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Abstract — 4D-imaging mmWave radars offer high angular
resolution in both azimuth and elevation, but achieving this
requires a large antenna aperture size and a significant number
of transmit and/or receive channels. This presents a challenge
for designing transmit waveforms that must be separable on
the receive side and have low auto-correlation sidelobes. This
paper focuses on designing an orthogonal set of sequences
for 4D-imaging radar sensors based on PMCW technology.
We propose a Coordinate Descent-based iterative optimization
framework that optimizes a set of phase-modulated constant
modulus waveforms based on weighted integrated sidelobe
levels on the required region of interest. The optimization also
incorporates the radar’s proximity to other radar sensors and
communication systems by spectrum shaping. The efficiency of
the suggested strategy, which achieves low sidelobe levels and is
compatible with spectrum limits, is shown through simulation
results.

Keywords — mmWave Radar, PMCW, CDM-MIMO, WISL,
waveform design, spectrum shaping.

I. INTRODUCTION

High resolution 4D-imaging millimeter-Wave (mmWave)
Multiple-Input Multiple-Output (MIMO) radars, are being
widely employed in various applications including indoor
sensing, health care, and autonomous driving [1]. To achieve
high azimuth-elevation angular resolution in these sensors, a
large number of transmit/receive channels are required, which
significantly increases the sensor cost if the antennas are
built physically. However, this requirement can be fulfilled
virtually by utilizing sparsity in the location of transmit or
receive antenna elements. The improved angular resolution
capability of 4D-imaging mmWave MIMO radars comes
with a cost of increased complexity in designing transmit
waveforms, as orthogonality in transmission is required, which
necessitates a multiplexing scheme. In mmWave radar sensors,
Frequency-Modulated Continuous-Wave (FMCW) waveforms
have traditionally been favored due to their cost-effective
implementation using de-chirp techniques and low sampling
rate ADCs [2]. However, in 4D-imaging applications where a
set of orthogonal waveforms is required to be transmitted, the
interest has shifted towards using Code-Division Multiplexing
(CDM) techniques where potentially sets of Phase-Modulated
Continuous-Wave (PMCW) can be transmitted simultaneously
[3]–[6]. The reason is that, Time-Division Multiplexing (TDM)
[7], [8] and Frequency Division Multiplexing (FDM) [9]
of FMCW do not make full use of available time and

frequency resources, and BPM [10], [11] and Doppler-Division
Multiplexing (DDM) [12], [13] create folding in the useful
Doppler region. PMCW radars are more adaptable to
environmental conditions and have the potential for enabling
cognition with spectrum sharing capability [14], making
them an appealing alternative to FMCW, provided that the
orthogonality between transmitting waveforms is preserved.

Several approaches are available in the literature to design
a set of sequences with low auto- and cross-correlation
sidelobes for PMCW radars based on the Integrated Side-lobe
Level (ISL)/ Weighted Integrated Side-lobe Level (WISL) or
Peak Side-lobe Level (PSL) metrics, including Multi-Cyclic
Algorithm New (CAN) [15], Iterative Direct Search [16],
ISLNew [17], Majorization-Minimization (MM)-Corr, [18] and
Coordinate Descent (CD) [19]. Furthermore, by incorporating
spectral shaping methods into the optimization process for the
sequence set, the waveforms can have minimal interference
with other transmissions in the frequency band [20]–[23].

The paper aims to design sequences that are both spectrally
compatible and orthogonal in a specific region using a weight
vector and the WISL metric to minimize range-sidelobe levels.
We propose an entry-based CD approach to address the
continuous-phase constraint and obtain the global solution in
each step until convergence. Numerical results show that the
algorithm performs well for mmWave 4D-imaging radars1.

II. WAVEFORM OPTIMIZATION

In this section, we design a set of unimodular sequences
for PMCW radars based on jointly minimizing their auto- and
cross-correlation sidelobe levels and shaping their spectrum.

The aim is to reduce the sidelobes as much as possible in
a Regions Of Interest (ROI), which can be calculated based on
the radar system’s maximum range. Let us assume that X ∈
CM×K is the set of sequences in baseband with M transmit
antennas and K samples for each, and xm,k = ejϕm,k is the
(m, k)th entry of X. WISL metric is defined by [23]:

M∑
m=1

M∑
l=1

K−1∑
k′=−K+1

|αm,l(k
′)rm,l(k

′)|2 −
∑M

m=1 |αm,m(0)K|2 (1)

1Notation: We use boldface upper case X for matrices and boldface lower
case x for vectors. The (m,n)th element of X is denoted by Xm,n. The sets
of complex number, real number, Hadamard product, l2 norm , phase of vector
and matrix, hermitian operation, Transpose operation, modulus of the complex
number, correlation, and gradient are denoted by, CN , RN , ℑ(.), ⊙, ||.||22,
∠., (.)H ,(.)T , |.| ⊛, and ∇ respectively. ln defines the natural logarithm.



where αm,l(k
′) ∈ [0, 1], ∀k′ ∈ {−K + 1, . . . ,K − 1}

represents a set of weights, rm,l(k
′) ≜ (xm ⊛ xl)k′ =∑K−1

k′=1 xm,k′x∗l,K−k′ is the cross-correlation between the
mth and the lth antenna waveforms, that are xm =
[xm,1, xm,2, ..., xm,K ]T and xl = [xl,1, xl,2, ..., xl,K ]T , m, l ∈
{1, 2, ...,M}. If m = l, rm,l(.) represents the auto-correlation
of the mth signal. k′ is one of the different (2K − 1)
lags in cross-correlation function.

∑M
m=1 |αm,m(0)K|2 is

the weighted energy of the waveform. Since the signals
are constant modulus, this term is a constant and can be
eliminated in the objective function. Re-writing the metric
in the frequency domain [23], we define the following
optimization problem:

min
X

f(X) ≜
M∑

m=1

M∑
l=1

||a1 ⊙ F−1(a2 ⊙ Fx̄m ⊙ Fx̄∗r
l )||22

s.t. xm,k ∈ X∞

(2)

where, a1 and a2 are WISL and spectral weight vectors,
respectively. X∞ = {ejϕ|ϕ ∈ Ω∞}, Ω∞ ≜ (−π, π]
indicates the unimodular phases. F and F−1 are (2K − 1)
points Discrete Fourier Transform (DFT) and Inverse DFT
matrices, respectively. x̄, here, is a zero-padding operation, i.e.,
x̄m ≜ [xTm, 0T

K−1×1]
T is the zero-padded vector of the mth

transmitting waveform. x∗rl ≜ [x∗(l,K), x
∗
(l,K−1), ..., x

∗
(l,1)]

T is
the the lth antenna sequence reverse. Since the constraint is
an affine set, the related optimization problem is non-convex,
multi-variable and NP-hard.

To solve the problem under continuous-phase constraint,
we use a CD approach and define an entry-based optimization
framework to formulate the problem in terms of a series
of single-variable problems. This requires to find the critical
points and obtains the global optimum solution in each step.
To this end, we consider each entry of X as the only variable
to our problem, while keeping the others fixed. Let x

(i)
m0,k0

(m0 ∈ {1, 2, ...,M} and k0 ∈ {1, 2, ...,K}) be the only entry
variable to be optimized in the ith iteration. Storing other fixed
entries of X in Xi

−(m0,k0)
, we can formulate the objective

function (f(X)) in terms of xi
m0,k0

as (for notation simplicity,
we omit the iteration number in the equations below):

f(xm0,k0 ,X−(m0,k0)) = ν−2(X)x∗2
m0,k0

+ ν−1(X)x∗
m0,k0

+

ν0(X) + ν1(X)xm0,k0 + ν2(X)x2
m0,k0

(3)

where the coefficients ν−2, ν−1, ν0, ν1 and ν2 are the
complex-valued functions of X having different values for
each entry (m0, k0) and can be calculated from Table 1, where
fk0 is a vector derived from F containing its kth0 column
elements. Similarly, fK+1−k0 is the (K+1−k0)

th column of
F. F̂−k0

is a ((2K−1)×K) sub-matrix of F containing all first
K columns of F, except for the kth0 column, i.e., in F̂−k0

, the
kth0 column of (F) is omitted. The same as F̂−k0

, F̂−K+1−k0

is a sub-matrix of F in which the (K + 1 − k0)
th column is

removed. Also, xm0,k ̸=k0 is the mth
0 row of X, in which the

the kth0 sample is dropped out and xm,k0 is the kth0 sample of
mth antenna waveform (m ∈ {1, 2, ...,M}). To simplify the
notations in Table 1, we define some auxiliary variables as,


Υ0 ≜ aT

1 ⊙ F−1(aT
2 ⊙ fk0 ⊙ fK+1−k0),

Υ1(m̂) ≜ aT
1 ⊙ F−1(aT

2 ⊙ F̂−k0x
T
m̂,k ̸=k0

⊙ fK+1−k0),

Υ2(m̂) ≜ aT
1 ⊙ F−1(aT

2 ⊙ fk0 ⊙ F̂−K+1−k0x
rH
m̂,k ̸=k0

),

Υ3(m̂, m̃) ≜ aT
1 ⊙ F−1(aT

2 ⊙ F̂−k0x
T
m̂,k ̸=k0

⊙ F̂−K+1−k0x
rH
m̃,k ̸=k0

).

(4)
where all of these variables are vectors of length (2K − 1).
Note that, since f(X) in Eq. 2 is real-valued, it can be
easily proved that ν−2 = ν∗2 and ν−1 = ν∗1 . Considering
the coefficients as νh(X), h ∈ {−2,−1, 0, 1, 2}, the above
equation based on the phases of each entry ϕm0,k0

and the
phase matrix Φ−(m0,k0), can be re-written as:

f(ϕm0,k0 ,Φ−(m0,k0)) =

2∑
h=−2

νh(Φ)ejhϕm0,k0 (5)

To minimize the objective function over Ω∞ on each entry
ϕm0,k0

, and as f are differentiable functions for ϕ ∈ Ω∞, we

can find the solution of df(ϕ)
dϕ =

d
∑2

h=−2 νhe
jhϕ

dϕ = 0. In this
regard, the derivative of f(ϕ) can be obtained by:

f
′
(ϕ) =

2∑
h=−2

jhνhe
jhϕm0,k0 (6)

Finding the roots of f
′
(ϕ) in Eq. 6 is equivalent to find

the roots of the 4 degree polynomial function
∑4

n=0 ρnz
n = 0

where z ≜ ejϕ, ρ4 = 2ν2, ρ3 = ν1, ρ2 = 0, ρ1 = −ν−1 =
−ν∗1 and ρ0 = −2ν−2 = −2ν∗2 . Assume zn, n = {1, ..., 4}
are the roots of

∑4
n=0 ρnz

n = 0, the roots of f
′
(ϕ) = 0 are

then ϕn = −j ln(zn), n = {1, ..., 4}. We only admit the real
roots for ϕ. Thus, the global optimum solution for ϕ is:
ϕ⋆
m0,k0

= argmin
ϕ

{f(ϕ)|ϕ ∈ {ϕn, n = {1, ..., 4},ℑ(ϕn) = 0} (7)

Subsequently, the optimum solution is x⋆i
m0,k0

= ejϕ
⋆
m0,k0

and the sequence set matrix X⋆i in each iteration is updated
until the convergence criteria is met. The proposed algorithm
is summarized in Algorithm 1. Note that, since f in Eq. 5 is a
function of sinϕ and cosϕ, it is periodic, real and differentiable
and has at least two extrema, so its derivative has at least two
real roots. As a result, the feasibility of Eq. 7 in each iteration
is guaranteed and the problem has the optimum solution.

III. SIMULATION AND RESULTS

In this section, we provide simulation results to assess the
performance of the proposed algorithm. Table 2 shows the
comparison between the ISL values of a set of random-phase
sequences with Multi-CAN [15], MM-Corr [18] BiST [4], and
the proposed method in this paper when we do not consider
ROI ( KROI = K). The small difference between the ISL
values of a set of random-phase codes and the lower bound is
not enough to design a set of orthogonal codes in a massive
MIMO radar system [24] such as 4D-imaging radars. On the
other hand, Table 3 shows the impact of considering ROI in
the proposed waveform design approach. This table provides
the ISL values for different number of antennas and code
lengths and shows that, the proposed method can achieve very
low-sidelobe levels in the required ranges by increasing the
ratio K

KROI
. Although in the proposed method the sidelobe

levels outside of ROI are very high, only the sidelobe levels in



Table 1. Calculation of coefficients (ν0,ν1,ν2) in Eq. 3.

ν0

∑M
m=1

m ̸=m0

[
M ||Υ1(m)||22 +M ||Υ2(m)||22 + ||Υ3(m,m0)||22 + ||Υ3(m0,m0)||22 + 2M |xm,k0

ΥH
1 (m)Υ0|+ 2M |xm,k0

ΥH
0 Υ2(m)|+ 2|xm,k0

ΥH
1 (m0)Υ3(m0,m)|+ 2|xm,k0

ΥH
3 (m,m0)Υ2(m0)|

]
+

∑M
m=1

m ̸=m0

∑M
l=1

l ̸=m0

[
2|xl,k0

x∗
m,k0

ΥH
0 Υ3(m, l)|+ 2|xl,k0

xm,k0
ΥH

1 (m)Υ2(l)|+ 2|xl,k0
ΥH

1 (m)Υ3(m, l)|+ 2|xm,k0
ΥH

3 (m, l)Υ2(l)|+ ||Υ3(m,m0)||22
]

+M2||Υ0||22 +M ||Υ1(m0)||22 +M ||Υ2(m0)||22 + ||Υ3(m0,m0)||22 + 2|ΥH
0 Υ3(m0,m0)|

ν1

∑M
m=1

m ̸=m0

[
x∗
m,k0

ΥH
0 Υ3(m,m0) + xm,k0

ΥH
1 (m0)Υ2(m) +ΥH

1 (m0)Υ3(m0,m) + xm,k0
ΥH

1 (m0)Υ2(m) +ΥH
3 (m0,m)Υ2(m) + x∗

m,k0
ΥH

3 (m0,m)Υ0

]
+ΥH

3 (m0,m0)Υ2(m0) +ΥH
1 (m0)Υ3(m0,m0) +MΥH

1 (m0)Υ0 +MΥH
0 Υ2(m0)

ν2 ΥH
1 (m0)Υ2(m0)

Algorithm 1 Proposed Algorithm

1: Inputs: Initialize random feasible set of sequences X(0), predefined threshold value
ϵ, a1 and a2 weight vectors.

2: i← 0;
3: Compute f(X(0)) from (2);
4: for i = 0, 1, ... do
5: i← i + 1
6: for m0 = 1, . . . ,M do
7: for k0 = 1, . . . , K do
8: Calculate ν1 and ν2 using Table 1;
9: ρ4 ← 2ν2, ρ3 ← ν1, ρ2 ← 0, ρ1 ← −ν∗

1 , ρ0 ← −2ν∗
2 ;

10: Find the roots of
∑4

n=0 ρnz
n = 0;

11: Computing ϕn = −j ln(zn), n = {1, ..., 4};
12: Find the solution ϕ⋆

m0,k0
to the problem (7);

13: Update xi
m0,k0

= e
jϕ⋆

m0,k0 ;
14: Xi = Xi

−(m0,k0)|xm0,k0
=xi

m0,k0

;

15: end for
16: end for
17: Compute f(Xi) from (2);
18: Stop if [f(Xi)− f(Xi−1)]/||f(Xi)||F > ϵ
19: end for
20: Outputs: X⋆ = Xi.
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Fig. 1. Auto-correlation functions for (a) K = 256, KROI = 50,
M = 2, and no stop-bands, (b) K = 256, KROI = 100, M = 2, and
no stop-bands, (c) K = 512, KROI = 50, M = 2, and stop-bands,
(d) K = 256, KROI = 100, M = 10, and stop-bands

the ROI determine the performance of the radar system and we
can perfectly use it in, for example, automotive applications.

To compare the impact of different parameters, Fig. 1
represents the auto-correlation functions for different code
lengths, ROI, number of transmit antennas, and the
spectrum-nulling. It is obvious that with an increase in
the number of antennas and nulling the stop-bands the

auto-correlation functions become worse, yet by considering
the ROI and increasing the ratio K

KROI
, we achieve low

sidelobe levels, while shaping the spectrum as well.
Fig. 2a shows the convergence curve of the CD approach

for different waveforms, in the proposed Algorithm 1. The
figure shows the monotonically decreasing objective values
in each example. In Fig. 2b we compare the range profile
of the proposed method with FMCW and Golomb sequence
at the receive side. The range profile for FMCW signals is
the Fast Fourier Transform (FFT) of beat frequency and for
PMCW signals is the matched-filter output. In this example,
we set B = 200MHz, K = 2000 samples and Rmax = 50
m (KROI = 100 samples). We assume two targets in the
range of 15 and 25 m. This figure shows that the proposed
method (for M = 2, 12, and M = 12 with spectrum shaping)
has lower sidelobe levels (in the ROI) while maintaining the
same mainlobe width. Furthure, the chirp signal in FMCW
and Golomb sequence are assumed to be transmitted from a
single antenna herein. Hence, MIMO transmission for both
leads to even a worse performance for both. For the spectrum
compatibility, we consider two scenarios for K = 128 and 256
with KROI = 50. To compare the obtained results with [24]
in Fig. 2c, we set M = 2 and the normalized frequency of
stop-bands are [0.4, 0.5] ∪ [0.8, 0.85]. Although the depth of
the obtained nulls is not as good as [24], we achieved better
ISL due to the ROI consideration. This figure shows that the
proposed method can design a set of spectrally- compatible
code sequences with good properties in terms of ISL, while
imposing nulls in undesirable stop-bands.

IV. CONCLUSION

In this paper, we considered CDM for MIMO PMCW
radars in spectrally crowded environments to design orthogonal
transmit waveforms, and proposed an entry-based optimization
method to design transmit sequences with near perfect
orthogonality in terms of correlation sidelobes in the required
ROI and spectrum shaping with defining an unconstrained
optimization problem. The numerical examples and simulation
results show that our proposed method can achieve a good
performance in mmWave 4D-imaging radar sensors.
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