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Abstract—As satellite communication evolves, multi-beam
GEO satellite systems have emerged as crucial for delivering
high-throughput broadband services across wide geographical
expanses. Despite significant strides in this field, these systems are
constrained by dependence on traditional precoding techniques,
such as Minimum Mean Square Error (MMSE) precoders,
known for their high computational complexity and detailed
channel matrix knowledge requirement. Accordingly, in this
paper, we employ a trained feedforward neural network (FFNN)
for precoding based on user locations, eliminating the need for
Channel State Information (CSI) or channel matrix estimation.
While the proposed FFNN precoder initially necessitates the
integration of CSI during the deployment (preliminary offline
training) phase, it subsequently develops the capacity in the
operational phase to predict the precoding matrix per user posi-
tion only. Hence, this methodology successfully navigates around
the constraints of traditional practices, leading to substantial
reductions in computational complexity, overhead, and latency.
Correspondingly, in this work, we provide numerical results to
illustrate the significant reduction in computational complexity
achieved by using a trained feedforward neural network for
precoding with a minimal trade-off in the offered capacity
performance.

Index Terms—Multi-beam high throughput satellite systems,
precoding, Machine learning, deep learning.

I. INTRODUCTION AND BACKGROUND

Multibeam geostationary (GEO) satellite communication
systems still predominate the business of space-based commu-
nication systems. Their main advantage with recent lower-orbit
solutions is that GEO orbit appears to be in a fixed position
to an earth-based observer, and with a single satellite, one can
cover a much wider service area [1].

High throughout GEO satellite systems are characterized
by a multi-beam circular footprint of 100-200 km diameter
[2]. The available spectrum is strategically distributed across
beams to avoid interference between adjacent beams, typically
following a 4-color reuse scheme with two orthogonal fre-
quency bands and two orthogonal polarizations. While the
4-color scheme ensures low levels of interference, it fails
to provide the necessary capacity in the so-called “hot-spot”
areas, where the peaks of demand are extremely high [3].

With the aim to improve spectral efficiency, GEO satellite
communication systems can be combined with the so–called
linear precoding techniques [4]. Precoding has been shown
to improve spectrum usage efficiency and increase satellite

Fig. 1: Multibeam GEO Satellite System Model

communication systems’ capacity by reducing interference and
maximizing the signal-to-noise ratio (SNR) [5].

Furthermore, it is essential to distinguish between the con-
cepts of beamforming and precoding. In satellite communi-
cation systems, beamforming is implemented directly from
the antenna array, focusing the created beam pattern towards
specific, known terrestrial coordinates. This means that the
mere knowledge of a user’s location would be sufficient for
its design [6]. Contrarily, precoding is driven by the Channel
State Information (CSI) which is an interference mitigation
technique. CSI represents the estimated “equivalent channel”
complex coefficient that spans from the digital segment of the
Gateway (GW) – where the pilots are put together – to the
digital facet of the terminal where these pilots are measured
[7].

Assuming the absence of adaptive beamforming on the
satellite, our study intimates that a mapping can be derived
between sets of users (along with their geographical locations)
and an apt precoding matrix. Such an approach might exhibit
high efficacy for deterministic physical channels, such as Line-
of-Sight (LoS) scenarios, especially for the GEO Broadband
Satellite Communication Systems, where the CSI can be
deduced accurately from the user’s location.



A. Satellite Precoding Challenges

Precoding techniques require the accurate knowledge at the
gateway side of the Channel State Information (CSI) of all
precoded beams, and a certain additional technical challenges
that are summarized in the following:

1) CSI acquisition: Due to the classical frequency division
duplexing (FDD) mode of GEO satellite systems as shown in
Figure 1, end-user terminals need to perform the measurements
and estimation of the downlink channel, and then report it
back to the gateway via the return link. CSI estimation is
an additional complexity added to the user model, which
typically follows a pilot-based correlation algorithm. There
is always the presence of estimation errors, which tend to
increase when the signal is received in a low carrier-to-noise
(C/N) level regime. Furthermore, although the GEO channel is
relatively dominated by Line-of-Sight (LoS), the average trip-
time of 240 msec (going up to the satellite and down to the
gateway) may result in outdated CSI due to potential mobility
or different fading/shadowing components [8]. Finally, the CSI
feedback is typically quantized, introducing additional noise.

2) Precoding matrix calculation and implementation: Min-
imum Mean Square Error (MMSE) precoder is the most
popular precoding technique due to its proven performance
in real GEO systems [5]. However, it involves a channel
matrix inversion of complexity O(N3) (assuming Cholesky
decomposition), where N denotes the number of precoded
beams. The precoder matrix is then multiplied by the symbols
(i.e. N2 operations) at the PHY layer frame. Therefore, the
calculation and execution has to be performed a frame-level
pace, imposing strict timing requirements.

B. Contribution: Data-Driven Precoding Design

The existing literature highlights the potential of machine
learning-based precoding techniques to address the limitations
of traditional methods, such as the MMSE precoding tech-
nique. However, most of these approaches still rely on CSI or
channel matrix information, introducing overhead and latency.
Using user location information in communication systems has
shown promise in various applications, but its integration with
machine learning-based precoding remains unexplored.

In this context, machine learning and deep learn-
ing techniques, particularly feed-forward neural networks
(FFNN), have emerged as promising alternatives to tradi-
tional optimization-based precoding methods [9]. FFNNs have
demonstrated the ability to model complex, nonlinear relation-
ships and adapt to various channel conditions, making them
suitable for precoding applications. This paper presents a novel
approach that uses an FFNN to predict the precoding matrix
based solely on user locations, circumventing the need for CSI
or channel matrix information during operations.

However, a practical challenge arises in how to obtain
the training data for the data-driven approach. One option is
that the FFNN model is trained with data collected with a
relatively small network of operator-owned ancillary receivers
distributed across the coverage area, with similar specifications
to commercial user terminals but with a CSI acquisition chain.

Fig. 2: Functional diagram indicating Deployment and Oper-
ational phases

Another approach as shown in Figure 2, is to divide the
satellite functional period into deployment and operational
phases, where, the data required for the training can be
collected during the deployment phase with CSI acquisition
chain and use MMSE precoder to mitigate the interference
which is then used to train the FFNN. Later, during the
operational phase, a trained FFNN precoder can be used for
interference mitigation.

II. SYSTEM AND CHANNEL MODEL

The system model integrates a terrestrial segment featuring
an ideal feeder link (a singular gateway) and a complex space
segment (a high throughput multi-beam satellite equipped
with beamforming capabilities) as depicted in Figure 1. The
gateway does unicast random user scheduling for K beams,
executes the precoding algorithm, and subsequently carries
out the transmission over the feeder link. Upon receiving
the signal, the satellite amplifies it, shifts it to a downlink
frequency, amplifies it once again, and directs it towards the
earthbound users in the user link, utilizing high-gain antennas
using full frequency reuse.

The offered capacity performance is obtained using spectral
efficiency (ζ) based on DVB-S2X [10] (for specific values of
modulation and coding schemes (ACM), DVB-S2X defines a
table to map SINR to Spectral Efficiency) and is computed
using, Tn = B × ζ(γn), where B is the bandwidth, γn is the
Signal-to-Interference-plus-Noise Ratio of any user n and is,

γn =
|hH

n Wsn|2∑
i ̸=n|hH

n Wsi|2+Pn
, (1)

where, |hH
n Wsn|2 is the received signal power at the n-th

user, which includes the precoding matrix W and transmitted
symbol sn,

∑
i ̸=n|hH

n Wsi|2 is the interference power from all
other users (beams), Pn is the noise power at the n-th user.
In this formulation, hH

n represents the conjugate transpose (or
Hermitian) of the channel vector from all beams to the n-th
user, and sn and si denote the transmitted symbol for the n-th
and i-th user, respectively such that the vector of raw symbols
that satisfies E[ssH ] = I . We consider unicast user scheduling
and hence, the user and the beam are used interchangeably



and are denoted using n. Under the benchmark scenario and
also for the training data generation, the gateway calculates
the precoding matrix employing an MMSE precoder which
requires channel knowledge using,

WRZF = ηHH(HHH + αrI)
−1, (2)

where αr is a predefined regularisation factor which is equal to
the standard deviation of noise and η is the power allocation
factor defined as, η =

√
Ptot

Trace(WW †)
, with Ptot being the

total available power.

III. PROPOSED PRECODER USING FEED-FORWARD
NEURAL NETWORK

This paper proposes to replace the traditional MMSE pre-
coder with Feedforward Neural Network (FFNN) that predicts
the precoding matrix solely based on scheduled user locations.
The presented model incorporates a FFNN with an architecture
consisting of multiple layers. The initial input layer has 2 ×
K neurons that correspond to the K user locations within the
multi-beam satellite system. This is succeeded by two fully
interconnected layers, each with K² neurons. These layers
utilize Rectified Linear Unit (ReLU) activation functions to
inject non-linearity into the model. Subsequently, a fully
connected output layer with 64 neurons (considering K =
16) is set up, correlating to the flattened real part of the
MMSE precoding matrix (KxK matrix). A regression layer
is employed to handle regression tasks for continuous-valued
output, essentially the real values of the MMSE precoding
matrix in this context.

The FFNN is trained via the Adam optimization algorithm,
utilizing a mini-batch size of 32. To ensure the robustness of
the training process, the training data is reshuffled after each
epoch, and a validation set is used to monitor progress and
prevent overfitting.

IV. TRAINING DATA AND SIMULATION PARAMETERS

For numerical simulation, we consider 8 beams of a GEO
satellite situated at 13 degree east. We then consider a total
of 200 users where each beam has 25 users. The users
are randomly distributed across the beams. The user and
beam positions are as shown in Figure 3. Detailed simulation
parameters used to compute the offered capacity for both
training data generation and performance analysis are shown
in Table I.

We consider a unicast case, and hence from all the 200
users available in the simulation, 8 users are scheduled for
1000, 000 iterations. Out of which, for 800, 000 iterations are
used to generate training data and 150, 000 iterations are used
for validation. In that case, the precoding matrix computation
is computed using Equation (2). Consequently, we consider
the remaining 50, 000 iterations to test our proposed FFNN
precoder performance. Of course, no-precoding and MMSE
precoding performance results are also computed for the
testing iterations.

Fig. 3: Beams used for simulation

TABLE I: Simulation Parameters

Satellite longitude 13 degree East (GEO)
Total Number of Beams, 8

Uplink C/N 18.4 dB
Power per beam 13 W

Number of beams per TWTA 1
Number of carriers per TWTA 1
Number of carriers per beam 1

Carrier Frequency 19.96 GHz
Carrier Bandwidth 216 MHz
Useful Bandwidth 216 MHz

Roll off 0.05
Symbol Rate 205 Msps

OBO 3.8 dB
NPR 20 dB

Payload degradations 2 dB
Free space distance 37000 km

Wavelength 0.015182186
Free space path loss 209.7215455 dB
Rain Fade (99.5%) 2 dB

Other losses 2 dB

V. NUMERICAL RESULTS

A. Reduced complexity

In general, Run-time analysis is a systematic evaluation of
the time taken by algorithms to execute and complete their
designated tasks. By measuring this runtime, especially across
varied input sizes or conditions, we can derive insights into the
algorithm’s time complexity. Time complexity, a fundamental
concept in computational theory, describes how the runtime
of an algorithm changes as the size of the input grows. In
our simulation, we measured the elapsed time for specific
portions of the code that was used to compute the precoding
matrix. This allowed for a granular understanding of which
operations or segments of our code contributed most to the
total computational time. Through this, not only can we
identify potential bottlenecks and optimize code performance,
but we can also draw conclusions about the inherent efficiency
and scalability of our algorithms.



Fig. 4: Beams used for simulation

Accordingly, From Figure 4, for the total testing simu-
lation iterations, the run time has drastically reduced using
the proposed FFNN precoder in comparison to the MMSE
precoder. This was an expected result as FFNN eliminates
the high complexity (O(N3)) channel matrix inversion of the
traditional MMSE precoder.

B. Mean offered Capacity

Mean offered capacity can be defined as an average offered
capacity per beam over all the testing iterations of the simu-
lation and can be expressed as,

T avg
n =

∑T
t=1 B × ζ(γt

n)

T
, (3)

where B is the bandwidth of transmission.
From the Figure 5, it is evident that the proposed FFNN

precoder performance has been better than no-precoding case.
However, as the FFNN precoder, which is indeed modeling
the MMSE precoder, still fails to match the performance of
the MMSE precoder. Nevertheless, considering the significant
reduction in complexity, FFNN precoder is still a better re-
placement for the MMSE precoder, if complexity minimization
is the objective function with considerable improvement in the
capacity performance in comparison to the no-precoding case.

C. Throughput Deviation

Throughput Deviation (TD) offers a quantitative measure
that elucidates the discrepancy in throughput values between
two distinct methods: the benchmark MMSE precoder and the
proposed FFNN precoder and can be expressed as,

TD =
T avg
MMSE − T avg

NN

T avg
MMSE

× 100% (4)

The essence of throughput deviation lies in its ability to
encapsulate the magnitude of the difference in throughput per-
formances. A higher throughput deviation percentage indicates
a larger divergence in throughput values between the MMSE

Fig. 5: Beams used for simulation

Fig. 6: Beams used for simulation

and FFNN methods. Conversely, a smaller percentage implies
that the throughput values of the two methods closely align.

Throughput deviation is especially vital as it offers a
normalized perspective, allowing for consistent comparisons
across varying scenarios or conditions. Hence, Figure 6 further
shows the scope of improvement that can be still achieved
by considering better quality training data or better modeling
of the FFNN model. Future research should be focused on
minimizing this throughput deviation gap.

VI. CONCLUSION AND FUTURE WORK

The evolution of precoding techniques in multi-beam GEO
satellite systems has revolutionized broadband service delivery
over vast territories. Despite their potential, the limitations im-
posed by conventional precoding techniques, like the MMSE
precoders, have been a persistent bottleneck, primarily due
to their computational intensity and deep-rooted reliance on
channel matrix knowledge. This work heralded a departure



from this norm by leveraging a trained feedforward neural
network (FFNN) for precoding based solely on user locations.
This shift not only sidesteps the need for continuous CSI but
also drastically reduces computational overhead and latency.
Our numerical results underscore the efficiency of the pro-
posed FFNN precoder, illustrating pronounced reductions in
computational complexity, with a small trade-off in capacity
performance. Yet, the proposed scheme performs better than
the no-precoding case, which is itself a good benchmark
success, considering the least complexity involved in the
proposed scheme.

While the proposed scheme marks a significant advance-
ment, it also uncovers avenues for further research. Firstly,
real-world CSI not only captures the intricacies of the physical
channel but also reflects the influences of the entire Radio
Frequency (RF) pathway. Furthermore, the methodology’s
reliability fails in the context of fading channels, which are
inherently influenced by the scattering stochastic effect. This
effect attenuates the correlation between a user’s location and
the CSI, urging caution when deriving inferences about user
location within these channels. These observations underscore
the need for future studies to refine the scheme, particularly by
adapting it to non-Line-of-Sight (non-LoS) scenarios. Special
emphasis should be directed towards MEO and LEO satellites,
where such models become increasingly relevant.
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