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Abstract. We consider Artin’s conjecture on primitive roots and related Artin-type
problems, working over a number field K. Such problems deal with the reductions of
algebraic numbers α P Kˆ modulo primes p of K. The key property concerns the value
of the index of pα mod pq, but it is also customary to require an additional Frobenius
condition. The set of primes p satisfying such properties admits a density, conditionally
under the Extended Riemann Hypothesis. In this work we compare the density for α to
the density for its powers, and also address some related questions.

1. Introduction

We investigate questions stemming from Artin’s conjecture on primitive roots, and we
refer the reader to Moree’s survey [9] for an introduction to this research area.

Consider a rational number α which is not 0, 1,´1 and it is not a square in Qˆ, and
exclude the finitely many primes p such that the reduction pα mod pq is not well-defined or
it is zero. We may then ask whether α is a primitive root at p, which means that pα mod pq

has index 1 in the multiplicative group pZ{pZqˆ. Conditionally under the Generalised
Riemann Hypothesis (GRH), Hooley [1] proved that the set of prime numbers p for which
α is a primitive root at p has a positive Dirichlet density, which we call denspαq. He also
gave explicit formulas for denspαq (which we recall in Section 2). Remark that some power
of α is a primitive root at p only if α is a primitive root at p. Thus, for every positive
integer m we have

denspαm
q ď denspαq .

The difference between these two densities is explained by the contribution to denspαq

given by the primes p such that p ” 1 mod q holds for some prime divisor q of m.
In fact, it does happen that denspαmq “ denspαq. One first reason is the following: if

α is an m-th power, then there is no contribution to denspαq from the primes considered
above. However, the equality denspαmq “ denspαq can hold even if for every n ą 1 the
rational number α is not an n-th power. For example, Hooley’s formula imply that

densp´33q “ densp´3q .

Indeed, there is no contribution to densp´3q coming from the primes p ” 1 mod 3 because
Qp

?
´3q “ Qpζ3q and the index of p´3 mod pq is even if p ‰ 3 splits in Qp

?
´3q.

In Theorem 2.2 we provide a complete description for when we have denspαmq “ denspαq.
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We also study the above question replacing Q by an arbitrary number field K, and
assuming the Extended Riemann Hypothesis (ERH) which generalizes GRH. Remark that
some of our results can be made unconditional by assuming that the involved densities do
exist.

We also replace α by a finitely generated and torsion-free subgroup G of Kˆ. Finally, we
consider much more general conditions for the index of the reductions of G, see Theorem
4.1 and the results in Section 5. Our investigations naturally lead us to consider how the
density for an algebraic number changes if we enlarge the number field that contains it,
see for example Theorem 4.6.

There are several works in the literature addressing Artin’s conjecture on primitive
roots and its variants. For example, Lenstra [5] and Ziegler [14] provide formulas when
the condition about the index being 1 is replaced by the index dividing t or the index
being t for some positive integer t. Moreover, for α P Q, restricting the classical Artin
density denspαq by only considering the prime numbers in a given arithmetic progression
was investigated by Lenstra, see [5, Theorem 8.3], by Moree [7, 8], and later by Lenstra
et al. [6, Sect. 5]. Finally remark that to prove our results with a very general condition
on the index we rely on the framework by Järviniemi and Perucca [3], later developed by
these two authors and Sgobba in [4].

2. Comparing Artin densities for rational numbers

In this section we work over Q, assuming GRH. We use the notation ℓ to denote prime
numbers. For ℓ odd we set ℓ˚ :“ p´1qpℓ´1q{2ℓ, so Qp

?
ℓ˚q is the quadratic subextension of

the cyclotomic field Qpζℓq. We write µ for the Moebius function.
Let α P Qzt0,˘1u be not a square in Qˆ, and call δ the discriminant of the quadratic

field Qp
?
αq. Denote by τ the largest integer for which α P Qˆτ (remark that τ is odd).

Artin’s density [1] can then be written as

(2.1) denspαq “ Apτq

#

1 if δ ı 1 pmod 4q,

1 ´ µp|δ|qfτ pδq otherwise ,

where

Apτq :“
ź

ℓ|τ

ˆ

1 ´
1

ℓ ´ 1

˙

ź

ℓ∤τ

ˆ

1 ´
1

ℓpℓ ´ 1q

˙

and

fτ pδq “
ź

ℓ|δ, ℓ|τ

1

ℓ ´ 2

ź

ℓ|δ, ℓ∤τ

1

ℓ2 ´ ℓ ´ 1
.

The above formulas imply that denspαq ą 0. Indeed, it is well-known that the Artin
constant Ap1q is non-zero (in fact, Ap1q „ 0.37) so its positive rational multiple Apτq is
non-zero.

Also remark that if t is the squarefree part of τ (namely, t is obtained from τ by removing
repeated prime factors), then we have Aptq “ Apτq.
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Remark 2.1. Let m be an odd positive integer. We then have

denspαmq

denspαq
“

Apτmq

Apτq

#

1 if δ ı 1 pmod 4q,
1´µp|δ|qfτmpδq

1´µp|δ|qfτ pδq
otherwise .

This ratio does not change if we replace m by its squarefree part, or if we remove from m
prime factors that divide τ . In fact, we have

(2.2)
Apτmq

Apτq
“

ź

ℓ|m, ℓ∤τ

ˆ

1 ´
1

ℓ ´ 1

˙ ˆ

1 ´
1

ℓpℓ ´ 1q

˙´1

“
ź

ℓ|m, ℓ∤τ

ℓ2 ´ 2ℓ

ℓ2 ´ ℓ ´ 1
.

In particular, if δ ı 1 pmod 4q or if the common prime factors of δ and m divide τ (in
the latter case, we have fτm “ fτ), we have

denspαmq

denspαq
“

ź

ℓ|m, ℓ∤τ

ℓ2 ´ 2ℓ

ℓ2 ´ ℓ ´ 1
.

In the following result we characterize when the ratio denspαmq{denspαq equals 1.

Theorem 2.2. If m is a positive odd squarefree integer, then denspαq “ denspαmq if and
only if α P Qˆm or there is ℓ | m such that α P Qˆm{ℓ and α{ℓ˚ P Qˆ2.

Proof. Even in a more general setting denspαq “ denspαmq means that denspαq “ denspαqq

holds for every prime q | m, and the condition for q holds if α is a q-th power, see Theorem
4.10 and Remark 4.3.

Sufficiency. We are left to prove that if α{ℓ˚ is a square, then denspαq “ denspαℓq. Our
assumptions imply δ “ ℓ˚ ” 1 mod 4. Then the desired equality follows from Remark 2.1
because we have µp|δ|q “ ´1 and

Apℓq

Ap1q
“

ℓpℓ ´ 2q

ℓ2 ´ ℓ ´ 1
f1pδq “

1

ℓ2 ´ ℓ ´ 1
fℓpδq “

1

ℓ ´ 2
.

Necessity. Suppose that α is not an m-th power and let ℓ | m be a prime such that
α R Qˆℓ. It suffices to prove that α{ℓ˚ is a square (equivalently, δ “ ℓ˚), because this
implies that ℓ is unique. Remark that τ is coprime to 2ℓ. We know denspαℓq “ denspαq

and we consider Remark 2.1. We exclude δ ı 1 mod 4 because Apτℓq ‰ Apτq. We also get
the identity

(2.3) 1 ´ µp|δ|qfτ pδq “
ℓpℓ ´ 2q

ℓ2 ´ ℓ ´ 1

`

1 ´ µp|δ|qfτℓpδq
˘

.

Let us write

fpδ, τq :“
ź

q|gcdpδ,τq

q‰ℓ

1

q ´ 2

ź

q|δ
q∤ℓτ

1

q2 ´ q ´ 1
.

If ℓ ∤ δ, then (2.3) leads to a contradiction while, supposing ℓ | δ, (2.3) becomes

ℓ2 ´ ℓ ´ 1 ´ fpδ, hq “ ℓpℓ ´ 2q ´ ℓfpδ, hq.
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We deduce µp|δ|qfpδ, hq “ ´1, namely fpδ, hq “ 1 and µp|δ|q “ ´1.
The second product in fpδ, hq must be empty, and in the first product we can at most

have q “ 3. This gives |δ| “ ℓ (we exclude |δ| “ 3ℓ because µp3ℓq “ 1). Recalling that
δ ” 1 mod 4 we obtain δ “ ℓ˚. □

3. Preliminaries for the general case

3.1. Setup. We let K be a number field, and work within a fixed algebraic closure. We
write ζn for a primitive n-th root of unity. Given a set S of primes of K, we denote by
πSpxq the number of primes p P S with norm N p ď x.

We let α P Kˆ while G is a finitely generated and torsion-free subgroup of Kˆ of
positive rank r. While considering the reductions of α or G modulo primes p of K we
tacitly exclude the finitely many p such that the reduction modulo p is not well-defined or
it is not contained in the multiplicative group of the residue field kp. We then denote by
indppαq the index of pα mod pq in kˆ

p , and similarly define indppGq.
By density we always mean Dirichlet density. If clear from the context, we don’t specify

the dependency of densities on the field K. We call denspαq the classical Artin density of
the primes p of K for which indppαq “ 1, and if t ě 1 we write denspα, tq if we require
indppαq “ t. We write denspα, a mod dq if we require indppαq “ 1 and restrict to the primes
whose norm lies in the arithmetic progression a mod d. Notice that such densities are
known to exist conditionally under the Extended Riemann Hypothesis, see [3, 4], because
the condition on the norm is a Frobenius condition for the abelian field extension Kpζdq{K,
the Frobenius satisfying ζd ÞÑ ζad .

Finally, we denote by Kpζn, G
1{nq the cyclotomic-Kummer extension obtained by adding

all n-th roots of the elements of G (equivalently, we may add the n-th roots of a set of
generators for G).

3.2. Dirichlet density in extensions. Let ΓK denote the set of primes of K of degree
1. The following result generalizes [11, Proposition 1] and it is unconditional:

Lemma 3.1. Let L{K be an extension of number fields with Galois closure L̃{K, and let
ΓL,K Ď ΓK consist of the primes that split completely in L. Consider S Ď ΓL,K and let SL

be the primes of L lying over the primes of S. Then S has a Dirichlet density if and only
if the same holds for SL. In this case, we have

densLpSLq “ rL̃ : Ks densKpSq .

Proof. Call PK the set of primes of K. Since densLpΓLq “ 1, by the definition of Dirichlet
density we have

densKpSq :“ lim
sÑ1`

ř

pPS Nppq´s

ř

pPPK
Nppq´s

, densLpSLq :“ lim
sÑ1`

ř

qPSL
Npqq´s

ř

qPΓL
Npqq´s

.

We have
ÿ

qPSL

Npqq
´s

“ rL : Ks
ÿ

pPS

Nppq
´s
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and we may analogously relate the two sums over q P ΓL and p P ΓL,K . We conclude
because we have

1

rL̃ : Ks
“ lim

sÑ1`

ř

pPΓL,K
Nppq´s

ř

pPPK
Nppq´s

by the Chebotarev Density Theorem applied to L̃ combined with the fact that the primes
p of K that split completely in L also split completely in L̃ (the reductions of all roots of
the minimal polynomial of a primitive element of L belong to the residue field at p because
the polynomial splits into linear factors modulo p). □

4. Primes in arithmetic progression

In this section we assume ERH. We consider primes of K whose norm lies in a given
arithmetic progression and such that the index of the reduction of G belongs to a given set
of positive integers. We also require a Frobenius condition with respect to a given finite
Galois extension of K.

Theorem 4.1. Let F {K be a finite Galois extension of number fields, and let C be a
conjugacy-stable subset of GalpF {Kq. Let G be a finitely generated and torsion-free sub-
group of Kˆ of positive rank r. Let S be a non-empty set of positive integers, let 1 ď a ă d
be coprime integers. Consider the set of primes of K given by

PSpa, dq :“

"

p : N p ď x, N p ” a mod d, indppGq P S,

ˆ

p
F {K

˙

Ď C

*

,

where p varies through the primes of K unramified in F and such that vppgq “ 0 for all
g P G. Then we have

πPSpa,dqpxq “
x

log x

ÿ

tPS

8
ÿ

n“1

µpnqcpntq

rF pζrd,nts, G1{ntq : Ks
` O

˜

x

plog xq
2´ 1

r`1

¸

,

where

cpmq :“ |tσ P GalpF pζrd,ms, G
1{m

q{Kq : σ|Kpζm,G1{mq “ id, σpζdq “ ζad , σ|F P Cu|.

For S “ ttu the double sum is just one sum and when x ě t3 we have the better error term

O

ˆ

x

log2 x
`

x log log x

φptq log2 x

˙

.

Notice that for F “ K the coefficient cpmq is 1 if the automorphism induced by ζd ÞÑ ζad
is the identity on the intersection Kpζm, G

1{mq XQpζdq, and it is 0 otherwise. Theorem 4.1
is a combination of two standard conditions which have been studied extensively, namely
the index having prescribed value and the primes being in an arithmetic progression. For
K “ Q and G of rank 1 and S “ ttu, Theorem 4.1 with t “ 1 is stated in Moree’s survey
[9, Theorem 1], and for general t in [2, Theorem 3.1].
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Proof of Theorem 4.1. We may suppose that the primes p that are counted are of degree
1, as this restriction excludes only Op

?
x{ log xq primes. The conditions N p ” a mod d

and pp, F {Kq Ď C are equivalent to pp, F pζdq{Kq Ď Ca,d, where

Ca,d :“ tσ P GalpF pζdq{Kq : σpζdq “ ζad , σ|F Ď Cu.

Then for the second assertion it suffices to apply [12, Proposition 5.1] with F 1 “ F pζdq and
C 1 “ Ca,d. For the first assertion we apply [10, Theorem 1] in a similar way. □

Lemma 4.2. If m is an odd positive integer, then we have

denspGm
q “ denspGq ´ denspG,S1 mod mq

where S1 is the set of integers that are congruent to 1 modulo some prime divisor of m.
Consequently, we have denspGmq “ denspGsqfpmqq, where sqfpmq denotes the squarefree part
of m.

Proof. Let p be a prime of K. The reduction pGm mod pq has index 1 if and only if
pG mod pq has index 1 and for every prime q | m we have N p ı 1 mod q. □

Remark 4.3. By Lemma 4.2 we have denspGq “ denspGmq if and only if denspGq “

denspGsqfpmqq. Consequently, the condition denspGq “ denspGmq implies that denspGq “

denspGmn
q holds for every n ě 1.

Example 4.4. We have denspG3q “ denspGq ´ denspG, 1 mod 3q “ denspG, 2 mod 3q.

Proposition 4.5. If m is a squarefree integer, then we have

denspG, 1 mod mq “
ÿ

n|m

µpnq denspGn
q.

Proof. Let p be a prime of K such that pG mod pq has index 1. The condition N p ”

1 mod m means that for all primes q | m the index of pGq mod pq is not 1. Given two
distinct prime numbers q, q1, we have that both pGq mod pq and pGq1

mod pq have index
1 if and only if pGqq1

mod pq has index 1, and the same holds for finitely many prime
numbers. Hence, applying the inclusion-exclusion principle over the prime factors of m
yields the formula in the statement. □

Let L{K be a Galois extension of number fields. Consider a prime p of K such that
the index of pG mod pq is well-defined. If P is a prime of L over p, then the index of
pG mod Pq is well-defined and it is a multiple of the index of pG mod pq. The two indices
are the same if and only if p splits completely in L.
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Theorem 4.6. For every set S of positive integers and for every positive integer m the
following holds:

densKpp : indppGq P S,FrobL{Kppq “ idq “
1

rL : Ks
¨ densLpP : indPpGq P Sq

(4.1)

densKpp : indppGq P S,N p ” 1 mod mq “
1

rKpζmq : Ks
densKpζmqpP : indPpGq P Sq(4.2)

densKpp : indppGq “ 1,N p ” 1 mod mq “
1

rKpζmq : Ks
¨ densKpζmqpGq .(4.3)

Proof. The first equality is a consequence of Lemma 3.1, the second equality is a special
case of the first (taking L “ Kpζmq), the third equality is a special case of the second
(taking S “ t1u). □

Remark 4.7. For every positive even integer m we have denspGmq “ 0 because G consists
of squares. If m is an odd positive integer, then we always have

denspGm
q ď denspGq

because Gm is a subgroup of G.

The two densities denspGmq and denspGq may be the same though, even if m is prime
and G ‰ Wm holds for any subgroup W of Kˆ:

Example 4.8. For K “ Q and α “ ´3 we have denspαq “ denspα3q. Indeed, α is a
square in K3 hence densK3pαq “ 0. By Theorem 4.6 we deduce that pdensα, 1 mod 3q “ 0,
and we may conclude by Lemma 4.2.

Lemma 4.9. For all positive integers t,m,M with m | M the following holds:

(i) We have denspGMq “ denspGmq if and only if for every prime ℓ | M we have
denspGm, 1 mod ℓq “ 0 (this clearly holds if ℓ | m).

(ii) We have denspGM , tq “ denspGm, tq if and only if for every prime ℓ | M
m

we have
denspGm, t, 1 mod tℓq “ 0.

Proof. We may restrict to the primes p of K of degree 1 (as the remaining primes have
density 0) and we write p “ Nppq for the underlying rational prime.

(i): Suppose that pGm mod pq has index 1. Then pGM mod pq also has index 1 if and
only if for every prime divisor ℓ of M{m the integer Nppq ´ 1 is not a multiple of ℓ, which
amounts to saying that p ı 1 mod ℓ.
(ii): Suppose that pGm mod pq has index t or, equivalently, order pp ´ 1q{t. Then

pGM mod pq has index t or, equivalently, order pp ´ 1q{t if and only if each prime divisor
ℓ of M{m does not divide pp ´ 1q{t, which means p ı 1 mod tℓ. □

Theorem 4.10. Let m, t be positive integers, with m odd and squarefree. Then the follow-
ing are equivalent:

(i) We have denspG, tq “ denspGm, tq.
(ii) For every prime ℓ | m, we have denspG, tq “ denspGℓ, tq.
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(iii) For every prime ℓ | m, we have denspG, t, 1 mod ℓq “ 0.

Proof. The equivalence of (ii) and (iii) can be obtained by fixing ℓ hence it is a consequence
of Lemma 4.9(ii) applied to G and Gℓ. Lemma 4.9(ii), applied to G and Gm, gives the
equivalence of (i) and (iii). □

5. Comparing general Artin densities for powers

In this section we assume ERH. We write ℓ to denote prime numbers. We consider a set
of positive integers H and study the condition indppGq P H using definitions and results
from [4]. For a squarefree integer Q ą 1 we consider the Q-adic valuation Zą0 Ñ

ś

ℓ|Q Zě0

mapping m to the tuple pvℓpmqqℓ|Q, and we denote by HQ the preimage under vQ of vQpHq.
We say that H is cut by valuations if H “

Ş

ℓ Hℓ, and we set Vℓ :“ vℓpHq. Then we define
the following constants:

Fv,rpℓq “

#

1 ´ 1
ℓrpℓ´1q

for v “ 0
1

ℓvpr`1q ¨ ℓ
pℓ´1q

p1 ´ 1
ℓr`1 q for v ą 0 ,

and
AVℓ,rpℓq :“

ÿ

vPVℓ

Fv,rpℓq, AV,r :“
ź

ℓ

AVℓ,rpℓq .

We denote by µHaar the normalized Haar measure. By [4, Theorem 23] there is a square-
free integer B ě 1 which depends only on K and G such that

(5.1) denspp : indppGq P Hq “ AV,r ¨ µHaarpCH,BpGqq
ź

ℓ|B

AVℓ,rpℓq
´1,

where

(5.2) CH,BpGq :“
ď

hPHB

ChpGq “
ğ

hPHB
h|B8

ChpGq Ď GalpKB8,B8{Kq

and ChpGq is the conjugacy-stable set of those K-automorphisms which fix Kpζh, G
1{hq,

and for all q | B prime do not fix the field Kpζqh, G
1{qhq. The extension KB8,B8 denotes

the union of all extensions KpζBe , G1{Be
q with e ě 1. Notice that this set up is unchanged

if B is not squarefree.
We study how the above density changes if we replace G with Gm for some integer

m ě 1.

Remark 5.1. It follows from [4, 13] that B depends on G only through its parameters of
ℓ-divisibility and its adelic failure (i.e. whether roots of its elements lie in a cyclotomic
extension of K). Therefore, considering Gm instead of G only affects the former matter.
More precisely, B is divisible by all primes ℓ for which the parameters of ℓ-divisibility are
not all zero. Hence, for Gm it suffices to replace B with Bm. Thus, we have

denspp : indppGq P Hq

denspp : indppGmq P Hq
“

µHaarpCH,BpGqq

µHaarpCH,BmpGmqq
¨

ź

ℓ|m,ℓ∤B

AVℓ,rpℓq.
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Theorem 5.2. Suppose that m and B are coprime. We then have

(5.3) denspp : indppG
m

q P Hq “ AV,r ¨ µHaarpCH,BpGqq ¨
ź

ℓ|m

A
pmq

Vℓ,r
pℓq ¨

ź

ℓ|Bm

AVℓ,rpℓq
´1,

where for ℓ | m we set

A
pmq

Vℓ,r
pℓq :“

ÿ

vPVℓ
věvℓpmq

F pmq
v,r pℓq and F pmq

v,r pℓq :“
1

ℓvpr`1q
¨
ℓvℓpmqr`1

ℓ ´ 1

´

1 ´
1

ℓr

¯

.

Proof. We start with the formula given in (5.1) with G and B replaced by Gm and Bm,
respectively. By [3, Proposition 3.1(iii)] for every integer t and any prime ℓ | m coprime to
t (by assumption ℓ is then coprime to B), we have

Kpζℓvℓpmq , Gm{ℓvℓpmq

q X Kpζt, G
m{t

q “ K,

as the former field on the left-hand side equals Kpζℓvℓpmqq and the latter is contained in
Kpζt, G

1{tq. We deduce that the conditions on the K-automorphisms defining CH,BpGmq

are independent from those defining CH,ℓpG
mq for ℓ | m. Moreover, since pB,mq “ 1, for

every v ě 1 we have KpζBv , Gm{Bv
q “ KpζBv , G1{Bv

q. Hence, we obtain

CH,BmpGm
q “ CH,BpGq ˆ

à

ℓ|m

CH,ℓpG
m

q.

This decomposition yields the second factor in (5.3), and we are left to justify the third
factor in the formula. By definition, for ℓ | m, the set CH,ℓpG

mq is the disjoint union of the
conjugacy classes CℓvpGmq for v ě 0 with ℓv P Hℓ. This class is empty if v ă vℓpmq, and

otherwise it has Haar measure equal to F
pmq
v,r pℓq. Taking the Haar measure of the direct

sum of the sets CH,ℓpG
mq for ℓ | m completes the proof. □

Corollary 5.3. For m coprime with B we have

denspp : indppGq P Hq

denspp : indppGmq P Hq
“

ź

ℓ|m

AVℓ,rpℓq{A
pmq

Vℓ,r
pℓq.

Proof. This is an immediate consequence of Theorem 5.2. □

For the special case indppGq “ t, we consider the r-rank Artin constant

Ar :“
ź

ℓ

´

1 ´
1

ℓrpℓ ´ 1q

¯

.

Theorem 5.4. The density denspG, tq equals

Ar

tr`1
¨ µHaarpCpt,B8qpGqq ¨

ź

ℓ|t

ℓr`1 ´ 1

ℓr`1 ´ ℓr ´ 1

ź

ℓ|pt,Bq

ℓpr`1qvℓptq`rpℓ ´ 1q

ℓr`1 ´ 1

ź

ℓ|B,ℓ∤t

ℓrpℓ ´ 1q

ℓr`1 ´ ℓr ´ 1
.
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Proof. It suffices to notice that the set H “ ttu is trivially cut by valuations (by taking
Hℓ “ tvℓptqu for every ℓ) and to apply (5.1). In particular, we obtain

AV,r “
Ar

tr`1
¨
ź

ℓ|t

ℓr`1 ´ 1

ℓr`1 ´ ℓr ´ 1
,

and CH,BpGq “ Cpt,B8qpGq by the definition in (5.2). □

Corollary 5.5. For every odd positive integer m we have

denspGm, tq

denspG, tq
“

µHaarpCpt,pBmq8qpG
mqq

µHaarpCpt,B8qpGqq
¨

ź

ℓ|pt,mq,ℓ∤B

ℓpr`1qvℓptq`rpℓ ´ 1q

ℓr`1 ´ 1

ź

ℓ|m,ℓ∤Bt

ℓrpℓ ´ 1q

ℓr`1 ´ ℓr ´ 1
.

Proof. This is an immediate consequence of Theorem 5.4 and Remark 5.1. □

Corollary 5.6. If pB, tq “ 1, then we have

denspG, tq “
Ar

tr`1
¨
ź

ℓ|t

ℓr`1 ´ 1

ℓr`1 ´ ℓr ´ 1

ź

ℓ|B

ℓrpℓ ´ 1q

ℓr`1 ´ ℓr ´ 1
.

Proof. The formula of Theorem 5.4 simplifies straight-forwardly in the given special case.
□

Remark 5.7. Suppose that pm,Bq “ 1 and consider the ratio denspGm, tq{denspG, tq. By
Theorem 5.2, the ratio is zero if vℓptq ă vℓpmq for some ℓ | pt,mq, and otherwise it is

denspGm, tq

denspG, tq
“

ź

ℓ|gcdpt,mq

ℓr ´ 1

ℓr`1 ´ 1
ℓvℓpmqr`1

ź

ℓ|m,ℓ∤t

ℓrpℓ ´ 1q

ℓr`1 ´ ℓr ´ 1
.
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