Risk Identification Model for Lean Manufacturing Improvement Ruizhe Yina*, Mohd Nizam Ab Rahmana,b*, Kadir Arifinb & Mohd Hafizuddin Syah Bangaan Abdullahb ^a Department of Mechanical and Manufacturing Engineering Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, Malaysia ^b Centre of Risk and Occupational Safety Health (ROSH-UKM), Universiti Kebangsaan Malaysia, Malaysia *Corresponding authors: p131631@siswa.ukm.edu.my; mnizam@ukm.edu.my Received 28 April 2022, Received in revised form 10 February 2023 Accepted 10 March 2023, Available online 30 July 2023 #### ABSTRACT Small- and medium-sized manufacturing enterprises (SMEs) were confronted with a variety of difficulties due to the increasingly complex market environment, and many of them could not make enough profits to proceed with their manufacturing tasks. The objective of this study was to develop a model of risk management by integrating several risk tools at manufacturing companies. This study was also intended to improve the decision making by providing quantitative analysis at each step of risk management and improve lean practices. Risk quantitative analysis methods such as failure modes and effects analysis (FMEA) and multi-objective optimization on the basis of ratio analysis (MOORA) were applied in this study to identify the potential risks. Moreover, the risk assessment was used to categorize risks into different severity levels. The manufacturing data obtained from a case study was utilised to calculate the risk priority number (RPN). The risk mitigation actions were formulated to reduce the original RPN and the final RPN value decreased to a normal standard in the end. Overall, this study optimised the risk management of one case study SME and improved lean manufacturing practices. By establishing the risk identification model and applying common lean manufacturing concepts in reducing wastes at actual manufacturing processes, the manufacturing enterprise could manage to optimize the operations and increase the actual manufacturing productivity. The machining and assembly processes of diesel engines were optimized and improved with the decrease of RPN and the selection of the CK6150 CNC lathe that owns the highest MOORA assessment value. Keywords: Lean manufacturing; SME; FMEA; MOORA; Risk identification #### INTRODUCTION Due to the rapid changing business environment, most manufacturers have no alternative but to face a lot of challenges and complexities from business environment changes. According to Palange and Dhatrak (2021), the improvement of productivity is necessary for manufacturing enterprises to sustain business market competency and the concept of lean manufacturing is an essential tool to enhance productivity in manufacturing. The concept of lean manufacturing origins from Toyota motor corporation in the early 1950s (Ismail et al. 2019). Large-scale manufacturers started to adopt the management concept of lean manufacturing much earlier than the SMEs and most of large corporations own the ability to deal with all kinds of challenges (McKie et al. 2021). In current stage, more and more successful application cases of the lean manufacturing concept in large-scale enterprises such as Volkswagen Group and Toyota motor corporation consistently encourages various manufacturers from all over the world to employ lean manufacturing principles (Paladugu and Grau 2020). Risk management plays a quite important role in the whole manufacturing sector because proactive and systematic control of risk factors contribute to final realization of lean manufacturing (Hemalatha et al. 2021). What is more, Oduoza (2020) concludes that the risk management for a specific manufacturing process will be successfully implemented when risk factors are identified. There are two main research motivations. One of them is building risk identification models for lean manufacturing improvement and the other is applying lean manufacturing concepts and lean tools in actual manufacturing processes. FMEA and MOORA are two primary methods to realize these research motivations. ## LITERATURE REVIEW According to Pojasek (2008), the concept of lean provides manufacturing enterprises with all kinds of effective methods that can be used to eliminate lean wastes from actual manufacturing processes. Jayanth et al. (2020) concludes that the productivity and the quality level of the original manufacturing system will be improved by 23% when the former manufacturing system is replaced by the optimized lean system. The lean technology such as automatic data identification has been widely applied to track assets and inventory in modern industries. At the same time, systematic manufacturing schedules are built in lean implementation frameworks (Rafique et al. 2022). Mamaghani and Medini (2021) conclude that the early identification and minimization of risks promote effective measures and reasonable response strategies. According to Zimmermann et al. (2019), it is necessary to gain an overview of the manufacturing environment of the investigated firm to determine risks in manufacturing. Oduoza et al. (2017) has identified over 200 risk factors which influence the production performance and Oduoza (2020) finds that integral production performance in the manufacturing sector is commonly measured in terms of cost, time, quality, safety, and other stakeholders. Samuel et al. (2019) finds the risk of time-consuming and generation of wastes in paste production. According to Chand (2021), the most common risks in manufacturing systems consist of operational and supply risks that are caused by inappropriate control of manufacturing processes. Untimely responding to risks which have occurred often leads to the occurrence of supply chain risks (Mustaffa et al. 2018). Wong et al. (2009) concluded sixteen areas that are responsible for improving the productivity of lean manufacturing and these areas are work processes, scheduling, the inventory, equipment, layout, the material handling, employees, quality, the product design, suppliers, tools and techniques, customers, ergonomics, safety, management, and culture. The substitute machine plays an important role in the construction of flexible production lines and the final increase of productions rates (Kumar and Neeraj 2022). Manufacturing enterprises must make sure that employees are in good health and full of energy since the production quality and efficiency are deeply replied on human resources (Tortorella et al, 2020). Manufacturing enterprises can make use of risk assessment techniques to identify potential and existing risks as many as possible and specify the reasons and impacts associated with these risks (Ghoushchi et al. 2020). Both quantitative and qualitative risk identification methods that are used by manufacturing companies can control, identify, and mitigate the hazardous consequences (Turskis et al. 2019). What is more, the digitalization of the manufacturing process is perceived to be extremely important for the realization of high productivity and it has not been paid enough attention by the former studies (Schönfuß et al. 2021). According to Chaudhuri et al. (2018), the importance of risk identification is recognized in practice and theory with much more complicated and dynamic supply chains. Arlinghaus and Rosca (2021) concludes advantages of risk identification are increased productivity and flexibility with the improved process integration and transparency. #### METHODOLOGY #### MOORA According to Adali and Isik (2017), the first step of the MOORA method is to build the decision matrix. Alternatives and attributes are listed respectively in the column and row of the decision matrix as below. $$X = [x_{ij}]_{m \times n} = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \vdots & \ddots & \vdots \\ x_{m1} & x_{m2} & \dots & x_{mn} \end{bmatrix}$$ x_{ij} represents the performance measure of *i*th alternative on *j*th attribute. Meanwhile, *m* is the total number of alternatives and *n* is the overall number of attributes. The next step is to normalize the decision matrix via the equation below. $$x_{ij}^* = x_{ij} / \left[\sum_{i=1}^m x_{ij}^2 \right]^{\frac{1}{2}} (i = 1, 2, ..., m; j = 1, 2, ..., n)$$ x^*_{ij} represents the normalized performance of *i* th alternative on *j* th attribute and it is a dimensionless number which belongs to the interval [0,1]. The third step is the estimation of the assessment values y_i . The sums for normalized performance values of non-beneficial attributes are subtracted from the sums for normalized performance values of beneficial attributes. Equation for y_i is summarized as below. $$y_i = \sum_{j=1}^g w_j x_{ij}^* - \sum_{j=a+1}^n w_j x_{ij}^* (j = 1, 2, ..., n)$$ In the above equation, g is the number of beneficial attributes and (n - g) is the number of non-beneficial attributes. What is more, w_j is the weight of j th attribute. The corresponded value of the attribute could be multiplied with its corresponding weight to give more importance to an attribute (Chakraborty 2011). #### FMEA There are around eleven steps when completing the whole FMEA method. Figure 1 illustrates specific implementation procedures of the FMEA method. Severity (S), occurrence (O) and detection (D) are three parameters, and each parameter takes values as 1 lowest to 10 highest. The value of 1 indicates 'none' in severity (S), 'extremely remote' in occurrence (O) and 'almost certain' in detection (D). On the contrary, the value of 10 refers to 'hazardous without warning' in severity (S), 'extremely high' in occurrence (O) and 'absolutely uncertainty' in detection (D). The risk priority number (RPN) is calculated by multiplying these three parameters (Bozdag et al. 2015). According to Park et al. (2018), failure modes with high RPN are more crucial and ranked prior to those with low RPN and control measures should be taken for the most crucial failure modes. FIGURE 1. Flowchart of FMEA implementation steps $\label{eq:figure} \textbf{INTEGRATION OF FMEA AND MOORA}$ Corrective methods and measures are suggested in the FMEA method with the decrease of calculated RPN and they are realized with the assistance of special lean tools. The selection of lean tools costs much time, which leads to the delay of production. The best lean tool choice or machine is determined by the MOORA method in a quick way. The integration of FMEA of MOORA contributes to the realization of lean manufacturing improvement. #### RESULTS AND ANALYSIS #### MOORA ANALYSIS OF MANUFACTURING PROCESSES This section will explain the results and discussion based on the MOORA analysis. According to the actual investigation of the case study enterprise, some long-term operated CNC lathes need to be replaced by newly purchased machining equipment such as CNC lathe tools in some workshops. The decision-making problem that how to choose the proper newly purchased machine tool from the different varieties of machines tools in the market will be solved by the MOORA method. There are many factors that ought to be considered when selecting CNC lathes and the commonly considered factors are safety, productivity, flexibility, compatibility, cost, and maintainability (Zaied et al. 2019). There are six CNC lathe models chosen as comparison alternatives in the final selection of machine tools and they are MAZAK TURN 400, MAZAK TURN 450, DMTG CKA6150, DMTG CKA6163A, SMTCL CK6150 and SMTCL CK6160. Beneficial attributes of these lathe models consist of permitted machining dimension, the spindle speeds, rapid traverse speeds and number of tools on the turret. On the contrary, expenses of CNC lathes are non-beneficial attributes that mainly include selling prices and maintenance cost. On top of this, it can be noticed that some attributes of CNC lathes are more important than others during the evaluation process. Therefore, the weight of attributes of the CNC lathes ought to be determined and they are summarized in Table 1. TABLE 1. The weight of attributes of the CNC lathes (w_i) | | , | |-------------------------------|-----------------| | Attributes | Weights (w_j) | | Maximum machining diameter | 0.15 | | Maximum machining length | 0.15 | | Maximum spindle speed | 0.1 | | X-axis rapid traverse speed | 0.075 | | Z-axis rapid traverse speed | 0.075 | | Number of tools on the turret | 0.1 | | Selling Price | 0.25 | | Annual Maintenance Cost | 0.1 | Table 2 presents the attribute data of the comparison alternatives, and this table will be regarded as the decision matrix which describes the performance of different CNC lathes with respect to the various attributes. Lathe alternatives are listed in the first column and each of them have eight different attributes. All related data and parameters in Table 2 are collected from CNC lathe supplier websites. TABLE 2. The attribute data of the comparison alternatives (x_{ij}) | Alternatives | Maximum
machining
diameter
(mm) | Maximum
machining
length (mm) | Maximum
spindle
speed (RPM) | X-axis rapid
traverse speed
(m/min) | Z-axis rapid
traverse speed
(m/min) | Number
of tools on
the turret | Selling Price
(USD) | Annual
Maintenance
Cost (USD) | |---------------------|--|-------------------------------------|-----------------------------------|---|---|-------------------------------------|------------------------|-------------------------------------| | TURN 400
(MAZAK) | 580 | 1022 | 2500 | 30 | 30 | 12 | 43960 | 1318 | | TURN 450
(MAZAK) | 580 | 979 | 2000 | 30 | 30 | 12 | 40820 | 1225 | | CKA6150
(DMTG) | 500 | 930 | 2200 | 4 | 8 | 8 | 16560 | 754 | | CKA6163A
(DMTG) | 630 | 785 | 1000 | 4 | 7.5 | 8 | 15700 | 942 | | CK6150
(SMTCL) | 500 | 850 | 2200 | 5 | 10 | 4 | 12246 | 613 | | CK6160
(SMTCL) | 600 | 850 | 2000 | 8 | 10 | 4 | 14758 | 738 | Table 3 illustrates the assessment value and ranking of lathe alternatives. The CK6150 model owns the highest assessment value. On the contrary, the CKA6163A model obtains the lowest result. Therefore, it can be concluded from Table 3 that the CK6150 model provided by SMTCL company is the best alternative. TABLE 3. The assessment value (y_i) and ranking of the CNC lathes | Alternatives | y_{i} | Rank | |------------------|-------------|------| | TURN 400 (MAZAK) | 0.118954805 | 5 | | TURN 450 (MAZAK) | 0.121679325 | 4 | | CKA6150 (DMTG) | 0.124931798 | 2 | | CKA6163A (DMTG) | 0.09959965 | 6 | | CK6150 (SMTCL) | 0.127648364 | 1 | | CK6160 (SMTCL) | 0.124923814 | 3 | FMEA ANALYSIS OF MANUFACTURING PROCESSES Table 4 is the first FMEA analysis form that aims at the machining process of camshafts of the diesel engines and Table 5 is the continuous FMEA form which analyses left processing procedures. Table 6 concentrates on the machining process of the diesel engine blocks and Table 7 is the continuous FMEA form for analysis of the remaining machining processes. Table 8 is the FMEA form that analyses assembly processes of diesel engines and Table 9 is the continuous FMEA form for analysis of the left assembly steps of diesel engines. TABLE 4. The FMEA form of the machining process of camshafts | Process
Procedure | Failure mode | Effects of failure | Causes of failure | Detection | S | Ο | D | RPN | Recommended corrective action | S | О | D | RPN | |---|--|--|---|--|---|---|---|-----|---|---|---|---|-----| | Mill
terminal
faces | Milled terminal
faces are not
flat enough | Impact positioning
accuracy of
subsequent process
procedures | Milling
cutters
wear | Check
dimensions of
milling cutters | 6 | 4 | 5 | 120 | Change milling cutters periodically | 3 | 3 | 4 | 36 | | Drill center
holes of
terminal
faces | Drilled center
holes are out of
center | Impact positioning
accuracy of
subsequent process
procedures | Unclamped fixtures | Examine dimensions of fixtures | 7 | 5 | 4 | 140 | Replace fixtures periodically | 3 | 3 | 4 | 36 | | Turn the cams | The processed cam profile has deviations | Lead to undesirable motion error of the follower | Turning
tools wear | Inspect
dimensions of
turning tools | 5 | 6 | 4 | 120 | Substitute turning tools periodically | 2 | 3 | 4 | 24 | | Rough
turning the
cylindric
surface | The processing dimension is out of tolerance | Impact subsequent assembly processes | Incorrect
installation
of lathe
tools | Visual checking
of the installed
lathe tools | 5 | 5 | 5 | 125 | Replace semi-
automatic lathes
with CNC lathes | 2 | 2 | 3 | 12 | | Fine
turning the
cylindric
surface | Unqualified
cylindric
surface
roughness | Impact the
subsequent process
of grinding the
cylindric surface | Improper
selection
of cutting
parameters | Observe cutting
parameters on
display screens
of CNC lathes | 4 | 6 | 6 | 144 | Enhance the
vocational skills
training and
cultivate skillful
CNC system
operators | 2 | 3 | 3 | 18 | | Drill axial
holes | The diameters
of processed
holes are out of
tolerance | Have bad effects
on the specific
functionality of
camshafts which are
assembled in engines | Inclined
spindles of
the drilling
machines | Inspect inner
structures status
of the drilling
machines | 6 | 5 | 5 | 150 | Regular
maintenance of
main structures
of the drilling
machines | 2 | 2 | 5 | 20 | | Process
Procedure | Failure mode | Effects of failure | Causes of failure | Detection | S | О | D | RPN | Recommended corrective action | S | О | D | RPN | |------------------------------------|---|--|---|--|---|---|---|-----|--|---|---|---|-----| | Grind the cams | Fragmentation
of grinding
wheels | Cause severe injury to operators | Incorrect
installation
of grinding
wheels | Visual checking
of the installed
grinding wheels | 8 | 4 | 6 | 192 | Enhance the
vocational skills
training and
cultivate skillful
grinder operators | 3 | 3 | 3 | 27 | | Grind the
cylindric
surface | Unqualified
cylindric
surface
roughness | Impact the
matching
stability and
the sealing
performance of
the processed
camshafts | Unbalanced
grinding
wheels | Inspect the
stationary state
of grinding
wheels on the
balancing frame | 5 | 5 | 5 | 125 | Avoid selecting
unbalanced
grinding wheels
and choose
balanced high-
quality grinding
wheels | 2 | 4 | 3 | 24 | | Mill the keyway | The processing dimension is out of tolerance | Impact
subsequent
assembly
processes | Milling cutters wear | Check
dimensions of
milling cutters | 5 | 6 | 5 | 150 | Change milling cutters periodically | 3 | 3 | 4 | 36 | | Clean
manufactured
camshafts | Metal scraps
and cutting oil
are not clean up | Cause damage
to internal
components of
camshafts and
impact specific
functionality | Cleaning
liquid does
not meet the
requirements | Test both the
concentration
and temperature
of the cleaning
liquid | 6 | 5 | 4 | 120 | Change the
cleaning liquid
periodically and
clean manufactured
camshafts in a
sequence | 3 | 3 | 2 | 18 | | Final inspection | Failure of crack
detection | Lead to low
product quality
and customer
dissatisfaction | Improper
selection of
detection
parameters | Observe
magnetization
parameters of
testing machines | 7 | 4 | 4 | 112 | Enhance the operation skills training of magnetic particle testing machines | 2 | 3 | 2 | 12 | TABLE 6. The FMEA form of the machining process of engine blocks | Process
Procedure | Failure mode | Effects of failure | Causes of failure | Detection | S | 0 | D | RPN | Recommended corrective action | S | О | D | RPN | |--|---|---|--|--|------|-------|-------|--------|---|---|---|---|-----| | Rough
milling the
upper and
bottom face | Unqualified
surface flatness | Impact the processing precision of drilling the upper and bottom holes | Wear of milling tools | Check
dimensions of
milling cutters | 6 | 4 | 5 | 120 | Change milling cutters periodically | 2 | 3 | 3 | 18 | | Rough
milling the
lateral and
terminal
faces | Unqualified surface flatness | Impact the
machining
accuracy of
drilling the upper
and bottom holes | Deformation
of processed
workpieces | Check shape
and dimensions
of workpieces | 6 | 4 | 5 | 120 | Select appropriate milling cutters | 2 | 3 | 3 | 18 | | Fine milling
the upper and
bottom faces | Unqualified
surface
roughness | Reduce fatigue
strength of
the upper and
bottom faces | Too high
processing
temperature | Inspect the surface quality of workpieces | 5 | 5 | 6 | 150 | Increase
concentration and
pressure intensity
of the liquid
coolant | 3 | 4 | 4 | 48 | | Fine milling
the lateral
and terminal
faces | Unqualified
surface
roughness | Reduce abrasion
resistance of
the lateral and
terminal faces | Insufficient precision of milling machines | Precision
examination
of milling
machines | 5 | 5 | 6 | 150 | Regular
maintenance of
main structures
of the milling
machines | 3 | 4 | 4 | 48 | | Expansion
of cylinder
bores | The drilling bit
slips during the
hole expansion
process | The processing dimension is out of tolerance | Selection
of defective
drilling bits | Visual checking
the quality of
the drilling bit | 7 | 5 | 4 | 140 | Perform trial
expansion of holes
before the actual
expansion of
cylinder bores | 2 | 3 | 3 | 18 | | Fine boring
cylinder
bores | Unqualified
surface
roughness of
cylinder bores | Impact the matching stability of components | Vibration
caused by
imbalance of
boring tools | Check
dimensions of
boring tools | 5 | 5 | 5 | 125 | Proper adjustment
of boring tools to
accomplish fine
boring of cylinder
bores | 2 | 4 | 4 | 32 | | | TABLE 7 | . The continuous F | FMEA form o | f the remaining n | nacl | ninii | ng pi | rocess | of engine blocks | | | | | | Process
Procedure | Failure mode | Effects of failure | Causes of failure | Detection | S | О | D | RPN | Recommended corrective action | S | 0 | D | RPN | | Drill the
upper and
bottom face
holes | Fracture of the drilling bit | Cause severe injury to operators | Low rigidity of the drilling bit | Test processing
properties of the
drilling bit | 8 | 4 | 6 | 192 | Perform trial
drilling before
the actual drilling
process | 3 | 3 | 3 | 27 | | Drill lateral
and terminal
face holes | The processing dimension is out of tolerance | Impact subsequent assembly processes | Improper
drilling
parameters | Check drilling
parameters
set by drilling
machines | 6 | 5 | 4 | 120 | Determine proper
drilling parameters
through trial
processing | 3 | 4 | 2 | 24 | | Ream lateral
and terminal
face holes | Insufficient
machining
accuracy | Have bad effects
on wear resistance
and leak proofness
of the components | Failure to
comply
with the
required
processing
procedures | Visual checking
the actual
reaming process
procedures | 5 | 5 | 6 | 150 | Enhance the
vocational skills
training and
cultivate skilled
reamer operators | 3 | 4 | 4 | 48 | | Tap screw
threads on
specific holes | Fracture of screw taps | Impact subsequent assembly processes | Insufficient
strength of
screw taps | Observe
diameters of
machined holes | 7 | 5 | 4 | 140 | Replace machine
tapping with manual
tapping based on
actual machining
conditions | 3 | 4 | 3 | 36 | | Clean
manufactured
engine blocks | Metal scraps
and cutting oil
are not clean up | Cause abnormal
wear of
manufactured
components
and impact the
subsequent | Wash too
many
workpieces
at the same
time | Visual checking
the quantity
of workpieces
which are being
cleaned | 8 | 5 | 3 | 120 | Set up the
maximum allowable
quantity of cleaned
workpieces and
change the cleaning
liquid on time | 2 | 3 | 2 | 12 | TABLE 8. The FMEA form of the assembly process of diesel engines | Process
Procedure | Failure mode | Effects of failure | Causes of failure | Detection | S | О | D | RPN | Recommended corrective action | S | О | D | RPN | |---|---|--|--|---|--------|-----------|----------|-----------------|---|-----|-------|-------|----------| | Install the camshafts and bearings | Improper
tightening
torque of
fastening bolts
of the bearing
cap | Cause abnormal
abrasion of the
camshafts | Insufficient precision accuracy of the torque wrenches | Employ torque
sensors of the
torque wrench
test instrument | 7 | 5 | 4 | 140 | Strengthen regular
maintenance of
the used torque
wrenches | 2 | 3 | 4 | 24 | | Install the crankshafts | The crankshafts move back and forth during operations | May lead to
fracture of
crankshafts | Too large axial
clearance of
the installed
crankshafts | Measure the axial clearance of the installed crankshafts | 8 | 4 | 5 | 160 | Take precise
measures to adjust
the axial clearance
of the installed
crankshafts | 3 | 3 | 3 | 27 | | Set up the connecting rods | Loose
connection of
the connecting
rods | May lead to
fracture of the
connecting rod
bolts | The connecting
rod bolts and
nuts are not
fully tightened | Compare actual operations with the assembly instructions | 8 | 4 | 4 | 128 | Set up clear
operation
reminding slogans
in the working
position | 3 | 3 | 3 | 27 | | Mount the piston rings | Incorrect
installation
direction of
rings | Cause complete fracture of the piston rings | Inexperienced
assembly
workers | Perform skills
assessment of
employees | 7 | 5 | 4 | 140 | Enhance the
vocational skills
training of the
assembly operators | 2 | 3 | 3 | 18 | | Install the cylinder heads | Usage of
wrong larger
or smaller
screws | Cannot assemble
screws in
specified
position | Failure to use prescribed screws | Visual checking
the selection of
screws | 6 | 5 | 5 | 150 | Use toolboxes to
sort the model of
screws | 2 | 4 | 3 | 24 | | Install the oil sumps | Random
screw | Cannot install screws in the | Failure to follow the right | Visual checking the assembly | 6 | 5 | 6 | 180 | Strictly follow the regulated screw assembly sequence | 2 | 4 | 2 | 16 | | он эмпрэ | assembly sequence | original position | sequence | sequence | | | | | assembly sequence | | | | | | on sumps | sequence | | - | | sseı | mbly | | ocess o | | | | | | | Process
Procedure | sequence | E 9. The continuou | - | | ssei | nbly
O | pro
D | ocess o | | S | 0 | D | RPì | | Process | sequence | E 9. The continuou | as FMEA form o | f the remaining a | | | | | | S 3 | O 3 | D 3 | RPN 27 | | Process
Procedure
Install the | rabli Failure mode Misalignment of installed | E 9. The continuou Effects of failure Cause serious breakdown of | Is FMEA form of Causes of failure Timing marks of paired gears | f the remaining a Detection Inspect the alignment of the | S | 0 | D | RPN | Enhance the vocational skills training of the | | | | | | Process
Procedure
Install the
gear sets
Mount the
cover plate | rabli Failure mode Misalignment of installed gears Loose assembly of | E 9. The continuou Effects of failure Cause serious breakdown of diesel engines Abnormal noises caused by unfixed | Causes of failure Timing marks of paired gears are not aligned The number of screws used is less than the required | Detection Inspect the alignment of the timing marks Visual checking the number of screws used for | S 9 | O 4 | D 4 | RPN 144 | Enhance the vocational skills training of the assembly operators The number of screws used for assembling can be checked by | 3 | 3 | 3 | | | Process
Procedure
Install the
gear sets
Mount the
cover plate
of gear sets | sequence TABLI Failure mode Misalignment of installed gears Loose assembly of the cover plate The belt pulleys are not put in the | E 9. The continuou Effects of failure Cause serious breakdown of diesel engines Abnormal noises caused by unfixed assembly Speed up the | Causes of failure Timing marks of paired gears are not aligned The number of screws used is less than the required amount The belts are not moderately | Detection Inspect the alignment of the timing marks Visual checking the number of screws used for assembling Inspect the coplanarity by | S 9 | O 4 5 | D 4 | RPN 144 200 | Enhance the vocational skills training of the assembly operators The number of screws used for assembling can be checked by different operators Pull lines in more than two different directions to | 2 | 3 | 3 | 27 24 32 | | Process Procedure Install the gear sets Mount the cover plate of gear sets Install the belt pulleys Install the air intake | rabli Failure mode Misalignment of installed gears Loose assembly of the cover plate The belt pulleys are not put in the same plane The connecting face has oil | E 9. The continuou Effects of failure Cause serious breakdown of diesel engines Abnormal noises caused by unfixed assembly Speed up the abrasion of belts May cause fracture of screw | Causes of failure Timing marks of paired gears are not aligned The number of screws used is less than the required amount The belts are not moderately tensioned The connecting surface is not | Inspect the alignment of the timing marks Visual checking the number of screws used for assembling Inspect the coplanarity by pulling lines Visual checking the connecting | 9
8 | O 4 5 6 | D 4 5 5 | RPN 144 200 210 | Enhance the vocational skills training of the assembly operators The number of screws used for assembling can be checked by different operators Pull lines in more than two different directions to inspect coplanarity Employ autochecking machines to inspect the | 2 2 | 3 4 4 | 3 3 4 | 27 | #### DISCUSSION Dai et al. (2021) concludes that tens of millions of SMEs were shut down after the outbreak of COVID-19 in January 2020. Based on this above background, research questions and directions are designed for SMEs in this paper. According to Sun et al. (2021), a plenty of manufacturing enterprises are experiencing unprecedented financial pressure and a large percentage of them even cannot make enough profits to proceed with manufacturing tasks. Risk identification models for lean manufacturing are constructed to increase productivity and profits of SMEs in order that normal production processes can be guaranteed. According to Chand (2021), the operational risks consist of the equipment malfunction, human error, and failure of the control system, which is in line with research findings which indicate that wear of machine tools, incorrect installation of machine tools and inaccurate measurement methods lead to operational risks. According to Oduoza (2020), the labor skill and the equipment maintenance belong to quality related risk factors, which is similar to research findings that illustrate enhancing vocational skills training is a recommended corrective action to insufficient machining accuracy. Simultaneously, maintaining the regular maintenance of machining tools such as milling machines is the recommended corrective measure in this research for the failure mode of unqualified surface roughness, which has a relationship with research findings by Oduoza et al. (2017). Research questions about how to build risk identification models for lean manufacturing have been solved by FMEA and MOORA forms. Risk identification is accomplished based on the lean principles. Most common risks including improper manufacturing procedures, the lack of experienced operators, wrong choice of machine tools and lack of necessary production regulations do not meet the lean requirements and principles. At the same time, SMEs can use suggested improvement measures in this paper to obtain the aim of lean manufacturing in an effective way. The objective of this study is realized by increasing productivity of SMEs and helping SMEs to make enough profits to maintain normal, efficient, and effective production status and proactively implement preventive maintenance. Table 3 has suggested that the CK6150 CNC model is the best alternative to be utilized by the SMTCL company, the analyses are further investigated at each of process/procedure to address the potential failure modes, including the effects of failures, causes of failure and the RPN were also determined as the risk mitigation procedure. From the analyses of Tables 4 to 9, the data has offered the following corrective actions that the company can consider. These significant recommendation and corrective actions as the seven potential highest RPNs may include: enhance the vocational skills training and cultivate skillful reamer operators, increase concentration and pressure intensity of the liquid coolant, and regular maintenance of main structures of the milling machines, and periodically change of milling cutters, replace fixtures, replace machine tapping and reduce components transportation distances by utilizing automated systems. #### CONCLUSION Failure modes and risks are proactively identified with the establishment of risk identification model. FMEA and MOORA are effective risk methods which contribute to the construction of the risk identification model for lean manufacturing improvement. Failure modes that may lead to potential risks are identified by quantitative analysis of manufacturing processes. Lean corrective measures in the context of reducing wastes such as time reduction, effective scheduling, transportation, and periodical maintenance, are concluded in constructed risk identification models, and they are taken to improve the lean manufacturing. The quantitative analysis of manufacturing processes in company B can be used as a reference for other SMEs. Most failure modes identified in company B belong to most common failure modes and other SMEs can check if their production lines have similar failure modes. The recommended corrective measures are also suitable for other SMEs to take. #### ACKNOWLEDGEMENT This research was supported by Universiti Kebangsaan Malaysia, Malaysia. #### DECLARATION OF COMPETING INTEREST None ### REFERENCES Adali, E.A. & Isik, A.T. 2017. The multi-objective decision making methods based on MULTIMOORA and MOOSRA for the laptop selection problem. *Journal of Industrial Engineering International* 13, 229–237. Arlinghaus, J.C. & Rosca, E. 2021. Assessing and mitigating the risk of digital manufacturing: Development and implementation of a digital risk management method. *IFAC-PapersOnLine* 54:337–342. Bozdag, E., Asan, U., Soyer, A. & Serdarasan, S. 2015. Risk prioritization in Failure Mode and Effects Analysis using interval type-2 fuzzy sets. *Expert Systems with Applications* 42: 4000–4015. Chakraborty, S. 2011. Applications of the MOORA method for decision making in manufacturing environment. *The International Journal of Advanced Manufacturing Technology* 54:1155–1166. Chaudhuri, A., Boer, H. & Taran, Y. 2018. Supply chain integration, risk management and manufacturing flexibility. *International Journal of Operations & Production Management* 38(3):690–712 - Chand, M. 2021. Strategic assessment and mitigation of risks in sustainable manufacturing systems. Sustainable Operations and Computers 2:206–213. - Dai, R.C., Feng, H., Hu, J.P., Jin, Q., Li, H.W., Wang, R.R., Wang, R.X., Xu, L.H.& Zhang, X.B. 2021. The impact of COVID-19 on small and medium-sized enterprises (SMEs): Evidence from two-wave phone surveys in China. *China Economic Review* 67. - Ghoushchi, S.J., Yousefi, S. & Khazaeili, M. 2019 An extended FMEA approach based on the Z-MOORA and fuzzy BWM for prioritization of failures. *Applied Soft Computing* 81. - Hemalatha, C., Sankaranarayanasamy, K. & Durairaaj, N. 2021. Lean and agile manufacturing for work-in-process (WIP) control. *Materials Today: Proceedings*, Vol. 46:.10334–10338. - Ismail, M.Z.M., Zainal, A.H., Kasim, N.I. & Mukhtar, M.A.F.M. 2019. A mini review: Lean management tools in assembly line at automotive industry. *IOP Conference Series: Materials Science and Engineering* 469. - Jayanth, B.V., Prathap, P., Sivaraman, P., Yogesh, S. & Madhu, S. 2020. Implementation of lean manufacturing in electronics industry. *Materials Today: Proceedings* 33:23–28. - Kumar, P.A. & Neeraj, K. 2022. Development of Framework to Increase Flexibility in Shop floor and Maximize Production Rate using Substitute Machine. *Jurnal Kejuruteraan*, 34:.585-589. - Mustaffa, N.F., Hishamuddin, H., Ropi, N.W.M., Saibani, N. and Rahman, M.N.A. 2018. Assessing Supply Chain Risk Management Practices in Manufacturing Industries in Malaysia. *Jurnal Kejuruteraan*. Special Issue 1:.17-22. - Mamaghani, E.J. & Medini, K. 2021. Resilience, agility and risk management in production ramp-up *Procedia CIRP* 103:37– 41 - McKie, M.G., Jones, R., Miles, J. & Jones, I.R. 2021. Improving Lean Manufacturing Systems and Tools Engagement Through the Utilisation of Industry 4.0, Improved Communication and a People Recognition Methodology in a UK Engine Manufacturing Centre *Procedia Manufacturing* 55:371-382. - Oduoza, C.F., Odimabo, O. & Tamparapoulos, A. 2017. Framework for Risk Management Software System for SMEs in the Engineering Construction Sector. *Procedia Manufacturing* 11:1231–1238. - Oduoza, C.F. 2020. Framework for Sustainable Risk Management in the Manufacturing Sector. *Procedia Manufacturing* 51:1290–1297. - Pojasek, R.B. 2008. Framing your lean-to-green effort. Environmental Quality Management, 18(1):85–93. - Park, J., Park, C. & Ahn, S. 2018. Assessment of structural risks using the fuzzy weighted Euclidean FMEA and block diagram analysis *The International Journal of Advanced Manufacturing Technology* 99:2071–2080. - Paladugu, B.S.K. & Grau, D. 2020. Toyota Production System-Monitoring construction work progress with lean principles. Encyclopedia of Renewable and Sustainable Materials: .560– 565. - Palange, A. & Dhatrak, P. 2021. Lean manufacturing a vital tool to enhance productivity in manufacturing. *Materials Today:* Proceedings 46:.729–736. - Rafique, M.Z., Haider, M., Raheem, A., Rahman, M.N.A. & Amjad, M.S. 2022. 'Essential Elements for Radio Frequency Identification (RFID) adoption for Industry 4.0 Smart Manufacturing in Context of Technology-Organization-Environment (TOE) Framework–A Review', *Jurnal Kejuruteraan* 34:1–10. - Rafique, M.Z., Rahman, M.N.A., Raheem, A., Leuveano, R.A.C., Saibani, N., Arsad, N., Mahmood, W.H.W. & Amjad, M.S. 2022. A Systematic Planning Scheme for Deployment of Technology Combined Lean Implementation Framework. *Jurnal Kejuruteraan* 34:29–39. - Samuel, L.N., Kolawole, O., Smith, O.O.O. & Segbenu, N.P. 2019. An Assessment of Indigenous Innovations in Wet Fufu Paste Production: Prospects, Constraints and Processing Risk Implications. *Jurnal Kejuruteraan* 31:185–192. - Schönfuß, B., McFarlane, D., Hawkridge, G., Salter, L., Athanassopoulou, N. & Silva, L.D. 2021. A catalogue of digital solution areas for prioritising the needs of manufacturing SMEs Computers in Industry, Vol. 133. - Sun, Y.C., Zeng, X.P., Zhao, H., Simkins, B. & Cui, X.G. 2021. The impact of COVID-19 on SMEs in China: Textual analysis and empirical evidence. *Finance Research Letters*. - Turskis, Z., Goranin, N., Nurusheva, A. & Boranbayev, S. 2019. Information security risk assessment in critical infrastructure: a hybrid MCDM approach *Informatica* 30 (1):187–211. - Tortorella, G., Cómbita-Niño, J., Monsalvo-Buelvas, J., Vidal-Pacheco, L. & Herrera-Fontalvo, Z. 2020. Design of a methodology to incorporate Lean Manufacturing tools in risk management, to reduce work accidents at service companies. Procedia Computer Science 177:276–283. - Wong, Y.C., Wong, K.Y. & Ali, A. 2009. Key Practice Areas of Lean Manufacturing. *International Association of Computer Science and Information Technology—Spring Conference* :267–271. - Zaied, A.N.H., Ismail, M., Gamal, A. & Abdelaziz, N.M. 2019. An Integrated Neutrosophic and MOORA for Selecting Machine Tool. Neutrosophic Sets and Systems 28, Vol. 28. - Zimmermann, N., Lentes, J. & Werner, A. 2019 Analysis of Requirements, Potentials and Risks Caused by Using Additive Manufacturing. *Procedia Manufacturing* 39:474–483.