FUELS FROM SOLAR THERMOCHEMICAL CYCLES

High efficiency solar fuel production via solar thermochemical cycles with sophisticated process management

Paul Kant, Estefanía Vega Puga, Stefan Brendelberger, Martin Roeb, and Christian Sattler

Motivation

Climate change is a big deal; It's man made; And we can do something about it.

Mike Berners-Lee, HOW BAD ARE BANANAS?, Profile Books Ltd, 2010.

,something' = a million things need to be done!

Fuels from Solar Thermochemical Cycles

Sustainable fuels for air-born, long-distance, and heavy-duty transportation

Questions I'll try to answer in 10,5 min

- 1) How can fuels be produced in **solar thermochemical cycles**?
- 2) What are **bottlenecks** in solar thermochemical fuel production?
- 3) How does our **strategy** look like?

100

Introduction: solar thermochemical cycles

Paul Kant, FF-SVE, 2023-06-13

Paul Kant, FF-SVE, 2023-06-13

Introduction: state-of-the-art

SUN-to-LIQUID (EU Horizon 2020)

- Bauhaus Luftfahrt, ETHZ, DLR, IMDEA, HYGEAR, ABENGOA, and ARTTIC
- In-field demonstration at 50 kW with 18 kg of CeO₂
- 4.1 % solar-to-syngas energy efficiency

High sensible heat losses due to thermal cycling:
(1) of reactor components!
(2) of CeO₂ (low reduction extend, only 3 kg O₂ per 1000 kg CeO₂)!

Introduction: ways for optimization

Two general pathways:

- 1) Material scientist's pathway: redox material for low-temperature operation and with higher difference in reduction extend
- 2) Engineer's pathway: Sophisticated process design with main focus on heat integration and the control of radiation transport

DLR APPROACH - R2MX

Bildquelle hier angeben

R2Mx: Concept

Published: Brendelberger et al, Solar Energy, 2022, https://doi.org/10.1016/j.solener.2022.02.013.

- 1) Separating reduction and oxidation step in two reactors
- 2) Separating the atmospheres
- 3) Employing a transport system
- 4) Implementing heat integration strategies

Adopted from: https://doi.org/10.1016/j.solener.2022.02.013.

R2Mx: Advantages

Reduced sensible heat losses due to:

- Continuous operation (reactor components)
- Heat integration (redox material)

Adopted from: https://doi.org/10.1016/j.solener.2022.02.013.

R2Mx: Challenges

- 1) Need for gas-tight reactor separation
- 2) Transport of redox material (T~1500 °C!)
- 3) Reoxidation of redox material during solidsolid heat integration

SUMMARY & OUTLOOK

Paul Kant, FF-SVE, 2023-06-13

Summary: Questions I tried to answer

1) How can fuels be produced in solar thermochemical cycles?

2) What are bottlenecks in solar thermochemical fuel production?

3) How does our strategy look like?

Reduction (1500 °C, 1 mbar) (1 $MO_2 \rightarrow MO_{2-\delta} + \frac{1}{2}\delta O_2 \Delta_{\rm R} H \gg 0$

Outlook: How we attack the challenge

Two projects focussing on the R2Mx technology:

- 1) **KISMOR**: Technology demonstration with electrical heating (6 kW)
- 2) REDOX3D: Demo with solar interface, redox material development, scale up, & operation strategies (10 kW)

Thank you for your attention!

Feel free to ask any questions!

Paul Kant, FF-SVE, 2023-06-13

Impressum

Topic:High efficiency solar fuel production via solarthermochemical cycles with sophisticated processmanagement

Date: 13.6.2023

Author: Paul Kant

Institute: Institute for Future Fuels

BACKUP SLIDES

Introduction: challenges

,Low' achieved overall efficiency:

- 1) Sensible heat losses due to heating/cooling of reactor components
- 2) Extreme temperatures \rightarrow reradiation losses
- 3) Low achieveable reduction extend of CeO₂ (1 ton of CeO₂ releases only 3 kg of oxygen!) → sensible heat losses due to heating/cooling of redox material

Extracted from: https://doi.org/10.1115/1.4042059

R2Mx: What we have done so far

- 1) Concept developent and basic simulative work (Stefan Brendelberger)
- 2) PhD project on the development of sealing strategies (Estefanía Vega Puga)
- 3) PhD project focusing on the examination of reoxidation during solid-solid heat recovery (Philipp Holzemer-Zerhusen)
- 4) Project KISMOR: Technology demonstration \rightarrow Construction phase completed
- 5) Project REDOX3D: Material development, scale up, & operation strategies \rightarrow initial project phase