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Structural phase transition and its critical dynamics from holography
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We introduce a gravitational lattice theory defined in an AdS; black hole background that provides a
holographic dual description of the linear-to-zigzag structural phase transition, characterized by the
spontaneous breaking of parity symmetry observed in, e.g., confined Coulomb crystals. The transition from
the high-symmetry linear phase to the broken-symmetry doubly degenerate zigzag phase can be driven by
quenching the coupling between adjacent sites through the critical point. An analysis of the equilibrium
correlation length and relaxation time reveals mean-field critical exponents. We explore the nonequilibrium
phase transition dynamics leading to kink formation. The kink density obeys universal scaling laws in the
limit of slow quenches, described by the Kibble-Zurek mechanism (KZM), and at fast quenches,

characterized by a universal breakdown of the KZM.
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I. INTRODUCTION

The AdS/CFT correspondence provides an efficient and
unique method to calculate the partition function of a
strongly interacting field theory from its dual gravitational
theory, in one more spatial dimension [1-3]. The AdS/CFT
correspondence has found successful applications in con-
densed matter theory (CMT), under the umbrella of
“AdS/CMT”. These applications range from the univer-
sality of phase transitions to the exploration of exotic states
of matter in the strongly coupled regime, in and out of
equilibrium [4-9]. Here we address an essential paradigm
in CMT that has not previously been captured in the
scheme of AdS/CMT: the structural phase transition in
crystalline solids [10-16]. It involves a phase transition
between different lattice configurations when the param-
eters in the external environment, such as temperature or
pressure, change [17].

The use of the linear Paul trap in trapped-ion physics has
made it possible to observe, at low temperatures achieved
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by laser cooling, the arrangement of multiple ions into
Coulomb crystals, and to explore different phases by
adjusting the confining potential [18-20]. Analogous
experiments can be performed with confined colloids
and dusty plasma [21]. Specifically, structural phase
transitions between different phases can be induced by
axial compression, weakening the transverse confinement,
or increasing the axial density (e.g., by cooling an ion
plasma). In the limit of tight transverse confinement,
Coulomb crystals form a linear chain. Weakening the
transverse confinement induces a phase transition to a
zigzag phase. Further weakening of the transverse confine-
ment gives rise to higher dimensional structures. The
associated phase transitions are generally of first order.
An exception to this trend is offered by the structural phase
transition between the linear chain and the doubly-
degenerated zigzag phase [22-26]. The latter has been
observed in various experiments [27-33]. It is a continuous
phase transition resulting in the breaking of parity sym-
metry. The transverse width of the chain serves as an order
parameter, being zero in the linear configuration and taking
a finite value in the zigzag phase. The soft mode governing
its growth in a critical quench is the transverse vibrational
mode with the shortest wavelength [25,34,35]. A lattice
model [35-40] captures the phase transition dynamics,
where there is a local order parameter ¢,, defined on each
lattice point, and an interaction potential »_, ¢ ¢, is
introduced to replace the standard second derivative term
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2y of the time-dependent Ginzburg-Landau equation.
Thus, the critical dynamics, and the formation of topo-
logical defects resulting from it, can be described by the
coupled Langevin equations

R+ n0utpy + 0y, > _[MOPh + P + ]

m

+¢(r) =0, n=1,...,N, (1)
with constant friction # > 0, and coupling ¢ > 0 favoring
the zigzag ferromagnetic order. The real Gaussian white
noise {(#) has zero mean and satisfies ({(¢){(z + s))
&(s). The critical point of the phase transition is determined
by the coupling constant as 4. = 2c.

The finite-time crossing of the phase transition results in
zigzag domains of finite size with Z, kinks at the interface
between adjacent domains. This makes it an interesting test
bed to probe the principles of nonequilibrium statistical
mechanics. Across a continuous phase transition induced
by a slow quench, the average domain size and the defect
density are expected to scale with the quench time in which
the transition is driven, following universal power laws
predicted by the Kibble-Zurek mechanism (KZM) [41-46].
The test of the KZM across a structural phase transition was
proposed in [35,38] and has been realized using ion crystals
[29-32,47]. At fast quenches, by contrast, such scaling
laws exhibit a universal breakdown and the domain size and
defect density saturate to a value independent of the quench
rate [48].

This work introduces a holographic model exhibiting a
linear-to-zigzag phase transition. An analysis of the equi-
librium critical properties reveals mean-field behavior. In
particular, the power laws governing the divergence of the
equilibrium correlation length and the relaxation time are
consistent with critical exponents v = 1/2 and z = 2. We
use this setting to explore the validity of the KZM across a
structural phase transition for slow quenches and character-
ize the universal dynamics in the limit of fast quenches,
when the KZM breaks downs.

II. HOLOGRAPHIC VERSION
OF ONE-DIMENSIONAL
LATTICE ¢* MODEL

To introduce a gravity theory that accounts for
the structural phase transition, we consider a (d + 1)-
dimensional antiCde Sitter (AdS, ;) spacetime, the
Reissner-Nordstrom (RN) black hole background with N
discrete neutral scalar fields. The RN black hole is a
solution of the FEinstein-Maxwell theory with negative
cosmological constant A = —d(d — 1)/2£?,

L =R=2A+aF, F". (2)

We impose the following ansatz

du?

ds* = — (—f(u)dt2 +f(u)

+ dxfl_1> , A=A, (u)dr

(3)

We further focus on the d =2 case to study a one-
dimensional chain on the boundary, where

2
A, = —ulnu, f:1—u2+%u21nu, (4)

with temperature

T:$<2—ﬂ;>. (5)

In the Eddington coordinate, dt — dt + du/ f, the metric
has the form

2

ds? = — (—f(u)dt* = 2dtdu + dx?). (6)

u?
In the background of the RN black hole, the holographic

theory of a structural phase transition involves N real scalar

fields ®, (n =1, ..., N), governed by the Lagrangian

N
1 1
_ __ 2 _ _
£y =35 |5 O = Vul®,) = Vel®@,.0)|
(7)
The value of N fixes the number of lattice sites. One of the
potentials entering the Lagrangian is given by the nonlinear

Mexican hat potential

1 m*e?
Vi = —5 (®2 + m?e?)? -
M 4{2( n+m ) 4 ’ (8)

while the second one accounts for the u-dependent cou-
pling between neighboring sites

Ve = Cu®,®,.. )

Since the coupling vanishes at the boundary u = 0, it will
not change the boundary expansions of the fields @,,. As in
the lattice ¢* theory, the coupling potential can be treated
as the substitute of the kinetic term d,®0*®. In the back-
ground Eq. (6), we introduce new variables v, = @,/ u
and choose a mass value m> = —3/4. Setting # = 1, the
equations of motion read

2ataz,tll/n = MZ(C(Wn—l + l//nJrl) - (fdﬁ + aufau)Wn)
3 3f +2ud,f
-V

1 n=1,...,N.

o+ uy;,
(10)
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The asymptotic expansions of the fields near the boun-
dary are

(11)

Standard quantization is adopted at the boundary, where
A, can be regarded as the source of the operator in the
boundary field theory, and B, can be regarded as the
expected value of the scalar operators O,,.. Close the source
of the operator, with A, = 0, one obtains a spontaneous
symmetry-breaking state in this holographic setting. We
further notice that when all fields are decoupled by setting
C = 0, the Lagrangian of this discrete fields model reduces
to the analog of the continuous field phase model in [49]
with d = 3. As detailed in the Appendix A, the model
has a second-order phase transition with mean-field
critical exponents, and is driven by reducing the black
hole temperature. The critical temperature decreases with
the increase of mass, and when the mass squared m? is set
to the critical value —d(d — 1)/4, it tends to zero temper-
ature precisely, where a quantum phase transition occurs by
reducing m?.

l//n|u=0 = An(t) + Bn(t)u'

II1. EQUILIBRIUM LINEAR-TO-ZIGZAG PHASE
TRANSITION AND PHASE DIAGRAM

Next, we explore the equilibrium phase transition of the
holographic lattice model by setting the time derivative
term in Eq. (10) to zero and solving the reduced equation
numerically by the Newton-Raphson iteration method.
There is a critical coupling constant above which the N
scalar fields acquire a finite value, and a zigzag structure
appears. A sample configuration with C =1, T = 0.0796
and N = 10 is shown in Fig. 1. The N fields are staggered
in the x-direction as a positive value of the coupling
coefficient is chosen, so that the system achieves the lowest
free energy in the configuration y,, (u) = |y (u)|(—1)". As
shown in Fig. 2(a), this leads to the so-called zigzag phase
in which the order parameter has a saw-tooth profile in the
condensed matter model. The coupling in the x-direction

uv

IR’
4 R i g 10
0.2

0.4

0.6 4 n
0.8 2

FIG. 1. Broken-symmetry configuration of the discrete fields
y, from the horizon (# = 1) to the boundary (# = 0), where
N =10, C =1, and T = 0.0796. The zigzag structure on the
horizon is apparent in the field configuration for any finite u > 0.
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FIG. 2. Equilibrium properties of the holographic structural
phase transition. (a) The local order parameter B, in one of the
doubly-degenerate broken-symmetry zigzag phases as a function
of the lattice coordinate n, for C =1, T = 0.0796, N = 90.
(b) Averaged absolute value of the order parameter |B,| as a
function of the coupling C at temperature 7 = 0.1592. The data is
fitted to the power-law (1.63 4 0.08)(C — C,)090+0.003 " ith
C, = 1.125, shown as a red line. (c) Averaged absolute value of
the order parameter |B,| as a function of the averaged absolute
value of the source |A,|, at the critical point C. = 1.125 when
T = 0.1592. The red line is the corresponding power-law fit
(1.551 £ 0.004)|A,, |//(3:024£0004) = (d) Phase diagrams for the
linear and zigzag phases. The curve embedded between the two
phases near C = 0 can be fitted to a linear function 7 — T, =
(0.0146 £ 0.0001)CO998+0002 " \where T, = 4.275 x 107* is the
critical temperature when C = 0.

causes the signs of the local order parameter at adjacent
lattice points to be opposite.

The continuous phase transition of this model is induced
by varying the coupling coefficient or the temperature. The
phase diagram is shown in Fig. 2(d) as a function of the
coupling coefficient C and the temperature 7. The curve
embedded between the two phases near C = 0 is a linear
function as in the lattice ¢* model [39]. We fix T = 0.1592,
and the corresponding critical coupling is C. = 1.125. In
the proximity of the critical point, the averaged absolute
value of the order parameter |B,,| is shown in Fig. 2(b) as a
function of the coupling constant C. The corresponding
scaling as function of the averaged absolute value of the
source |A, | is shown in Fig. 2(c). The expected equilibrium
scaling relations are |B,| « (C — C.)’ and |B,| x |A,|"/°.
The observed behavior is thus consistent with mean-field
theory, where the critical exponents take values = 1/2
and 6 = 3. According to the scaling and hyperscaling
relations [50], other critical exponents in the equilibrium
phase transition can be computed: (a,f,y,6,v,n) =
(0,1.1,3,1.0), where a and y are related to the behavior
of heat capacity and the static susceptibility near the critical
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point, respectively. The value of the dynamical exponents
z = 2 can be extracted from a quasinormal modes analysis,
detailed in the Appendix B. This will be necessary to
explore the universal critical dynamics, specifically, the
validity of the KZM scaling relations in the holographic
setting, to which we next turn.

IV. UNIVERSAL CRITICAL DYNAMICS AND
DEFECT FORMATION: THE KIBBLE-ZUREK
MECHANISM AND ITS BREAKDOWN

With the knowledge of the equilibrium properties, we
next tackle the nonequilibrium phase transition by linearly
quenching the coupling constant from the critical coupling
value C, to the final coupling C in a finite quench time 7.
This protocol corresponds to “half” a quench, and is
motivated by the fact that spontaneous symmetry breaking
is governed by the dynamics after the critical point [51].
The fourth-order Runge-Kutta method is used to numeri-
cally solve Eq. (10) and we continue to work at (7, C,) =
(0.1592, 1.125) throughout this section. We consider the
linearized quench function

() = { Co(l+t/tg) 0Lt<t ' (12)
C f >t f

The time 7, at which the modulated coupling reaches its
final value, C(t;) = Cy, will play a key role in what follows
and is given by

tr =19(Cr=C.)/C.. (13)

The values Cy =4, 7o = 5, and N = 90 are chosen in the
simulation. At the initial time, the system is in the linear
phase. To seed symmetry breaking, random fluctuations
in the fields in the bulk are used, with a vanishing sta-
tistical average (B,(t)) =0, and two-point correla-
tions (B,(t)B,,(t)) = hé,,,6(t — '), where the amplitude
h = 107>. The dynamics of symmetry breaking in this
setting is shown in Fig. 3, which shows the formation
process of topological defects. During the transition, the
average value of the order parameter evolves with time,
increases monotonically early on. Subsequently, its time
dependence exhibits oscillations as the saturation value in
the broken-symmetry phase is approached, see Fig. 3(a).
Panels Figs. 3(b)-3(d) show the spatial dependence of the
order parameter at different stages of the phase transition,
displaying the evolution from the high-symmetry linear
phase to an ordered zigzag structure. In Fig. 3(b), the order
parameter vanishes. The oscillation of |B,| in Fig. 3(c),
before reaching the value associated with the zigzag phase,
reflects the dynamic instability of the one-dimensional
configuration after crossing the critical point. With the
subsequent growth of the order parameter, the completion
of the transition results in different zigzag domains shown
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FIG. 3. Dynamics of the holographic structural phase transition.

(a) Growth of the average order parameter as a function of time.
Panels (b) and (c) correspond to snapshots of the spatial
dependence of the local order parameter at different stages of
the phase transition marked by red squares in panel (a), i.e.,
(b) 1 =0, (c) t =15 and (d) r = 30 (N = 90). While the order
parameter vanishes in the high symmetry phase (b), it starts to
acquire a finite value as the transition is crossed (b). (d) Eventually,
the order parameter stabilizes with well-defined topological
defects, known as Z,-kinks, marked by red circles at the interface
of adjacent zigzag domains.

in 3(d). Kinks are identified by configurations in which
the order parameter at adjacent sites has the same sign
(marked by red ellipses). The formation of these Z,-kinks
is predicted by the KZM. We note that the absolute value
of the order parameters |B| near the kinks (about 1.5) is
smaller than that of regions of the zigzag domains (about
3.6). Thus, the average absolute value of the nonequili-
brium configurations of the order parameter resulting from
the critical dynamics is smaller than that in defect-free
zigzag phase, due to the presence of kinks.

KZM is one of the few universal paradigms in non-
equilibrium statistical mechanics and describes the critical
dynamics across phases with different symmetries [41-46].
It exploits the equilibrium power-law divergence of the
relaxation time 7 = 7yle|™® and the correlation length
&= &yle|™ as a function of the parameter distance to the
critical point € = (C — C,). Note that these scaling rela-
tions are governed by the correlation-length critical expo-
nent v and the dynamic critical exponent z. KZM predicts
that in a system driven in a finite quench time 7y, by
varying €(t) = t/7, the effective relaxation time is given
by the freeze-out time 7. The latter is obtained by matching
the instantaneous equilibrium relaxation time z(z) =
To|t/7o| ™ to the time ¢ elapsed after crossing the phase
transition. The freeze-out time thus scales as a power-law of
the quench time 70, 1.e.,
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1 15

FIG. 4. Nonequilibrium configuration of the discrete fields v,
in the zigzag phase, supporting a kink from the horizon (u = 1)
to the boundary (u = 0). This configuration is a holographic
projection of the realization in Fig. 3(d), with C =4 and
T = 0.1592, and is to be contrasted with the kink-free case
shown in Fig. 1. The effect of the kink is apparent for any
finite u > 0.

1

7= (TOTZQD)HZ”. (14)

The associated nonequilibrium correlation length reads

&= Sole(D™ = ‘fo(TQ/To)‘*DZ”, (15)

with a power-law growth as the quench time is increased. As
shown in Fig. 3, during the evolution, the holographic model
is partitioned into several domains with average size 2 This
leads to the formation of kinks localized at the interface
between adjacent domains. The nonequilibrium configura-
tion of the discrete fields v, () in the presence of a kink in
the zigzag phase is shown in Fig. 4 along the holographic
direction. The presence of the kink is noticeable in y,, () for
any u > 0. The KZM estimates the average number of kinks
n according to

v

N
no &7y, (16)

which scales universally with 7. The exponent in the power
law (16) is determined by the equilibrium critical exponents v
and z. The beauty of this KZM prediction relies on the fact
that equilibrium critical scaling theory is used to describe the
nonequilibrium behavior, which inherits a universal scaling.

To explore its validity in the holographic linear-to-zigzag
structural phase transition, Fig. 5 reports in a log-log scale
the average number of topological defects as a function of
quench time 7,. Each sampling point is the average of 10°
realizations. In panel 5(a), from up to bottom, curves for the
average number of kinks are shown for three different
values of the end coupling constants Cy = 2, 3, 4. The right
sides of the three curves all meet on a common line with a
negative slope, indicative of universal nonequilibrium
behavior, and fitted to n = (9.3 & 0.4)7,5*0%, This is

8
7H(a) el o)
6f i, Q
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FIG. 5. Universal scaling laws at fast and slow quenches in a

log-log representation. (a) The mean number n of kinks as
function of the quench time 7, (N = 100). The behavior at slow
quenches exhibits a universal power-law scaling with the quench
time, in agreement with KZM. As the quench time is reduced,
there is a crossover to a plateau region with a value of the
kink average number that is independent of the quench time. The
crossover occurs for 7, shorter than fQ‘. For rapid quenches,
panels (b)—(d) show that the mean number n of kinks, the freeze-
out time &, and the critical quenching time z¢! scale universally as
a function of the quench depth €;. The corresponding data
is fitted by the following power-laws n = (5.59 £+ 0.09)
(Cf _ CC)OA49110A007’ ’t‘ _ (20.96 + 0.09)(Cf _ CL.)—0A98610A001 ,
and 7 = (8.2 +0.7)(Cy — C,)7>11=004,

in reasonable agreement with the universal KZM power-
law scaling in Eq. (16), with a power-law exponent
v/(1 + zv) = 1/4 using the verified values of the equilib-
rium critical exponents v = 1/2 and z = 2, consistent with
the calculation of quasinormal modes. The proximity of the
numerical value of the fitted power-law exponent to the
KZM prediction supports the validity of the mean-field
description and the validity of the KZM in holography.
These results are also consistent with the results of the
Langevin equation for the zigzag phase transition in ion
chains [35,38] and the lattice ¢* model [36,37,39]. We
further note that in the KZM scaling regime, the value of 7,
plays no significant role, as the breaking of symmetry and
stabilization of topological defects happens in a timescale
1 ~1, that is small with respect to 7;.

The validity of the KZM is generally restricted to slow
quenches, as long as they are far from the onset of adiabatic
dynamics (expected when the domain size is comparable
to the system size, % ~ N). Indeed, in quantum systems, the
KZM scaling laws have been derived using adiabatic
perturbation theory [52-54]. It is known that KZM scaling
laws break down at moderate and fast quenches, due to a
saturation of the defect density. One may thus expect that
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signatures of universality in the nonequilibrium dynamics
are restricted to the limit of slow quenches. Contrary to this
expectation, recent works have shown that the critical
dynamics for moderate and fast quenches also admits a
universal description, in holographic systems [55], as well
as in classical and quantum systems [48]. This is a
significant advance, as such conditions are of relevance
to many scenarios, away from the large 7, limit.

Fig. 5(a) reports the defect density generated by crossing
the critical point in a wide range of quenching times. In
particular, the left region of the curve, corresponding to
rapid quenching, shows a plateau and indicates the break-
down of the KZM power-law as a function of the quench
time 7. This plateau arises for different values of the end
coupling constants Cy. This saturation of the defect number
at fast quenches is consistent with observations in experi-
ments [30-32] and theoretical studies [29,35,39,56-60]. In
what follows, we not only elucidate the mechanism of the
existence of the plateau region in the rapidly quenched
region, but also deduce its value (the average number of
defects), and characterize the crossover between the plateau
and the KZM power-law [48]. For rapid quenching, the end
time 7, is smaller than the relaxation time, that is

t; < (ty) = 7(Cy), (17)

so the freezing will not occur when 0 < 7 < ;. As the time
of evolution goes by and ¢ increases, it eventually matches
the minimum relaxation time 7(C). Thus, the freeze-out
time in a rapid quench reads

1=1(Cs) x e, (18)

where €, = C; — C_. In addition, the correlation length is
also determined by the final coupling value C; at the
freeze-out time, and the average number of defects,

1 v
n océz(—cf)cxef. (19)

To sum up, quench protocols that satisfy the constraints of
Eq. (17) can be called rapid. They lead to a nonequilibrium
configuration of the system that is solely determined by the
final value of the coupling constant C; and the equilibrium
critical exponents. As a result, the defect density Eq. (19)
forms a plateau in the rapid quenching region, independent
of the quench time. Furthermore, by matching the quench
end time ¢, and the relaxation time 7(Cy), the crossover
quenching time TCQI can be obtained, as shown in Fig. 5(a).
Substituting Egs. (15) and (13) into Eq. (17), i.e.,

75 (Cr = C)/C = 79(Cp = C.) ™, (20)

yields

7 o 6;(”“). (21)

We accurately verified the power law of Egs. (18), (19),
and (21) in the rapid quench region in Figs. 5(b)-5(d).
These results establish the universality of critical dynamics
in rapid quenching in a holographic framework.

V. SUMMARY

We have introduced a gravitational theory defined in the
background of an AdS; RN black hole as a holographic
dual description of the linear-to-zigzag structural phase
transition, exhibited in confined interacting particles such
as trapped ions and colloids. This theory provides a natural
test bed to study holographic structural phase transitions in
and out of equilibrium. The theory includes N scalar fields
living on a chain with a positive coupling between the
nearest lattice sites. Increasing the coupling constant or
reducing the black hole temperature, the continuous linear-
to-zigzag phase transition with Ginzburg-Landau univer-
sality is found.

We have shown that the dynamics induced by a finite-
time quench across the structural phase transition results
in the formation of kinks, the density of which scales
universally with the quench rate, as described by the
Kibble-Zurek mechanism, for slow quenches. This behav-
ior is analogous to that previously reported in classical
models of driven Coulomb crystals in the overdamped
regime [35,38]. Our study further reveals a universal
breakdown of the KZM in the fast quench limit, in which
the defect density forms a plateau independent of the
quench time. The characteristic quench time associated
with the crossover between the KZM and plateau regimes,
as well as the average defect number at the plateau, exhibit
a universal power-law scaling as a function of the final
value of the control parameter driving the transition and the
equilibrium critical exponents.

Our results thus established the validity of the universal
scaling laws for arbitrary quenches across a structural phase
transition, from the slow [46] to the fast limit [48], in a
holographic setting. We expect our findings to hold in con-
ventional structural phase transitions in condensed matter
systems, such as confined Coulomb crystals, colloids, and
dusty plasma. In this context, our findings motivate a new
generation of experimental studies aimed at probing the
universality of defect formation in scenarios of spontaneous
symmetry breaking induced by fast quenches.

Our model may also inspire further progress addressing
the universality of the critical dynamics in holographic
systems driven across a structural phase transition [61,62].
Interesting prospects include the identification of signatures
intrinsic to holography, strong coupling, and the quest
for behavior beyond mean-field [7,55,63], as well as the
treatment of quantum fluctuations [26,64—67] in the holo-
graphic setting. Variants of the model put forward may
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accommodate for other continuous structural phase tran-
sitions, such as that between the linear configuration and a
helix [68], as well as first-order structural phase transitions
[21]. In addition, our results make possible the study of
signatures of universality beyond the mean defect density
predicted by the KZM, e.g., in the full distribution of
the number of defects [39,60,69-76] and their spatial
statistics [40].
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APPENDIX A: PHASE DIAGRAM
OF THE HOLOGRAPHIC MODEL
WITHOUT COUPLING IN AdS;

The choice N =1 or coupling C = 0 leads to a vanish-
ing V., and the Lagrangian of this model with discrete
fields reduces to the continuous field phase model in

Ref. [49],
_ Lt » 1 2 2,2\2 m*e?

but defined in the d =3 case. For equilibrium phase
transitions, the scalar field can be seen as a function of
the holographic coordinate u#. The equation of motion in the
Eddington coordinate is

—u(uf'¢ + f(ug" — @) + m*¢p+¢*>=0.  (Al)

The asymptotic expansions of the field near the boundary is

Dluco = dTul" + ut, (A2)
where
2+ V4 + 4m?
AE = # (A3)

We adopt the standard quantization, where ¢~ is regarded
as the source of the operator in boundary field theory,
which is always set to be vanishing to study the sponta-
neous symmetry broken state. Then, ¢ is regarded as the
expected value of the scalar operator O, the order parameter
in the broken-symmetry phase.

As in the AdS; case, a continuous phase transition occurs
by reducing the black hole temperature. We draw the phase
diagram of the equilibrium phase transition in Fig. 6 by

10-1 -
10-2 L
Uncondensed phase
103 ¢

104 F
&~

10° |

S

10°F

Condensed phase

107 F

10.3 L L I ! ! 1 L L L 1
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m2

FIG. 6. Phase diagram of the holographic model when C = 0.
The critical temperature 7', tends to zero when m? approaches m?2,
leading to a quantum critical point.

solving the equation for ¢. The phase diagram shows that
T. tends to zero when m” near the critical value
m2 = —1/2, leading to a quantum critical point. By setting
the mass to m?> = —3/4 as an example, we plot the
condensation O as a function of temperature 7 in Fig. 7.
The curve can be fitted by a power-law 0.833(7, — T)'/2,
which reveals a critical exponent of the mean-field type,
f = 1/2. These results are similar to the AdS, model in
Ref. [49]. This is expected since the holographic model is
defined at the classical level, where the boundary field
theory is in the large N limit: Fluctuations are then

x10°3
;

25

151

051

1 1 1 1 1 1 1 1 1

0
418 419 42 421 422 423 424 425 426 427 428

T x10

FIG. 7. Temperature-driven phase transition without coupling:
dependence of the averaged absolute value of the order parameter
|B,| as a function of the temperature. The blue dots represent
numerical results, while the solid red line shows the fit to the data
(0.833 4 0.009)(T, — T)°4*00! " \where T, = 4.275 x 107*.
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FIG. 8. The correlation length ¢ as a function of the coupling C.
Blue dots represent numerical results, and the solid line is
the fitted curve. The red line fit is given by (0.699 £ 0.003)
(C, — C)70316£0001 and the blue line corresponds to (0.579 +
0.004)(C — C,)~04824£0002 " where C,.=1.125 and N = 90.
Given the equilibrium scaling relation & = &yle|™, these fits
are consistent with the mean-field value v = 1/2.

suppressed, justifying the appearance of the mean-field
universality in systems in both two and three spatial
dimensions.

APPENDIX B: QUASINORMAL MODES (QNMs)
AND THE DYNAMIC CRITICAL EXPONENT z

In this appendix, we calculate the QNMs of the scalar
fields in the holographic setting, by linearly perturbing their
equations of motions in the RN-AdS metric. Specifically,
we perturb the scalar field v, (#) with a zigzag fluctuation
Sy (u)e~ ™ ikn \where Sy is real. The linear equation for
the fluctuation reads

(1) (=8Cu? cos(K) + 2u(f(u) — 61, (1)) = 3 (u) +3)
(£ ()" () + 89/ () (f'(u) = 20w)) = 0. (BI)

Note that y, = 0 when C < C,.. corresponds to the linear
state, while the nontrivial solution v, (u) = |y (u)|(—1)"
occurs when C > C. is the zigzag state.

Setting @ = 0, one can get a series QNMs of k from the
Eq. (B1). Numerical results prove that all the real parts of
QNM’s k are 7, corresponding to the zigzag configuration.

100 F j j : j j 1
9 i
80| |
60 1

b 50t Linear Zigrag T
40 i
30t |
20 1
10 Cc i

0 : . | . .
1 1.05 1o 8 1.2 1.25
FIG. 9. The relaxation time 7 as a function of the coupling C.

The blue dots represent numerical results; the solid line is
the fitted curve. The red line represents the fit (1.446 +
0.004)(C, — C)~1008+0001 4nd the blue line corresponds to
(0.679 + 0.008)(C — C,)~1022+£0083  where C. = 1.125 and
N =90. Given the equilibrium scaling relation 7 = 7g|e|™%,
these fits are thus consistent with the equilibrium critical
exponents satisfying zv = 1.

The correlation length & = 1/|Im(k*)| where k* is the
lowest mode whose imaginary part is closest to the real
axis. Similarly, the relaxation time 7 can be obtained from
Eq. (B1) by setting k = z. One can get a series of modes of
®. Then 7 = 1/|Im(w*)| where w* is the lowest mode in
those QNMs.

The power-law divergence of the equilibrium correlation
length £ as function of the coupling C is shown in Fig. 8.
The power-law fit reveals the value v = 0.516 4+ 0.001 in
the high-symmetry phase and 0.482 4- 0.002 in the zigzag
phase. In spite of the finite-size effects, these values are in
close agreement with the mean-field exponent v = 1/2.
Likewise, the critical slowing down associated with the
divergence of the equilibrium relaxation time 7z in the
neighborhood of the critical point C,.. is shown in Fig. 9.
In the linear and zigzag phases, the fitted values of the
power-law exponent are 1.008 4= 0.001 and 1.022 + 0.003,
respectively. These values are consistent with the relation
vz = 1. In conclusion, the fitted power-law which indicates
that v = 1/2 and z = 2, consistent with the mean-field
theory.
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