever be-
fore. eFISHent has been made available as a simple CLI-based tool and is accessible as a
one-line installation using conda (available through bioconda).

There are two main established probe designers: Stellaris [C1] and OligoMiner [C2]. While
Stellaris offers a straightforward web interface for probe design, it lacks significantly in terms
of customizability regarding probe lengths, custom genomes, endogenous/exogenous se-
quences, and other probe parameters. Additionally, the closed-source nature of Stellaris
makes understanding why certain probes have been chosen more difficult. OligoMiner [C2]
and its online interface OligoMinderApp [C6] are open-sourced but are based on out-of-
date Python and third-party package versions. Furthermore, some key features such as
off-target expression weighting and multithreading are lacking. eFISHent’s modern workflow
and easy interface process contribute to making eFISHent a valuable addition to the toolkit of
researchers interested in studying gene expression at the single-molecule level.
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Appendix Figure B1: Diagram outlining the basic steps in the eFISHent probe generation
workflow
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eFISHent works by iteratively selecting probes passing various filtering steps as outlined
in Figure B1. Specifically, a list of all candidate probes is generated from an input FASTA
file containing the gene sequence. This sequence file can be passed manually or down-
loaded automatically from NCBI when providing a gene and species name. Subsequently,
the first round of filtering removes any probes not passing basic sequence-specific criteria
including melting temperature as given formamide and salt concentrations, GC content, and
G-quadruplets. After this initial filtering, probes are aligned to the reference genome using
bowtie [C3] and candidates with off-targets are removed. In case of shorter genes or if off-
targets are unavoidable, off-targets can be weighted using a encode count table to remove
highly expressed genes. Next, the targets are divided into short k-mers and discarded if they
appear above a determined threshold in the reference genome using Jellyfish [C4]. Lastly, the
secondary structure of each candidate is predicted using a nearest neighbor thermodynamic
model [C5] and filtered if the free energy is too high which could result in motifs hindering
hybridization. This gives the set of all viable candidates which are still overlapping. The final
step is to use mathematical or greedy optimization to maximize probe non-overlapping cover-
age across the gene sequence. This workflow is implemented using Python and is wrapped in
a simple CLI. It uses multithreading wherever possible improving runtime with little additional
overhead, making it well-suited for high-throughput design. An example command used to run
eFISHent is shown below:

eFISHent\

--reference-genome ./hg-38.fa\

--gene-name "norad"\

--organism-name "homo sapiens"\

--is-plus-strand True\

--min-length 45\

--max-length 50\

--formamide-concentration 45\

--threads 8

Here, probes targeting the human gene "norad" of length 45-50 nucleotides are designed
at a 45% formamide hybridization buffer concentration. Since no gene sequence is provided
directly, the sequence is downloaded from Entrez. While eFISHent allows for extensive cus-
tomization of parameters, one open question regards the optimal set of values for a given
gene of interest. To address this problem, a database of more than 70 probe sets containing
2500 probes has been created. Each probe set was scored from 0 to 6 based on specificity
and sensitivity in fixed-cell experiments. Next, all filtering parameters in the pipeline were
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eFISHent

Appendix Figure B2: Principle component analysis of the specificity of 74 smFISH probe
sets using as parameters filtering options used in eFISHent.

calculated for each oligonucleotide in the probe sets. These include secondary structure, nu-
cleotide sequence information, as well as k-mers and general off-targets. As can be seen from
Figure B2, there is no clear separation of specific and unspecific probes. This suggests that
traditional probe parameters do not have any major impacts on resultant specificity. Similarly,
individual probe parameters are not significantly correlating with specificity (GC-content yield-
ing the highest Pearson’s correlation coefficient of 0.18). Taken together, the development
of a probe set database is a step forward in addressing the issue of finding the optimal set
of values for a given gene of interest using eFISHent. However, the lack of clear separation
between specific and unspecific probes suggests that additional research is necessary to fully
understand the factors that influence specificity.
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Chapter 10

Design, Labeling, and Application of Probes for RNA smFISH

Ewa Piskadlo, Bastian Th. Eichenberger, Luca Giorgetti,
and Jeffrey A. Chao

Abstract

Visualization of single mRNA molecules in fixed cells can be achieved using single molecule fluorescent in
situ hybridization (smFISH). This approach enables accurate quantification of mRNA numbers and locali-
zation at a single-cell level. To ensure reliable results using smFISH, it is critical to use fluorescent probes
that are highly specific to their RNA target. To facilitate probe design, we have created anglerFISH, a user-
friendly command-line based pipeline. In this chapter, we present how to perform a smFISH experiment
using user-designed and labeled probes.

Key words Single-molecule fluorescence in situ hybridization (smFISH), Fluorescence labeling of
oligonucleotides, FISH probe design, Command line interface (CLI), Nextflow workflow

1 Introduction

Single-molecule RNA fluorescence in situ hybridization (smFISH)
enables the quantification of the number and location of individual
transcripts within their native cellular environment. This has
enabled the entire life cycle of mRNAs from transcription to degra-
dation to be visualized in single cells [1]. Additionally, when
imaged in combination with fluorescent antibodies, smFISH can
also be used to characterize RNA-protein interactions [2].

smFISH can be performed on a variety of specimens ranging
from bacteria to the entire Drosophila brain [3–5]. All of these
specimens are fixed and subsequently permeabilized. This allows
for RNA transcripts to become accessible to fluorescently labeled
probes that hybridize to the target thus revealing its position.
Probes are single-stranded DNA oligonucleotides that are typically
between 20 and 50 nucleotides in length and are complementary to
the target RNA [6, 7]. Alternative approaches using branched
DNA oligonucleotide technology have also been used for smFISH
[8]. Irrespective of the exact design of the probes, the hybridization

Peter Scheiffele and Oriane Mauger (eds.), Alternative Splicing: Methods and Protocols,
Methods in Molecular Biology, vol. 2537, https://doi.org/10.1007/978-1-0716-2521-7_10,
© The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature 2022
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of multiple fluorescently labeled oligonucleotides to a single RNA
amplifies the signal and enables distinguishing it from background
signals.

While smFISH provides information that is not readily obtain-
able from ensemble or even single-cell RNA sequencing experi-
ments, it is currently limited in the number of genes that can be
visualized at one time. This limitation stems from the challenges in
the specific detection of spectrally distinct fluorophores. Recent
methods, however, employing barcoding techniques and sequential
rounds of hybridization and bleaching have been able to visualize
up to ~10,000 unique RNA transcripts within a single cell [9].

Sequences for smFISH probes have to be selected carefully
taking into account binding specificity, probe length, spacing, and
melting temperatures. Additionally, designing probes can be chal-
lenging as multiple bioinformatics tools are required. This chapter
introduces anglerFISH, a workflow-based, command-line tool that
allows nonexpert users to design smFISH probes for RNA targets
of interest. Designing custom probes reduces experimental costs
and allows for more flexibility in fluorescent dyes and hybridization
conditions. In addition, this chapter explains how to fluorescently
label these probes in the lab and contains a protocol for performing
RNA smFISH.

2 Materials

2.1 Designing
Custom Probes

1. A POSIX compatible operating system (Linux or macOS).
Windows users are advised to install the free Linux operating
system Ubuntu via a virtual machine software, such as Oracle
VM VirtualBox.

2. Bash (version !3.2).

3. Java (version !8, 1.8).

4. Miniconda 3 or Anaconda 3.

5. Git.

6. GNU Make.

2.2 Probe Labeling 1. Silica gel in a container with a lid.

2. Anhydrous DMSO.

3. Nuclease-free water.

4. 100% ethanol.

5. Nanodrop.

6. Centrifuge and nuclease-free tubes (1.5 mL and PCR).

7. Thermocycler.
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8. ddUTP-dye conjugation mix: 10 μL of 20 mM amino-11-
ddUTP (see Note 1), 2 μL of 1 M NaHCO3 (pH 8.4), 10 μL
of 40 mM amine-dye (in DMSO).

9. ddUTP-dye-oligonucleotides labeling reaction per one label-
ing reaction: 10 μL of 100 μM oligonucleotide mix, 1 μL of
5 mM ddUTP–dye conjugation mix (keep in darkness), 1 μL of
20 U/μL of terminal deoxynucleotidyl transferase (TdT), 3 μL
of 5" TdT reaction buffer.

10. Amber tubes.

11. 1 M sodium acetate, pH 5.5.

12. 5 mg/mL linear acrylamide.

2.3 RNA FISH
Fixation and
Hybridization (for 4
Coverslips)

1. Phosphate-buffered saline (PBS).

2. Incubator with shaker set to 37 #C.

3. Glass coverslips #1 thickness 18 mm diameter.

4. Prolong Gold Antifade Reagent with DAPI.

5. Transparent nail polish.

6. Fixation solution: 10 mL of 20% paraformaldehyde, 5 mL of
10" PBS, 35 mL of H2O.

7. Hybridization buffer: Gently thaw probes on ice and prepare
mixture on ice as well. Mix: 100 μL of 20% dextran sulfate (see
Note 2), 20 μL of 20" SSC, 20 μL of formamide brought to
room temperature (RT) before opening to reduce oxidation,
200 nM of FISH probes (approximately 1–2 μL). Fill H2O up
to 200 μL total volume. Gently pipette up and down to mix.

8. Wash buffer: 5 mL of 20" SSC, 5 mL of formamide brought to
RT before opening, 40 mL of H2O. Store in the dark by
wrapping with aluminum.

9. Hybridization chamber: place a sheet of Parafilm on the bot-
tom of a petri dish. Tape an inverted cap of a 50 mL conical
tube to the edge of the chamber. Fill the inverted cap with PBS
to create a humid environment. Prepare both a sheet of Paraf-
ilm to seal and aluminum foil to cover the chamber.

10. 70% ethanol.

3 Methods (See Fig. 1)

3.1 Designing
Custom Probes

We have created anglerFISH [10], a custom Nextflow [11] work-
flow, based primarily on OligoMiner software [12], as well as
several other common tools to design RNA smFISH probes [13–
15]. This generates highly specific antisense probes against either
endogenous or exogenous RNA targets in a reproducible and
automated manner with a single command. Due to utilizing
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OligoMiner software, the workflow provides the researcher with
control over probe parameters including probe length range, probe
spacing and overlap, hybridizing temperature, buffer composition
and GC content. Refer to the README.md file in the GitHub
repository https://github.com/episkadlo/anglerFISH for more
detailed instructions and examples, or consult the workflow’s help
message. Tips for probe design parameters can be found inNote 3.

3.1.1 Download and

Configure the Workflow

1. Download the repository containing the workflow from
GitHub: go to https://github.com/episkadlo/anglerFISH,
click on the green “Code” button, and select the “Download
ZIP” option, then unpack the file in the location of your
choice. Rename the folder to “anglerFISH.”

2. In the terminal, go inside the directory you just unpacked
(anglerFISH), by typing the following path.

A. DESIGNING CUSTOM RNA FISH PROBES

B. LABELING OLIGONUCLEOTIDES

C. RNA FISH

unlabeled oligonucleotides

ddUTP-dye RNA FISH probesunlabeled 
oligonucleotides

RNA FISH probes
target RNA

Fig. 1 RNA smFISH with custom-designed and labeled probes. (a) Design sets of custom probes (ssDNA
oligonucleotides) against an RNA of interest. (b) The probes with sequences determined in the previous step
are labeled with ddUTP-dyes to create fluorescently labeled RNA FISH probes. (c) Cells are fixed with
paraformaldehyde and permeabilized to enable FISH probes to hybridize to their RNA targets, allowing
visualization of single molecules of RNA
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cd Path/To/Your/anglerFISH/

When inside the directory, install and configure all the
necessary software and packages by typing the following
command.

make

3. To test if the pipeline is ready to be used and to see the help
message with instructions of use, run the following.

./nextflow main.nf --help

3.1.2 Prepare Genome

Indexes for Specificity

Filtering

1. Download a fasta (.fa) file for the genomic sequence of the
organism you want to design probes against. Genomic
sequences can be found at the UCSCGenome Browser website
(https://hgdownload.soe.ucsc.edu/downloads.html). If the
fasta is compressed (fa.gz), unpack it to a .fa manually (Linux:
in the command line with gunzip <file>.fa.gz, Mac: unpacks
by default). Place the unpacked genome fasta file in the direc-
tory “anglerFISH/UPLOAD_HERE/genome_raw/”.

2. From the anglerFISH/ directory, build the genome indexes for
HISAT2 and Jellyfish programs. SeeNote 4 for more details on
generating indexes and parameters.

./nextflow main.nf --genome_index <genome name> --createIn-

dexes true --l <min length> --L <max length>

The indexes will be automatically placed in a new directory
“anglerFISH/UPLOAD_HERE/genome_index/<gen-
ome_index>”. The indexes are kept in this directory and can be
used repeatedly to design sets of probes. There is no need to
repeat this step until new target organism must be used.

3.1.3 Run the Workflow

to Generate RNA FISH

Probes

1. Copy the target mRNA sequence in fasta format to the direc-
tory “anglerFISH/UPLOAD_HERE/fasta”.

2. Once the indexes have been created (Subheading 3.1.2), run
the pipeline to design probes, specifying the parameters of the
desired probes.

./nextflow main.nf --genome_index <genome> --input_file

<RNA_sequence_base> <optional parameters>
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Carefully read the help message of the workflow (./next-
flow main.nf --help) to learn about all the possible options,
modes, and default parameters of the probes.

After a successful run of the pipeline (see Note 5), a zip file
with all the output files produced by the workflow can be found
in the directory “anglerFISH/UPLOAD_HERE/results”.
Unpack the zip file, which should contain the following.

(a) Fasta and tab files with designed probes.

(b) Fasta file with reverse complementary sequences of the
probes.

(c) Alignment file(s) of the final probes against the genome.

(d) File with a table of melting temperatures (Tm) of the
probes.

(e) Log File with basic information about the run.

3. Inspect the number of probes the workflow returned. For
reliable detection of single RNAs, we recommend using at
least 40 probes made of 18–23 nucleotides or at least 25 probes
made of 45–50 nucleotides. If your run returned fewer probes,
try rerunning the workflow with broader parameters.

4. (Optional) Visualization of probes against endogenous RNAs.
Go to a web application version of the Integrative Genomic

Viewer at https://igv.org/app/ and click on theGenome> selec-
tor and select the same genome version that was used to filter
and map your probes (seeNote 6). Click on Tracks > Local File
to load the probe alignment files created by the pipeline. Select
both the .bam and .bam.bai file at the same time. Search for the
name of your gene in the search box to zoom in to the gene and
view the aligned probes.

3.2 Probe Labeling A detailed description of the probe labeling can be found in the
original publication describing TdT probe labeling [16].

3.2.1 Conjugating ddUTP

and Dye

1. Assemble a moisture-free environment by enclosing silica beads
in a box with a tightly closed lid for around an hour.

2. In the moisture-free environment, resuspend the amine-dye in
anhydrous DMSO to a final concentration of 40 mM.

3. Assemble ddUTP-dye conjugation mix as described in Sub-
heading 2 and incubate for 2 h at room temperature (RT) in
the dark.

4. Add 18 μL of nuclease-free water to obtain 40 μL of 5 mM
stock solution of ddUTP-dye mix. Aliquot to amber tubes and
store at $20 #C.
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3.2.2 Conjugating

Oligonucleotides and

ddUTP-Dye

1. Order the oligonucleotide ssDNAs with sequences designed by
the workflow at a concentration of 100 μM and desalted.

2. In a PCR tube, assemble the ddUTP-dye-oligos labeling reac-
tion described in Subheading 2. Vortex and briefly spin down
the mixture in a minicentrifuge. Incubate the mixture for
16–24 h in a thermocycler set to 37 #C.

3. Add 60 μL 1 M sodium acetate (pH 5.5), 125 μL nuclease-free
water, and 1.5 μL linear acrylamide to the PCR tube. Mix well
and transfer to a 1.5 mL tube. Add 800 μL of 100% ethanol
($20 #C). Mix the contents of the tube by inverting several
times. Transfer to $80 #C for 30–60 min.

4. Centrifuge for 30 min (16,000 " g at 4 #C) after which a
colored pellet should be visible at the bottom of the tube.
Keep the tubes on ice at all times.

5. Remove the supernatant, add 1 mL of 80% ethanol (4 #C) to
the tube. Gently pipette the liquid up and down several times
to detach the pellet from the bottom of the tube, trying to
avoid fragmenting the pellet into smaller pieces. Centrifuge for
5 min (16,000 " g at 4 #C). Repeat this ethanol washing step
three times in total, after the first wash transfer the entire
ethanol with the floating pellet to a clean 1.5 mL tube.

6. Remove as much of the supernatant as possible and let the
pellet dry for 5–10 min or until all of the liquid evaporated.
Resuspend the pellet with 30 μL of nuclease-free water by
pipetting up and down until completely dissolved (seeNote 7).

3.2.3 Assessing the

Labeling Efficiency

1. Measure the absorbance (optical density, OD) at 260 nm
(OD260) and at the maximum absorption of the dye (ODdye)
of the probe solution with Nanodrop. To calculate the degree
of labeling, enter the values in the DegreeOfLabeling.xlsx
spreadsheet attached in the anglerFISH directory or the ang-
lerFISH GitHub repository. Alternatively, follow the step-by-
step instructions below.

2. Calculate the mean molar extinction coefficient of the oligo-
nucleotides mix (εoligos) by taking the mean of the molar
extinction coefficient of each oligonucleotide. Add
9000 mol$1 cm$1 to correct for the extra UTP added to
labeled oligonucleotide (εcorr).

3. Calculate the concentration of the oligonucleotides.

coligos ¼
OD260 $ c f 260 "ODdye

εcorr mol$1cm$1
! "

" light path cmð Þ

where cf260 is the contribution of the dye to OD at 260 nm
(consult dye manual), εdye is the dye’s extinction coefficient
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(consult dye manual). The standard light path length of the
Nanodrop is 0.1 cm.

4. Calculate the concentration of the dye:

cdye ¼
ODdye

εdye mol$1cm$1
! "

" light path cmð Þ

5. Calculate the degree of labeling.

degree of labeling ¼
cdye
coligo

We consider a probe set to be sufficiently well-labeled for
smFISH experiments when the degree of labeling is above 0.9
(see Note 8).

3.3 RNA smFISH

3.3.1 Fixation of Samples

1. Seed between 10,000 and 40,000 cells per well onto coverslips
placed in a 12-well plate and return to the incubator to allow
cells to attach and become well spread (~1–2 days). Avoid
allowing cells to grow to confluence (see Note 9).

2. Aspirate the culture medium and wash twice with 1 mL of PBS.

3. Add 1 mL per well of fixation solution and incubate for 10 min
at RT while gently rocking (see Note 10).

4. Wash thrice with PBS.

5. To permeabilize the cells, add 1 mL of fresh 70% w/v ethanol
and incubate at 4 #C overnight.

3.3.2 Probe Hybridization 1. Aspirate ethanol and wash the wells once with PBS.

2. Add 1 mL per well of the wash buffer and incubate for 5 min at
RT while gently rocking. Repeat the wash once more.

3. Pipette 45 μL of hybridization solution into a drop on a sheet
of Parafilm in the hybridization chamber (see Subheading 2).

4. Remove the coverslip with tweezers from the wash buffer and
gently dry it by tapping the side on absorbent tissue. Invert the
coverslip (cell side down) onto the drop of hybridization
solution.

5. Seal the chamber with Parafilm and cover with aluminum foil
before hybridizing at 37 #C for 4 h up to overnight.

6. In a new 12-well plate, add 1 mL per well of prewarmed
(37 #C) wash buffer.

7. Transfer the coverslips back to the 12-well plate using tweezers,
placing them cell side up.

8. Incubate in the dark at 37 #C for 30 min, while gently rocking
to wash out any unhybridized probes.

9. Repeat wash once more.
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10. Wash twice with PBS.

11. Prepare the glass slides by centrally placing a drop of Prolong
Gold Antifade Reagent with DAPI.

12. Use tweezers to remove coverslips from PBS and slightly dry by
tapping the side on absorbent tissue.

13. Place the coverslip cell side down onto the drop.

14. Let the mounting medium solidify by storing the samples in a
dark place at RT overnight.

15. Seal coverslips with nail polish around the edges and proceed to
image or store for up to a week at 4 #C.

3.4 Image
Acquisition

1. smFISH images can be collected on a wide-field epifluores-
cence microscope equipped with a metal-halide lamp, a high
numerical aperture oil objective, and a CCD camera.

2. The DAPI channel should be used to identify regions for
imaging where cells are well dispersed and to avoid any bias in
data collection.

3. Acquire optical sections spanning 5–6 μm using a 100" objec-
tive with a z-step sampling close to Nyquist rate, which is
typically 200–300 nm depending on objective’s numerical
aperture. Set exposure times resulting in a satisfactory signal
histogram.

4 Notes

1. We have successfully generated working probes with ATTO
565 and ATTO 633 dyes.

2. Prepare the 20% dextran sulfate solution prior to use as it takes
several hours to dissolve.

3. As a general starting point for probe design, we suggest design-
ing 18–23 nucleotides long probes, with melting temperatures
between 47–60 #C, in 10% formamide. We found those condi-
tions to provide a broad selection of probes. In case the number
of probes designed by the workflow is very high and only a
subset of probes needs to be selected for synthesis, we suggest
either narrowing the desired melting temperatures of probes
closer to 57 #C and selecting probes with similar melting
temperatures or alternatively, picking probes based on the
sequence alignment. We suggest selecting probes targeting
the 50 end of the target RNA, or probes that target the suitable
isoforms or other important features.

4. Genome indexes, built from reference genome files, allow
mapping and processing sequences more efficiently. In the
case of anglerfish, the hisat2 index is used for aligning probes
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to the genome and the jellyfish index is used for finding and
filtering out common k-mer sequences. The jellyfish index
must be built for each k-mer length separately. In order to
define k-mers (probe lengths) to build jellyfish indexes, select
the range of probe lengths that you want to design and indicate
the range by specifying a minimal (--l) and maximal (--L)
length of the probes. For example, if you plan to design probes
with lengths ranging from 18–23 nucleotides, specify --l 18 --
L 23.

In case you have already built the indexes in the past and
want to expand the range of k-mer jellyfish indexes (probe
lengths), you can use the --jf-only flag to only make additional
jellyfish indexes, without making the hisat2 indexes again. For
example, if you decide later to also design probes between
24 and 25 nucleotides, to add jellyfish indexes for these
k-mers run the following.

./nextflow main.nf --genome_index <genome name> --createIn-

dexes true --l 24 --L 25 --jf_only

5. To save disk space, regularly remove the content of the “ang-
lerFISH/work/” directory, which contains intermediate files
used in the process of designing probes and are obsolete after
the workflow finishes designing a probe set. Alternatively, you
can also run “make clean.”

6. You can also upload any genome of interest.

7. If the pellet is difficult to resuspend at first, allow it to soak the
water for a few minutes, then try to pipet again.

8. Occasionally, the labeling efficiency can be low (<90%). Usu-
ally, simply repeating the labeling of the unlabeled oligonucleo-
tides solves the issue. The second major factor that we found
affecting probe labeling is the batch of the TdT enzyme, which
should be replaced if the degree of labeling is consistently low.
If the probe labeling efficiency is still suboptimal, refer to the
original labeling publication [16] for more details on trouble-
shooting this issue.

9. The number of cells and the time will depend on the experi-
mental cell line.

10. Perform this step under the hood to prevent inhaling toxic
paraformaldehyde fumes.
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