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SUMMARY
A major goal of regenerative medicine is to generate tissue-specific mature and functional cells. However, current cell engineering pro-

tocols are still unable to systematically produce fullymature functional cells.While existing computational approaches aim at predicting

transcription factors (TFs) for cell differentiation/reprogramming, no method currently exists that specifically considers functional cell

maturation processes. To address this challenge, here, we develop SinCMat, a single-cell RNA sequencing (RNA-seq)-based computational

method for predicting cellmaturation TFs. Based on amodel of cellmaturation, SinCMat identifies pairs of identity TFs and signal-depen-

dent TFs that co-target genes driving functional maturation. A large-scale application of SinCMat to the Mouse Cell Atlas and Tabula Sa-

piens accurately recapitulates known maturation TFs and predicts novel candidates. We expect SinCMat to be an important resource,

complementary to preexisting computational methods, for studies aiming at producing functionally mature cells.
INTRODUCTION

One of the major goals in stem cell research is to generate

tissue-specific mature and functional cell types for clinical

applications such as drug screening, disease modeling,

and cell transplantation. In that regard, huge progress has

been made over the last years in our capacity to direct the

differentiation of human induced pluripotent stem cells

(hiPSCs) and transdifferentiation of somatic cells (Wang

et al., 2021; Cie�slar-Pobuda et al., 2017; Qian et al., 2012).

However, while cell conversion experiments have been

increasingly successful in generating desired cell types, cur-

rent protocols are still unable to systematically produce

fully mature and functional cells, especially in in vitro sys-

tems (Xu et al., 2015; Zhang et al., 2021; Boshans et al.,

2021; Sun et al., 2021). Namely, such immature cells

exhibit the proper cell-type-specific markers but are unable

to entirely perform their specialized physiological func-

tions. Nonetheless, the in vitro generation of functionally

mature cells is crucial for modeling the development and

maintenance of tissues/organs and for cell/tissue replace-

ment therapies for disease treatment.

The advent of transcriptomics technologies and the

concomitant increase in the amount of available data

have made possible the generation of a number of sophis-

ticated computational approaches for identifying the tran-

scriptional regulators for cell-fate specification and cell

conversion (D’Alessio et al., 2015; Cahan et al., 2014; Xu

et al., 2021; Rackham et al., 2016; Ribeiro et al., 2021).

However, while these computational approaches rigor-

ously address the conversion of cell identity from one cell
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type into another, they do not explicitly take into account

the cell maturation process. Indeed, a large body of evi-

dence indicates that the acquisition of cell identity is neces-

sary but not sufficient (Alvarez-Dominguez and Melton,

2022). Recent studies demonstrated that environmental

signals play a significant role in the cell maturation process

by modifying the gene expression through signal-depen-

dent transcription factors (STFs), a class of TFs expressed

in a broad manner across cell types and activated by extra-

cellular stimuli (Heinz et al., 2015; Wortham and Sander,

2021). Therefore, engineering of functionally mature cells

likely requires an additional, complementary set of factors

to cell identity TFs.

Here, we present SinCMat, a single-cell RNA sequencing

(scRNA-seq)-based computational method for systemati-

cally identifying functional cell maturation TFs. The

SinCMat algorithm relies on the model of cell maturation

(Heinz et al., 2015; Wortham and Sander, 2021) and first

identifies a set of identity TFs (ITFs) controlling the target

cell identity and then predicts ITF-STF pairs that co-target

the genes necessary for functional maturation. Therefore,

the output of SinCMat consists of a list of ITF-STF pairs,

which can be experimentally overexpressed either together

with more traditional cell differentiation/reprogramming

factors or later in the protocol when cells exhibit desired

cell identity but are still missing required functional

properties.

In addition to the prediction algorithm, we also intro-

duce SinCMatDB, a manually curated database compiling

experimentally validated cell maturation TFs. The applica-

tion of SinCMat identifies known maturation TFs and
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predicts novel candidates for experimental validation.

Furthermore, we show through two case studies on dopa-

minergic (DA) neurons and limbal SCs (LSCs) SinCMat’s

applicability to both post-mitotic and progenitors/SCs.

Finally, we show that SinCMat more accurately predicts

cell maturation TFs than preexisting computational

methods that rely only on gene expression profiles and

gene networks (D’Alessio et al., 2015; Rackham et al.,

2016; Cahan et al., 2014).

In summary, SinCMat is, to our knowledge, the first

computational tool specifically designed for predicting

functional cell maturation TFs. We expect SinCMat to be

an important resource for studies aiming at producing

functionally mature cells, especially for clinical applica-

tions. The SinCMat web interface is user friendly and facil-

itates easy browsing of SinCMatDB. Furthermore, the

SinCMat web interface allows users to upload their own

scRNA-seq data and run the tool for any mouse or human

cell type. SinCMat is freely available for academic, non-

profit use at https://sincmat.lcsb.uni.lu/.
RESULTS

Method overview

SinCMat’s model is designed based on a recently proposed

concept by Wortham and Sander (2021) in which ITFs,

along with epigenetic modifiers, drive cell differentiation

and set a specific epigenetic landscape. Later, during the

functional maturation, STFs are triggered by environ-

mental signals to fine-tune the expression of functional

genes (Figure 1A).

In line with this model, SinCMat uses scRNA-seq data of

the target cell type as input to identify pairs of ITFs and STFs

that can bind to the regulatory regions of the same func-

tional genes (see below for the identification of candidate

functional gene set) (Figure 1B) (Heinz et al., 2010; Mullen

et al., 2011; Wortham and Sander, 2021). Note, genome-

wide binding analyses unveiled that, here, the ‘‘co-bind-

ing/targeting’’ of ITFs and STFs does not necessitate direct

physical binding, but rather these two types of TFs have

to bind to the regulatory regions of common functional

genes independently at some point during development

and cell maturation (Heinz et al., 2010; 2015; Zhang and
Figure 1. Schematic outline of SinCMat
(A) Model of functional cell maturation used to design SinCMat.
(B) The workflow of SinCMat. From scRNA-seq data of target cell, Sin
(C) 4 major stages of SinCMat algorithm.
(D and E) Histogram of genes extracted from functional GO categories b
(E) the TS.
(F) Enrichment analysis of functional GO genes for the 10%, 20%, 30%
and 16 TS cell types. Odds ratio (OR) is reported for each bin in each
indicated by the y axis).
Glass, 2013). The SinCMat algorithm is composed of 4 ma-

jor stages (Figure 1C; experimental procedures), which aim

at modeling the stepwise acquisition of cell functionality

(Heinz et al., 2015; Wortham and Sander. 2021) where (1)

cell identity is set by ITFs that initiate the expression of

cell-type-specific genes during differentiation and, along

with epigenetic modifiers, open up the chromatin of the

regulatory regions of functional genes and (2) STFs are acti-

vated by environment signals and fine-tune the expression

of those functional genes. In stage 1, SinCMat identifies

cell-type-specific ITFs by single-cell Jensen-Shannon diver-

gence (scJSD) by identifying themost specifically expressed

TFs. In this context, JSD is a method used to measure the

deviance between an ideal and the actual gene expression

for a particular TF. The idealized TF expression is character-

ized by high expression in a target cell and no expression in

any of the background cells. The resulting divergence score

is used to rank TFs, with the top predicted TFs being those

with the lowest divergence (indicating the highest speci-

ficity) (D’Alessio et al., 2015; Ribeiro et al., 2021). In stage

2, starting with the 20 ITFs generated in stage 1, SinCMat

generates all possible ITF-STF pairs (6,380 pairs in total).

The pairs that are the most often co-expressed (top 10

percentile) in the target cell type are kept for downstream

steps. In stage 3, the functional score is computed for

each ITF-STF pair. This score consists of two components

to leverage the co-targeting property of ITF and STF: (1)

the Jaccard similarity index score computed on the com-

mon functional target genes and (2) the sum of Pearson’s

correlation scores between ITF/STF and each co-target func-

tional gene. For this purpose, we compiled a TF-Target data-

base from multiple sources (experimental procedures) for

mouse and human. In stage 4, SinCMat returns as output

a list of ITF-STF pairs ranked by the functional score. The

normalization step of the functional score components

performed in stage 3 allows the users to compare the qual-

ity of TF pairs.
Identification of candidate functional gene set

In order to unbiasedly obtain candidate functional genes

that need to be targeted by ITF-STF pairs, genes associated

with functional GO terms of 18 and 16 cell types available

in the Mouse Cell Atlas (MCA) and Tabula Sapiens (TS)
CMat identifies TFs required for functional maturation.

inned by normalized expression ranks calculated in (D) the MCA and

, 40%, and 50% most highly expressed genes in 18 MCA cell types
cell type. Categories with the highest OR were counted (frequency
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A B Figure 2. SinCMatDB characteristics
(A) Number of experimentally validated
maturation TF evidences in SinCMatDB across
body systems.
(B) Proportion of ITFs/STFs in SinCMatDB.
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datasets, respectively, were collected from the Cell

Ontology database and complementedwith prior literature

knowledge (Table S1; experimental procedures) (Diehl

et al., 2016; Han et al., 2018; Jones et al., 2022). Then, all

expressed genes (mean expression >0 in the target cell

type) were ranked by mean expression, and the ranks

were normalized between 0 and 100. We observed that

the most highly expressed genes showed the highest

enrichment of genes extracted from the functional GO

terms (Figures 1D and 1E). Fisher’s exact test also showed

that the top 10% most highly expressed genes had the

highest enrichment of functional GO terms among the first

five cumulative decile bins (i.e., top 10%, 20%, 30%, 40%,

and 50%) (Figure 1F). In addition, the top 10%most highly

expressed genes of well-known cell types also accurately

recapitulated their main cellular functions (Figures S1A–

S1L). Thus, we defined our cell-type-specific functional

gene set as the top 10% most highly expressed genes in

each cell type.

Large-scale application of SinCMat to the MCA and TS

datasets

To assess the performance and demonstrate the applica-

bility of SinCMat, we first created SinCMatDB, a manually

curated database with experimentally validated cell matu-

ration cues from literature. SinCMatDB is composed of a to-

tal of 950 TFs among 70 cell types (Figures 2A and 2B;

Table S2). We then applied SinCMat to 82 and 64 cell

(sub)types from the MCA and TS. Among the 25 cell types

in both MCA and TS, for which at least 5 TFs had literature

evidence in SinCMatDB, 53% and 56% TFs among the top

5 ITF-STF pairs (experimental procedures) have been previ-

ously validated (Figures 3A and 3C; Table S3). Fisher’s exact

test revealed that in 49 cell types out of 50, SinCMat’s pre-

dictions were significantly enriched for validated TFs

(Figures 3B and 3D; Table S4). Of note, a non-significant

p value was obtained with osteoclasts; however, mature os-

teoclasts are large, multinucleated cells with a size that ex-

ceeds the usual compatible size for standard sequencers.

Therefore, it is likely the annotated osteoclasts in the

MCA are rather smaller immature osteoclasts, which led
4 Stem Cell Reports j Vol. 19 j 1–15 j February 13, 2024
to the prediction of TFs related to immature osteoclasts

functions (Tsukasaki and Takayanagi, 2022). For example,

NR3C1 and ATF3 are both TFs well known for their

function in pre-osteoclasts and osteoclast differentiation

(Fukasawa et al., 2016; Jiang et al., 2020). Additionally,

the in silico double knockout (KO) of some predicted TFs us-

ing scTenifold (Osorio et al., 2022) demonstrated that their

virtual inactivation leads to perturbation of genes involved

in essential cell-type-specific functions (Figure S2).

Finally, the ability to target GO functional genes was

compared between the top 5 predicted ITFs and 1,000

random samples of 5 ITFs taken from the 20 ITFs identified

in stage 1. One-sample Wilcoxon test unveiled that in all

the 7 cell types for which >3 cell-type-specific functional

GO terms were available, predicted ITFs significantly

(p < 0.001) target more GO functional genes than the

random samples (Figure 3E), highlighting the ability of

SinCMat to prioritize ITFs that possess important func-

tional roles.

Case study 1: SinCMat recapitulatesmaturation TFs for

DA neurons and predicts novel candidates

Parkinson’s disease (PD) is a common neurological disorder

resulting from the loss of midbrain DA neurons, leading to

motor symptoms such as bradykinesia, rigidity, and resting

tremor (Alexander, 2004). Recent advancements in SC

research have made it promising to generate DA neurons

from iPSCs for potential cell therapy (Kikuchi et al., 2017;

Gilmozzi et al., 2021; Lebedeva et al., 2023). However, a

key challenge is the maturation time required for in-vitro-

differentiated DA neurons (Mahajani et al., 2019). We

therefore applied SinCMat to scRNA-seq data of human

healthy DA neurons to predict TFs that could improve cur-

rent protocols (Kamath et al., 2022).

We first integrated scRNA-seq data of healthy DA neu-

rons (Kamath et al., 2022) into our human background

(Figure 4A). SinCMat predicted the well-known pre-B cell

leukemia homeobox 1 (PBX1), which, in addition to being

involved in the specification and development of DA

neurons, is also required for the survival of DA neurons

(Villaescusa et al., 2016) (Figure 4B). Inactivation



Figure 3. Performance evaluation of SinCMat on MCA and TS
(A and C) Average number of validated maturation TFs in SinCMat predictions applied to (A) MCA and (C) TS.
(B and D) Distribution of Fisher’s exact test p value for enrichment in validated TFs with respect to the total numbers of predicted TFs and
validated TFs for (B) MCA and (D) TS.
(E) Comparison of mean coverage of function GO genes (%) between 5 ITFs predicted by SinCMat and random samples (n = 1,000) of 5 ITFs
from the initial 20 ITFs obtained in stage 1. Significance was calculated by one-sample Wilcoxon test. ***p < 0.001.

Please cite this article in press as: Barvaux et al., SinCMat: A single-cell-based method for predicting functional maturation transcription
factors, Stem Cell Reports (2023), https://doi.org/10.1016/j.stemcr.2023.12.006
experiments of HIF1A, the hypoxia-responsive STF associ-

ated with PBX1, previously demonstrated the importance

of oxygen tension for the proper survival and complete dif-
ferentiation of midbrain-derived neural precursors cells

(Milosevic et al., 2007). Baek and colleagues showed that

overexpression of EBF3, predicted in the second pair, led
Stem Cell Reports j Vol. 19 j 1–15 j February 13, 2024 5
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to a significant increase in the maturation level of devel-

oping DA neurons (Baek et al., 2014). Finally, Kang et al.

(2017) usedmetformin to activate the ATF2/CREB pathway

to confer protection to DA neurons and improved dopa-

mine-related motor performance in a PD animal model.

Although the other predicted TFs do not have direct evi-

dence for DA neuron maturation, studies demonstrated

their roles in global neuronal maturation and functions

and their importance for more specific DA functions such

as dopamine synthesis (Hashizume et al., 2018; Puymirat

et al., 1983; Yamada et al., 2013; Zhu et al., 2018).

GO enrichment analysis of co-targeted functional genes

by each ITF-STF pair resulted in an enrichment for global

neuronal functions like ‘‘regulation of trans-synaptic

signaling’’ and ‘‘modulation of chemical synaptic transmis-

sion’’ (Figure 4C). Furthermore, in addition to global

neuronal functions, predicted ITF-STF pairs also co-target

genes involved in dopamine metabolism, secretion, and

release, such as DOC, PINK1, and COMT (Figure 4D) (Bus

et al., 2020; Lepack et al., 2020; Lohr et al., 2014). Finally,

we observed that a given predicted STF can contribute to

the activation of complementary sets of functional genes

by associating with different ITFs. For example, among

the total predictions (Table S5), SinCMat associated

NFE2L1, a stress-dependent TF, with CUX2, MYT1L, and

HIVEP3, and these 3 pairs co-target distinct sets of func-

tional genes (Figure 4E).

Overall, the application of SinCMat to the scRNA-seq

data of human DA neurons predicted known maturation

TFs along with novel promising candidates for further

experimental validation.

Case study 2: SinCMat applied to LSCs

SCs and progenitors play amultifaced role within the body.

In addition to their primary cell replacement function,

they contribute to tissue regeneration and repair by

releasing growth factors, cytokines, extracellular matrix

molecules, and exosomes. Furthermore, SCs possess a

crucial migratory ability that enables them to sustain tissue

balance and facilitate the processes of repair and regenera-

tion (de Lucas et al., 2018). Therefore, to perform their

entire set of functions, similarly as differentiated cells,

SCs and progenitorsmust undergo a functionalmaturation

phase (Figure 5A).
Figure 4. Application of SinCMat to DA neurons
(A) Schematic analysis outline (left) and predicted ITF-STF pairs (rig
(B) Predicted TFs with literature support for the maturation of DA n
periments) or indirectly via exogenous treatment.
(C) GO biological process enrichment (p value cutoff = 0.01 and q valu
pairs.
(D) DA-specific functional genes targeted by predicted ITF-STF pairs.
(E) Venn diagram showing overlapping co-target genes among 3 diff
Here, we broaden the scope of the maturation process

and demonstrate SinCMat’s applicability to the case of

LSCs. LSCs reside in the crypts of the limbus and replace

the senescent or damaged cells of the cornea epithelium

(Figure 5B) (Sacchetti et al., 2018; Collin et al., 2021).

Dysfunction or loss of LSCs and/or their niche leads to

LSC deficiency (LSCD), and currently there is no cure avail-

able for bilateral LSCDs. The in vitro generation of func-

tional LSCs enabling successful cell therapy remains to be

a challenge in the field (Elhusseiny et al., 2022). In this re-

gard, we applied SinCMat to human LSCs from the TS to

identify the TFs required for the proper function of LSCs.

Among SinCMat predictions (Figure 5C; Table S5), the

well-known LSC marker TP63 was associated with RELA

(Pellegrini et al., 2001). TP63 is involved in epithelial SC

maintenance, and its expression was positively correlated

with successful engraftment therapies (Bhattacharya

et al., 2019; De Luca et al., 2006). PAX6, another master

regulator responsible for LSC characteristics, was also pre-

dicted (Li et al., 2015). Although little evidence exists for

the other predicted TFs, they find some support for their

functional roles in closely related cells. For example,

ASCL2 and FOXP2 are known to have a role in the mainte-

nance of the quiescent state of SCs (Leishman et al., 2013;

Schuijers et al., 2015).

Beyond experimental literature support, GO enrichment

analyses revealed that functional genes targeted by the top

5 ITF-STF pairs were associated with LSC properties such as

‘‘stem cell population maintenance,’’ ‘‘keratinocyte differ-

entiation,’’ and ‘‘regulation of epithelial cell proliferation’’

(Figure 5D). In addition to those functions, LSCs possess

the ability to migrate from their crypts as they start to

differentiate toward the cornea (Puri et al., 2020). Consis-

tent with this, the enrichment of GO cellular component

terms included ‘‘cell leading edge,’’ ‘‘ruffle,’’ and ‘‘cell-sub-

strate junction’’ for TP63-RELA target genes (Figure 5E).

Overall, these results identify candidate TFs required for

LSCs to be fully functional and demonstrate the applica-

bility of SinCMat to progenitors/SCs.

Finally, we interrogated the capacity of SinCMat to accu-

rately associate relevant STFs to PAX6, a lineage-specific TF

that targets different functions at different time points of

the differentiation path. More specifically, PAX6 initially

determines the LSC lineage but is also essential for the
ht).
eurons by direct TF expression modulation (overexpression/KO ex-

e cutoff = 0.05) for functional co-target genes of predicted ITF-STF

erent ITFs paired with NFE2L1.
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corneal cell-fate specification and is also known to be

important for the proper function of corneal epithelial cells

(CECs) (Sunny et al., 2022). Application of SinCMat to

CECs indeed predicted PAX6. While PAX6 was paired

with NCOA1 in the LSC prediction, it is paired with

NFKB1 in CECs (Table S5). Functional GO analysis of the

unique sets of co-targeted functional genes of each of these

pairs resulted in an enrichment for distinct processes (Fig-

ure S3). In LSCs, PAX6-NCOA1 regulates genes involved

in SC differentiation, cell-cell junction organization,

and proliferation through the leukemia inhibitory factor

response (Ramaesh et al., 2004) (Figure 5F). On the other

hand, PAX6-NFKB1 controls macroautophagy, an essential

guard of cornea homeostasis (Dias-Teixeira et al., 2022).

These observations demonstrate that in the case of line-

age-specific rather than cell-type-specific TFs, SinCMat

can accurately associate STFs that, together with the ITFs,

will co-target functional genes necessary for the function

of each cell type.

Comparisonwith existing computationalmethods for

prediction of reprogramming TFs

SinCMat is, to our knowledge, the first computational

method specifically designed for predicting cell maturation

TFs rather than more classical cell reprogramming TFs and

is therefore more complementary to than competition for

other existing computational methods. Nevertheless, the

performance of SinCMat on maturation TF prediction

was compared to the approaches commonly used for re-

programming TF prediction including CellNet, Mogrify,

and the entropy-based method from D’Alessio et al. (Rack-

ham et al., 2016; Cahan et al., 2014; D’Alessio et al., 2015).

We first compared SinCMat with the D’Alessio et al.

method, which relies on TFs that are uniquely expressed

in the target cell type with respect to the heterogeneous

background using JSD. Overall, the result showed that in

almost all cases, SinCMat outperformedwith a significantly

higher total number of recovered known maturation TFs

(Figures 6A, 6B, and S4A; Table S6).

Next, we compared SinCMat with Mogrify and CellNet,

which, unlike SinCMat, both consider only differentially

expressed TFs (DETFs) between the initial and target cell

types as potential candidate reprogramming TFs. There-

fore, to establish a comparison as fair as possible, we
Figure 5. Application of SinCMat to LSCs
(A) Application of the maturation concept to SCs/progenitors and ac
(B) Differentiation path of LSCs in CECs.
(C) Top 5 ITF-STF pair predictions for LSCs from TS.
(D) Top 10 GO biological processes enriched for functional co-target
(E) GO cellular component enrichment (p value cutoff = 0.01 and q v
(F) Functional roles of the ITF PAX6 in association with NCOA1 or NFKB
distinct sets of co-target genes (see also Figure S3).
applied SinCMat as described above, with the constraint

in stage 4 to select DETFs with fibroblasts as starting cell

type. The results showed that in this comparison too,

SinCMat overall significantly outperformed Mogrify and

CellNet (Figures 6C, 6D, S4B, and S4C).

The performance difference between SinCMat and the

preexisting methods may come from the fact that our al-

gorithm incorporates a biological model of cell matura-

tion. Indeed, to predict TFs for cell conversion, the D’Ales-

sio et al. method collects gene expression data from a

wide range of cell types and identifies uniquely expressed

TFs in target cell types. While the first stage of SinCMat is

similar to this, SinCMat complements cell-type-specific

ITFs with broadly expressed STFs and bases its predictions

on co-target functional genes. Mogrify and CellNet rank

candidate reprogramming TFs based on the gene expres-

sion differences of both TFs and their target genes be-

tween the initial and target cell types. However, we

observed that functional genes are often not DE even be-

tween distantly related cell types. For example, DE genes

between various target cell types and fibroblasts showed

that a low percentage of target genes used by SinCMat

are DE (Figure 6E).

Finally, we selected a widely studied case—cardiomyo-

cytes (CMs)—and investigated the extent to which the

different methods can target CM functional genes. During

CM maturation, CMs acquire specific morphological, elec-

trophysiological, and contractile characteristics that make

mature CMs distinguishable from their immature counter-

parts (Karbassi et al., 2020). The results demonstrated that

overall, TFs predicted by SinCMat can target to a greater

extent functional genes related to these CM maturation

processes than the other methods (Figure 6F; Table S6).

One of the strengths of SinCMat lies in its ability to pre-

dict functional maturation TFs from only the information

on the target cell type without requiring any additional

input. Nonetheless, we compared its performance with

FateCompass, a tool that computes TF activity over time

(Jiménez et al., 2023), by using time-series datasets of

maturing cells/organs. Interestingly, our results unveiled

that TF activity over the cell maturation time course does

not correlate with the concept of functional cell matura-

tion considered in this study, supporting the need for a

model that takes into account the co-binding property of
quisition of cell functionality.

genes of predicted ITF-STF pairs.
alue cutoff = 0.05) for functional target genes of TP63-RELA pair.
1 identified in LSCs and CECs by GO biological process enrichment on
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ITFs/STFs. Indeed, our results demonstrated that SinCMat

is not only able to recover a higher number of knownmatu-

ration TFs, but it also predicts TFs that target a significantly

higher proportion of functional genes (Tables S1 and S6;

Figures S4D and S4E).

Taken together, these results demonstrate that SinCMat,

byconsidering themodelof cellmaturation,moreaccurately

predicts cell maturation TFs than the preexisting methods.
DISCUSSION

Generating tissue-specific functionally mature cells in

in vitro systems is of importance for clinical applications.

However, numerous studies have shown that current dif-

ferentiation or reprogramming protocols are still unable

to systematically produce fully mature cells. While compu-

tational approaches previously developed for cell conver-

sion carefully address the conversion of cell identity, they

are not specifically designed to take into account the func-

tional cell maturation process. To address this important

challenge, we have introduced the first computational

method, SinCMat, for systematically predicting functional

maturation TFs for any cell type identified in scRNA-seq

data. Following the stepwise maturation model (Heinz

et al., 2010; Wortham and Sander, 2021), SinCMat is an

innovative predictive framework that integrates cell iden-

tity and maturation factors and leverages the co-targeting

properties of ITFs and STFs on functional genes. In addi-

tion, we have also constructed SinCMatDB, a manually

curated database for known maturation TFs that was

further used to assess the performance of SinCMat.

The large-scale application of SinCMat to a set of adult

mouse and human cell types in the MCA and TS accurately

recapitulated known maturation TFs and predicted novel

candidates. Moreover, our specific case studies demon-

strated SinCMat’s applicability to both post-mitotic cells

and progenitors/SCs. As SinCMat is designed specifically

for maturation TF prediction rather than more traditional

reprogramming TFs, SinCMat is intended to be used

in complement with the preexisting computational

methods. Such use cases could be to prioritize functional

maturation TFs for one-step reprogramming experiments
Figure 6. Comparison with preexisting methods
(A and B) Number of recapitulated known maturation TFs by SinCMat (n
cell type and (B) with all cell types combined. Significance was calcu
(C and D) Number of recapitulated known differentially expressed (p
(n = 10), and Mogrify (n = 8), with predictions (C) cell type by cell type
by 1.25 to elude any bias linked to the difference in total number of p
**p < 0.01, *p < 0.05.
(E) Proportion of the 10% most highly expressed DE and non-DE g
fibroblasts.
(F) Total number of TFs targeting cardiac maturation genes based on
or to augment missing functionalities in in-vitro-engi-

neered cells. It is important to note that functional cell

maturation experimentsmay also require the signals linked

to the predicted STFs.

Embedded in a user-friendly web application, SinCMat

does not require any computer programming knowledge.

As SinCMat only requires scRNA-seq data of the target cell,

users can easily apply the tool to any mouse or human cell

type of their interest. We foresee that SinCMat will consti-

tute a valuable platform that can potentially address current

cell engineering challenges inmanydifferent tissues/organs.
EXPERIMENTAL PROCEDURES

Resource availability

Corresponding author
Further information and requests for resources and reagents

should be directed to and will be fulfilled by the corresponding

author, Antonio del Sol (antonio.delsol@uni.lu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

SinCMat was implemented in R, and the code repository is avail-

able from GitLab (https://git-r3lab.uni.lu/CBG/sincmat). The

web application was developed with the PAWS framework and is

available at https://sincmat.lcsb.uni.lu/.
Human and mouse background scRNA-seq data
The following publicly available processed scRNA-seq data andmeta-

datawereused inthis study:GEO:GSE176063(MCA)andGSE201333

(TS). Data from adrenal gland, brain, calvaria, heart, intestine, islet,

kidney, liver, lung, pancreas, peripheral blood, rib, skin, and stomach

were used from the MCA to compile the mouse background. Cell

annotation was manually homogenized. Bladder, heart, eye, kidney,

large intestine, liver, lung, muscle, pancreas, skin, small intestine,

and tongue were obtained from the TS to compile the human back-

ground. The initial annotation from TS was kept.
Compilation of TF-Target database
Mouse and human TF-Target databases were constructed by aggre-

gating multiple data sources such as chromatin immunoprecipita-

tion (ChIP)-seq peak and TF binding motif information, literature-

curated resources, and inference from gene expression (see also the
= 10) and D’Alessio et al. (n = 10), with predictions (A) cell type by
lated by Wilcoxon rank-sum test. **p < 0.01.
< 0.05 and log2FC > 1) maturation TFs by SinCMat (n = 10), CellNet
and (D) with all cell types pooled (Mogrify predictions are multiplied
redictions). Significance was calculated by Wilcoxon rank-sum test.

enes (p < 0.05 and log2FC > 1) between the target cell type and

TF-Target database.
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supplemental experimental procedures). The resulting TF-Target da-

tabases contain 6,946,884 and 11,637,929 unique interactions in

mouse and human, respectively.

ITF and STF classification
TFs were classified into ITFs/STFs, as described in Brivanlou and

Darnell (2002), regarding their responsiveness to environment

stimuli or their role in identity establishment (Table S7).

scRNA-seq data analysis
SinCMat pipeline was implemented in R (R v.4.0.5). scRNA-seq

data analysis and differential gene expression tests with default

settings (adjusted p value [p_val_adj] < 0.05 and log2 fold

change [log2FC] > 1) were performed with R package Seurat

v.4.1.1. Fisher’s exact and Wilcoxon tests were done with the

R packages stats v.4.0.5 and rstatix v.0.7.0, respectively. GO

overrepresentation analyses for biological processes, molecular

functions, and cellular components were conducted with the

R package clusterProfiler v.4.2.2 (p value cutoff = 0.01 and

q value cutoff = 0.05).

Construction of SinCMatDB
We constructed a database referencing TFs that have experimen-

tally been shown to be involved in cell maturation. We obtained

TF evidences from PubMed by searching a list of keywords such

as ‘‘mature,’’ ‘‘maturation,’’ ‘‘function,’’ and ‘‘functional,’’ associ-

ated with ‘‘transcription factors’’ and names of cell types. In total,

SinCMatDB contains 950 TF evidences among 70 cell types. Liter-

ature evidences are classified by cell type (Table S2). The online

version of SinCMatDB also contains 457 evidences for exogeneous

treatments (with natural or synthetic compounds). Treatment

evidences were collected using keywords such as ‘‘promotes,’’ ‘‘en-

hances,’’ ‘‘function,’’ and ‘‘maturation.’’ Similarly, treatment arti-

cles are classed by cell type.

Identification of candidate functional gene set
Functional GO terms were collected from the Cell Ontology data-

base with the keyword ‘‘capable of’’ (https://www.ebi.ac.uk/ols/

ontologies/cl). In each cell type, all expressed genes (mean expres-

sion > 0) were ranked by expression, and the ranks were normal-

ized between 0 and 100 following the equation

RnormðAÞ = RðAÞ=W � 100;

whereRðAÞ is the rank of geneA andW is themaximumrank in the

cell type. See also the results.

Algorithm of SinCMat

Stage 1: Identification of cell-type-specific ITFs

SinCMat first creates a Seurat object from an input raw count ma-

trix and normalizes the data by the total expression with the Nor-

malizeData() function. The Seurat object is then integrated into our

mouse or human background as described in Stuart et al. (2019)

with the FindIntegrationAnchors() function to remove any batch ef-

fect. Then, ITFs for the target population are identified by scJSD, in

which JSD is computed for each cell and each TF, and then for each
12 Stem Cell Reports j Vol. 19 j 1–15 j February 13, 2024
TF, all JSD values over all cells are summed. The top 20 lowest

summed JSD value TFs are selected as ITFs. For efficient computa-

tion in the scJSD step, human background is downsampled to set

the maximum number of cells in each population to 1,000. From

the normalized count matrix, non-expressed genes in the target

cell type (mean expression = 0) and housekeeping genes (obtained

fromHounkpe et al., 2021) are removed, genes are ranked bymean

expression, and the top 10% genes are taken as the functional gene

set (see above).

Stage 2: Creation of ITF-STF pairs
With the 20 ITFs identified in stage 1, SinCMat creates all possible

ITF-STF pairs with the entire set of STFs. As both ITFs and STFs need

to be expressed in the target cell type to confer cell identity and

functions, the top 10% ITF-STF pairs with the highest number of

cells expressing both TFs are kept for subsequent steps.

Stage 3: Computation of the functional score

Next, for each ITF-STF pair, SinCMat computes the functional

score (FS), defined as

FS = JðITF; STFÞ+
�X

r
�.

2l;

where JðITF; STFÞ represents the Jaccard similarity coefficient

that gauges the similarity of functional target genes between

the ITF and STF and r is the Pearson correlation coefficient be-

tween each TF of the ITF-STF pair and each of the co-target func-

tional genes, which is summed over all TF-co-target functional

gene pairs. The Pearson correlation coefficient is computed in

single cells where both ITFs and STFs are expressed. Finally, to

normalize the sum of Pearson correlation coefficients between

0 and 1, the summed value is divided by 2 � l, where l is the

number of co-target functional genes. The rationale behind

the FS is that by computing the Jaccard similarity coefficient,

we prioritize ITF-STF pairs that share high numbers of functional

target genes. Then, to also give more importance to pairs that

more strongly regulate their co-target functional genes in the

target cell type, the normalized sum of Pearson correlation coef-

ficient is added. The normalization is performed to attribute the

same weight as the Jaccard similarity coefficient, which also

ranges from 0 to 1.

Stage 4: Ranking of ITF-STF pairs

Finally, SincMat returns as output a list of ITF-STF pairs that are

ranked by the FS and provides the number of functional co-target

genes for each pair. In addition, the web interface informs the user

of which predicted TFs have previously been experimentally

validated.
Evaluation of SinCMat
TheMCA and TS datasets were used to evaluate the performance of

SinCMat. SinCMat’s performance was assessed with cell types for

which at least 5 TFs had literature evidence (Table S2). Given the

decreasing number of co-target functional genes of predicted ITF-

STF pairs, which on average falls below 50% at the 6th pair, we

benchmarked SinCMat with the 5 top pairs (Figure S4). Fisher’s

exact test was used to assess the enrichment of SinCMat’s predic-

tions in validated TFs (Table S4). In silico double KOwas performed

with the R package scTenifoldKnk v.1.0.2 on raw TS data with

default parameters and nc_q = 0.999. One-sample Wilcoxon test

https://www.ebi.ac.uk/ols/ontologies/cl
https://www.ebi.ac.uk/ols/ontologies/cl
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was used to compare the mean coverage of functional GO genes

(Table S1) between the top5 ITFspredictedbySinCMat and random

sets of 5 ITFs from the 20 ITFs identified in stage 1.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/

10.1016/j.stemcr.2023.12.006.
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