
Nonideal Reaction-Diffusion Systems: Multiple Routes to Instability

Timur Aslyamov,1, ∗ Francesco Avanzini,1, 2, † Étienne Fodor,1, ‡ and Massimiliano Esposito1, §

1Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
2Department of Chemical Sciences, University of Padova, Via F. Marzolo, 1, I-35131 Padova, Italy

We develop a general classification of the nature of the instabilities yielding spatial organization in open
nonideal reaction-diffusion systems, based on linear stability analysis. This encompasses dynamics where
chemical species diffuse, interact with each other, and undergo chemical reactions driven out-of-equilibrium
by external chemostats. We find analytically that these instabilities can be of two types: instabilities caused by
intermolecular energetic interactions (E-type), and instabilities caused by multimolecular out-of-equilibrium
chemical reactions (R-type). Furthermore, we identify a class of chemical reaction networks, containing uni-
molecular networks but also extending beyond them, that can only undergo E-type instabilities. We illustrate
our analytical findings with numerical simulations on two reaction-diffusion models, each displaying one of
the two types of instability and generating stable patterns.

Introduction.—Reaction-diffusion (RD) systems play a cru-
cial role in explaining the emergence of many spatial struc-
tures across scales, e.g., spiral form of galaxies [1], predator-
prey distributions in ecological models [2], skin color pat-
terns of animals [3], self-organization at the molecular
scale [4], phase separation in electrochemical batteries [5].
The foundation of RD theory dates back to the seminal paper
of A. M. Turing [6], where he proposed a spatial symmetry-
breaking mechanism yielding stationary patterns.

Subsequent studies by the Brussels school of thermody-
namics, led by I. Prigogine, showed the physicochemical and
thermodynamical relevance of Turing patterns. Since they
considered ideal solutions where the concentration dynam-
ics is governed by linear diffusion and mass-action kinetics,
they emphasized the need to consider multimolecular reac-
tions and open systems driven far from equilibrium to gener-
ate patterns [7–9]. Indeed, in ideal solutions, on the one hand,
mutimolecular reactions are necessary to generate purely en-
tropic interactions between species which create the non-
linearities at the basis of the instabilities, and on the other
hand, nonequilibrium drives are required to prevent relax-
ation towards homogeneous concentration profiles. Since
then, RD structures in ideal solutions have been extensively
studied [10–13].

nonideal mixtures feature instead both entropic and en-
ergetic interactions, so that concentrations can be non-
homogeneous at equilibrium even in absence of chemical re-
actions. This is well described, for instance, by the Cahn-
Hilliard theory of spinodal decomposition [14]. Recently,
nonideal mixtures that undergo chemical reactions have
attracted considerable attention due to their role in biol-
ogy [15]. Reactions can affect the nature of phase separa-
tion and, when driven out of equilibrium, these active sys-
tems exhibit rich phenomenologies. To be physicochemi-
cally justified and thermodynamically consistent, RD models
need to express not only diffusion but also chemical dynam-
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ics in terms of nonideal chemical potentials [16, 17]. Heuris-
tic models of nonideal diffusion reactions have been consid-
ered, but use ideal chemical kinetics (mass action) and thus
lack thermodynamic consistency [18–20]. Consistent models
have been considered in Refs. [15, 21–23]. However, they fo-
cus on unimolecular reactions, which cannot accommodate
any spatial instability in the absence of energetic interac-
tions. Extending these studies by considering multimolecu-
lar reactions is important because the instabilities that cause
spatial organization can now arise from an interplay between
chemical reactions and molecular interactions.

In this Letter, we consider thermodynamically consistent
deterministic descriptions of generic nonideal mixtures of
species undergoing diffusion and chemical reactions of ar-
bitrary molecularity, driven out of equilibrium by external
chemostats. Using linear stability analysis, we provide a rig-
orous classification of the possible instabilities and predict
the conditions under which they arise. We find that that they
can be of two distinct types, which we call E-type and R-
type instabilities. The former depends solely on the details of
the intermolecular interactions, as in Cahn-Hilliard theory of
spinodal decomposition. The latter is controlled by the topol-
ogy of the chemical reaction networks (CRNs), as in Turing
theory of instabilities in ideal mixtures. Unlike other clas-
sifications of RD-instabilities [24, 25] which focus solely on
dynamics, ours is based on the underlying microscopic mech-
anism causing the instability. Importantly, we identify a wide
class of CRNs where the instability can only be of E-type. We
also illustrate our findings with two specific models, each of
them displaying one of two types of instabilities.

Chemical reactions and molecular interactions.—We con-
sider an isothermal nonideal mixture at temperature𝑇 , com-
posed of chemical species 𝛼 ∈ S which are reacting and dif-
fusing within a solution of volume 𝑉 . We partition the set
of chemical species S into two non-overlapping subsets: the
internal species 𝑥 ∈ X and the chemostated species 𝑦 ∈ Y.
The latter are exchanged with the external chemostats. Each
chemical reaction 𝜌 ∈ R is represented by the chemical equa-
tion

𝜈
𝑦
+𝜌𝑍𝑦 + 𝜈𝑥+𝜌𝑍𝑥

+𝜌
−𝜌 𝜈

𝑦
−𝜌𝑍𝑦 + 𝜈𝑥−𝜌𝑍𝑥 , (1)
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where 𝑍𝛼 is the chemical symbol of species 𝛼 ∈ S, and 𝜈𝛼+𝜌
(resp. 𝜈𝛼−𝜌 ) is the stoichiometric coefficient of species 𝛼 in
the forward (resp. backward) reaction +𝜌 (resp. −𝜌). We
always use Einstein notation: repeated upper-lower indices
implies the summation over all the allowed values for the in-
dices. The set of internal species may include a non-reacting
species (nr ∈ X), defined by 𝜈nr

±𝜌 = 0 for all ±𝜌 . We assume
that the chemostatted species Y are ideal and maintained at
constant homogeneous concentrations, which result in the
homogeneous chemical potentials 𝜇𝑦 . In practice, chemostats
can drive chemical reactions far from equilibrium.

Turning to the dynamics, by combining dynamical density
functional theory [26] and open CRNs theory [27–29], the
concentration fields of internal species 𝑐𝑥 (𝒓, 𝑡) evolve as

𝜕𝑡𝑐𝑥 = 𝐷𝑥∇ · (𝑐𝑥∇𝜇𝑥 ) + 𝑆𝜌𝑥 𝑗𝜌 , (2)

with closure relations

𝜇𝑥 =
1
𝑘B𝑇

𝛿𝐹

𝛿𝑐𝑥
, (3a)

𝑗𝜌 = 𝑗+𝜌 − 𝑗−𝜌 , (3b)

𝑗±𝜌 = 𝑠𝜌e𝜇𝑥 𝜈
𝑥
±𝜌+𝜇𝑦𝜈

𝑦
±𝜌 , (3c)

where ∇ is the spatial gradient; 𝑘B is the Boltzmann constant;
𝜇𝑥 (resp. 𝐷𝑥 ) is the non-dimensional chemical potential (dif-
fusion coefficient) of species 𝑥 ; 𝐹 is the Helmholtz free energy
of the nonideal mixture; 𝑆𝜌𝑥 = 𝜈

−𝜌
𝑥 −𝜈+𝜌𝑥 is the entry of the so-

called stoichiometric matrix𝕊 of the internal species (indexes
𝑥 and 𝜌 correspond to the rows and columns, respectively);
𝑗𝜌 is the net current of reaction 𝜌 expressed as the differ-
ence between the forward 𝑗+𝜌 and the backward 𝑗−𝜌 reaction
flux; 𝑠𝜌 is a positive preexponential factor that depends on
the activation energy of the reaction 𝜌 . The reaction fluxes
𝑗±𝜌 are defined in Eq. (3c) as the Arrhenius like rates. We note
that thermodynamically consistent currents could in princi-
ple allow for an additional dependence on the concentrations
in 𝑠𝜌 (𝒄), but is rarely considered and is thus omitted in our
study. The diffusive contribution to the dynamics describes a
pure gradient flow and the only nonequilibrium drive stems
from chemostats. In absence of chemostats, the system re-
laxes to equilibrium. Dynamical models similar to Eqs. (2)
and (3) have been recently considered in Refs. [21, 22, 30].

The Helmholtz free energy of the nonideal mixture reads

𝐹 [𝒄] = 𝑘B𝑇

∫
𝑑𝒓 𝑓 (𝒄,∇𝒄) + 𝐹chm , (4)

where 𝑓 is given in terms of the gradient expansion

𝑓 (𝒄,∇𝒄) = 𝑓0 (𝒄) +
1
2
𝐾𝑥,𝑥 ′ (𝒄)

(
∇𝑐𝑥

)
·
(
∇𝑐𝑥

′ )
, (5)

the constant term 𝐹chm is the contribution due to the ideal
chemostatted species, and 𝒄 = (𝑐1, . . . , 𝑐 |X | )⊺ (with |X| be-
ing the number of internal species). Here, 𝑓 , 𝑓0, 𝐾𝑥,𝑥 ′ =

𝐾𝑥 ′,𝑥 for 𝑥, 𝑥 ′ ∈ X are model functions of the concentra-
tions. Equation (5) is consistent with the free energy used
in Refs. [31, 32], and it can be straightforwardly extended to

a more general form, including higher orders in gradients, as
introduced by Cahn and Hilliard [14].

By using Eqs. (4) and (3a), the chemical potentials read

𝜇𝑥 =
𝜕𝑓0

𝜕𝑐𝑥
+ 1

2
𝜕𝐾𝑥 ′,𝑥 ′′

𝜕𝑐𝑥
(∇𝑐𝑥 ′ ) · (∇𝑐𝑥 ′′ ) − ∇ · (𝐾𝑥,𝑥 ′∇𝑐𝑥

′ ) . (6)

For ideal solutions, the free energy only comprises the en-
tropic term 𝑓 =

∑
𝑥 𝑐𝑥 ln 𝑐𝑥 , in which case one recovers a

linear diffusion and mass-action kinetics in Eq. (2): 𝐷𝑥∇ ·
(𝑐𝑥∇𝜇𝑥 ) = 𝐷𝑥∇

2𝑐𝑥 and 𝑗±𝜌 ∝ ∏
𝑥 𝑐

𝜈𝑥±𝜌
𝑥 . For nonideal mix-

tures, the local free energy 𝑓0 contains additional contribu-
tions, typically given as an expansion in powers of the con-
centrations [22], yielding non-linear diffusion. If one con-
siders homogeneous concentrations 𝒄∗ = (𝑐∗1, . . . , 𝑐∗|X | )

⊺ , we
have ∇𝜇∗𝑥 = 0 where 𝜇∗𝑥 = 𝜕𝑓0 (𝒄∗)/𝜕𝑐𝑥 . Therefore, a homoge-
neous fixed point of Eq. (2) must satisfy the following steady-
state condition:

𝑆
𝜌
𝑥 𝑗𝜌 ({𝜇∗𝑥 }, {𝜇𝑦}) = 0 . (7)

Equation (7) shows that fixed points are determined by the
chemical reaction contribution to the dynamics, which de-
pends on (i) the stoichiometric coefficients, (ii) the chemi-
cal potentials of chemostatted species 𝜇𝑦 , and (iii) the de-
tails of the local free-energy 𝑓0 (i.e., including both entropic
and energetic contributions). In contrast, for purely diffusive
systems, each concentration is conserved, so that the homo-
geneous concentrations are fixed independently of the free-
energy parameters.

Nature of instabilities: E-type vs R-type.—To analyze the
stability of the homogeneous steady state, we consider small
concentration perturbations around the homogeneous fixed
point 𝑐𝑥 (𝒓, 𝑡) = 𝑐∗𝑥 + 𝛿𝑐𝑥 (𝒓 , 𝑡). Using the Fourier transform
𝑔(𝒒) =

∫
𝑑𝒓𝑔(𝒓) exp (i𝒒 · 𝒓), the perturbation of the chemi-

cal potentials in Eq. (6) can be written as:

𝛿 𝝁̃ (𝑞) = 𝕄(𝑞) · 𝛿 𝒄̃ (𝑞) , (8a)

𝑀𝑥𝑥 ′ (𝑞) = 𝜕2 𝑓0 (𝒄∗)
𝜕𝑐𝑥 𝜕𝑐𝑥 ′

+ 𝑞2𝐾𝑥,𝑥 ′ (𝒄∗) , (8b)

where 𝛿 𝝁̃ = (𝛿𝜇̃1, . . . , 𝛿 𝜇̃ |X | )⊺ and 𝛿 𝒄̃ = (𝛿𝑐1, . . . , 𝛿𝑐 |X | )⊺ .
Using Eq. (2), the evolution of a perturbation 𝛿 𝒄̃ reads:

𝜕𝑡𝛿 𝒄̃ (𝑞) = −𝑞2𝔸 · 𝛿 𝝁̃ (𝑞) + 𝕊 · 𝛿𝒋̃(𝑞) , (9a)
𝔸 = diag

(
𝐷1𝑐

∗
1, . . . , 𝐷 |X |𝑐

∗
|X |

)
. (9b)

By inserting 𝜇𝑥 = 𝜇∗𝑥 + 𝛿𝜇𝑥 into Eq. (3c) and calculating the
Fourier transform, we arrive at

𝛿 𝑗𝜌 (𝑞) = 𝑠𝜌
[
𝜈𝑥+𝜌 e𝜇

∗
𝑥 ′ 𝜈

𝑥 ′
+𝜌+𝜇𝑦𝜈

𝑦
+𝜌 − 𝜈𝑥−𝜌 e𝜇

∗
𝑥 ′ 𝜈

𝑥 ′
−𝜌+𝜇𝑦𝜈

𝑦
−𝜌
]
𝛿𝜇̃𝑥 (𝑞) . (10)

Using Eq. (8b), we deduce that Eq. (9) becomes

𝜕𝑡𝛿 𝒄̃ (𝑞) = 𝔹(𝑞) ·𝕄(𝑞) · 𝛿 𝒄̃ (𝑞) , (11a)
𝔹(𝑞) = −𝑞2𝔸 + ℂ . (11b)
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The elements of the square matrixℂ are defined from Eq. (10):

𝐶𝑥 ′
𝑥 = 𝑆

𝜌
𝑥 𝑠𝜌

[
𝜈𝑥

′
+𝜌e𝜇

∗
𝑥 ′′ 𝜈

𝑥 ′′
+𝜌 +𝜇𝑦𝜈𝑦+𝜌 − 𝜈𝑥 ′

−𝜌 e𝜇
∗
𝑥 ′′ 𝜈

𝑥 ′′
−𝜌 +𝜇𝑦𝜈𝑦−𝜌

]
, (12)

where 𝑥 and 𝑥 ′ are the row and column index, respectively.
We emphasize that the product structure of the Jacobian ma-
trix 𝔹(𝑞) ·𝕄(𝑞) follows from the thermodynamically consis-
tent description defining both diffusion and chemical fluxes
in terms of chemical potentials.

Standard stability analysis [1] of Eq. (11a) implies that the
homogeneous fixed point 𝒄∗ is unstable if at least one of the
eigenvalues {𝜆𝑖 } of the Jacobian matrix 𝔹(𝑞) · 𝕄(𝑞) has a
positive real part for a given wavenumber 𝑞. To avoid any di-
vergence of the perturbations 𝛿 𝒄̃ (𝑞) at small wavelengths, we
impose that all eigenvalues 𝜆𝑖 are negative as 𝑞 tends to infin-
ity [1]. In practice, this can be enforced by choosing appropri-
ately {𝐾𝑥,𝑥 ′ } in Eq. (5) which determines the cost of forming
interfaces. This means that if we assume that Im 𝜆𝑖 (𝑞0) = 0,
the condition for the homogeneous fixed point 𝒄∗ to become
unstable, for at least one wavenumber 𝑞0 ≠ 0, can be ex-
pressed in terms of the determinant of the Jacobian matrix:

det
(
𝔹(𝑞0) ·𝕄(𝑞0)

)
=
(
det𝔹(𝑞0)

) (
det𝕄(𝑞0)

)
= 0 . (13)

Our analysis covers instabilities which typically induce sta-
tionary or transient patterns [24]. However, it does not cover
instabilities often arising in homogeneous time-oscillations
and traveling waves [24], where simultaneous Re 𝜆𝑖 (𝑞0) = 0
and Im 𝜆𝑖 (𝑞0) ≠ 0. In that case, the instability condition can
not be expressed in terms of the determinant of the matrix

The condition in Eq. (13) shows that the instability can
be caused by two distinct mechanisms: det𝕄(𝑞) = 0 or
det𝔹(𝑞) = 0. Matrix 𝕄 depends on the free energy (4), and it
also characterizes the purely diffusive system without reac-
tions (ℂ = 0). The case det𝕄(𝑞) = 0 can only happen due to
energetic interactions, since for ideal mixture 𝕄 is diagonal
and positive. Thus, we refer to such an instability as E-type.
In contrast, det𝔹 = 0 can happen in either ideal or nonideal
solutions. The corresponding instability is not caused by en-
ergetic interactions, but instead by multimolecular chemical
reactions. We refer to it as an R-type instability. Although
matrix ℂ contains information on both the free energy (via
the chemical potentials) and the stoichiometric matrix 𝕊, the
condition det𝔹 = 0 can only be met if 𝕊 satisfies certain con-
ditions independent of the free energy, as we discuss below.

Restricted route to instability.—We now identify the specific
class of CRNs where only instabilities of E-type can arise. In
this class, each reaction 𝜌 interconverts𝑚𝜌 molecules of one
specific internal species into 𝑚𝜌 molecules of a different in-
ternal species, without constraints on the stoichiometry of
the chemostatted species:

𝜈
𝑦
+𝜌𝑍𝑦 +𝑚𝜌𝜀𝑥,+𝜌𝑍𝑥

+𝜌
−𝜌 𝜈

𝑦
−𝜌𝑍𝑦 +𝑚𝜌𝜀𝑥 ′,−𝜌𝑍𝑥 ′ , (14)

where 𝑥 ≠ 𝑥 ′, and there is no summation over 𝑥 and 𝑥 ′

(since they do not appear as repeated upper-lower indices).
In Eq. (14), 𝜀𝑥,±𝜌 and 𝜀𝑥 ′,±𝜌 can be either 0 or 1, so that every

internal species is either a reactant or a product in a given
reaction 𝜌 . Furthermore, 𝑚𝜌 > 0 is an integer number that
can be different for each reaction 𝜌 .

To prove that the CRNs (14) can only undergo E-type in-
stabilities, we first demonstrate in Appendix A that the cor-
responding ℂ [Eq. (12)] has non-negative non-diagonal ele-
ments

𝐶𝑥,𝑥 ′ ≥ 0 , 𝑥 ≠ 𝑥 ′ . (15)

and that the diagonal elements of ℂ satisfy the inequality

𝐶𝑥,𝑥 ≤ −
∑︁

𝑥 ′≠𝑥∈X
𝐶𝑥 ′,𝑥 , (16)

where the equality holds if and only if
∑

𝑥∈X 𝑆
𝜌
𝑥 = 0, i.e., when

the CRNs conserves the total concentration [27]. We then
proceed to show that Eqs. (15) and (16) imply det𝔹(𝑞) ≠ 0,
which rules out R-type instability based on Eq. (13). To this
end, we note that every eigenvalue of the matrix 𝔹 lies in
the complex plane within (at least) one of a series of circles,
referred to as Gershgorin circles [33]. In practice, each Ger-
shgorin circle has a radius 𝑅𝑥 defined as

𝑅𝑥 =
∑︁

𝑥 ′≠𝑥∈X
|𝐵𝑥 ′,𝑥 | =

∑︁
𝑥 ′≠𝑥∈X

𝐶𝑥 ′,𝑥 , (17)

where we have used that 𝔸 is diagonal. Moreover, the center
of each Gershgorin circle is located on the real axis (since 𝔹

has only real elements) at the point 𝑣𝑥 given by

𝑣𝑥 = 𝐵𝑥,𝑥 ≤ −𝑞2𝐷𝑥𝑐
∗
𝑥 − 𝑅𝑥 , (18)

where we used Eq. (16). As one can see from Eqs. (17) and (18),
for 𝑞 > 0 all Gershgorin circles are entirely located in the
left complex half-plane. Thus, all eigenvalues of the matrix 𝔹

have a negative real part, so that det𝔹(𝑞) ≠ 0. Combining
this result with the condition in Eq. (13), it follows that the
only way for the RD systems with reactions in Eq. (14) to
entail any instability is det𝕄(𝑞) = 0, namely via a E-type
instability.

Reactions described by Eq. (14) include pseudo-
unimolecular (∀𝜌 : 𝜈

𝑦
±𝜌 ≥ 0 and 𝑚𝜌 = 1) and non-

unimolecular reactions (for at least one 𝜌 : 𝑚𝜌 > 1). It is well
known that ideal RD systems made of pseudo-unimolecular
reactions cannot exhibit Turing patterns, as their dynamics
is linear. In nonideal mixtures, energetic contributions to
the free energy make the dynamics non-linear even for
pseudo-unimolecular reactions. Indeed, the reaction fluxes
in Eq. (3c) and the matrix 𝔹 in Eq. (11b) explicitly depends
on 𝜕𝑓 (𝒄∗)/𝜕𝑐𝑥 through the chemical potential 𝜇𝑥 [Eq. (6)],
which could a priori trigger R-type instabilities. Yet, our
result shows that nonlinearities stemming from molecular
interactions can only create E-type instabilities for pseudo-
unimolecular reactions. Importantly, this result extends to
a special class of CRNs that also includes non-unimolecular
reactions. We emphasize that, although such chemical
reactions cannot generate R-type instabilities, their topology
and rates strongly influence the location of the E-type
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instability, as they determine the homogeneous fixed points
[Eq. (7)].

Illustrative examples.—We first consider the pseudo-
unimolecular CRN in the inset of Fig. 1. In Appendix B, we
derive its matrixℂ and show that it satisfies Eqs. (15) and (16).
Thus, this CRN belongs to the special class which admits only
E-type instabilities. For the chemical potentials, we use the
following expressions:

𝜇𝑥 = 𝜇𝜃𝑥 + log 𝑐𝑥 + 𝐿𝑥,𝑥 ′𝑐𝑥
′ − 𝐾𝑥,𝑥 ′∇

2𝑐𝑥
′
, (19a)

𝕃 =

𝑋1 𝑋2 𝑋3 nr©­­«
ª®®¬

𝑋1 0 𝜒 0 0
𝑋2 𝜒 0 𝜒 𝜒

𝑋3 0 𝜒 0 0
nr 0 𝜒 0 0

, 𝕂 =

𝑋1 𝑋2 𝑋3 nr©­­«
ª®®¬

𝑋1 𝑘1 𝑘2 0 0
𝑋2 𝑘2 𝑘1 𝑘2 𝑘2
𝑋3 0 𝑘2 𝑘1 0
nr 0 𝑘2 0 𝑘1

, (19b)

where 𝜇𝜃𝑥 are the standard chemical potentials.
The matrices 𝕃 and 𝕂 describe the mean-field molecular

interactions and the cost at forming interfaces, respectively.
We numerically determine the homogeneous fixed points 𝒄∗,
from which we compute the matrices 𝕄 and 𝔹 according to
Eqs. (8b) and (11b), respectively. In Fig. 1, for one of the
fixed points we plot the eigenvalue 𝜆+ (𝑞) of the matrix 𝔹 ·𝕄
which becomes positive over a finite range of 𝑞. We com-
pared its behavior with the eigenvalue 𝜆d

+ (𝑞) corresponding
to pure diffusion system with 𝔹d = −𝑞2𝔸 and 𝕄d = 𝕄 at
the same fixed point 𝒄∗. Both 𝜆+ (𝑞) and 𝜆d

+ (𝑞) are positive in
the same range of 𝑞, then vanish at the same point 𝑞0 satis-
fying det𝕄(𝑞0) = 0. This agrees with the scenario of E-type
instabilities: it is sufficient to analyze the eigenvalues of the
purely diffusive system to deduce the range of stability of the
corresponding RD system. The model displays at least two
additional homogeneous fixed points. One is stable 𝜆+ < 0.
The other is unstable, and it is such that 𝜆+ (0) > 0 and 𝜆+ (𝑞)
reaches a maximum at 𝑞m > 0.

We now consider a nonideal version of the Brusselator
model in the inset of Fig. 2. We use 𝜇1, 𝜇2 from Eq. (19a).
This model does not satisfy the conditions in Eq. (14) and thus
can and does display an R-type instability. The right inset in
Fig. 2 shows that while all eigenvalues of the purely diffusive
process are negative, the eigenvalues of the RD Brusselator
can be positive (Fig. 2), in stark contrast with the previous
model. Indeed, since the Brusselator is not restricted to E-
type instabilities, it can exhibit patterns in a regime where
the corresponding purely diffusive system is stable.

Finally, we compare the results of numerical simulations
for the two RD systems in Figs. 1 and 2. Figure 3 shows the
steady-state 2d patterns of one of the chemical components.
It is worth noting that the pattern in Fig. 3(a), for the RD sys-
tem with reactions satisfying Eq. (14), is qualitatively anal-
ogous to the complete phase separation obtained in purely
diffusive dynamics. In contrast, the pattern of the Brussela-
tor in Fig. 3b shows a striking different spatial organization
which could not be reproduced by the corresponding purely
diffusive system.

Discussion.—We characterized the nature of instabilities
in thermodynamically consistent deterministic dynamics of

FIG. 1. Inset: Example of CRN that can only undergo E-type in-
stabilities. Main: The blue curve is 𝜆+ for the RD system from the
inset, the orange curve is 𝜆d

+ for the corresponding purely diffusive
system with same fixed points 𝒄∗ = (0.12, 2.72, 0.10, 1.00)⊺ . Param-
eters: 𝐷𝑥 = 1, 𝜇𝜃1 = 𝜇𝜃3 = 𝜇𝜃nr = 0, 𝜇𝜃2 = −2, 𝑠𝜌 = 10−3, 𝜒 = 1,
𝑘1 = 0.5, 𝑘2 = 0.1, 𝜇𝑌1 = 1, 𝜇𝑌2 = −1 in arbitrary units.

FIG. 2. Inset (left): Example of CRN undergoing a R-type instability.
Main: The blue curve is 𝜆+. Inset (right): The eigenvalues of the
corresponding purely diffusive dynamics. Parameters: 𝐷1 = 𝐷nr =

1, 𝐷2 = 10, 𝜇𝜃1 = 𝜇𝜃nr = 0, 𝜇𝜃2 = 9.2, 𝑠𝜌 = 1, 𝜒 = 0, 𝑘1 = 0.1, 𝑘2 = 0.05,
𝜇𝑌1 = 9.9, 𝜇𝑌2 = 1.1, 𝜇𝑌3 = −27.6, 𝜇𝑌4 = −18.4 in arbitrary units.

nonideal RD systems in solution described by Arrhenius
rates. We considered reversible reactions, but our results also
hold for irreversible reactions. Extension to mixtures [15] is
left for future work. Our decomposition in either E-type or
R-type instability was shown for generic free energies and
chemical reactions obeying the Arrhenius rate law Eq. (3c).
It cannot be extended to rates laws where 𝑠𝜌 (𝒄) depends on
the concentration (due to the definition of the matrix 𝔹). It
can however be extended when 𝑠𝜌 (𝝁) depends on the chem-
ical potentials. Our proof that CRNs (14) can only undergo
E-type instabilities however does not hold in this latter case
and should be revisited. Future studies will be needed to
study the thermodynamics (resp. fluctuations) of these sys-
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FIG. 3. The steady-state patterns for 𝑐2 from numerical simulations
in two-dimensional space with the periodic boundary conditions.
(a) The unimolecular CRN with parameters from Fig. 1; (b) The Brus-
selator with parameters from Fig. 2. For simulations we used the
py-pde package [34].

tems, as recently done for ideal solutions [35–37] (resp. ideal
[38] and nonideal RD systems [39]), and clarify their con-
nection to heuristic active field theories including chemical
degrees of freedom [40, 41]. Turing instability in ideal so-
lution requires different diffusion coefficients [12], but our
condition for R-type instability does not. It would be inter-
esting to explore if interactions could generate R-instabilities
inducing stationary patterns in models with same diffusion
coefficients. Our framework provides a tool to analyze how
interactions promote or suppress the different types of insta-
bilities, as recently done for models without thermodynamic
consistency[42, 43].
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Appendix A: Proof of (15) and (16) for CRNs that satisfy (14)

First, we recognize that the stoichiometric coefficients of
the chemical equations (14) satisfy the following constraints:

if 𝜈𝑥,±𝜌 ≠ 0 then 𝜈𝑥,∓𝜌 = 0 , (A1a)
either 𝜈𝑥,±𝜌 = 0 or 𝜈𝑥,±𝜌 =𝑚𝜌 , (A1b)

either
∑︁
𝑥

𝜈𝑥,±𝜌 = 0 or
∑︁
𝑥

𝜈𝑥,±𝜌 =𝑚𝜌 . (A1c)

Second, we split the set of chemical reactions R into two
groups: internal and exchange reactions R = Rin ∪ Rex. In-
ternal reactions 𝜌 ∈ Rin conserve the total concentration, i.e.,∑

𝑥 𝑆𝑥,𝜌 = 0 for 𝜌 ∈ Rin. The exchange reactions do not, i.e.,

∑
𝑥 𝑆𝑥,𝜌 ≠ 0 for 𝜌 ∈ Rex, and read

𝜈
𝑦
+𝜌ex𝑍𝑦

+𝜌ex

−𝜌ex
𝜈
𝑦′

−𝜌ex𝑍𝑦′ + 𝜈𝑥,−𝜌ex𝑍𝑥 , (A2)

namely, the internal species𝑥 is either a reactant or a product.

Third, we consider the non-diagonal elements 𝐶𝑥,𝑥 ′ with
𝑥 ′ ≠ 𝑥 . i) Because of Eq. (A1c), 𝑆𝑥,𝜌 = ±𝑚𝜌 implies 𝜈𝑥 ′,∓𝜌 =

0. ii) Because of Eq. (A2), 𝑆𝑥,𝜌ex = ±𝑚𝜌ex implies 𝜈𝑥 ′,𝜌ex =

𝜈𝑥 ′,−𝜌ex = 0. Hence, the terms of the summation over 𝜌 in
Eq. (12), namely,

Ξ𝑥,𝑥 ′,𝜌 = 𝑆𝑥,𝜌𝑠𝜌

[
𝜈𝑥 ′,+𝜌e𝜇

∗
𝑥 ′′ 𝜈

𝑥 ′′
+𝜌 +𝜇𝑦𝜈𝑦+𝜌 − 𝜈𝑥 ′,−𝜌e𝜇

∗
𝑥 ′′ 𝜈

𝑥 ′′
−𝜌 +𝜇𝑦𝜈𝑦−𝜌

]
,

(A3)
read

Ξ𝑥,𝑥 ′,𝜌 =𝑚𝜌𝑠𝜌𝑒
𝜇∗𝛼 𝜈

𝛼
±𝜌𝜈𝑥 ′,±𝜌 ≥ 0 , if 𝑆𝑥,𝜌 = ±𝑚𝜌 , (A4a)

Ξ𝑥,𝑥 ′,𝜌 = 0 , if 𝑆𝑥,𝜌 = 0 , (A4b)
Ξ𝑥,𝑥 ′,𝜌 = 0 , if 𝜌 ∈ Rex , (A4c)

showing that all non-diagonal elements in Eq. (12) are non-
negative, and thus proving Eq. (15).

Fourth, we consider the diagonal elements 𝐶𝑥,𝑥 . Because
of Eqs. (A1a) and (A1b), 𝑆𝑥,𝜌 = ±𝑚𝜌 implies 𝜈𝑥,∓𝜌 = 𝑚𝜌

and 𝜈𝑥,±𝜌 = 0. Hence, the terms of the summation over 𝜌
in Eq. (12) become

Ξ𝑥,𝑥,𝜌 = −𝑚𝜌𝑠𝜌𝑒
𝜇∗𝛼 𝜈

𝛼
∓𝜌𝜈𝑥,∓𝜌 ≤ 0 , if 𝑆𝑥,𝜌 = ±𝑚𝜌 , (A5)

independently of whether 𝜌 ∈ Rin or 𝜌 ∈ Rex.

Fifth, we consider
∑

𝑥 𝐶𝑥,𝑥 ′ . By using the splitting R =

Rin ∪ Rex, Eq. (A4c), and
∑

𝑥 𝑆𝑥,𝜌 = 0 for 𝜌 ∈ Rin, we ob-
tain ∑︁

𝑥

𝐶𝑥,𝑥 ′ =
∑︁
𝜌∈Rex

Ξ𝑥 ′,𝑥 ′,𝜌 ≤ 0 , (A6)

proving Eq. (16).

Appendix B: Matrix ℂ for Fig. 1

Here we derive the matrix ℂ for the example shown in
Fig. 1. The coefficients 𝜈𝛼,±𝜌 can be written in matrix form:

{𝜈𝛼,+𝜌 } =

1 2 3 4 5©­­­­«
ª®®®®¬

𝑋1 0 1 0 0 0
𝑋2 0 0 1 1 0
𝑋3 0 0 0 0 1
𝑌1 1 0 0 0 0
𝑌2 0 0 0 0 0

, {𝜈𝛼,−𝜌 } =

1 2 3 4 5©­­­­«
ª®®®®¬

𝑋1 1 0 0 0 1
𝑋2 0 1 0 0 0
𝑋3 0 0 0 1 0
𝑌1 0 0 0 0 0
𝑌2 0 0 1 0 0

.

(B1)
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which gives us the stoichiometric matrix 𝕊

𝕊 =

1 2 3 4 5©­­«
ª®®¬

𝑋1 1 −1 0 0 1
𝑋2 0 1 −1 −1 0
𝑋3 0 0 0 1 −1
nr 0 0 0 0 0

. (B2)

Using Eqs. (12), (B1), and (B2), for Fig. 1 we find that ℂ =

𝑋1 𝑋2 𝑋3 nr©­­­«
ª®®®¬

𝑋1 −𝑠1e𝜇
∗
1 − 𝑠2e𝜇

∗
1 − 𝑠5e𝜇

∗
1 𝑠2e𝜇

∗
2 𝑠5e𝜇

∗
3 0

𝑋2 𝑠2e𝜇
∗
1 −𝑠2e𝜇

∗
2 − 𝑠3e𝜇

∗
2 − 𝑠4e𝜇

∗
2 𝑠4e𝜇

∗
3 0

𝑋3 𝑠5e𝜇
∗
1 𝑠4e𝜇

∗
2 −𝑠4e𝜇

∗
3 − 𝑠5e𝜇

∗
3 0

nr 0 0 0 0

,

(B3)

where the fixed point chemical potential 𝜇∗𝑖 for 𝑖 = 1, 2, 3
correspond to the species 𝑋1, 𝑋2, 𝑋3, respectively. From
Eq. (B3) one can see that ℂ satisfies the properties in Eqs. (15)
and (16). Notice that, as discussed in Appendix A, the ex-
change reactions—rates 𝑠1 and 𝑠3—contribute only to the di-
agonal elements.
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