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This work proposes a neural network (NN) approach for predicting the following values: the heat transfer 
coefficient at the point of interest in the operational period of plate heat exchangers (PHEs), and the time-point 
to reach the lower allowable limit of the heat transfer coefficient. In this approach, neural network models replace 
complex mathematical modelling that used systems of differential equations and matrices of heuristic 
coefficients to calculate the flow rate of deposits on PHE plates, which required the involvement of serious 
computing resources. Training a feed-forward neural network (FFNN) on a small dataset simulated in the vicinity 
of reference points obtained by industrial measurements showed the proper coefficient of determination R2 = 
0.99 (accuracy) of the short-term prediction forecasts and for operational evaluation of the heat transfer 
coefficient due to the static type of NN.  

1. Introduction 
The significance of the complexity of problems of world energy consumption is constantly growing, while the 
optimization of energy consumption, energy saving, reduction of pollution emissions is inextricably linked with 
sustainable development. The achievement of the plan concerning the climate-neutral economy by 2050 
requires reducing global CO2 emissions to zero. This goal requires the implementation of CO2 and energy-
reducing technologies in all industries (Lameh et al., 2021). The use of efficient compact PHEs with increased 
heat transfer is one of the most promising directions for solving this set of problems (Klemeš et al., 2015). 
Deposits formed on the plates of PHEs are inevitable in technological processes. Deposits adversely affect 
production efficiency, shorten the turnaround time and the life of equipment in heat recovery systems. When 
deposits accumulate on the surfaces of heat exchangers, they reduce the rate of heat transfer flow, resulting in 
increased energy consumption and reduced energy efficiency. This, in turn, increases fuel consumption, which 
is not only economically unprofitable, but also increases the environmental burden on the environment and the 
cost of cleaning. The practical solution to the problem of automating the operational forecasting of the start of 
routine maintenance for cleaning the surfaces of PHE plates is a serious task on the way to sustainable 
development and is consistent with the Industry 4.0 conception. 
At present, to solve the problem of predicting the period of scheduled dismantling and cleaning of PHEs, rather 
cumbersome mathematical models of differential equations are used (Bansal et al., 2008) that use heuristic 
coefficients, which require the involvement of serious computing resources.  
Efficient energy management has always attracted the attention of both industrial manufacturers and the 
scientific community. Recently, machine learning (ML) has been introduced as a methodology for solving 
identification and control problems in the energy sector (Wu and Wang, 2018). One of the examples is the use 
of the long short-term memory (LSTM) methodology as a predictive approach to prognose the state of charge 
of batteries at battery charging stations, as proposed by Malek et al. (2019).  
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A generalized and scalable statistical model with flow physics (Sundar et al., 2020) is presented to accurately 
predict fouling resistance using commonly measured industrial heat exchanger parameters. The prediction 
model is based on deep learning, where a scalable algorithmic architecture learns non-linear functional 
relationships between a set of target and predictor variables from a large number of training samples. The 
effectiveness of this modeling approach has been demonstrated for fouling prediction in an analytically 
simulated cross-flow heat exchanger designed to recover flue gas waste heat using room temperature water. 
The results of the trained models show that the coefficients of determination (R2), which characterize the 
accuracy of the correspondence between forecasts and observed data, exceed 99%. NN model (see Kashani 
et al., 2012) was applied for online short-term prediction and monitoring of crude oil fouling in heat exchangers. 
The model is automatically updated online at any time, when a new data set can be achieved. The results 
revealed, that the model could well predict (multi-step-ahead) the ascending processes. The generalization of 
the model was proved by the proximity of errors for training and prediction subsets. The mean relative errors 
(MRE) of the training and prediction subsets were about 6.61 % and 8.06 %, respectively. Trzcinski and 
Markowski (2018) presented an NN-based identification method of the fouling influence on heat losses due to 
growing deposits in a heat exchanger. Jradi et al. (2020) proposed the use of the dimensionality reduction 
method and machine learning of artificial neural networks (ANNs) by partial least squares (PLS) algorithm, which 
use available process data to determine the level of contamination of models. Although these approaches 
provide promising results, they, unfortunately, require specialized research engineers familiar with these models 
to periodically train and tune these algorithms for application to different processes, which reduces their 
generalizability and practical applicability. The listed studies were carried out only for tubular heat exchangers 
and battery charging stations. ANN, tuned by deep machine learning methods, is an efficient, high-speed non-
linear computational structure, created by analogy with a biological neural system and consisting of simple and 
highly interconnected elementary units called nodes. The accuracy of the trained ANN is guaranteed to reach 
the accuracy of cumbersome regression models (Murdoch et al., 2019), which use significant computing 
resources during operation. The mentioned advantages, and the proven applicability of ANN for tubular heat 
exchangers, make it promising to create a network model for predicting time to reach the lower allowable limit 
of the heat transfer coefficient value for PHE, which is the subject of the current work. 

2. Data extraction 
The flowsheet of the five-effect evaporator, which is used in the process of sugar production to heat the thin 
juice and is examined in the work, is presented in Figure 1. 

 

Figure 1: Flowsheet of 5-effect thin juice evaporation station 

For efficient energy consumption and process intensification, the juice is preheated before evaporation. PHE2 
(highlighted in green in Figure 1) heats up the thin juice by the condensate from the 1st evaporation effect. For 
the PHE2 position, the Alfa Laval plate-and-frame heat exchanger of M15M type with 150 heat transfer plates 
was selected and installed at the sugar plant. From the start of the operation, the heat and hydraulic 
characteristics of this heat exchanger were monitored. The data from on-site monitoring were given in the paper 
by Demirskyy et al. (2016). 
The heat exchanger was operating 13 days after the last cleaning. The first measurement took place after the 
start-up, which in this case, took a long time because of several stops of the equipment. And the stable operating 
conditions started after 96 h of work. The operating parameters were calculated according to equations 
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presented by Arsenyeva et al. (2013). The values of overall heat transfer coefficients for clean and contaminated 
surface of PHE2 for different time periods during 13 days of operation are presented in Table 1. 

Table 1: The operating parameters and calculated values of PHE2 heat exchanger 

Parameters and calculated values / N 1 2 3 4 5 
Parameters:      
Time point of process 𝜏𝜏, hours 96  144  216  264  312  
The flowrate of thin juice G2, m3/h  265  260  270  277  265 
Inlet temperature of thin juice T21, ºC  103  101  100.5  102  101.7 
Outlet temperature of thin juice T22, ºC  108  105  106  107  106 
Pressure loss of thin juice flow ∆P2, Pa 0.5 0.5 0.6 0.6 0.6 
Condensate flowrate G1, m3/h  65  63  61  66  64 
Inlet temperature of condensate T11, ºC  123.5  123.5  123.5  123.5  123.5 
Outlet temperature of condensate T12, ºC  105  102.8  104.8  106.1  104.8 
Calculated values:      
Fouling thermal resistance ×104 Rf, m2 K / W 0.27 1.10 1.55 1.67 1.9 
Heat transfer coefficient for clean surface К, 
W/(m2·К) 

2.673 2.220 2.668 2.686 2.382 

Heat transfer coefficient with fouling Кf, W/(m2·К) 2.493 1.784 1.887 1.853 1.640 
Relation KR = Kf /K×100, % 93.3 80.4 70.7 69.0 68.8 
 
Assuming that the changes in the parameter values in the time intervals between iterations are linear (similar to 
Galčíková et al., 2022), the parameters ∆𝑃𝑃2(𝜏𝜏),𝐺𝐺𝑖𝑖(𝜏𝜏),𝑇𝑇𝑖𝑖𝑖𝑖(𝜏𝜏) were emulated with a random deviation of up to 5 % 
of the estimated parameter value, and the parameters 𝐾𝐾𝑓𝑓(𝜏𝜏),𝐾𝐾(𝜏𝜏) were calculated similarly to the ones in Table 
1. Based on five reference points and “black-box” approach, production rules of the form 
𝐼𝐼𝐹𝐹(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)  were formed, on the basis of which the hypersurface 
 𝐹𝐹�𝜏𝜏,𝐺𝐺1,𝑇𝑇11,𝑇𝑇12,𝐺𝐺2,𝑇𝑇21,𝑇𝑇22,∆𝑃𝑃2,𝐾𝐾𝑓𝑓 ,𝐾𝐾� was simulated on the time interval Δ𝜏𝜏 = 312− 96 = 216 h. As a result, 
data set of 427 points with uniform time increment 𝜏𝜏𝑗𝑗+1 = 𝜏𝜏𝑗𝑗 + 0.5 h for feed-forward neural network (FFNN) 
training was obtained. Data set of 200 points for testing �∆𝑃𝑃2(𝜏𝜏),𝐺𝐺𝑖𝑖(𝜏𝜏),𝑇𝑇𝑖𝑖𝑖𝑖(𝜏𝜏)� with a random deviation of up to 
12 % was obtained in the same way. Further, the already developed mathematical models are replaced by ANN 
models. 

3. Neural networks for predicting PHE fouling indicators 
This section briefly discusses the construction technique and testing results of the simplest FFNN for real-time 
prediction of the heat transfer coefficient using the data from the previous section. Below is a method for 
constructing RNNs with LSTM that allows one to study long-term dependencies, process sequential input data, 
and use feedback loops to transfer information from one-time step to another. As a result, the LSTM net 
considers the influence of trends (time gradients) of input parameters more adequately at the net`s outlet. 

3.1 Feed-Forward neural network for real-time prediction of the heat transfer coefficient 

The ability of neural networks to approximate unknown areas of the “input-output” mapping is widely used to 
identify, control and predict the behavior of objects. The FFNN properties are completely determined by the 
activation functions 𝛷𝛷 used in the nodes of the hidden layer and forming a certain basis for the input vector 
image 𝑥𝑥 . Complex objects are modeled using a multidimensional Gaussian radial basis (GRB) activation 
functions having a peak at the center of 𝑐𝑐 and monotonically decreasing with distance from the center: 

𝜑𝜑(𝑥𝑥) = 𝛷𝛷(‖𝑥𝑥 − 𝑐𝑐‖,Σ) = 𝑒𝑒𝑒𝑒𝑒𝑒�−(𝑥𝑥 − 𝑐𝑐)𝑇𝑇Σ−1(𝑥𝑥 − 𝑐𝑐)� = exp�−‖𝑥𝑥 − 𝑐𝑐‖Σ−1
2 �, 

  
(1) 

where the covariance matrix  Σ determines the shape, size and orientation of the so-called receptor field of the 
radial-basis function. At Σ = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜎𝜎12,𝜎𝜎22, … ,𝜎𝜎𝑛𝑛2) – is a hyper ellipsoid whose axes coincide with the axes of the 
input space and have a length 2𝜎𝜎𝑖𝑖  of the  𝑖𝑖 -th axis. 
The task of learning of the approximating neural network is to find a function 𝐹𝐹(𝑥𝑥) so close  𝑓𝑓(𝑥𝑥) to that: 

‖𝐹𝐹(𝑥𝑥) − 𝑓𝑓(𝑥𝑥)‖ ≤ 𝜀𝜀,∀𝑥𝑥(𝑘𝑘):𝑘𝑘 = 1,2, …𝑁𝑁,   (2) 

where 𝐹𝐹(𝑥𝑥) – the mapping realized by the network, 𝜀𝜀 – is a small positive number, that determines the accuracy 
of the approximation.  
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The process of a model building is divided into two stages - structural and parametric identification, and the 
application of the ANN also requires solving two problems: determining the network structure, its setting 
parameters and training. Usually, a change in the network structure is made by its gradual complication of 
adding new nodes, performed each time when an additional identification error  𝑒𝑒 = 𝑑𝑑 − 𝑦𝑦 occurs when a new 
input signal appears, exceeding the permissible one. Training (parametric identification) consists in determining 
the network parameters and reduces to minimizing the identification error ‒ as a rule, a quadratic error functional: 

𝐽𝐽(𝑘𝑘) = ‖𝜺𝜺(𝑘𝑘)‖2 = ‖𝒅𝒅(𝑘𝑘) − 𝒚𝒚(𝑘𝑘)‖2. 
  (3) 

In practice, the most common are discrete learning algorithms of the form: 

𝑤𝑤𝑗𝑗𝑗𝑗(𝑘𝑘 + 1) = 𝑤𝑤𝑗𝑗𝑗𝑗(𝑘𝑘) + 𝜂𝜂(𝑘𝑘)𝑒𝑒𝑗𝑗(𝑘𝑘)𝑥𝑥𝑖𝑖(𝑘𝑘),   
(4) 

The speed of the learning process using algorithms (3), (4) is completely determined by the choice of the 
parameter 𝜂𝜂𝑘𝑘 that determines the step of the displacement in the space of the tunable parameters. It is natural 
to choose this parameter so that the rate of convergence of the current values of synaptic weights of NN hidden 
layer 𝑤𝑤𝑗𝑗(𝑘𝑘) to the optimal hypothetical weights will be maximal. Introducing into consideration that the optimal 
value of the step parameter may be obtained in the form: 

𝜂𝜂(𝑘𝑘) = ‖𝑥𝑥(𝑘𝑘)‖−2, 
  

(5) 

That leads to a one-step learning the known Kaczmarz – Widrow – Hoff (KWH) algorithm (Kaczmarz, 1993): 

𝑤𝑤𝑗𝑗(𝑘𝑘 + 1) = 𝑤𝑤𝑗𝑗(𝑘𝑘) +
𝑒𝑒(𝑘𝑘)𝑥𝑥(𝑘𝑘)
‖𝑥𝑥(𝑘𝑘)‖2  . 

  
(6) 

FFNN architecture implements the mapping 𝑅𝑅10 ⟶ 𝑅𝑅1: 𝐾𝐾𝑅𝑅(𝜏𝜏) = 𝐹𝐹�𝜏𝜏,𝐺𝐺1,𝑇𝑇11,𝑇𝑇12,𝐺𝐺2,𝑇𝑇21,𝑇𝑇22,∆𝑃𝑃2,𝐾𝐾𝑓𝑓 ,𝐾𝐾�. 

Table 2: FFNN 𝐾𝐾𝑅𝑅(𝜏𝜏) = 𝐹𝐹�𝜏𝜏,𝐺𝐺1,𝑇𝑇11,𝑇𝑇12,𝐺𝐺2,𝑇𝑇21,𝑇𝑇22,∆𝑃𝑃2,𝐾𝐾𝑓𝑓 ,𝐾𝐾� Structure 

 Input Layer  Hidden Layer Output Layer  Activation Function 
Nodes 10 96 1 GBR 

 
FFNN was built in the NeuroPh package (Perry J.S., 2018), its tuning was performed using the least squares 
method (LSM) and accelerated KWH algorithms. Figure 2b shows two scatterplots representing the prediction 
accuracy of each algorithm. Actual values are displayed on the horizontal axis, and predicted values are 
displayed on the vertical axis. The coefficient of determination (R2) is less in KWH case because one-step 
algorithm computes steeper weight gradients when tuned, resulting in a local overfitting effect. And although the 
total network calculation error already at the 200th training iteration was set at 0.005 (Figure 2a), which exceeds 
the value of 0.021 achieved by Arsenyeva et.al. (2022), it should be noted that the presented model does not 
take into account trends in temporal changes in the input parameters. The small amount and the short period of 
extraction (216 h) of real current PHE parameters significantly reduce the adequacy of the model (Demirskiy et 
al., 2016). FFNN, designed as a static model, can be effective for the operative evaluation of 𝐾𝐾𝑅𝑅(𝜏𝜏). 

 
 

                                      a                                                                                         b 

Figure 2: FFNN learning and testing results: a) total network calculation error; b) KWH and LSM algorithms` 
accuracy 

3.2 Recurrent neural network with a long short-term memory 

Unlike the one proposed by Trigkas et.al. (2022), Time Delayed NN with two hidden layers for battery state of 
charge prediction stores input states from previous 4n steps in memory to make a prediction for n future steps, 

700



whereas LSTM selectively stores states of NN inputs. A variant of a recurrent NN (RNN) such as LSTM is 
designed to solve the problem of the decay of the temporal gradient of the input parameter (the parameter 
changes little over time) and provide more efficient learning on long-term sequences. LSTM does not have a 
fundamentally different architecture from RNN, but it uses a different function to calculate the hidden state. 
LSTM cells can be thought of as black boxes that take as input the previous state ℎ(𝑡𝑡 − 1) and the current input 
𝑥𝑥(𝑡𝑡). Inside these cells, they decide which state of memory to keep, and from what moment (𝑡𝑡 − 𝑘𝑘) to erase the 
previous states ℎ(𝑡𝑡 − 𝑘𝑘). Cells then concatenate their previous state, current memory, and input parameter. 
These elements are very effective in storing long-term dependencies and analyzing the temporal gradients 
(trends) of these dependencies. 

 

Figure 3: Scheme of the sequence of computational processes at each time step in LSTM 

An LSTM cell can be schematically represented (Figure 3) as a sequence of processes that occur at each step: 
• The input data 𝑥𝑥(𝑡𝑡) and the previous output state ℎ(𝑡𝑡 − 1) are fed to the input gate, the forget gate, 

and the output gate. The input data and the previous output state are passed through various weights 
and biases before being fed to the input of the activation functions. 

• The input gate decides what information from the current input should be retained. This is done by 
elementary multiplication of the output of the sigmoid function and the hyperbolic tangent. 

• The forget gate decides which information from the current internal state should be forgotten. This is 
done by elementary multiplication of the output of the sigmoid function and the current internal state. 

• The internal state is updated by combining the results of the input gate and the forget gate. The updated 
internal state can take new information into account and forget the old. 

• The output gate decides what information from the updated internal state should be passed to the 
output. This is done by elementary multiplication of the output of the sigmoid function and the hyperbolic 
tangent of the updated internal state. 

• The output state ℎ(𝑡𝑡) is passed to the next time step or used as the final output of the LSTM cell. 
Thanks to this structure, LSTM can analyse and remember long-term dependencies in data and train efficiently 
on sequences of different lengths. Since the FFNN has 10 input nodes 𝜏𝜏,𝐺𝐺1,𝑇𝑇11,𝑇𝑇12,𝐺𝐺2,𝑇𝑇21,𝑇𝑇22,∆𝑃𝑃2,𝐾𝐾𝑓𝑓 ,𝐾𝐾 and 1 
output node - 𝜏𝜏�𝐾𝐾𝑓𝑓,𝐾𝐾�, a similar structure can be used to create an LSTM network with 96 nodes in one hidden 
layer. Due to the small data set for training the LSTM network, the coefficient of determination R2 = 0.8918 in 
testing data set was achieved. The activation function (AF) ReLu: 𝐴𝐴(𝑥𝑥) = max(0, 𝑥𝑥) is less computationally 
demanding other AFs performs simple mathematical operations, like an activator allows only some neurons be 
activated, which makes activations sparse and efficient. Using the most common functions like hyperbolic 
tangent or sigmoid as AF entails activating all neurons in the output layer. Hence, almost all activations are 
involved in describing the network output: the activation is dense, and this is inefficient in the computing 
resources used. 

Table 3: LSTM 𝜏𝜏�𝐾𝐾𝑓𝑓,𝐾𝐾� = 𝐹𝐹�𝜏𝜏,𝐺𝐺1,𝑇𝑇11,𝑇𝑇12,𝐺𝐺2,𝑇𝑇21,𝑇𝑇22,∆𝑃𝑃2,𝐾𝐾𝑓𝑓 ,𝐾𝐾� Structure 

 Input Layer  Hidden Layer Output Layer  Activation Function 
Nodes 10 96 1 ReLu 

4. Conclusions 
The proposed static FFNN makes it possible to determine the PHE heat transfer coefficient only in short-term 
forecasts and for operational evaluation. The coefficient of determination (accuracy of the model in the test data 
set) of FFNN trained by both algorithms LSM and KWH reached 0.99. An RNN architecture with LSTM is also 
proposed for long-term prediction of the time-point to reach the limiting heat transfer coefficient, as the accuracy 
of the model on the test data set reached 0.89. It is noted that in order to obtain adequate predictive models, a 
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huge amount of data on the current parameters associated with the process of deposit formation on the PHE 
plates is required. The presented models, after training on real data for specific instances of the PHEs, can be 
used in pairs for rapid evaluation and long-term prediction of these parameters in sugar and other industries. 
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