

Contents lists available at ScienceDirect

Stem Cell Research

journal homepage: www.elsevier.com/locate/scr

Lab Resource: Single Cell Line

Generation and characterization of induced pluripotent stem cells from a Parkinson's disease patient carrying the digenic LRRK2 p.G2019S and GBA1 p.N409S mutations

Christiane Oleksy^a, François Massart^a, Stefano Goldwurm^{b, f}, Alessia Arado^c, Giuseppe Arena^a, Ibrahim Boussaad^a, Rejko Krüger^{a,d,e,*}

^a Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg

^b University of Turin, Department of Neuroscience, Italy

Laboratory of Human Genetics - IRCCS Istituto G. Gaslini, Genova, Italy

^d Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg

^e Parkinson Research Clinic, Center Hospitalier de Luxembourg (CHL), Luxembourg

f Parkinson Institute, ASST "Pini-CTO", Milano, Italy

ABSTRACT

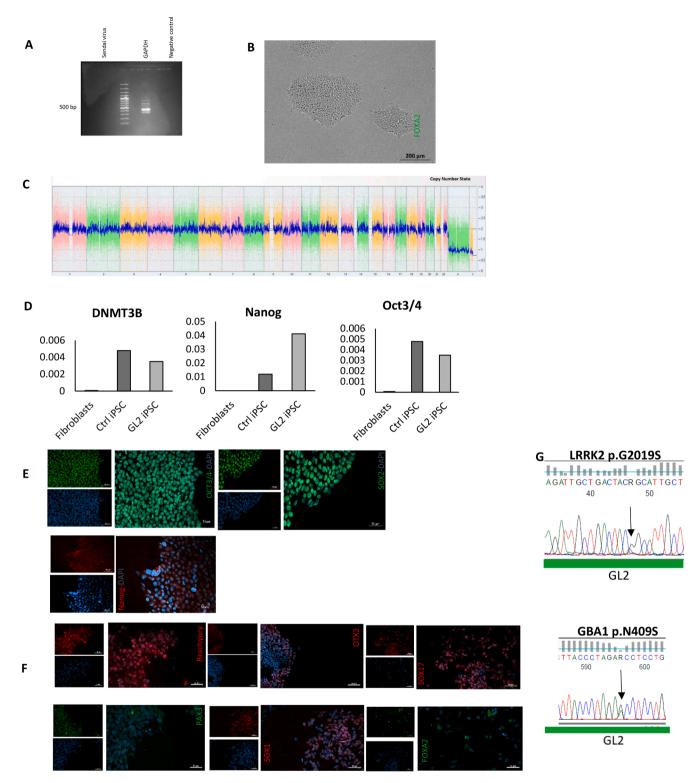
We describe an induced pluripotent stem cell (iPSC) line that was derived from fibroblasts obtained from a Parkinson's disease (PD) patient carrying the p.G2019S mutation in the LRRK2 gene and the p.N409S mutation in the GBA1 gene. iPSCs were generated via Sendai virus transduction of Yamanaka factors. The presence of GBA1 p.N409S and LRRK2 p.G2019S was confirmed by Sanger sequencing. The iPSCs express pluripotency markers, are capable of in vitro differentiation into the three germ layers and have a normal karyotype. The newly generated line will be used for in vitro PD modeling by investigating the role of each mutation in iPSCderived dopaminergic neurons.

(continued)

1. Resource Table

		Unique stem cell line identifier	LCSBi013-A
Unique stem cell line identifier	LCSBi013-A	Associated disease	Parkinson's disease (OMIM #168600)
Alternative name(s) of stem cell line	GL2	Gene/locus	GBA1/ chromosome 1q21
Institution	Luxembourg Centre for Systems		(GC01M156443, NM_000157)
	Biomedicine (LCSB), University of		LRRK2/chromosome 12p11
	Luxembourg, Esch-sur-Alzette,		(GC12P040196, NM_198578)
	Luxembourg	Date archived/stock date	01/06/2023
Contact information of distributor	Prof. Dr. Rejko Krüger, rejko.	Cell line repository/bank	https://hpscreg.eu/cell-line/LCSBi013-A
	krueger@uni.lu	Ethical approval	Informed consent was approved by the
Type of cell line	Induced pluripotent stem cell line (iPSC)		Ethics Committee of the Liguria Region,
Origin	Human		Italy (Approval n.8/2015 on 14/09/
Additional origin info required for	Age at biopsy: 67 years		2015).
human ESC or iPSC	Sex: Male		
Cell Source	Dermal fibroblasts		
Clonality	Clonal		
Method of reprogramming	Sendai transduction of Yamanaka factors	2. Resource utility	
Genetic Modification	YES	2. Resource utility	
Type of Genetic Modification	Missense mutation in LRRK2 (p.G2019S)		
	and GBA1 (p.N409S) genes	-	ne GBA1 gene (Usenko et al., 2021) and
Evidence of the reprogramming	PCR	the p.G2019S mutation in the <i>I</i>	<i>LRRK2</i> gene (Pischedda et al., 2021) are
transgene loss (including genomic		genetic risk factors for PD. T	he iPSC line described here has been
copy if applicable)		- established from a DD notions o	annutura hath mutational and will have a

gene (Usenko et al., 2021) and ene (Pischedda et al., 2021) are line described here has been established from a PD patient carrying both mutations, and will be used to investigate underlying pathological mechanisms in iPSC-derived


(continued on next column)

* Corresponding author. E-mail address: rejko.krueger@lih.lu (R. Krüger).

https://doi.org/10.1016/j.scr.2023.103212

Received 30 June 2023; Received in revised form 14 September 2023; Accepted 22 September 2023 Available online 28 September 2023 1873-5061/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

C. Oleksy et al.

neuronal models.

3. Resource details

To generate the presented iPSC line (aka: GL2), dermal fibroblasts from a PD patient carrying the digenic *LRRK2* p.G2019S and *GBA1* p. N409S mutations were obtained by the "Cell Line and DNA Biobank from Patients Affected by Genetic Diseases" and the "Parkinson Institute Biobank", member of the Telethon Network of Genetic Biobanks (project no. GTB18001). The fibroblasts were reprogrammed using Sendai virus transduction of human OCT4, SOX2, KLF4 and c-MYC Yamanaka factors. PCR analysis using primers against Sendai virus backbone confirmed that the selected clone was free of integrated viral DNA into the genome (Fig. 1 A). GL2 iPSCs displayed a typical stem cell morphology (Fig. 1 B), a normal karyotype (46, XY) (Fig. 1C), and genetic identity with the corresponding fibroblasts (Supplementary Fig. 1).

Table 1

Characterization and validation.

Classification	Test	Result	Data
Morphology	Photography	Typical iPSC morphology	Fig. 1 panel B
Phenotype	Qualitative analysis: Immunocytochemistry	Robust nuclear staining of the pluripotency markers Oct3/4, Sox2, and Nanog	Fig. 1 panel E
	Quantitative analysis: RT-qPCR	mRNA expression of the stemness markers Nanog, Oct3/4 and DMNT3B	Fig. 1 panel D
Genotype	SNP array (KaryoStat +) Resolution: > 2 Mb for chromosomal gains; > 1 Mb for chromosomal losses; ~5 Mb for telomere ends and centromeres	arr(1–22)x2, (XY)x1 No aneuploidies detected	Fig. 1 panel C
Identity	Correlation analysis of 150 k SNPs across the genome	Identical genotype between patient's fibroblasts and newly generated iPSCs	Supplementary Fig. 1
Mutation analysis (IF APPLICABLE)	Sequencing	Heterozygous, LRRK2 p. G2019S, GBA1 p.N409S	Fig. 1 panel G
Microbiology and virology	Southern Blot OR WGS Mycoplasma detection (colorimetric assay)	<i>Not performed</i> Negative	<i>N/A</i> Supplementary Fig. 2
Differentiation potential	Directed differentiation	Proof of three germ layers formation	Fig. 1 panel F
Donor screening (OPTIONAL)	HIV $1 + 2$ Hepatitis B, Hepatitis C	Not performed	N/A
Genotype additional info (OPTIONAL)	Blood group genotyping HLA tissue typing	Not performed Not performed	N/A N/A

RT-qPCR assays demonstrated that, different from fibroblasts, GL2 iPSCs express the pluripotency markers *Nanog*, *Oct3/4* and *DMNT3B*, to a similar extent as in a previously characterized control line 17608/6, referred to as C1-1 in the publication (Schöndorf et al., 2014) (Fig. 1D). Expression of the stemness markers Oct3/4, Sox2 and Nanog was also confirmed at protein level by immunocytochemistry (Fig. 1E). *In vitro* differentiation of GL2 iPSCs, followed by immunofluorescence staining of mesoderm (Brachyury and Pax3), ectoderm (Otx2 and Sox1) and endoderm (Sox17 and FOXA2) markers (Fig. 1F), confirmed their ability to differentiate into the three germ layers. The presence of *LRRK2* p. G2019S and *GBA1* p.N409S mutations in the newly-generated GL2 line was confirmed by Sanger sequencing (Fig. 1G). Finally, we excluded any contamination of GL2 iPSCs by mycoplasma (Supplementary Fig. 2) (Table 1).

4. Materials and methods

4.1. Fibroblast cell culture and reprogramming

PD patient-derived fibroblasts were cultured in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10 % fetal bovine serum (FBS), 2 mM L-glutamine and 1 % penicillin and streptomycin (Pen/Strep). 150.000 fibroblasts were reprogrammed into iPSCs using the

CytoTune iPS 2.0 Sendai Reprogramming Kit, following the manufacturer's instructions (Thermo Fisher Scientific). Undifferentiated iPSC colonies were grown on a geltrex-coated plate in mTESR medium (mTeSRTM1) and identified by morphology using bright-field microscopy (Fig. 1B). The undifferentiated iPSC colonies were picked manually and re-plated on Geltrex-coated wells containing mTESR medium (mTeSRTM1). Feedings were performed every day, and iPSCs passaged (1:3) once a week using EDTA 0.5 mM in PBS (Life Technologies). Both fibroblasts and iPSCs were maintained at 37 °C under 5 % CO2 and humidified atmosphere.

4.2. RT-qPCR

Total RNA was extracted from the already characterized control fibroblasts, and control iPSCs and GL2 iPSCs using the RNeasy Mini Kit (Qiagen). Transcriptor High Fidelity cDNA Synthesis Kit (Roche) was used to synthesize cDNA. Quantification of pluripotency markers by multiplex qPCR was performed using the LightCycler® 480 Probes Master kit (Roche) and hydrolysis probes detecting NANOG-FAM (Hs02387400 g1, Thermo Fisher Scientific). OCT4-FAM (Hs00999632 g1. Thermo Fisher Scientific) and DNMT3B (Hs00171876 m1, Thermo Fisher Scientific), ACTB (Hs03023880 g1, Thermo Fisher Scientific) was used as a housekeeping gene (Table 2, Fig. 1D). cDNA from GL2 fibroblasts was used as a negative control.

4.3. Loss of reprogramming vector

To analyze the transgene-free status, genomic DNA was isolated using the DNeasy Blood and Tissue Kit (Qiagen), followed by PCR analysis using the SeV primers (Table 2). Amplification was performed using the GoTaq G2 Flexi (Promega; Annealing temperature 58 $^{\circ}$ C, 30 cycles) on a TProfessional Basic Gradient Thermocycler (Biometra). The negative control used was sterile H₂O.

4.4. Immunofluorescence

iPSCs were plated on Geltrex-coated coverslips and fixed at passage 13 with 4 % paraformaldehyde in PBS for 15 min. Cells were blocked and permeabilized for 1 h in PBS supplemented with 0.4 % Triton-X 100 (Carl Roth), 10 % goat serum (Vector Labs) and 2 % bovine serum albumin (Sigma-Aldrich). Primary antibodies (Table 2), diluted in PBS containing 0.1 % Triton-X, 1 % goat serum and 0.2 % bovine serum albumin, were incubated overnight at 4 °C. Next day, coverslips were washed three times with PBS and then incubated for 2 h at room temperature with secondary antibodies (Table 2). Nuclei were stained with Hoechst. Images were acquired using a Zeiss spinning disk confocal microscope (Carl Zeiss Microimaging GmbBH). Scale bar: 50 μ m (Fig. 1E).

4.5. Three-germ layer differentiation

The iPSC's ability to differentiate into the three germ layers was verified at passage 14, using the Human Pluripotent Stem Cell Functional Identification Kit (R&D Systems) and following the manufacturer's instructions. A Zeiss spinning disk confocal microscope (Carl Zeiss Microimaging GmBH) was used for image acquisition. Scale bar: $50 \mu m$ (Fig. 1F).

4.6. Karyotyping and identity analysis

Molecular karyotyping of GL2 iPSCs was performed at passage 12, using a CytoScan HT-CMA 96F array for Karyostat+ (Thermo Fisher Scientific, Madison, WI, USA) (Fig. 1C). Genetic identity between patient-derived fibroblasts and iPSCs was assessed through correlation analysis of 1.1 million SNPs between samples (Cell ID assay, Thermo Fisher Scientific) (Supplementary Fig. 1).

Table 2

Reagents details.

	Antibodies used for immunocytochemistry/flow-cytometry			
	Antibody	Dilution	Company Cat #	RRID
Pluripotency Markers	Mouse anti Oct3/4	1:1000	Santa Cruz, Cat #: sc-5279	RRID: AB_628051
Pluripotency Markers	Goat anti SOX2 (Y-17)	1:250	Santa Cruz, Cat #: sc-17320	RRID: AB_2286684
Pluripotency Markers	Rabbit anti Nanog	1:1000	Abcam, Cat #: ab21624	RRID: AB_446437
Differentiation Markers	Goat anti Sox1	1:1000	R&D Systems, Cat #: AF3369,	RRID: AB_2239879
Differentiation Markers	Mouse anti FOXA2	1:1000	Santa Cruz, Cat #: sc-101060,	RRID: AB_1124660
Differentiation Markers	Mouse anti PAX3	1:1000	DSHB AB_528426	DSHB AB_528426
Secondary Antibody	Alexa Fluor 488 Goat anti Mouse IgG (H + L)	1:1000	Invitrogen, Cat #: A11029;	RRID: AB_138404
Secondary Antibody	Alexa Fluor 568 Goat anti Mouse IgG (H + L)	1:1000	Invitrogen, Cat #: A-11031	RRID: AB_144696
Secondary Antibody	Alexa Fluor 568 Goat anti Rabbit IgG (H + L)	1:1000	Invitrogen, Cat #: A11036;	RRID: AB_143011
Secondary Antibody	Alexa Fluor 568 Donkey anti Goat IgG (H + L)	1:1000	Invitrogen, Cat #: A-11057	RRID: AB_142581
Secondary Antibody	Alexa Fluor 647 Donkey anti Goat IgG (H + L)	1:1000	Invitrogen, Cat #: A-21447	RRID: AB_2535864

Primers

	Target	Size of band	Forward/Reverse primer (5'-3')
Targeted mutation analysis	LRRK2 gene, exon 41	129 bp	AGACCTGAAACCCACAATG/GGTGTGCCCTCTGATGTTTT
Targeted mutation analysis	GBA1 gene, exon 9	1.6 kb	TGTGTGCAAGGTCCAGGATCAG/ACCACCTAGAGGGGAAAGTG
Sequencing	LRRK2 gene, exon 41	1210 bp	AGACCTGAAAACCCACAATG
Sequencing	GBA1 gene, exon 9	1090 bp	TGTGTGCAAGGTCCAGGATCAG
Sendai Virus Detection	SeV plasmid	181 bp	GGATCACTAGGTGATATCGAGC/ACCAGACAAGAGTTTAAGAGATATGTATC
Housekeeping gene	GAPDH	447 bp	CAGGGCTGCTTTTAACTC/AAGTTGTCATGGATGACCTTG

4.7. Mycoplasma test

iPSCs were tested for mycoplasma contamination at passage 5 by using a colorimetric mycoplasma detection kit (InvivoGen) (Supplementary Fig. 2).

4.8. Sanger sequencing

Genomic DNA was purified from GL2 iPSC using the QIA Blood and Tissue kit (Qiagen). Using the primers listed in Table 2, the exon 41 of the *LRRK2* gene and the exon 9 of the *GBA1* gene was amplified by PCR and Sanger sequenced at Microsynth AG.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The Cell Line and DNA Biobank from Patients affected by Genetic Diseases (Instituto G. Gaslini) and the "Parkinson Institute Biobank" (Milan, http://www.parkinsonbiobank.com/), members of the telethon network of Genetic Biobanks (project no. GTB12001) funded by

Telethon Italy, provided us with specimens. Work of RK is supported by the Fonds National de Recherche (FNR) within the following projects: National Centre for Excellence in Research on Parkinson's disease (NCER-PD) (FNR; NCER13/BM/11264123), PEARL (/P13/6682797), MotaSYN (12719684), MAMaSyn (INTER/LEIR/18/12719318) and MiRisk (C17/BM/ 11676395). Work of GA is supported by the FNR, grant number C21/BM/15850547/PINK1-DiaPDs.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.scr.2023.103212.

References

- Pischedda, F., Daniela Cirnaru, M., Ponzoni, L., Sandre, M., Biosa, A., Carrion, M.P., Piccoli, G., 2021. LRRK2 G2019S kinase activity triggers neurotoxic NSF aggregation. Brain 144 (5), 1509–1525.
- Schöndorf, D.C., Aureli, M., McAllister, F.E., Hindley, C.J., Mayer, F., Schmid, B., Deleidi, M., 2014. iPSC-derived neurons from GBA1-associated Parkinsons' disease patients show autophagic defects and impaired calcium homeostasis. Nat. Commun. 5 (4028), 1–17.
- Usenko, T., Bezrukova, A., Basharova, K., Panteleeva, A., Nikolaev, M., Kopytova, A., Pchelina, S., 2021. Comparative transcriptome analysis in monocyte-derived macrophages of asymptomatic GBA mutation carriers and patients with GBAassociated Parkinson's disease. Genes 12 (10), 1–18.