
ar
X

iv
:2

20
3.

11
34

3v
1

 [
cs

.S
E

]
 2

1
M

ar
 2

02
2

Using Evolutionary Coupling to Establish Relevance Links
Between Tests and Code Units. A case study on fault localization.

Jeongju Sohn
jeongju.sohn@uni.lu

Interdisciplinary Centre for Security, Reliability and

Trust, University of Luxembourg

Luxembourg

Mike Papadakis
michail.papadakis@uni.lu

Interdisciplinary Centre for Security, Reliability and

Trust, University of Luxembourg

Luxembourg

ABSTRACT

Many software engineering techniques, such as fault localization,

operate based on relevance relationships between tests and code.

These relationships are often inferred through the use of dynamic

test execution information (test execution traces) that approximate

the link between relevant code units and asserted, by the tests, pro-

gram behaviour. Unfortunately, in practice dynamic information is

not always available due to the overheads introduced by the instru-

mentation or the nature of the production environments. To deal

with this issue, we propose CEMENT, a static technique that auto-

matically infers such test and code relationships given the projects’

evolution. The key idea is that developers make relevant changes

on test and code units at the same period of time, i.e., co-evolution

of tests and code units reflects a probable link between them. We

evaluate CEMENT on 15 open source projects and show that it in-

deed captures relevant links. Additionally, we perform a fault local-

ization case studywhere we compare CEMENTwith an existing In-

formation Retrieval-based Fault Localization (IRFL) technique and

show that it achieves comparable performance. A further analysis

of our results reveals a small overlap between the faults success-

fully localized by the two approaches suggesting complementar-

ity. In particular, out of the 39 successfully localized faults, two

are common while CEMENT and IRFL localize 16 and 21. These

results demonstrate that test and code evolutionary coupling can

effectively support test and debugging activities.

1 INTRODUCTION

Software Engineering textbooks note that the majority of the total

effort putted in a project during its life-cycle is during its mainte-

nance phase [28]. Consequently, many researchers are focusing on

automating software maintenance related activities such as auto-

mated testing, test data generation and automated debugging [6,

7, 9, 11, 33, 35]. These studies often rely on dynamic execution in-

formation, in order to identify links between tests and code. For

instance, the studies on test selection often rely on test execution

traces, to select tests that are likely to exercise the recently com-

mitted changes. Fault localization studies also adopt dynamic in-

formation to identify code locations that triggered test failures by

narrowing down the code affected by a test failure [33].

While precise, dynamic test execution information such test cov-

erage is not always available, mainly due to the difficulty and the

cost of data collection [1, 17, 18, 26, 37]. For instance, test coverage,

one of the most frequently used dynamic code analysis informa-

tion, requires instrumentation, which may or may not be possible

to perform in given environments. Even when the employed en-

vironment supports test coverage collection, this functionality is

often turned-off, as it introduces significant overheads in order to

log the related information [1, 18, 26]. Furthermore, when develop-

ers are under a fast-release cycle, they are unlikely to have enough

time for data collection at the first place [5, 18, 37].

To overcome the absence of dynamic coverage information, re-

searchers have proposed static approaches that aim at guessing

(predicting) the relations between tests and code [2, 3, 23, 24, 31].

While encouraging, the working assumptions of these approaches

are not often met. For instance, Information Retrieval based Fault

Localization approaches [13, 24, 31] assume the existence of bug

reports, Focal method identification techniques [8] assume partic-

ular test patterns [34] and similar naming convention that can be

captured by string-matching [23, 32, 36], assumptions that often

are not met.

We fill this gap by proposing CEMENT (CoEvolution between

MEthod aNd Test), a static technique that automatically infers test

and code relationships given the projects’ historical evolution. Thus,

instead of relying on dynamic or static code analysis, CEMENT

it relies on how software has evolved. Precisely, CEMENT estab-

lishes links, called Evolutionary Couplings [38], between tests and

code units by checking the tests and code that have co-evolved

throughout the development.

The key idea is that changes, on both tests and code,made around

the same time imply a probable relevance coupling between them.

Consider for example bug fixing cases, these are often followed

or preceded by additions/modifications of tests (to reproduce and

validate the repair action). Similarly, functionality additions are

frequently followed by test additions. Therefore, the co-evolution

analysis of tests and code units can capture a probable relevance

coupling between them.

While there are many aspects of software evolution that could

potentially be exploited, i.e, commit time, developer or the context

of the evolution, we stay simple by focusing only on whether tests

and code have been altered in similar periods of time (e.g., within

few commits to each other). CEMENT differs from existing tech-

niques as it is independent of the dynamic execution traces and

the semantics of the source code. We posit that these differences

allow test and code evolutionary couplings to complement existing

techniques as they are capturing largely underexplored dependen-

cies. Furthermore, we believe that co-evolution of tests and code

units (i.e., methods) reveals important and hard to capture, by other

techniques, couplings.

We empirically evaluate CEMENT’s ability to infer links between

tests and code by investigating its ability to select relevant tests (for

given code methods) and to perform fault localization, i.e., success-

fully localize faultymethods given failed and passing test cases.We

http://arxiv.org/abs/2203.11343v1

thus, inject some faults/mutants, in essence applyingmutation test-

ing [19], on a set of selected methods and check the ability of CE-

MENT to select tests that detect (kill) them. Then we design a fault

localization case study, where we investigate whether faulty meth-

ods have stronger links with failing tests than the passing tests.

This means that we form a novel fault localization method, on top

of CEMENT, and compare its performance with that of an existing

Information Retrieval-based Fault Localization technique [14] that

performs particularly well on the set of the projects that we study.

Our results, conducted on the 15 open source projects of De-

fects4J v.2.0.0 [10], show that CEMENT can infer relevant links

between tests and code methods that can support software mainte-

nance activities (e.g., fault localization) given the past co-evolution

of the software.

In summary, the technical contributions of this paper are:

• The introduction of evolutionary coupling between tests and

code, a novel type of coupling established based on how

tests and code have co-evolved. Additionally, since the cou-

pling between tests and code can be captured in a static way

CEMENT offers advantages when dynamic information is

not available.

• Empirical evidence that CEMENT can establish evolution-

ary couplings between tests and code. Results from a fault

localization case study show that CEMENT can be useful in

fault localization.

• Empirical evidence that evolutionary coupling between tests

and code improves as software becomes more mature. The

comparison between the CEMENT’s fault localization re-

sults for the projects with different levels of software matu-

rity shows that CEMENT becomes more effective when the

project under inspection has actively evolved (i.e., changed).

• Empirical evidence that fault localization using CEMENT

complements state-of-the-art static fault localization tech-

niques. Our results shows that CEMENT can localize faults

for which an existing fault localization technique has failed,

implying the relevant links captured by CEMENT can com-

plement this technique.

2 EVOLUTIONARY COUPLING BETWEEN
TESTS AND CODE

The key idea underlying our approach is that developers make fo-

cused changes to their projects. Instead of making multiple irrele-

vant actions, they focus on one action at the time [9]. Even if the

changes are not serving one purpose they are closely related since

they are the result of the developer focus/attention. This means

that the changes committed around the same period are usually rel-

evant to each other. For instance, when developers repair faults in

code, they often introduce or modify a test to evaluate the repaired

part. Similarly, when they implement new functionality or update

existing ones, they probably introduce or update the tests related

to this functionality, at the same time or shortly after. Even when

some changes are irrelevant these should be eliminated through

the number of evolutions/changes as it is unlikely to have the same

irrelevant changes repeatedly. Based on these, we formulate the fol-

lowing hypothesis, which forms the main idea of our work:

Hypothesis: Changes in code units that are followed by

the changes in tests (and vice versa) imply a relevance rela-

tionship (coupling) between them. Similarly, changes in code

units not followed by changes in tests imply an absence of

relevance.

We use the established term evolutionary coupling [38] to name

the coupling between tests and code established from the above

hypothesis, i.e., guided by co-changes or, in other words, the co-

evolution of tests and code. This paper aims to investigate whether

this evolutionary coupling between tests and code can be useful in

software testing and debugging activities, more specifically,whether

they can be used to fault localization. Hence, we propose CEMENT,

a static approach that automatically infers links between tests and

code units relying on evolutionary coupling. We work with meth-

ods since they form discrete and localizable units, typically tar-

geted by automated techniques such as fault localization.

2.1 Tests and Code Evolutionary Coupling

Evolutionary coupling between tests and code exists when tests

and code have co-evolved throughout the software development:

it is independent of specific changes and simply focuses only on

whether the changes in tests and code occurred in similar time pe-

riods. As a result, this coupling does not require any dynamic in-

formation to be established, hence being easier to exploit in some

cases. In addition, by relying on the timing when each test and

method change was made, the relation captured by the evolution-

ary coupling is independent of any software testing and debug-

ging tasks, but reflects important links since they reflect the de-

veloper’s intent as developers tend to do them together. Another

distinct characteristic of evolutionary coupling is that it is inferred

from the projects’ evolution and thus, it evolves along with the

target software. The more changes performed to the software, or

the more mature the software is, the better. This feature can be

very helpful in development cases following the continuous inte-

gration development model, as they tend to evolve both tests and

code at the same time and include finer-grained commits. Addi-

tionally, such evolutionary couplings can provide developers up-

to-date guidance on which code is linked to which tests and vice

versa easing comprehension.

2.2 CEMENT

For a given set of methods and tests, CEMENT identifies evolution-

ary couplings, between each method and test pair, by computing

the average time interval between their past changes. Before going

into the details of CEMENT, we detail and show the distinct nature

of tests andmethod coupling that CEMENT aims for, which we call

the coupling asymmetry.

2.2.1 Asymmetry in the test and method coupling. In an ideal case

where each test and method assesses and implements a unique

functionality, the coupling between them is symmetric: amethod is

associatedwith a test at a degree equal to x%, which is also equal to

the degree the test associates to the method. However, in practice,

we frequently observe cases where a single test exercises, directly

or indirectly, (simply relates) to multiple functionalities. We also

observe methods implementing multiple functionalities. For these

cases, the coupling between methods and tests becomes asymmet-

ric, i.e., a test may relate with a method at a different degree than

themethodwith that test. The degree of the association reflects the

strength of the relation between entire tests and codemethods. For

example, let us assume that method< implements a functionality

5 that is a part of a more extensive functionality � ; test C examines

the functionality � , indirectly evaluating the functionality 5 .

For method<, test C is the most related one, as it evaluates its

main functionality, 5 . However, test C has a stronger degree of cou-

pling to another method<′ that carries out the entire functionality

� , making the coupling between method < and test C asymmet-

ric. Still, test C is the one to run when we need to inspect method

<. CEMENT takes into account this asymmetry and computes a

coupling degree separately for a method and for a test. It then ag-

gregates these values from both test and method sides to estimate

their final coupling degree.

2.2.2 Computing the distance between the test and method. CE-

MENT measures the degree of evolutionary coupling between the

test and method as the time interval between their past changes.

For the time interval between two changes, CEMENT counts the

number of commits between them. Hereafter, we will refer to this

time interval as the distance. There are two additional points that

we need to consider when calculating this distance. First, tests and

methods are likely to be altered more than once, especially when

the software under inspection has evolved actively. Secondly, the

obtained distance is inherently asymmetric since it quantifies the

degree of asymmetric coupling.

Algorithm1 presents the pseudo-codeof computing the distance

from target C to C2 . Both C and C2 can be either a method or a test.

We denote as C a test and C2 a method. Tests and methods are likely

to be modified more than once from their introduction. Therefore,

we first collect a list of commits that changed test C and method C2

(Line 1 and 2). Here, we are interested in inspecting whether the

test and method have been changed around the same time. Thus,

we consider only the distance to the nearest method change for

each test change rather than taking all the past changes of the

method into account (Line 3 to 7). If the test and method are re-

lated to each other, their changes can trigger the changes or be

triggered by the changes of the other party. Thus, we use the abso-

lute distance while we search for the nearest method change. We

then aggregate these distances computed for each past test change

by taking the average (Line 8). By using the average, we can reduce

the risk of being affected by the outlier case where the method and

test were accidentally modified at the same time period.

The distance we define is asymmetric. For example, let us as-

sume that method " was altered at the commits 20 and 23 and

test) at the commits 21, 23, and 24. For the method changes at

20 and at 23, the distance to the nearest test change is 1 and 0,

respectively; the final distance of method " to test) is thereby
1+0
2

=
1

2
. However, for test) , the distance to method " is 2

3
and

not 1

2
, as the shortest distance for individual test changes at 21, 23,

and 24 is 1 (| − 1|), 0, and 1, resulting in the average distance of
2

3
. This asymmetry of the distance has occurred for two reasons.

First, we consider only the nearest change, and while doing that,

we search both back and forth, allowing each change to select any

change as the nearest one regardless of whether the other party

Algorithm 1: DistanceToNearest

input :a target, t, a comparison target, t2 , a distance

aggregation method,M0E6

output : the distance of a target C to the nearest changes in

the comparison target C2
1 '4EB8>=BC ← ChangeTarget(C)

2 '4EB8>=BC2 ← ChangeTarget(C2)

3 �8BCB ← []

4 for A4E in '4EB8>=BC do

5 3 ←<8=({distance(A4E, A4E ′) |A4E ′ ∈ '4EB8>=BC2 })

6 add 3 to �8BCB

7 end

8 distC,C2 ← "0E6 (�8BCB)

9 return distC,C2

also considers it as the nearest. More importantly, the coupling

between methods and tests is asymmetric. Since the distance is a

way to quantify the degree of the coupling between the test and

method, it naturally becomes asymmetric if the coupling is asym-

metric; this is also why we did not define the distance to work in

both ways. CEMENT considers this asymmetry and calculates dis-

tances from both directions, i.e., from a test to a method and the

opposite, when it estimates the coupling degree, i.e., the distance,

between tests and methods.

2.2.3 Establishing Links between Tests and Methods. Algorithm 2

describes how CEMENT infers relevant links between tests and

methods from the distances calculated from Algorithm 1. The fi-

nal output of CEMENT is a list of methods/tests (�) sorted in de-

scending order of their degree of coupling to the test/method under

inspection ()): the higher the rank of a method/test is, the stronger

its link to the target test/method. For this, CEMENT first calculates

the distance of target) to each candidate in the list � (Line 1). Af-

ter computing the distance to the target for each candidate in � ,

we select the top # that are closest to) (Line 2). CEMENT then

calculates the distance to) for each candidate in�# andmultiplies

newly obtained distances with their matching distances from the

target (Line 4 to 6). CEMENT then sorts the candidates in descend-

ing order using these updated distances; for those failed to be in

the top # , we use their distance values in �)→� (Line 3). This ad-

ditional update for the top# is to handle the asymmetric nature of

the distance. We set # to 100, which we obtained empirically. To

summarize, CEMENT considers a method and a test to be relevant

(likely coupled) if and only if both of them are considered to be

close enough. This condition helps avoiding coincidental cases1 .

3 EXPERIMENTAL SETTINGS

3.1 Research Questions

To evaluate CEMENT we start our investigation by checking its

ability to mine true links between code units and tests. Thus, we

ask:

1There is no need of having both methods and tests considering each other as the
most likely-to-be relevant one. Being relatively close to each other, compared to the

rest of tests/methods is sufficient to establish a link between them.

Algorithm 2: CEMENT

input :a target, T , a list of likely-relevant candidates, C, a

distance aggregation method,M0E6 , the number of

top candidates, N

output :a list of candidates C sorted in descending order of

the distance to the target T

1 �)→� ← DistanceToNearest(),�,"0E6)

2 �# ← SelectTopN(#,�)→� ,�)

3 �)↔� ← Initialize(�)→� ,) ,�)

4 for 2 in �# do

5 32→) ← DistanceToNearest(2,) ,"0E6)

�)↔� [2] ← 32→) · �)↔� [2]
6 end

7 �A0=:43 ← Rank(�)↔� ,�)

8 return �A0=:43

RQ1 Capability: can CEMENT establish static links between

tests and methods based on their co-evolution?

To answer this question, we need an oracle that decides on the

link between tests and methods. This type of oracle (i.e., general

associations between tests and methods), however, is hard to get

and there is no guarantee that it can be accurately approximated

[32]. To set such an oracle we use mutation testing [19] applied

at specifically selected methods and check whether tests selected

by CEMENT can indeed kill the mutants of the selected methods

and contrast them with randomly selected tests. The underlying

assumption here is that tests related to the methods should kill the

mutants that reside on these methods, at least kill more mutants,

than tests that are not related. We thus, expect the resulting test-

and-killed relations between tests and methods to overlap with the

links inferred by CEMENT.

Specifically, to answer this RQ, we select # tests that are the

most likely to kill mutants in the methods we consider by picking

the top # tests with the strongest coupling to these methods. As

CEMENT establishes a relationship between a test and a method

by default, we take additional steps to obtain a relationship be-

tween a test and multiple methods. To be specific, we first repeat

CEMENT for each method using all tests, obtaining multiple rank-

ings for each test; we then take either the highest (i.e., the best) or

the average as the final ranking for each test. These two are no-

tated as CEMENT 14BC
C→<< and CEMENT

0E6
C→<< ; C and << denote

a test and multiple methods, respectively. We deem CEMENT ca-

pable of inferring the links between tests and methods from their

co-evolution if the tests ranked within the top # by CEMENT can

kill more mutants than randomly selected # tests.

After investigating the existence of links between tests andmeth-

ods, we turn our attention to amore concrete task in order to inves-

tigate whether these links offer actionable information. Therefore,

we ask:

RQ2 Applicability: can we use the links between tests and

methods generated by CEMENT in software debugging?

To answer this question, we conduct a case study of CEMENT in

fault localization. We select fault localization among different soft-

ware debugging activities since we can directly relate the resulting

test and method links to fault localization by assuming the meth-

ods strongly coupled to a failing test as suspicious ones. We also

compare CEMENT with an existing Information Retrieval-based

Fault Localization (IRFL) technique adopted in a recent program

repair technique, iFixR [14]. We choose this IRFL technique as our

baseline because it combines various IR-based features of faults,

summarising existing IRFL techniques.2 In addition, the IRFL is a

static approach, thereby allowing us to inspect further how CE-

MENT performs compared to existing static techniques.

After investigating the applicability of CEMENT on fault local-

ization we check whether its performance is dependent on the

project maturity. Hence, we ask:

RQ3 Impact of Software Maturity: how does the software

maturity affect the effectiveness of CEMENT?

CEMENT assumes tests and methods to be relevant if they have

co-evolved throughout the development. Thus, for CEMENT to be

useful, the program under inspection should be mature enough to

have a sufficient amount of previous changes for CEMENT to pro-

cess. Hence, to answer RQ3, we divide our dataset into two levels

of software maturity (i.e., Applicable and Confident) based on the

number of changes made on individual tests and methods.

• Applicable: tests and methods have changed at least once

• Confident: tests andmethods have changed equal to ormore

than the average number of times individual tests and meth-

ods have changed

We extend our fault localization case study to additionally have

these two different levels of software maturity for each project and

investigate how the performance of CEMENT varies depending on

the softwarematurity.We achieve this by using these two software

maturity levels as the filtering criteria: Applicable is to inspect the

changes in CEMENT’s performance after excluding the tests and

methods it cannot handle inherently, and Confident is to simulate

how CEMENT performs when the projects become more mature.

3.2 Subject

We evaluate CEMENT using Defects4J v.2.0.0 [10], a repository

that contains real-world faults of 17 open source projects. We se-

lect Defects4J mainly for two reasons. First, Defects4J provides an

inner command to run mutation testing on 17 projects it inves-

tigated. This inner command handles from compiling a project to

running a given test suite on the injected mutants, saving us a lot of

time and effort that would spend on preparing an environment for

mutation testing. Second, Defects4J provides 835 real-world faults

and an infrastructure to replicate them easily, making it an opti-

mal target for our fault localization case study. Table 1 presents

the overall information about the projects that we studied: out of

these 17 projects, we use 14 to answer RQ1 and 15 to answer RQ2

and RQ3.

3.2.1 Subjects forMutation Testing. Among 17 projects inDefects4J,

we fail to runmutation testing onCommons Collections andMock-

ito using its inner mutation testing command. We simply exclude

these two from our targets for mutating testing, as our goal is not

about running mutation testing on every project in Defects4J. In

2iFixR performs statement-level fault localization by localizing faults at the file-level

first using D&C that leverages various IR features [13]

this study, we use Git to collect the projects’ past changes, as 16 out

of 17 projects in Defects4J employ Git to manage the changes be-

tween versions; JfreeChart is the only one that uses SVN instead.3

We thus, excluded JfreeChart, leaving 14 projects for our analysis.

3.2.2 Subjects for Fault Localization. For our case study on fault

localization, we exclude Commons Collections and JfreeChart. We

exclude JfreeChart for the same reason above and Commons Col-

lections for a different reason. As explained in RQ2, we assume

faulty methods to be more strongly related to failing tests than

non-faulty ones. For CEMENT to establish these relevant links be-

tween failing tests and methods, failing tests should exist before

the failure. However, for many of the faults in Defects4J, the fail-

ing tests marked by Defects4J were introduced the first time to the

project when developers submitted fix patches, making them im-

possible for CEMENT to handle. 4 Thus, we further filter out them,

excluding Commons Collections entirely since there were no re-

maining faults after this exclusion. Combined, we are left with 214

faults out of 835 faults.

We use the IRFL in iFixR as the baseline for our fault localiza-

tion case study. This IRFL technique also failed in JfreeChart for

a similar reason to ours. Among 214 faults, the IRFL failed to lo-

calize 39 faults due to missing bug reports or bug reports related

to more than one fault and 33 faults by failing to compute suspi-

ciousness scores for faulty statements. Thus, we further exclude

72 faults and use the remaining 142 faults for the baseline com-

parison in RQ2. Table 1 presents the number of faults remaining

after these exclusions for each project. RQ3 is about the impact of

software maturity on the performance of CEMENT. We use all 214

faults to answer RQ3 since we do not need to compare CEMENT

with the IRFL here.

Table 1: Test subjects. Mockito was excluded from RQ1. For

RQ2 and 3, all 15 projects were used. The value in parenthe-

ses is the number of faults after removing those the IRFL

cannot handle.

of # of methods # of tests # of previous commits

Project faults min – max average

Lang 23 (21) 1959.3 2201.6 3695 – 4769 4160.9

Math 32 (24) 4089.7 3288.1 3929 – 10074 7378.2

Time 3 (2) 3782.7 5112.7 8849 – 8988 8895.3

Closure 60 (27) 9857.9 8435.6 10332 – 23795 18293.5

Mockito 8 (1) 3118.4 2187.0 4296 – 5808 5305.4

Cli 12 (7) 216.9 228.2 324 – 906 445.1

Codec 6 (4) 408.0 537.7 587 – 1301 945.7

Compress (11) 12 1202.0 675.6 569 – 3077 1877.6

Csv 4 (3) 109.5 205.2 147 – 470 314.8

Gson 2 (2) 805.0 1353.5 2157 – 2160 2158.5

JacksonCore 6 (5) 1718.0 722.3 1621 – 3292 2440.3

JacksonDatabind 19 (15) 5427.3 3358.3 7187 – 10330 8786.3

JacksonXml 1 (0) 388.0 298.0 686 – 686 686.0

Jsoup 21 (18) 985.0 446.0 639 – 2134 1431.0

JxPath 5 (2) 1518.2 475.4 1947 – 2045 1993.6

3Currently, JfreeChart has successfullymigrated from SVN to Git. However, Defects4J
stills refers to the older version of JfreeChart and generates a new git branch that

contains only four commits made by Defects4J developers.
4Defects4J isolates each test failure and provides a separate commit that contains only
a single fault and fails only with the tests related this fault. Defects4J achieves this by

reversing the bug-fixes and labeling the tests related to the fixes as the failing tests.

3.3 Past Change Collection

CEMENT determines whether a given method and test are rele-

vant using the time intervals between their past changes. Thus, to

runCEMENT, we first need to find when eachmethod and test was

changed. We employ Git v.2.32.0 [4] for this because it is a widely

used version control system and 15 projects we studied also utilize

Git to maintain their versions. For the experiments, we use De-

fects4J, which works with the project’s detached HEADs it created

instead of the main branch of the project. Thus, to avoid confu-

sion, such as the mismatch between commit hashes, we gather the

past changes of methods and tests from these detached HEADs.

This paper aims to demonstrate that CEMENT can infer the rel-

evant links between tests and methods based on their history of

co-evolution. Hence, rather than trying to achieve the best perfor-

mance by controlling the time window for past change collection,

we simply collect all prior changes of methods and tests. For each

past change, we record the hash of the commit that introduced the

change.

3.4 Mutation Testing

As mentioned in Section 3.2, Defects4J provides an inner muta-

tion testing command relying on Major. We thus, work with the

buggy versions because it becomes easier to relate the results we

obtained with mutation testing with those of the fault localization

case study we perform. Moreover, working with fixed versions

may lead to overestimating the performance of CEMENT, as the

changes that generated the fixed versions may contain informa-

tion that directly reveals the link between certain tests and meth-

ods (e.g., failing tests and faulty methods), which is rare in practice.

We select the most recent version among multiple buggy versions

for each project to maximize the number of past changes that CE-

MENT can exploit.

Mutation testing is computationally expensive [19]. Thus, we

reduce the scope of the mutation testing by mutating only the top

ten frequently modified classes instead of the entire code. We for-

mulate a test set that includes 20% of the entire tests of a target

project. This test set includes all the tests that are likely to execute

the selected classes according to the test and code naming conven-

tion [32]. In case there is available space after the selection process,

we randomly select the remaining number of tests.

3.5 Fault Localization

We conduct a case study on fault localization to evaluate the ap-

plicability of CEMENT in software testing and debugging. As for

the baseline of this case study, we select an Information Retrieval-

based Fault Localization (IRFL) technique adopted in a recent pro-

gram repair technique called iFixR [14]; we run iFixR on 17 projects

in Defects4J v.2.0.0. Since we work at the method granularity, we

aggregate the statement-level fault localization results of iFixR to

the method level, taking the highest statement-level suspicious-

ness score for each method. For CEMENT, we rank the methods

in descending order of their distances to failing tests: the higher

its rank is, the more suspicious the method is. Defects4J includes

faults that result inmultiple failing tests. In these cases, we take the

highest method ranking among those computed with each failing

test; similarly, for multiple faulty methods, we take the highest.

While Defects4J provides real faults, the corresponding buggy

versions delivered by Defects4J have been tailored to contain only

a single fault [10]. Consequently, if we run CEMENT directly on

these buggy versions, we may include change information that ex-

plicitly reveals the locations of faults. To prevent this, instead of

working with the buggy versions given by Defects4J, we execute

CEMENT on the original buggy commits that Defects4J addition-

ally provides. For iFixR, we follow its own configuration.

3.6 Evaluation Metrics

We evaluate the effectiveness of CEMENT in establishing the links

between tests and methods from their evolutionary coupling us-

ing mutation score. Mutation Score (MS) is defined as the ratio of

mutants killed by selected tests to the total number of generated

mutants, as below.

"(()) =
of mutants killed by)

of total mutants
, '"(()) =

"(())

"(<0G (= "(()0;;))

) denotes a test set that contains #) tests. We define #) (i.e., the

number of selected tests) differently for each project, configuring

this #) to be 10% of the total number of tests in the mutation test-

ing. We compare the "(score of test set) with the "(score of

running all the tests ()0;;). We refer to the latter one as the max-

imum ("(<0G); it is the total number of killed mutants over the

total number of generated mutants. Here, we want to evaluate the

trade-off between the effort saved by running only #) test and

the performance degradation caused by it. Thus, we divide the"(

score of test set) by the maximum"(score. We notate this ratio

as '"(and use it to evaluate the capability of CEMENT.

RQ2 and RQ3 are about the applicability of CEMENT in fault lo-

calization. We evaluate the fault localization performance of both

CEMENT and the baseline IRFL using 022@= andF4 5 . These two

metrics measure the absolute effort spent on localizing faults, fol-

lowing the guideline suggested by Parnin and Orso [20]. 022@=

counts the number of faults ranked within the top = places; for =,

we use 1, 3, 5, and 10. F4 5 or wasted effort is the number of non-

faulty elements examined before inspecting the first faulty one. As

F4 5 is computed per fault, we take the average and the median.

3.7 Tie Breaking

CEMENT does not guarantee to calculate a unique distance (i.e.,

coupling degree) for each method and test pair; in the worst case,

it may compute the same degree of coupling for all the method

and test pairs. To avoid overestimating the performance, we break

these potential ties between the method and test links by assigning

the lowest ranking that tied methods or tests can have to all those

that are tied. For a similar reasoning, we assign the lowest possible

ranking to the methods tied by having the same suspiciousness

score while evaluating the fault localization performance.

3.8 Implementation & Environment

CEMENT is implemented in Python version 3.9.9. All the experi-

ments were run on the machine equipped with Intel Core i7 CPU

and 32GB RAM. The replication package and all the results are

publicly available from https://doi.org/10.5281/zenodo.6366615.

4 RESULTS

4.1 RQ1. Capability

Table 2 records the changes in mutation score when executing sub-

sets of the accompanied test suites, composed of 10% of the total

number of tests, using '"(score. Overall, we obtained higher '"(

scores in CEMENT (i.e., CEMENT 14BC
C→<< and CEMENT

0E6
C→<<)

than in the random test selection. For example, for JacksonCore,

'"(improves from 0.19 to 0.60, increasing the number of killed

mutants more than three times. Among 14 projects we investi-

gated, CEMENT successfully outperforms the random test selec-

tion baseline in 11 projects by taking the highest ranking for each

test among those it obtained with the considered methods (CE-

MENT 14BC
C→<<). When using the average instead of the highest (CE-

MENT
0E6
C→<<), the number of projects where CEMENT is supe-

rior than the random selection decreases by two. However, CE-

MENT
0E6
C→<< still performs better than the random in nine out

of 14 projects. In fact, CEMENT consistently outperforms the ran-

dom test selection either by CEMENT 14BC
C→<< or CEMENT

0E6
C→<< .

The maximum Mutation Score (MS) assumes running all tests

participated in the mutation testing. Since we selected 10% of these

tests, all the '"(scores in Table 2 being greater than 0.1, even in

the random, suggests that there exist large overlaps between the

tests in terms of the mutants they killed. Nonetheless, CEMENT

were able to select 10% of the tests that killed much more mutants

than the same number of randomly selected tests. For instance, in

JacksonXml, we can kill 74% of the total killed mutants by running

tests selected by CEMENT, whereas with the randomly selected

tests, we can kill only 28%. Based on these results of CEMENT

consistently outperforming the random, we posit that CEMENT

can establish relevant links between tests and methods given the

project’s evolution.

Answer to RQ1: Tests selected by CEMENT consistently kill

more mutants than those killed by randomly selected tests. These

results suggest that CEMENT successfully captures probable links

between tests and methods that can identify tests related to mu-

tated methods.

4.2 RQ2. Applicability

Table 3 presents the results of our case study of CEMENT on fault

localization. Compared to the Information Retrieval-based Fault

Localization (IRFL) technique used in a recent program repair method,

iFixR, CEMENT acquires comparable performance in terms of022@1:

CEMENT places 18 faults at the top of the rankings, whereas the

IRFL places 23 faults. For the sake of simplicity, wewill call the IRFL

technique used in iFixR the IRFL, hereafter. While the IRFL sur-

passes CEMENT consistently in localizing faults, it also requires

more effort to build the FL model and collect data for training and

evaluation: the IRFL collects 17 features (seven from bug reports

and ten from source code files) for fault localization. Moreover, the

IRFL assumes the existence of bug reports that in many cases is

not available and often requires an additional data preprocessing

step, which can be costly [14]. In contrast, CEMENT needs only

the hashes of commits that changed the methods and tests. Hence,

https://doi.org/10.5281/zenodo.6366615

Table 2: The changes in mutation scores when running only 10% of the entire tests. Each cell contains '"(, the ratio of the

mutation score obtained by the approach (row) to the maximum mutation score. When CEMENT (i.e., CEMENT 14BC
C→<< and

CEMENT
0E6
C→<<) outperforms the random test selection (Random), the corresponding ratio ('"() is highlighted in bold. For

Random, its '"(score is highlighted in bold if and only if it outperforms both CEMENT 14BC
C→<< and CEMENT

0E6
C→<< .

Jackson Jackson Jackson

Approach Lang Math Time Closure Cli Codec Compress Csv Gson Core Databind Xml Jsoup JxPath

Random 0.22 0.31 0.47 0.43 0.28 0.36 0.30 0.49 0.20 0.19 0.15 0.28 0.49 0.29

CEMENT 14BC
C→<< 0.22 0.40 0.58 0.49 0.33 0.72 0.18 0.67 0.38 0.60 0.16 0.74 0.52 0.45

CEMENT
0E6
C→<< 0.54 0.38 0.36 0.40 0.52 0.47 0.49 0.65 0.14 0.13 0.33 0.64 0.48 0.49

concerning the cost spent up to the localization,5 we posit that CE-

MENT shows comparable performance to the IRFL.

An important discrepancy in the evaluation of IRFL happens

when bug reports explicitly specify the code elements that have

the reported bugs. In these cases, we do not need to localize faults

in the first place, as they have been already identified by the person

reporting them. The IRFL localizes faults based on the similarity

between bug reports and source code. Therefore, if a bug report al-

ready contains the identifier of a fault, we might overestimate the

performance of the IRFL, especially when it directly exploits the

identifiers of code elements in a bug report. Hence, we divide faults

into two groups based on whether their identifiers are already in

bug reports and examine whether the localization performance dif-

fers between these two groups.We treat a bug report to contain the

identifier of a fault if it has both the class and the method name of

the fault.

The leftmost column of Table 3 presents the localization results

of the faults whose identifiers are in bug reports; out of 142 faults

we examined, 54 already have their identifiers in bug reports. The

middle column shows the localization results of the faults without

their identifiers in bug reports; the rightmost column describes the

combined results. Overall, the IRFL performs better when bug re-

ports contain fault identifiers: the IRFL places 15 out of 54 faults

at the top (022@1) for the group of faults with their identifiers in

bug reports, whereas it places only eight at the top for the other

group without the identifiers, even though more faults belong to

the latter group. We observe similar trends in 022@3, 5, 10.

Compared to the IRFL, having fault identifiers in bug reports

does not have the same effect on CEMENT. While CEMENT lo-

calizes more faults near the top for the group where bug reports

have fault identifiers, the difference is smaller; for example, for the

group without fault identifiers, the 022@1 decreases almost by half

in the IRFL, whereas, in CEMENT, it decreases only by two, from

10 to 8. Even this small decrease is from elsewhere, as CEMENT

does not leverage both source code and bug reports in the first

place; we suspect that the observed decreases are coincidental and

are attributed to the characteristics of faults in each group.6 Fur-

thermore, CEMENT becomes more comparable to the IRFL for the

5With CEMENT, each fault localization task itself was done within seconds, and the
past change collection, which covers over thousands of commits here, took on aver-
age within 5 minutes, without any optimization. This cost can be further reduced in
practice, as we do not have to process all prior commits every time; the changes can
be collected incrementally.
6If a method evolves actively, this method is more likely to have failed in the past
than those rarely changed. Subsequently, if the method frequently fails, a reporter

faults without their identifiers in the bug reports: compared to the

IRFL, CEMENT ranks the same number of faults at the top and

within the top three (i.e., 022@1 and 022@3) and locates only one

less fault within the top five (i.e., 022@5). CEMENT fails to compete

with the IRFL in F4 5 , although the difference between CEMENT

and the IRFL becomes smaller in the median compared to the av-

erage. Regarding the previous observation in 022@=, this result is

likely from CEMENT completely failing on some faults, assigning

the lowest rank to them. Nevertheless, CEMENT still achieves com-

parable performance in terms of localizing faults near the top, sug-

gesting that CEMENT can be useful in fault localization.

Answer to RQ2: CEMENT achieves comparable performance

to the recent Information Retrieval-based Fault Localization (IRFL)

technique, especially for the cases where this IRFL technique per-

forms less effective.

4.3 RQ3. The Impact of Software Maturity

Table 4 presents the fault localization results of CEMENT for the

complete set of 214 faults with two variations on software matu-

rity: Applicable and Confident. Methods or tests being "Applicable"

means they have changed at least once, and being "Confident" im-

plies that they have been altered more frequently than the average.

We apply these two maturity criteria to each buggy version of tar-

get projects, filtering out the methods and tests that failed to meet

them.We did not differentiate faultymethods and failing tests from

other methods and tests while applying these criteria. As a result,

14 and 129 faults out of 214 faults were excluded by Applicable and

Confident criteria, respectively.

The results in Table 4 show that the performance of CEMENT

can be improved as the software becomes more mature. For in-

stance, when we apply Applicable criterion (Applicable*), we ob-

serve small improvements in the percentage of faults localized near

the top, that are around 1% to 3%. The improvement is more evi-

dent in F4 5 where the average decreases by half and the median

by around 15. When we further filter out immature methods and

tests using Confident criterion (Confident*), this improvement be-

comes more prominent: the percentage of localized faults further

increases by 6% at the top and by around 6 to 8% within the top

three, five and ten compared to the results of applying Applicable

may already know that this method is the trigger when it causes a failure, and thereby,

includes its identifier in the bug report.

Table 3: Comparison between the fault localization by CEMENT and the IRFL in iFixR. CEMENT becomes more comparable

to the IRFL when focusing only on the faults whose identifiers are not already in bug reports (Without Faulty Methods).

With Faulty Methods (CEMENT/ iFixR) Without Faulty Methods (CEMENT/ iFixR) All (CEMENT/ iFixR)

acc wef acc wef acc wef

Proj. (w/wo/all) @1 @3 @5 @10 mean med @1 @3 @5 @10 mean med @1 @3 @5 @10 mean med

Lang (16/5/21) 3/7 8/9 9/11 10/12 60.9/4.2 2.0/1 0/0 2/1 3/2 3/3 441.8/11.8 3.0/6 3/7 10/10 12/13 13/15 151.6/6.0 3.0/3

Math (12/12/24) 1/2 1/6 2/7 3/11 562.0/4.0 52.0/2 0/3 0/6 0/8 0/11 787.8/11.6 86.0/2 1/5 1/12 2/15 3/22 674.9/7.8 83.0/2

Time (1/1/2) 1/0 1/1 1/1 1/1 0.0/1.0 0.0/1 0/0 0/0 1/0 1/0 4.0/60.0 4.0/60 1/0 1/1 2/1 2/1 2.0/30.5 2.0/30

Closure (1/26/27) 0/0 0/0 0/0 0/0 4315.0/20.0 4315.0/20 2/1 3/2 4/2 6/4 2225.6/60.3 242.0/22 2/1 3/2 4/2 6/4 2303.0/58.8 301.0/22

Mockito (0/1/1) - / - - / - - / - - / - -/- -/- 0/0 1/0 1/0 1/0 1.0/10.0 1.0/10 0/0 1/0 1/0 1/0 1.0/10.0 1.0/10

Cli (3/4/7) 2/1 2/3 2/3 2/3 18.0/1.0 0.0/1 2/0 3/1 3/1 3/1 4.2/13.8 0.0/17 4/1 5/4 5/4 5/4 10.1/8.3 0.0/2

Codec (3/1/4) 0/2 0/3 0/3 1/3 98.7/0.7 96.0/0 0/0 0/0 0/0 0/0 212.0/16.0 212.0/16 0/2 0/3 0/3 1/3 127.0/4.5 146.0/1

Compress (6/5/11) 0/1 2/1 3/2 4/2 152.2/19.7 5.0/14 0/0 0/0 0/0 0/2 55.6/16.6 50.0/19 0/1 2/1 3/2 4/4 108.3/18.3 21.0/18

Csv (0/3/3) - / - - / - - / - - / - -/- -/- 0/2 1/3 1/3 1/3 22.3/0.3 18.0/0 0/2 1/3 1/3 1/3 22.3/0.3 18.0/0

Gson (2/0/2) 1/0 1/0 1/0 1/0 15.0/52.5 15.0/52 - / - - / - - / - - / - -/- -/- 1/0 1/0 1/0 1/0 15.0/52.5 15.0/52

JacksonCore (1/4/5) 0/0 0/0 0/0 0/1 1022.0/9.0 1022.0/9 2/0 3/0 3/0 3/0 77.2/130.0 0.0/127 2/0 3/0 3/0 3/1 266.2/105.8 1.0/16

JacksonDatabind (5/10/15) 0/0 0/2 0/3 0/3 620.2/20.0 398.0/4 0/1 0/2 0/2 0/4 1819.5/38.4 1044.0/12 0/1 0/4 0/5 0/7 1419.7/32.3 540.0/11

Jsoup (4/14/18) 2/2 2/3 2/3 3/3 170.5/8.5 4.0/1 2/1 3/1 4/3 5/7 215.1/35.9 81.0/10 4/3 5/4 6/6 8/10 205.2/29.8 39.0/7

JxPath (0/2/2) - / - - / - - / - - / - -/- -/- 0/0 0/0 0/0 0/1 279.5/120.0 280.0/120 0/0 0/0 0/0 0/1 279.5/120.0 280.0/120

Total (54/88/142) 10/15 17/28 20/33 25/39 335.8/9.4 14.0/2 8/8 16/16 20/21 23/36 1047.5/41.3 80.0/12 18/23 33/44 40/54 48/75 776.8/29.2 63.0/8

criterion. In F4 5 , the average and the median decrease by around

one fourth when compared to those of the Applicable.

We exclude the methods and tests that failed to meet our matu-

rity criteria to allow CEMENT running on software systems with

different maturity levels. Since we use absolute metrics (i.e., 022@=

andF4 5) in the evaluation, we consider the possibility that the per-

formance improvement that we observed may come from the de-

crease in the total number of methods and tests after the filtering.

To verify that the improvement comes from the project maturity,

we apply the maturity criteria only on faulty methods and failing

tests, excluding faults that failed to meet these criteria. We then

rerun CEMENT for the remaining faults without any maturity fil-

tering. This way, we focus on faults that appeared at the mature

part of the code without risking to overestimate. As shown in Ta-

ble 4, our results are almost the same as before, localizing one more

or fewer faults near the top, confirming that the improvement we

witnessed indeed relates to the software maturity.

Answer to RQ3: The performance of CEMENT improves when

we focus only on the mature part of the code (i.e., have more than

the average number of past changes), implying CEMENT can en-

hance along with software maturity.

5 DISCUSSION

5.1 The Impact of Evolutionary Couplings in
Software Debugging

CEMENT establishes relevance links between tests and code only

when they have co-evolved. Thus, CEMENT may complement ex-

isting software debugging and testing techniques that rely on dy-

namic or static code analysis. To check for this potential comple-

mentarity, we revisit the results of RQ2, but at this time, inspect

which faults are localized by CEMENT and by the baseline IRFL

technique.

Table 5 reports the number of faults localized by CCCT, the IRFL,

and both. Overall, CEMENT and the IRFL localize different faults

near the top. For the groups of faults whose identifiers are already

in bug reports, the faults localized at the top by both CEMENT

Table 4: Complete fault localization results of CEMENT. #

is the total number of faults in each project. "*" means that

Applicable/Confident filtering criterion was applied to the

projects before extracting the evolutionary couplings, and

without "*" indicates that the filtering criterion was used

only to exclude faults.

Project # acc@n wef

1 3 5 10 mean median

Lang 23 3 (0.13) 10 (0.43) 12 (0.52) 13 (0.57) 145.3 4.0

Math 32 2 (0.06) 3 (0.09) 4 (0.12) 7 (0.22) 692.0 79.5

Time 3 1 (0.33) 1 (0.33) 2 (0.67) 2 (0.67) 867.3 4.0

Closure 60 7 (0.12) 11 (0.18) 12 (0.20) 16 (0.27) 2130.1 228.5

Mockito 8 2 (0.25) 3 (0.38) 3 (0.38) 5 (0.62) 58.1 7.0

Cli 12 5 (0.42) 7 (0.58) 8 (0.67) 8 (0.67) 10.4 1.0

Codec 6 0 (0.00) 0 (0.00) 1 (0.17) 2 (0.33) 97.7 85.0

Compress 12 0 (0.00) 2 (0.17) 3 (0.25) 4 (0.33) 101.3 23.0

Csv 4 0 (0.00) 1 (0.25) 1 (0.25) 1 (0.25) 33.2 32.5

Gson 2 1 (0.50) 1 (0.50) 1 (0.50) 1 (0.50) 15.0 15.0

JacksonCore 6 2 (0.33) 3 (0.50) 3 (0.50) 3 (0.50) 431.5 154.5

JacksonDatabind 19 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 1369.1 540.0

JacksonXml 1 0 (0.00) 0 (0.00) 1 (1.00) 1 (1.00) 3.0 3.0

Jsoup 21 4 (0.19) 5 (0.24) 6 (0.29) 8 (0.38) 221.6 64.0

JxPath 5 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 444.4 400.0

Total 214 27 (0.13) 47 (0.22) 57 (0.27) 71 (0.33) 906.2 64.5

Total (Applicable) 198 27 (0.14) 47 (0.24) 57 (0.29) 71 (0.36) 432.2 50.5

Total (Applicable*) 198 27 (0.14) 47 (0.24) 56 (0.28) 71 (0.36) 432.2 50.5

Total (Confident) 85 16 (0.19) 27 (0.32) 32 (0.38) 38 (0.45) 180.5 16.0

Total (Confident*) 85 17 (0.20) 27 (0.32) 31 (0.36) 37 (0.44) 115.3 14.0

and the IRFL is only two; CEMENT and the IRFL locate respec-

tively eight and 13 different faults at the top. While there are more

in common between the faults localized by CEMENT and the IRFL

within the top three, five and ten, many faults are still localized by

only one of them. In cases where bug reports do not contain fault

identifiers, fewer faults are localized by both techniques. At the

same time, the number of faults localized only by CEMENT now

becomes similar to that of the IRFL; for example, both CEMENT

and the IRFL localize eight different faults at the top (022@1). In

total, CEMENT localizes 16 faults for which IRFL has failed at the

top; this is around 41% of total faults ranked at the top by either

approach. Within the top ten, 22 out of 97 faults are localized ex-

clusively by CEMENT. These results indicate that the relationships

between tests and code captured by CEMENT through the soft-

ware co-evolution are different from those exploited in the cur-

rent IR-based fault localization techniques. Thus, we posit that CE-

MENT has the potential to complement current software debug-

ging and testing activities by establishing the relationships that

have remained underexplored.

5.2 Evolutionary Couplings and Traceability
Links between Tests and Code

There are some studies specialized in modelling test-and-tested re-

lationships among various relationships that tests and code can

have [21, 23, 32]. These relationships are called test-to-code trace-

ability links and aim at capturing the intent of tests, i.e., identify

the key functionality that is tested/asserted by a test, leaving out in-

directly tested functionality. This means that the traceability links

are abstract and not exact. Compared to test-to-code traceability

links, the evolutionary couplings established by CEMENT reflect

a more relaxed relation. For example, let us suppose the given test

and method belong to the same component and thereby have fre-

quently changed around the same time by developers. In this case,

even if the test does not directly test the method, CEMENT will

likely regard it as relevant to themethod since they have co-evolved.

To further examine how CEMENT differs from or relates to exiting

studies of test-to-code traceability links, we employ TCTRACER,

a state-of-the-art approach that automatically establishes test-to-

code traceability links [32]. We replicate the method-level trace-

ability links prediction study in the TCTRACER paper and investi-

gate whether CEMENT can predict these links.

Table 6 compares the performance of CEMENT and TCTRACER

in predicting test-to-code traceability links at the method level.7

Here, we assume that CEMENT generates a stronger link for a

method to the test that evaluates its functionality than to those

that do not. Thus, for each test, we rank methods in descending

order of their strength of the link to it. We then simply regard the

top five methods as having traceability links with the test. The per-

formance of CEMENT varies depending on the software maturity.

Thus, we extend this study by applying the two software matu-

rity criteria (i.e.,Applicable and Confident) in order to focus on the

traceability links coming from the more mature part of the code.

We achieve this by excluding the traceability links that failed to

meet the maturity criteria from the evaluation. Table 6 reports the

number of test-to-code traceability links we initially have and the

number of links after the filtering.8

TCTRACER generally outperforms CEMENT in predicting test-

to-code traceability links. We believe that this due to the following

three reasons. First, we simply take the top five methods for the

prediction. Thus, even if CEMENT ranks a related method at the

top, we end up with four false positives, explaining the low per-

formance, especially in precision. Secondly, because the oracle of

test-to-code traceability links was formulated manually, it might

be biased toward the methods and tests with similar names. This

7The results of TCTRACER provided by the authors contain only method and test
pairs predicted to have a traceability link rather than the complete prediction results.
Hence, we only investigate precision, recall, and F1 score and exclude AUC and MAP

for this replication study.
8Because the current CEMENT implementation handles only methods and not con-

structors for Java, we exclude two additional traceability links for each project

may give some advantages to TCTRACER, for it leverages the tex-

tual similarity between the names. Finally and most importantly,

a test and a method can have an evolutionary coupling between

them without being considered in the test-and-tested relationship

as it could be an indirect link. Despite these, CEMENT excels TC-

TRACER in Chart when inspecting only the links that met the Con-

fident criterion: out of the remaining four test-to-code traceability

links, two of them are correctly predicted only by CEMENT.

When we inspected these cases, we found that these two are

when there are no common terms between test and method names

and when a test calls multiple methods, especially after calling the

related method. Since five out of eight techniques that TCTRACER

combines compare test and method names in order to predict the

traceability links, TCTRACER could be less effective if the test and

method have entirely different names. TCTRACER employs tech-

niques that exploit dynamic execution traces, such as Last Call Be-

fore Assertion, to complement this weakness. However, like the

second case that we observed, if there are many methods between

the test and the ground-truth method in an execution trace, TC-

TRACER becomes less successful in the prediction. CEMENT lever-

ages neither the dynamic execution traces nor the source code. As

a result, it is inherently free from all the issues that may arise from

using them; this allows CEMENT to handle the cases for which

TCTRACER has failed. Hence, we argue that CEMENT can com-

plement existing techniques of predicting test-to-code traceability

links, especially when working with mature software systems.

6 THREATS TO VALIDITY

A primary threat to validity of our work is the absence of the ora-

cle for the evolutionary couplings between tests and methods. To

mitigate this threat, we usedmutation testing as a substitute of this

oracle. Since mutation testing has been often employed as a test or-

acle [19], we posit that it can also be useful for our case. In addition

to the capability of CEMENT in establishing the evolutionary cou-

plings, this study also investigates the usefulness of the resulting

couplings in software maintenance activities. For this, we select

fault localization as our target for the case study, as it is one of

the most actively studied areas in software maintenance [33]. We

select a recent Information Retrieval (IR) based fault localization

technique as the baseline because it combines multiple existing IR-

based techniques and, thereby, can summarize the current trend in

fault localization to some extent. [13, 14].

The threats to external validity relate towhether our findings on

the effectiveness of the evolutionary coupling can be generalized

to other projects. We use 15 open source projects in Defects4J, a

benchmark of real-world faults, as our targets for evaluation. Still,

additional studies on industrial projects may be needed to fully

verify our hypothesis.

Threats to construct validity relate to the evaluation metrics we

use. To assess the capability of CEMENT to select likely-related

tests to givenmethods,we employmutation score, a widely adopted

metric in mutation testing [19]. For the case study, we select three

absolute evaluation metrics that have been frequently employed in

fault localization [15, 20, 27, 30].

Table 5: Comparison between faults localized by CEMENT and the IRFL in iFixR. The value on the right (either) is the total

number of faults localized by either CEMENT or the IRFL (i.e., union), whereas the values on the left denote the number of

faults localized only by CEMENT, only by the IRFL, and by both (i.e., intersection), respectively. When CEMENT/the IRFL

localizes faults on which the other failed, the corresponding cell is highlighted in bold text.

N acc@1 acc@3 acc@5 acc@10

CEMENT/ iFixR / both either CEMENT/ iFixR / both either CEMENT/ iFixR / both either CEMENT/ iFixR / both either

With Faulty Methods 54 8/13/2 23 6/17/11 34 8/21/12 41 8/22/17 47

Without Faulty Methods 88 8/8/0 16 14/14/2 30 15/16/5 36 14/27/9 50

All 142 16/21/2 39 20/31/13 64 23/37/17 77 22/49/26 97

Table 6: Comparison between CEMENT and TCTRACER.

The three values next to the project are the number of trace-

ability links without any filtering, with Applicable and Con-

fident filtering. The left and right values are the results of

CEMENT and TCTRACER, respectively, and they are all in

percentage.

Lang (74/44/7) IO (40/40/14) Chart (35/25/4)

Conf Prec Recall F1 Prec Recall F1 Prec Recall F1

All 10 / 86 16 / 78 12 / 82 9 / 67 22 / 82 13 / 74 5 / 23 9 / 74 6 / 35

Applicable 12 / 59 26 / 89 17 / 71 9 / 67 22 / 82 13 / 74 5 / 17 12 / 76 7 / 28

Confident 8 / 12 22 / 89 12 / 21 6 / 29 14 / 100 9 / 45 21 / 2 75 / 50 33 / 4

7 RELATED WORK

Our definition of co-evolution depends on the past changes in tests

and methods. Several studies have leveraged past changes in tests

and methods. Defect prediction aims at predicting faults before ex-

ecuting them using code quality metrics that include past changes

in the software [12, 16, 22]. However, these usages of past changes

are often limited to enrich the description of individual code ele-

ments concerning a specific problem: e.g., methods that have changed

frequently are more likely to contain faults than those that have

not [22]. In other words, they use the past changes to describe the

characteristics of faults.

Sohn and Yoo [25, 27] considered the past changes of methods

to improve fault localization performance; similarly to defect pre-

diction, they used the past changes as another feature to describe

faults. In automated program repair, Saha et al. used past software

changes to further locate the code that is likely to undergo similar

repairs [25]. Although the ways they used the past changes varies,

all these studies utilize past software changes as additional data to

enhance their approaches; they can validate their main idea with-

out using the past changes. Furthermore, they inspect past changes

per code element rather than investigating them together to grasp

the overall picture of how software has changed. In contrast to the

existing work, CEMENT establishes couplings between tests and

methods, directly from how they have changed throughout the de-

velopment.

Association between tests and methods can be useful in various

software maintenance activities, as it can give developers hints on

how their changes affect or will affect others. Consequently, there

have been many studies on automatically mining this information,

either dynamically or statically. Studies on test-to-code traceability

links aim at setting explicit links between tests and code [21, 23, 32].

Rompaey and Demeyer investigated diverse sources of informa-

tion, ranging from naming convention to static and dynamic code

analysis, to automatically generate traceability links between tests

and code that can pinpoint which tests examine which part of

code [23]. Qusef et al. proposed SCOTCH that identifies these trace-

ability links using dynamic slicing; SCOTCH uses dynamic slicing

to locate the area affected by the last assertion in each unit test

case [21]. Mohammad et al. tried to improve the quality of the

traceability links by further findings the method that implements

the core functionality under testing based on the changes in the

object states [8]. Recently, White et al. combined multiple tech-

niques that automatically mine test-to-code traceability links, al-

lowing these techniques to complement each other [32]. Unlike all

these approaches that somehow employ dynamic program anal-

ysis to generate these links between tests and code, CEMENT is

purely static. Perhaps more importantly, the traceability links fo-

cus on test intents resulting in abstract relationship between test-

and-code, whereas the evolutionary couplings we use aim at cap-

turing important dependencies.

8 CONCLUSION

We propose CEMENT, a static approach that mines relevant links

between tests and code units without any dynamic or static code

analysis but through their history/evolution. The key idea of CE-

MENT is that tests and code that are relevant to each other are

likely to be changed, multiple times, around the same time by de-

velopers. Thus, CEMENT infers such relevance relationships using

the past co-evolution of the software under analysis. We empiri-

cally evaluate the capability of CEMENT in capturing such rele-

vance relationships using 15 open-source projects. We further con-

ducted a fault localization study to investigate the applicability and

actionability of these relationships in software debugging. The re-

sults show that CEMENT can establish and use such relationships

and that it is capable of achieving comparable performance to an

existing Information Retrieval-based fault localization technique.

Further analysis reveals that CEMENT can capture the relation-

ships between tests and code that are different from those captured

by dynamic and static code analysis and thus, evidencing that CE-

MENT can complement the current approaches.

Our work forms the first attempt to establish evolutionary cou-

plings between tests and code and thus, it opens a number of in-

teresting research directions. In particular, the exploration of addi-

tional aspects of software evolution such as actual commit time, de-

velopers and the context of the evolution could strengthen our rela-

tionships. Additionally, the formulation of hybrid techniques com-

bining evolutionary coupling with traceability linking techniques

[21, 23, 32] and historical evolution analysis techniques such as

refactoring miner [29] could lead to much stronger results. We

hope to explore these directions in the near future.

REFERENCES
[1] Antonia Bertolino, Antonio Guerriero, Breno Miranda, Roberto Pietrantuono,

and Stefano Russo. 2020. Learning-to-Rank vs Ranking-to-Learn: Strategies for
Regression Testing in Continuous Integration. In Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering (Seoul, South Korea)
(ICSE ’20). Association for Computing Machinery, New York, NY, USA, 1–12.
https://doi.org/10.1145/3377811.3380369

[2] Sam Blackshear, Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey. 2018.
RacerD: Compositional Static Race Detection. Proc. ACM Program. Lang. 2, OOP-
SLA, Article 144 (oct 2018), 28 pages. https://doi.org/10.1145/3276514

[3] Cristian Cadar and Koushik Sen. 2013. Symbolic Execution for Software
Testing: Three Decades Later. Commun. ACM 56, 2 (feb 2013), 82–90.
https://doi.org/10.1145/2408776.2408795

[4] Scott Chacon and Ben Straub. 2014. Pro git. Apress.
[5] Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for Im-

proving Regression Testing in Continuous Integration Development Environ-
ments. In Proceedings of the 22Nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering (Hong Kong, China) (FSE 2014). ACM, New
York, NY, USA, 235–245. https://doi.org/10.1145/2635868.2635910

[6] Gordon Fraser and Andrea Arcuri. 2013. EvoSuite: On the Challenges of Test
Case Generation in the Real World. In Proceedings of the 2013 IEEE Sixth Interna-
tional Conference on Software Testing, Verification and Validation (ICST ’13). IEEE
Computer Society, USA, 362–369. https://doi.org/10.1109/ICST.2013.51

[7] Luca Gazzola, Daniela Micucci, and Leonardo Mariani. 2019. Automatic Soft-
ware Repair: A Survey. IEEE Transactions on Software Engineering 45, 1 (2019),
34–67. https://doi.org/10.1109/TSE.2017.2755013

[8] MohammadGhafari, Carlo Ghezzi, andKonstantin Rubinov. 2015. Automatically
identifying focal methods under test in unit test cases. In 2015 IEEE 15th Inter-
national Working Conference on Source Code Analysis and Manipulation (SCAM).
61–70. https://doi.org/10.1109/SCAM.2015.7335402

[9] MarkHarman and Peter O’Hearn. 2018. From Start-ups to Scale-ups: Opportuni-
ties and Open Problems for Static and Dynamic Program Analysis. In 2018 IEEE
18th International Working Conference on Source Code Analysis and Manipulation
(SCAM). 1–23. https://doi.org/10.1109/SCAM.2018.00009

[10] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A Database
of Existing Faults to Enable Controlled Testing Studies for Java Programs. In
Proceedings of the 2014 International Symposium on Software Testing and Anal-
ysis (San Jose, CA, USA) (ISSTA 2014). ACM, New York, NY, USA, 437–440.
https://doi.org/10.1145/2610384.2628055

[11] Yasutaka Kamei and Emad Shihab. 2016. Defect Prediction: Accomplish-
ments and Future Challenges. In 2016 IEEE 23rd International Conference
on Software Analysis, Evolution, and Reengineering (SANER), Vol. 5. 33–45.
https://doi.org/10.1109/SANER.2016.56

[12] Yasutaka Kamei, Emad Shihab, Bram Adams, Ahmed E. Hassan, Audris Mockus,
Anand Sinha, and Naoyasu Ubayashi. 2013. A large-scale empirical study of
just-in-time quality assurance. IEEE Transactions on Software Engineering 39, 6
(2013), 757–773. https://doi.org/10.1109/TSE.2012.70

[13] Anil Koyuncu, Tegawendé F. Bissyandé, Dongsun Kim, Kui Liu, Jacques
Klein, Martin Monperrus, and Yves Le Traon. 2019. D&C: A Divide-and-
Conquer Approach to IR-based Bug Localization. CoRR abs/1902.02703 (2019).
arXiv:1902.02703 http://arxiv.org/abs/1902.02703

[14] Anil Koyuncu, Kui Liu, Tegawendé F. Bissyandé, Dongsun Kim, Martin Monper-
rus, Jacques Klein, and Yves Le Traon. 2019. IFixR: Bug Report Driven Program
Repair. In Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineer-
ing (Tallinn, Estonia) (ESEC/FSE 2019). Association for Computing Machinery,
New York, NY, USA, 314–325. https://doi.org/10.1145/3338906.3338935

[15] Yiling Lou, Qihao Zhu, Jinhao Dong, Xia Li, Zeyu Sun, Dan Hao, Lu
Zhang, and Lingming Zhang. 2021. Boosting Coverage-Based Fault Local-
ization via Graph-Based Representation Learning. In Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering (Athens, Greece) (ESEC/FSE
2021). Association for Computing Machinery, New York, NY, USA, 664–676.
https://doi.org/10.1145/3468264.3468580

[16] Shane McIntosh and Yasutaka Kamei. 2018. Are Fix-Inducing Changes
a Moving Target? A Longitudinal Case Study of Just-In-Time Defect Pre-
diction. IEEE Transactions on Software Engineering 44, 5 (2018), 412–428.
https://doi.org/10.1109/TSE.2017.2693980

[17] Sonu Mehta, Farima Farmahinifarahani, Ranjita Bhagwan, Suraj Guptha, Sina
Jafari, Rahul Kumar, Vaibhav Saini, and Anirudh Santhiar. 2021. Data-Driven
Test Selection at Scale. Association for Computing Machinery, New York, NY,
USA, 1225–1235. https://doi.org/10.1145/3468264.3473916

[18] Atif Memon, Zebao Gao, Bao Nguyen, Sanjeev Dhanda, Eric Nickell,
Rob Siemborski, and John Micco. 2017. Taming Google-scale continu-
ous testing. In 2017 IEEE/ACM 39th International Conference on Software
Engineering: Software Engineering in Practice Track (ICSE-SEIP). 233–242.
https://doi.org/10.1109/ICSE-SEIP.2017.16

[19] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and
Mark Harman. 2019. Chapter Six - Mutation Testing Advances: An Anal-
ysis and Survey. Advances in Computers, Vol. 112. Elsevier, 275–378.
https://doi.org/10.1016/bs.adcom.2018.03.015

[20] Chris Parnin and Alessandro Orso. 2011. Are automated debugging techniques
actually helping programmers?. In Proceedings of the 2011 International Sympo-
sium on Software Testing and Analysis (Toronto, Ontario, Canada) (ISSTA 2011).
ACM, New York, NY, USA, 199–209.

[21] Abdallah Qusef, Gabriele Bavota, Rocco Oliveto, Andrea De Lucia, and David
Binkley. 2011. SCOTCH: Test-to-code traceability using slicing and conceptual
coupling. In 2011 27th IEEE International Conference on Software Maintenance
(ICSM). 63–72. https://doi.org/10.1109/ICSM.2011.6080773

[22] Foyzur Rahman and Premkumar Devanbu. 2013. How, and why, process metrics
are better. In 2013 35th International Conference on Software Engineering (ICSE).
432–441. https://doi.org/10.1109/ICSE.2013.6606589

[23] Bart Van Rompaey and Serge Demeyer. 2009. Establishing Traceabil-
ity Links between Unit Test Cases and Units under Test. In 2009 13th
European Conference on Software Maintenance and Reengineering. 209–218.
https://doi.org/10.1109/CSMR.2009.39

[24] Ripon K Saha, Matthew Lease, Sarfraz Khurshid, and Dewayne E Perry. 2013. Im-
proving bug localization using structured information retrieval. In Automated
Software Engineering (ASE), 2013 IEEE/ACM 28th International Conference on.
IEEE, 345–355.

[25] Seemanta Saha, Ripon K. Saha, andMukul R. Prasad. 2019. Harnessing Evolution
for Multi-hunk Program Repair. In Proceedings of the 41st International Confer-
ence on Software Engineering (Montreal, Quebec, Canada) (ICSE ’19). IEEE Press,
Piscataway, NJ, USA, 13–24.

[26] Jeongju Sohn, Gabin An, Jingun Hong, Dongwon Hwang, and Shin Yoo. 2021.
Assisting Bug Report Assignment Using Automated Fault Localisation: An In-
dustrial Case Study. In Proceedings of the 14th IEEE International Conference on
Software Testing, Verification and Validation.

[27] J. Sohn and S. Yoo. 2019. Empirical Evaluation of Fault Localisation Using Code
and Change Metrics. IEEE Transactions on Software Engineering (2019), 1–1.
https://doi.org/10.1109/TSE.2019.2930977

[28] Gregory Tassey. 2002. The Economic Impacts of Inadequate Infrastructure for Soft-
ware Testing. Technical Report. National Institute of Standards and Technology.

[29] Nikolaos Tsantalis, Ameya Ketkar, and Danny Dig. 2020. Refactoring-
Miner 2.0. IEEE Transactions on Software Engineering (2020), 21 pages.
https://doi.org/10.1109/TSE.2020.3007722

[30] Qianqian Wang, Chris Parnin, and Alessandro Orso. 2015. Evaluating the use-
fulness of IR-based fault localization techniques. In Proceedings of the 2015 Inter-
national Symposium on Software Testing and Analysis, ISSTA 2015, Baltimore, MD,
USA, July 12-17, 2015. 1–11.

[31] Ming Wen, Rongxin Wu, and Shing-Chi Cheung. 2016. Locus: Locating Bugs
from Software Changes. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering (Singapore, Singapore) (ASE
2016). Association for Computing Machinery, New York, NY, USA, 262–273.
https://doi.org/10.1145/2970276.2970359

[32] Robert White, Jens Krinke, and Raymond Tan. 2020. Establishing Multi-
level Test-to-Code Traceability Links. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering (Seoul, South Korea) (ICSE
’20). Association for Computing Machinery, New York, NY, USA, 861–872.
https://doi.org/10.1145/3377811.3380921

[33] W. E.Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and FranzWotawa. 2016. A Survey
on Software Fault Localization. IEEE Transactions on Software Engineering 42, 8
(August 2016), 707.

[34] Jianwei Wu and James Clause. 2020. A pattern-based approach to detect and
improve non-descriptive test names. Journal of Systems and Software 168 (2020),
110639. https://doi.org/10.1016/j.jss.2020.110639

[35] Xia Zeng, Dengfeng Li, Wujie Zheng, Fan Xia, Yuetang Deng, Wing Lam, Wei
Yang, and Tao Xie. 2016. Automated Test Input Generation for Android: Are
We Really There yet in an Industrial Case?. In Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering (Seat-
tle, WA, USA) (FSE 2016). Association for Computing Machinery, New York, NY,
USA, 987–992. https://doi.org/10.1145/2950290.2983958

[36] Benwen Zhang, Emily Hill, and James Clause. 2015. Automatically Gen-
erating Test Templates from Test Names (N). In 2015 30th IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE). 506–511.
https://doi.org/10.1109/ASE.2015.68

[37] Lingming Zhang. 2018. Hybrid Regression Test Selection. In 2018
IEEE/ACM40th International Conference on Software Engineering (ICSE). 199–209.
https://doi.org/10.1145/3180155.3180198

https://doi.org/10.1145/3377811.3380369
https://doi.org/10.1145/3276514
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1145/2635868.2635910
https://doi.org/10.1109/ICST.2013.51
https://doi.org/10.1109/TSE.2017.2755013
https://doi.org/10.1109/SCAM.2015.7335402
https://doi.org/10.1109/SCAM.2018.00009
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1109/SANER.2016.56
https://doi.org/10.1109/TSE.2012.70
http://arxiv.org/abs/1902.02703
https://doi.org/10.1145/3338906.3338935
https://doi.org/10.1145/3468264.3468580
https://doi.org/10.1109/TSE.2017.2693980
https://doi.org/10.1145/3468264.3473916
https://doi.org/10.1109/ICSE-SEIP.2017.16
https://doi.org/10.1016/bs.adcom.2018.03.015
https://doi.org/10.1109/ICSM.2011.6080773
https://doi.org/10.1109/ICSE.2013.6606589
https://doi.org/10.1109/CSMR.2009.39
https://doi.org/10.1109/TSE.2019.2930977
https://doi.org/10.1109/TSE.2020.3007722
https://doi.org/10.1145/2970276.2970359
https://doi.org/10.1145/3377811.3380921
https://doi.org/10.1016/j.jss.2020.110639
https://doi.org/10.1145/2950290.2983958
https://doi.org/10.1109/ASE.2015.68
https://doi.org/10.1145/3180155.3180198

[38] Thomas Zimmermann, Peter Weißgerber, Stephan Diehl, and Andreas
Zeller. 2004. Mining Version Histories to Guide Software Changes. In
26th International Conference on Software Engineering (ICSE 2004), 23-28

May 2004, Edinburgh, United Kingdom. IEEE Computer Society, 563–572.
https://doi.org/10.1109/ICSE.2004.1317478

https://doi.org/10.1109/ICSE.2004.1317478

	Abstract
	1 Introduction
	2 Evolutionary Coupling between Tests and Code
	2.1 Tests and Code Evolutionary Coupling
	2.2 CEMENT

	3 Experimental Settings
	3.1 Research Questions
	3.2 Subject
	3.3 Past Change Collection
	3.4 Mutation Testing
	3.5 Fault Localization
	3.6 Evaluation Metrics
	3.7 Tie Breaking
	3.8 Implementation & Environment

	4 Results
	4.1 RQ1. Capability
	4.2 RQ2. Applicability
	4.3 RQ3. The Impact of Software Maturity

	5 Discussion
	5.1 The Impact of Evolutionary Couplings in Software Debugging
	5.2 Evolutionary Couplings and Traceability Links between Tests and Code

	6 Threats to Validity
	7 Related Work
	8 Conclusion
	References

