COMPARING DENSITIES FOR POWERS
IN ARTIN’S CONJECTURE ON PRIMITIVE ROOTS

ANTONELLA PERUCCA AND PIETRO SGOBBA

ABSTRACT. We consider Artin’s conjecture on primitive roots and related Artin-type
problems, working over a number field K. Such problems deal with the reductions of
algebraic numbers a € K* modulo primes p of K. The key property concerns the value
of the index of (a mod p), but it is also customary to require an additional Frobenius
condition. The set of primes p satisfying such properties admits a density, conditionally
under the Extended Riemann Hypothesis. In this work we compare the density for a to
the density for its powers, and also address some related questions.

1. INTRODUCTION

We investigate questions stemming from Artin’s conjecture on primitive roots, and we
refer the reader to Moree’s survey [9] for an introduction to this research area.

Consider a rational number a which is not 0,1, —1 and it is not a square in Q*, and
exclude the finitely many primes p such that the reduction (o mod p) is not well-defined or
it is zero. We may then ask whether « is a primitive root at p, which means that (o mod p)
has index 1 in the multiplicative group (Z/pZ)*. Conditionally under the Generalised
Riemann Hypothesis (GRH), Hooley [1] proved that the set of prime numbers p for which
« is a primitive root at p has a positive Dirichlet density, which we call dens(«). He also
gave explicit formulas for dens(«) (which we recall in Section 2). Remark that some power
of a is a primitive root at p only if o is a primitive root at p. Thus, for every positive
integer m we have

dens(a™) < dens(«) .
The difference between these two densities is explained by the contribution to dens(«)
given by the primes p such that p = 1 mod ¢ holds for some prime divisor ¢ of m.

In fact, it does happen that dens(a™) = dens(a). One first reason is the following: if
a is an m-th power, then there is no contribution to dens(«) from the primes considered
above. However, the equality dens(a™) = dens(a) can hold even if for every n > 1 the
rational number « is not an n-th power. For example, Hooley’s formula imply that

dens(—3%) = dens(—3).

Indeed, there is no contribution to dens(—3) coming from the primes p = 1 mod 3 because

Q(+v/—3) = Q(¢3) and the index of (—3 mod p) is even if p # 3 splits in Q(v/—3).

In Theorem 2.2 we provide a complete description for when we have dens(a™) = dens(«).
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We also study the above question replacing @Q by an arbitrary number field K, and
assuming the Extended Riemann Hypothesis (ERH) which generalizes GRH. Remark that
some of our results can be made unconditional by assuming that the involved densities do
exist.

We also replace « by a finitely generated and torsion-free subgroup G of K*. Finally, we
consider much more general conditions for the index of the reductions of G, see Theorem
4.1 and the results in Section 5. Our investigations naturally lead us to consider how the
density for an algebraic number changes if we enlarge the number field that contains it,
see for example Theorem 4.6.

There are several works in the literature addressing Artin’s conjecture on primitive
roots and its variants. For example, Lenstra [5] and Ziegler [14] provide formulas when
the condition about the index being 1 is replaced by the index dividing ¢ or the index
being t for some positive integer t. Moreover, for a € Q, restricting the classical Artin
density dens(«) by only considering the prime numbers in a given arithmetic progression
was investigated by Lenstra, see [5, Theorem 8.3], by Moree [7, 8], and later by Lenstra
et al. [6, Sect. 5]. Finally remark that to prove our results with a very general condition
on the index we rely on the framework by Jarviniemi and Perucca [3], later developed by
these two authors and Sgobba in [4].

2. COMPARING ARTIN DENSITIES FOR RATIONAL NUMBERS

In this section we work over Q, assuming GRH. We use the notation ¢ to denote prime
numbers. For £ odd we set £* := (=1)"1/2¢, so Q(+/¢*) is the quadratic subextension of
the cyclotomic field Q({,). We write p for the Moebius function.

Let o € Q\{0,+1} be not a square in Q*, and call ¢ the discriminant of the quadratic
field Q(4/«). Denote by 7 the largest integer for which @ € Q*" (remark that 7 is odd).
Artin’s density [1] can then be written as

B 1 if §#1 (mod 4),
(2.1) dens(a) = A(1) {1 — u(|8])f+(6) otherwise,
where
A()._H<1_L>H(1_ 1 >
T) = 3 I — 1 i 0e—1)
and

1 1
ro =11 7= 1l =

006, ot 006, Ut

The above formulas imply that dens(a) > 0. Indeed, it is well-known that the Artin
constant A(1) is non-zero (in fact, A(1) ~ 0.37) so its positive rational multiple A(7) is
NON-Z€ro.

Also remark that if ¢ is the squarefree part of 7 (namely, ¢ is obtained from 7 by removing
repeated prime factors), then we have A(t) = A(7).
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Remark 2.1. Let m be an odd positive integer. We then have
dens(a™)  A(tm) {1 if0#1 (mod 4),

dens(a)  A(7)

1_#(‘5|)f7'm(6)
1—p(|]) f=(9)

This ratio does not change if we replace m by its squarefree part, or if we remove from m
prime factors that divide 7. In fact, we have

s A () () LA

Lm, ¢t

otherwise.

In particular, if 6 # 1 (mod 4) or if the common prime factors 0f(5 and m divide T (in
the latter case, we have f.,, = f.), we have

dens(a™) 1—[ 02—
- T m—
dens(«) i 817 2 —7—-1
In the following result we characterize when the ratio dens(a™)/dens(a) equals 1.

Theorem 2.2. If m is a positive odd squarefree integer, then dens(«) = dens(a™) if and
only if ac€ Q™ or there is £ | m such that a € Q%™ and a/0* € Q*2.

Proof. Even in a more general setting dens(a) = dens(a’™) means that dens(«) = dens(a?)
holds for every prime ¢ | m, and the condition for ¢ holds if « is a g-th power, see Theorem
4.10 and Remark 4.3.

Sufficiency. We are left to prove that if a/¢* is a square, then dens(a) = dens(a’). Our
assumptions imply 6 = £* = 1 mod 4. Then the desired equality follows from Remark 2.1
because we have p(]6|) = —1 and

A(L) 00 —2) 1 1
A1) e—r—1 hO) =g ==

Necessity. Suppose that a is not an m-th power and let ¢ | m be a prime such that
a ¢ Q* Tt suffices to prove that a/f* is a square (equivalently, § = ¢*), because this
implies that ¢ is unique. Remark that 7 is coprime to 2¢. We know dens(af) = dens(a)
and we consider Remark 2.1. We exclude d # 1 mod 4 because A(7¢) # A(1). We also get
the identity

(2.3 1 800 1:0) = 22 (1 (9]) ).

Let us write . .
fer) =] [ -
algcd(8.7) q—2 a0 74— 1
q

qtlT

If ¢4 6, then (2.3) leads to a contradiction while, supposing ¢ | 4, (2.3) becomes
01— f(6,h) = (0 —2) — £F(5, h).
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We deduce u(|d]) f(0,h) = —1, namely f(d,h) =1 and pu(|d]) = —1.

The second product in f(9, h) must be empty, and in the first product we can at most
have ¢ = 3. This gives |0| = ¢ (we exclude |§| = 3¢ because p(3¢) = 1). Recalling that
0 = 1 mod 4 we obtain § = £*. g

3. PRELIMINARIES FOR THE GENERAL CASE

3.1. Setup. We let K be a number field, and work within a fixed algebraic closure. We
write (, for a primitive n-th root of unity. Given a set & of primes of K, we denote by
7s(x) the number of primes p € § with norm Np < z.

We let @ € K* while G is a finitely generated and torsion-free subgroup of K* of
positive rank r. While considering the reductions of o or G modulo primes p of K we
tacitly exclude the finitely many p such that the reduction modulo p is not well-defined or
it is not contained in the multiplicative group of the residue field k,. We then denote by
indp () the index of (o mod p) in k), and similarly define ind,(G).

By density we always mean Dirichlet density. If clear from the context, we don’t specify
the dependency of densities on the field K. We call dens(a) the classical Artin density of
the primes p of K for which ind,(a) = 1, and if ¢ > 1 we write dens(«, t) if we require
ind, () = t. We write dens(a, a mod d) if we require ind,(«) = 1 and restrict to the primes
whose norm lies in the arithmetic progression a mod d. Notice that such densities are
known to exist conditionally under the Extended Riemann Hypothesis, see [3,4], because
the condition on the norm is a Frobenius condition for the abelian field extension K ((;)/K,
the Frobenius satisfying (4 — (§.

Finally, we denote by K ((,, GY™) the cyclotomic-Kummer extension obtained by adding
all n-th roots of the elements of G (equivalently, we may add the n-th roots of a set of
generators for G).

3.2. Dirichlet density in extensions. Let I'x denote the set of primes of K of degree
1. The following result generalizes [11, Proposition 1] and it is unconditional:

Lemma 3.1. Let L/K be an extension of number fields with Galois closure E/K, and let
'tk © 'k consist of the primes that split completely in L. Consider S < I' x and let Sy,
be the primes of L lying over the primes of S. Then S has a Dirichlet density if and only
if the same holds for Sy. In this case, we have

dens;(Sy) = [L : K] densk(S).

Proof. Call Pk the set of primes of K. Since densy(I'y) = 1, by the definition of Dirichlet
density we have

SN S N@)
densg (S) := Sl_>1+ Zpe’PK N(p) densy,(SL) : S1_>1+ qurL OER
We have
Y N@) ™ =[L:K])> N(p)™*

qeSL pesS
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and we may analogously relate the two sums over q € I', and p € I';, k. We conclude
because we have
]- . ZPEFL K ( )_S

— 11
[L . K] s—1F Zpe’PK N(p)_s

by the Chebotarev Density Theorem applied to L combined with the fact that the primes
p of K that split completely in L also split completely in L (the reductions of all roots of
the minimal polynomial of a primitive element of L belong to the residue field at p because
the polynomial splits into linear factors modulo p). ]

4. PRIMES IN ARITHMETIC PROGRESSION

In this section we assume ERH. We consider primes of K whose norm lies in a given
arithmetic progression and such that the index of the reduction of G belongs to a given set
of positive integers. We also require a Frobenius condition with respect to a given finite
Galois extension of K.

Theorem 4.1. Let F/K be a finite Galois extension of number fields, and let C' be a
conjugacy-stable subset of Gal(F/K). Let G be a finitely generated and torsion-free sub-
group of K* of positive rank r. Let S be a non-empty set of positive integers, let 1 < a < d
be coprime integers. Consider the set of primes of K given by

Ps(a,d) := {p :Np <z, Np=amodd, ind,(G) € S, (FJ/JK) c C},

where p varies through the primes of K unramified in F' and such that v,(g) = 0 for all
g € G. Then we have

. ZZ Jel) o2
Ps(ad log dnt Gl/nt) . K] (10gl‘)2_ﬁ11 )

teS n= 1

where
c(m) = |{o € Gal(F(g[dm], Gl/m)/K) : cr]K(Cmgl/m) =id, 0(¢q) = (3, o|r € C}|.

For S = {t} the double sum is just one sum and when x > t> we have the better error term

O( x2 N xloglogéx) '
log°x  @(t)log” x

Notice that for F' = K the coefficient ¢(m) is 1 if the automorphism induced by (; — ¢
is the identity on the intersection K ((m, GY™) n Q((y), and it is 0 otherwise. Theorem 4.1
is a combination of two standard conditions which have been studied extensively, namely
the index having prescribed value and the primes being in an arithmetic progression. For
K =Q and G of rank 1 and S = {t}, Theorem 4.1 with ¢ = 1 is stated in Moree’s survey
9, Theorem 1], and for general ¢ in [2, Theorem 3.1].
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Proof of Theorem 4.1. We may suppose that the primes p that are counted are of degree
1, as this restriction excludes only O(y/z/logz) primes. The conditions Np = a mod d
and (p, F'//K) < C are equivalent to (p, F'(¢4)/K) S Cy 4, where

Coa = {0 € Gal(F(¢)/K) : 0(¢a) = (5, 0lr < C}.

Then for the second assertion it suffices to apply [12, Proposition 5.1] with F' = F'(¢4) and
C" = C,q. For the first assertion we apply [10, Theorem 1] in a similar way. Il

Lemma 4.2. If m is an odd positive integer, then we have
dens(G™) = dens(G) — dens(G, S; mod m)

where Sy is the set of integers that are congruent to 1 modulo some prime divisor of m.
Consequently, we have dens(G™) = dens(G*¥(™)  where sqf (m) denotes the squarefree part
of m.

Proof. Let p be a prime of K. The reduction (G™ mod p) has index 1 if and only if
(G mod p) has index 1 and for every prime ¢ | m we have Np £ 1 mod q. O

Remark 4.3. By Lemma 4.2 we have dens(G) = dens(G™) if and only if dens(G) =
dens(G*4(™) . Consequently, the condition dens(G) = dens(G™) implies that dens(G) =
dens(G™") holds for everyn > 1.

Example 4.4. We have dens(G?) = dens(G) — dens(G, 1 mod 3) = dens(G, 2 mod 3).

Proposition 4.5. If m is a squarefree integer, then we have

dens(G, 1 mod m) = Z p(n) dens(G™).

nlm

Proof. Let p be a prime of K such that (G mod p) has index 1. The condition Np =
1 mod m means that for all primes ¢ | m the index of (G? mod p) is not 1. Given two
distinct prime numbers ¢, ¢/, we have that both (GY mod p) and (G? mod p) have index
1 if and only if (G% mod p) has index 1, and the same holds for finitely many prime
numbers. Hence, applying the inclusion-exclusion principle over the prime factors of m
yields the formula in the statement. O

Let L/K be a Galois extension of number fields. Consider a prime p of K such that
the index of (G mod p) is well-defined. If P is a prime of L over p, then the index of
(G mod ) is well-defined and it is a multiple of the index of (G mod p). The two indices
are the same if and only if p splits completely in L.
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Theorem 4.6. For every set S of positive integers and for every positive integer m the
following holds:

(4.1)
densk (p : ind,(G) € S, Froby k(p) = id) = ﬁ -dens, (P : indy(G) € 5)
1
(4.2) densk(p :indy(G) € S;Np =1mod m) = R(C) K denskc,,)(B : indp(G) € S)
1
(4.3) densk(p :indy(G) = 1,Np =1mod m) = R K] densk ¢, (G) -

Proof. The first equality is a consequence of Lemma 3.1, the second equality is a special
case of the first (taking L = K((,)), the third equality is a special case of the second
(taking S = {1}). O

Remark 4.7. For every positive even integer m we have dens(G™) = 0 because G' consists
of squares. If m is an odd positive integer, then we always have

dens(G™) < dens(G)
because G™ is a subgroup of G.

The two densities dens(G™) and dens(G) may be the same though, even if m is prime
and G # W™ holds for any subgroup W of K*:

Example 4.8. For K = Q and a = —3 we have dens(a) = dens(a®). Indeed, o is a
square in K3 hence densg, (o) = 0. By Theorem 4.6 we deduce that (densa, 1 mod 3) = 0,
and we may conclude by Lemma 4.2.

Lemma 4.9. For all positive integers t,m, M with m | M the following holds:

(i) We have dens(GM) = dens(G™) if and only if for every prime { | M we have
dens(G™, 1 mod £) = 0 (this clearly holds if ¢ | m).

(it) We have dens(GM,t) = dens(G™,t) if and only if for every prime ¢ | 2 we have
dens(G™,t,1 mod t¢) = 0.

Proof. We may restrict to the primes p of K of degree 1 (as the remaining primes have
density 0) and we write p = N(p) for the underlying rational prime.

(i): Suppose that (G™ mod p) has index 1. Then (G mod p) also has index 1 if and
only if for every prime divisor ¢ of M /m the integer N(p) — 1 is not a multiple of ¢, which
amounts to saying that p # 1 mod /.

(ii): Suppose that (G™ mod p) has index t or, equivalently, order (p — 1)/t. Then
(GM mod p) has index ¢ or, equivalently, order (p — 1)/t if and only if each prime divisor
¢ of M/m does not divide (p — 1)/t, which means p # 1 mod t/. O

Theorem 4.10. Let m,t be positive integers, with m odd and squarefree. Then the follow-
g are equivalent:

(i) We have dens(G,t) = dens(G™, t).

(ii) For every prime { | m, we have dens(G,t) = dens(G*,t).
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(111) For every prime { | m, we have dens(G,t,1 mod ¢) = 0.

Proof. The equivalence of (ii) and (iii) can be obtained by fixing ¢ hence it is a consequence
of Lemma 4.9(ii) applied to G and G¢. Lemma 4.9(ii), applied to G and G™, gives the
equivalence of (i) and (iii). O

5. COMPARING GENERAL ARTIN DENSITIES FOR POWERS

In this section we assume FRH. We write £ to denote prime numbers. We consider a set
of positive integers H and study the condition ind,(G) € H using definitions and results
from [4]. For a squarefree integer () > 1 we consider the Q-adic valuation Z.o — [ [, Z>o
mapping m to the tuple (v (m))q, and we denote by Hg the preimage under vg of vg(H).
We say that H is cut by valuations if H = (), H, and we set V; := vy(H). Then we define
the following constants:

1 _
Fv7r(£) _ {1—m fOI"U—O

1 4 1
Wﬁ(l—m) fOI"U>O,

and
Avr(0) = > Fn(0), Avy =] [Av(0).
veV, l

We denote by fiygaar the normalized Haar measure. By [4, Theorem 23] there is a square-
free integer B > 1 which depends only on K and G such that

(5.1) dens(p : indy(G) € H) = Ay, - pttaar(Crr.5(G)) | [ Avir ()7,
/B
where
(5.2) Cup(@) = | Cu(@) = | | Cu(G) € Gal(Kpx p=/K)
heHp hTHB
h|B®

and Cy,(G) is the conjugacy-stable set of those K-automorphisms which fix K ((, GY*),
and for all ¢ | B prime do not fix the field K((,,, GY%"). The extension Kp« p» denotes
the union of all extensions K ((ge, GY5°) with e > 1. Notice that this set up is unchanged
if B is not squarefree.

We study how the above density changes if we replace G with G™ for some integer
m = 1.

Remark 5.1. It follows from [}, 13] that B depends on G only through its parameters of
(-divisibility and its adelic failure (i.e. whether roots of its elements lie in a cyclotomic
extension of K ). Therefore, considering G™ instead of G only affects the former matter.
More precisely, B is divisible by all primes { for which the parameters of {-divisibility are
not all zero. Hence, for G™ it suffices to replace B with Bm. Thus, we have

dens(p : ind,(G) € H) _ ftaar (Crr.p(Q)) ‘
dens(p : indy(G™) € H)  pittaar(Crrpm (G™)) H Ay, (0).

olm, 0B
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Theorem 5.2. Suppose that m and B are coprime. We then have
(53)  dens(p : indy(G™) € H) = Ay, * fiitaan (Crr.5(G)) - [ [AVHO) - [ | Avir (07,

£m £|Bm

where for ¢ | m we set

1 gw(m)r+1 1
(m) i . _
V” : Z F and  F,7V(0) : s (1 €T> .
veV,
vy (m)

Proof. We start with the formula given in (5.1) with G and B replaced by G™ and Bm,
respectively. By [3, Proposition 3.1(iii)] for every integer ¢ and any prime ¢ | m coprime to
t (by assumption ¢ is then coprime to B), we have

K (Cpoptm, G ™) A K (G, G = K,

as the former field on the left-hand side equals K((yu,m) and the latter is contained in
K(¢, GYY). We deduce that the conditions on the K-automorphisms defining Cj 5(G™)
are independent from those defining C(G™) for ¢ | m. Moreover, since (B, m) = 1, for

every v = 1 we have K ((go, G™5") = K((g», GYB"). Hence, we obtain
O}LBm(Gm) = OH7B<G) X @CH,Z(Gm)
Lm

This decomposition yields the second factor in (5.3), and we are left to justify the third
factor in the formula. By definition, for ¢ | m, the set Cy(G™) is the disjoint union of the
conjugacy classes Cp(G™) for v = 0 with ¢V € H,. This class is empty if v < v,(m), and
otherwise it has Haar measure equal to FQST) (¢). Taking the Haar measure of the direct
sum of the sets Cy ¢(G™) for ¢ | m completes the proof. O

Corollary 5.3. For m coprime with B we have

dens(p : ind,(G) €

Ay, (0)/A
dens(p : ind (Gm) !;[ ver(£)/ wr( )-
Proof. This is an immediate consequence of Theorem 5.2. ]

For the special case ind,(G) = ¢, we consider the r-rank Artin constant
1
PR o R
, r(0—1)
Theorem 5.4. The density dens(G,t) equals

g(r+1 ve(t)+

A, 1 ~1) (0 — 1)
1 it (Cleey () - [ [ o= 11 ; 1f n -
e+ L FT—F -1, f-1 L z a1
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Proof. Tt suffices to notice that the set H = {t} is trivially cut by valuations (by taking
Hy = {v(t)} for every ) and to apply (5.1). In particular, we obtain

r1
Ay, = tj:lfl ' grfl —r 1_ 1’
0t

and Cy p(G) = Cy p=)(G) by the definition in (5.2). O
Corollary 5.5. For every odd positive integer m we have

dens(G™,1) toitaar (Ct, (Bmy=) (G™)) . (e (g 1) )

dens(G,t)  paar(Clr.pey (G)) Zl(tﬂnl_)[ﬂB o+l —1 o 2B E’”“ r—1
Proof. This is an immediate consequence of Theorem 5.4 and Remark 5.1. O

Corollary 5.6. If (B,t) = 1, then we have

A r+1 _
dens(G,t) = —- - ! HWH

trJrl €r+1 r

—1
0t

Proof. The formula of Theorem 5.4 simplifies straight-forwardly in the given special case.

g

Remark 5.7. Suppose that (m, B) =1 and consider the ratio dens(G™,t)/dens(G,t). By
Theorem 5.2, the ratio is zero if vy(t) < W(m) for some £ | (t,m), and otherwise it is

[1]
2]

dens(G™, t) 1—[ r— "0 —1)
TN Y Ew(m )r+1 1_[ B S
dens(G, t) flecd(tm) +1 it gl —yr — 1
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