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A B S T R A C T

The potential of deep neural networks in skin lesion classification has already been demonstrated to be on-par
if not superior to the dermatologists’ diagnosis in experimental settings. However, the performance of these
models usually deteriorates in real-world scenarios, where the test data differs significantly from the training
data (i.e. domain shift). This concerning limitation for models intended to be used in real-world skin lesion
classification tasks poses a risk to patients. For example, different image acquisition systems or previously
unseen anatomical sites on the patient can suffice to cause such domain shifts. Mitigating the negative effect
of such shifts is therefore crucial, but developing effective methods to address domain shift has proven to
be challenging. In this study, we carry out a comparative analysis of eight different unsupervised domain
adaptation methods to analyze their effectiveness in improving generalization for dermoscopic datasets. To
ensure robustness of our findings, we test each method on a total of ten derived datasets, thereby covering
a variety of possible domain shifts. In addition, we investigated which factors in the domain shifted datasets
have an impact on the effectiveness of domain adaptation methods. Our findings show that all of the eight
domain adaptation methods result in improved AUPRC for the majority of analyzed datasets. Altogether, these
results indicate that unsupervised domain adaptations generally lead to performance improvements for the
binary melanoma-nevus classification task regardless of the nature of the domain shift. However, small or
heavily imbalanced datasets lead to a reduced conformity of the results due to the influence of these factors
on the methods’ performance.
1. Introduction

Deep Neural Networks (DNNs) transformed machine learning by sig-
nificantly improving predictive accuracy, even in complex experimental
applications. Several recent works have demonstrated the applicability
of deep learning based methods for skin lesion classification [1–3].
There are also efforts to develop different kinds of approaches to
improve the performance of deep learning models for real world sce-
narios [4–7]. Usually, DNNs are trained on large datasets, so they
learn the representations effectively. Apart from that, the training
dataset (or source) and the test dataset (or target) for classification
models are drawn from the same distribution. However, in skin cancer
classification, as well as in other potential real-world scenarios, the
source and target domains are generally different. Even a small-scale
deviation from the distribution of the training domain can result in un-
reliable and deteriorated predictions on the target domain [8–11]. This
deviation between datasets is commonly referred to as domain shift.
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In dermatology, these domain shifts can be caused by a combination of
different factors, such as changes in the settings of an image acquisition
system, view angle, patient age, lighting conditions in the examination
room, or the way the dermatoscope is positioned, among others.

As such domain shifts result in a performance decrease, there exist
different approaches to address this issue, e.g. data augmentation [12,
13], domain generalization [14] and domain adaptation (DA) [15,16].
Domain generalization and DA are closely related. While domain gen-
eralization methods do not access any data from the target domain,
domain adaptation methods may make use of data from the target
domain by definition. Nevertheless, all these approaches can only
reduce, but not remove the discrepancy between domains [8].

Domain adaptation is typically applied in cases where the domain
feature spaces and tasks remain the same while only the distribu-
tions differ between source and target datasets (presence of a domain
shift) [17–19]. Mainly this is done by either moment-matching methods
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or by adversarial learning [20]. The knowledge transfer from source to
target works via finding domain-invariant representations, which are
used to bridge the discrepancy between domains [21].

Unsupervised Domain Adaptation (UDA) methods are well stud-
ied and established on multiple benchmark datasets (usually natu-
ral images), like Office-10, Caltech-10, Office-31, MNIST, and SVHN
datasets [15,22,23], but their performance is not verified on new
tasks [24]. Therefore it may be more difficult to choose a proper
method for real-life applications. Apart from this, existing medical
images are mostly unlabeled as it is generally difficult to obtain labeled
data in the medical field. For a sufficient ground truth (labels) for
dermoscopic images, a biopsy of the human lesion needs to be per-
formed. Therefore, the overall process of obtaining and reliably labeling
dermoscopic data is labor-intensive. That is why further task-specific
fine-tuning of DNN is time-consuming and difficult. These limitations
can be addressed by utilizing specifically domain adaptation methods
which are unsupervised [25].

Significant work has already been invested into utilizing data aug-
mentation techniques for dermoscopic skin lesion analyses [26–28].
Similarly, domain generalization techniques [29,30] and DA methods
(Section 2) have been utilized for dermoscopic image analyses. How-
ever, to our knowledge, there is no previous research that applies
UDA methods as a benchmark on dermoscopic skin cancer datasets.
In addition, most existing works on domain adaptation assume their
datasets to be domain shifted without quantifying it. In more complex
tasks such as dermoscopic image classification, where even medical
experts struggle to differentiate melanomas and nevi in particular
situations, it is crucial to ensure that the datasets are truly domain
shifted. In our previous work [31], we grouped and quantified domain
shifted datasets for dermoscopic skin cancer classification, which we
will use in this study. Additionally, other studies acknowledge their
performance improvements without focusing on influential factors. We
aim to identify possible factors for this performance improvement.
Furthermore, other studies typically focus only on their benchmark
and do not compare their results to other tasks, which can limit the
generalizability of their findings. Therefore, while good performance
on one method with one dataset or task may indicate its effectiveness,
it does not guarantee the same performance improvement with other
datasets or tasks.

Our contributions are the following:

• we provide a comparative analysis of 8 UDA methods on 10
derived dermoscopic datasets with quantified (not assumed) bi-
ological and technical domain shifts.

• we identify dataset- and method-specific factors that influence the
performance of UDA methods.

• we compare our results to other benchmark domain adaptation
datasets (e.g. Office-31).

This work is structured as follows: First, we discuss related works
which focus on UDA methods and benchmarking in Section 2. In Sec-
tion 3 we describe the used dermoscopic datasets and the UDA methods
we compared in our analyses. We further explain our experimental
settings. Finally, in Section 4 we discuss our results regarding different
aspects of comparison. We examine the influence of class imbalance,
target dataset size, as well as the performance itself using the Area
Under the Receiver Operating Characteristic (AUROC) and the Area
Under the Precision–Recall Curve (AUPRC). We conclude the paper
in Section 5 with our findings and discuss possible future research
directions.

2. Related work

Ben-David et al. [32] pioneered domain adaptation theory and
further classified DA methods into supervised and unsupervised ap-
proaches based on label availability. In Supervised Domain Adaptation
2

(SDA) the model is trained on the source domain and tested on the
target domain, both with labeled data. The most common approach
for SDA is pretraining on the source domain and fine-tuning on the
target domain. However, for the translation of medical applications
into the clinic this approach is impractical and time-consuming because
it needs to be retrained for every new clinical scenario. The main
goal of UDA is to enable the adaptation to new domains for better
generalization by matching the marginal [33–36] or the conditional
distributions [37,38] of the labeled source and unlabeled target do-
mains. As the dearth of labeled data is the most prominent issue in
the medical field, UDA methods gained a lot of attention, especially in
medical image analysis [25]. Owing to the advantages of UDA- over
SDA methods, most of the existing DA research is focused on UDA. To
enable adaptation from the source domain to the target domain, UDA
methods have to meet two important criteria, namely transferability
and discriminability [39]. The transferability of feature representations
from source to target is the primary indicator of the performance of
the model. Apart from this, the other key indicator is the ability to
discriminate between the classes present in the domains. There are
mainly two strategies to align feature distributions across domains:
Moment matching and adversarial training [24].

Moment matching methods aim to decrease the distribution dis-
crepancy between the source and the target domain. This is achieved by
matching the first-/ second-order moments (as mean and covariance)
of the activation distributions that are unique to each domain in the
hidden activation space [40]. Multiple UDA methods have been devel-
oped based on moment matching, including Deep Adaptation Networks
(DAN) [18] which utilize Maximum Mean Discrepancy (MMD). An
extension of DAN, called Joint Adaptation Networks (JAN) [41] has
also been established. Apart from that, Correlation Alignment (Deep-
CORAL) [42] is based on second-order statistics of both distributions.
Another approach is CMD [40], which defines a new distance func-
tion based on probability distributions by moment sequences. Methods
based on divergence are typically not very complicated, easier to train,
and do not require a lot of hyperparameter tuning for optimization.
Additionally, they are computationally efficient and are not in necessity
of large datasets [43]. However, the disadvantage of these types of
methods is that they cannot be reliably used to achieve good perfor-
mances on large datasets with more complex and diverse images. Also,
they cannot be applied to other computer vision tasks, such as seman-
tic segmentation, because they do learn image-level, not pixel-level
representations.

Adversarial training methods for domain adaptation learn
domain-invariant features. For this, a domain discriminator is trained to
differentiate between the source and the target domain by minimizing
the classification error. At the same time, the feature representations
learned by the network try to confuse the discriminator. One of the
well-studied and most used adversarial methods is the Domain Adver-
sarial Neural Network (DANN) [19]. Apart from DANN, there are other
adversarial methods like Adversarial Discriminative Domain Adapta-
tion (ADDA) [10] and Maximum Classifier Discrepancy (MCD) [44]
which are developed as an extension to the DANN approach. Typically,
adversarial methods achieve better adaptations than moment matching
methods and are the more dominant method [11]. They are very good
at enhancing the transferability of representations. Additionally, they
have good computational efficiency and work across different kinds
of datasets [43]. Discriminative approaches are able to adapt well
to larger domain shifts [10]. A disadvantage is, that in some cases
they may perform poorly on small datasets because these methods
rely on the convergence of a min–max game. Furthermore, it can be
difficult to optimize these models, and when having multimodal feature
distributions it can be challenging for adversarial methods to adapt
feature representations only [20,45,46]. The discriminability of the
learned representation happens only by minimizing the classification
error on the source domain [39]. It cannot be guaranteed that the
distributions are identical, even if the confusion of the discriminator

was fully achieved [20,47].
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Table 1
Overview of the derived datasets used for benchmarking, including dataset sizes and class distributions. H represents our source dataset. All
following domain shifted datasets are adapted with respect to H.
Abbreviation Origin Biological factors Melanoma

amount
Nevus
amount

Total target
size

H HAM Age > 30, Loc. = Body (default) 465 (10%) 4234 (90%) 4699
HA HAM Age ≤ 30, Loc. = Body 25 (4%) 532 (96%) 557
HLH HAM Age > 30, Loc. = Head/Neck 99 (45%) 121 (55%) 220
HLP HAM Age > 30, Loc. = Palms/Soles 15 (7%) 203 (93%) 218
B BCN Age > 30, Loc. = Body (default) 1918 (41%) 2721 (59%) 4639
BA BCN Age ≤ 30, Loc. = Body 71 (8%) 808 (92%) 879
BLH BCN Age > 30, Loc. = Head/Neck 612 (66%) 320 (34%) 932
BLP BCN Age > 30, Loc. = Palms/Soles 192 (65%) 105 (35%) 297
M MSK Age > 30, Loc. = Body (default) 565 (31%) 1282 (69%) 1847
MA MSK Age ≤ 30, Loc. = Body 37 (8%) 427 (92%) 464
MLH MSK Age > 30, Loc. = Head/Neck 175 (60%) 117 (40%) 292
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There exist also extensions to adversarial methods, e.g. Batch
pectral Penalization (BSP) [39], which can be used standalone or as a
egularizer to another domain adaptation method. Also Minimum Class
onfusion (MCC) [24] can be used as a standalone adaptation method
r additionally as a regularizer. The advantage of MCC over BSP is,
hat MCC as a regularizer is not limited to adversarial methods.

Besides, there is also extensive research in the direction of adver-
arial generative methods which are based on GANs. They include
generator to create virtual images, while a discriminator tries to

ifferentiate between real and generated images [45]. The research in
he area of conditional GANs [48] led to the development of meth-
ds like Conditional Adversarial Domain Adaptation (CDAN) [20].
lthough adversarial generative adaptation methods usually achieve
ood performances, they require largely scaled data for the generator
o be trained properly. Furthermore, these methods need more com-
utational resources, as well as hyperparameter tuning, which makes
he optimization process more complex [43]. Additionally, GANs show
ttractive visualizations, but they can be limited to small shifts [10].

Due to the growing demand for adapting neural networks to un-
een domains, there are other popular methods like Unsupervised
mage-to-Image Translation Networks (UNIT ) [49], Generate to Adapt
GTA) [50], Cycle-Consistent Adversarial Domain Adaptation
CyCADA) [51] and Adaptive Feature Norm (AFN) [11].

It is important to note that this area of research is rapidly grow-
ng and new domain adaptation methods are emerging in a variety
f fields, ranging from computer vision, natural language processing,
nd video analysis to robotics. Their use-case is also not just limited
o image classification tasks but is extended to semantic segmenta-
ion, face recognition, object identification, image-to-image translation,
erson re-identification, and image captioning, among others [15].
omain adaptation is also commonly used in medical image analysis.
he leading application area of visual domain adaptation in medicine
re brain images [25], while there is also research on lungs, hearts,
reasts, eyes, and abdomen. Mostly, these applications use histological
r microscopical images.

We have noticed that there is limited work applying DA to der-
oscopic images. Gu et al. [52] developed a two-step progressive

daptation method for task specific skin cancer classification. In their
pproach, they first trained a CNN on ImageNet and further fine-
uned it on an intermediate skin cancer dataset, before fine-tuning it
gain on another skin cancer dataset. Apart from that, Ahn et al. [53]
sed a similar approach of training the model initially on ImageNet
nd fine-tuning it on medical images. They used context-based fea-
ure augmentation which uses additional information about the im-
ges. They experimented with medical image modality classification,
tuberculosis dataset, as well as with skin cancer datasets.

UDA methods are typically compared against each other when a
ew method is proposed. In that comparison, the works mostly focus on
erformance comparisons with respect to other state-of-the-art meth-
ds. Most of the UDA methods are evaluated on well-studied datasets
3

ike ImageNet, MNIST, and Office-31, whereas their performance on
ther datasets is expected to change based on the available data and
he domains present in them. Even these benchmark datasets are not
nalyzed for artifacts and duplicates present within the dataset. Ring-
ald et al. [54] analyzed frequently used UDA datasets and studied the

ystematic problems with regard to dataset setup and ambiguities. They
stablished a clean Office-31 dataset for UDA algorithm comparisons.
o verify the actual efficiency of the UDA methods, it is essential to
tudy their performance on other, more real-world related datasets, as
ell. Peng et al. [55] introduced a benchmark dataset to evaluate the
erformance of UDA methods. They estimate the performance of the
omain adaptation models to transfer knowledge from synthetic to real
ata. Also, Nagananda et al. [56] compared UDA methods on publicly
vailable aerial datasets. In the medical field, Saat et al. [57] proposed
benchmark for UDA methods on brain Magnetic Resonance Imaging

MRI) - an image segmentation task. In their work, they compared UDA
ethods and evaluated the performance with respect to their baseline
odel. The source domain consists of MRI scans from multiple centers

nd different scanners. Whereas the target domain consists of MRI scans
rom a different dataset from a single center. We noticed that there
s no extensive work on benchmarking UDA methods in particular for
ermoscopic image classification.

. Materials and methods

.1. Datasets

Even though some recent works used image datasets of skin lesions,
ike MoleMap, HAM10k, and ISIC [25] for their adaptation tasks,
here is no study evaluating the actual and total domains present
n these datasets or developing and evaluating public dermoscopic
atasets particularly for domain adaptation techniques [57]. To over-
ome this limitation, we grouped and quantified potential technical and
iological shifts in our previous work [31] to obtain domain shifted
ermoscopic datasets.3 Table 1 provides a summary of the domains
bserved in the dermoscopic datasets.

As we are using unsupervised approaches, the source domain is
abeled and these labels are used for the classification at the end. It is
ssential to have a dataset that can be divided into train and test with-
ut data leakage, which is not always straightforward for dermatology
atasets due to duplicated lesion images. Apart from that, in domain
daptation analyses, the methods are evaluated from one domain to
nother (domain A to domain B) and are also tested in the opposite
irection (domain B to domain A) [19]. However, recent works stated
hat the performance of UDA methods is negatively affected by poor
ata quality and duplicates in the datasets [54]. This can be a difficulty
hen using the publicly available ISIC archive images as they contain
uplicates that are not necessarily marked as such [58].

3 https://gitlab.com/dlr-dw/isic_download

https://gitlab.com/dlr-dw/isic_download
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Table 2
Our selection of eight state-of-the-art UDA methods
for the benchmark study. The methods are based on
different types of approaches.
UDA method Type

DAN [19] Moment matching
JAN [41] Moment matching
DANN [19] Adversarial training
ADDA [10] Adversarial training
BSP [39] Extension of adversarial
MCC [24] Extension of adversarial
CDAN [20] Adversarial generative
AFN [11] Other

We chose a representative and large subset of HAM, dataset H (Ta-
ble 1), as our only source domain for the adaptation process. For this,
we used the lesion IDs present in HAM10k to remove the duplicates in
the dataset [59]. Therefore, the adaptation was done in one direction
only, using derived sub-datasets HA, HLH, HLP, as well as BCN20k [60]
and MSK [58] datasets exclusively as target domains.

3.2. UDA methods

Overall, we focus on single-source, single-target, homogeneous
adaptation without target labels. This means that there is one fully
labeled source domain and one unlabeled target domain within the
same modality and that the source and target domains share the same
classes.

We selected eight state-of-the-art UDA methods (Table 2), which
were selected based on different types, computational efficiency, and
good performance on different established datasets. These methods
have been extensively used in both medical and non-medical applica-
tions as such or as the basis of newer approaches [61]. However, the
field is evolving rapidly and there are many new techniques outper-
forming others in various applications. It would be beyond the scope
of this work to compare more methods.

3.3. Experimental setup

It is difficult to decide which UDA method is generally better
compared to others in terms of design or performance. The key char-
acteristic that determines the strength of a UDA method is its ability
to transfer feature representations from a source- to a target domain.
For this reason, we compare all UDA results to our unadapted baseline
method (Src) trained on source dataset H, which is a basic ResNet50
model [62] pre-trained on ImageNet. The other performance charac-
teristic is the discriminability between the classes within domains. We
evaluate how well the model is able to discriminate between melanoma
and nevus in our binary classification task. For this we follow standard
evaluation protocols for unsupervised domain adaptation [19,41]. For
all experiments, we used an initial learning rate (LR) of 0.01 with a
weight decay of 1e−3 and a LR-decay of 0.75. The used momentum
was 0.9 and gamma was 0.001. We set the epochs to 20 and the batch
size to 16. The comparison is based on an existing repository4 which
already implemented a variety of methods. It is open-source and has
been established on multiple popular datasets, e.g. MNIST, Office-31,
and DomainNet [61,63]. We modified the library for our classification
of dermoscopic images.

In a typical dermoscopic dataset, the presence of melanoma, in
comparison to nevus images, is very low, as can be seen in Table 1.
In our analysis, we consider melanoma as the positive and nevus as the
negative class. When it comes to a clinical translation of a diagnostic
system for skin lesions, both, True Positives and True Negatives are

4 https://github.com/thuml/Transfer-Learning-Library
4

Fig. 1. Comparison of UDA methods with respect to AUPRC change. The red line
represents the mean (of the performance on all derived datasets) and the black dots
are outliers. The black line shows the baseline at 0% performance improvement.
The performance improvement was calculated over five seeds and averaged over ten
datasets. The UDA methods are ordered in the increasing order of the mean AUPRC
change on the 𝑥-axis. The numbers in the brackets (x-axis) represent how many datasets
out of ten this particular method improved the performance.

considered very important. Therefore, we focused on AUROC and
AUPRC as evaluation metrics. The advantage of these two metrics is
that they are both threshold-free. That means, that they can provide
an overview of the performance range with different dataset splits into
positively and negatively predicted classes [64]. Also, Zhang et al. [65]
used AUROC and AUPRC for the evaluation of their domain adaptation
results in a recent work.

AUROC as a standalone metric can be misleading in imbalanced
tasks because the score can be better than random guessing (baseline =
0.5), but still misclassify the minority class. On the contrary, AUPRC is
tailored for such imbalanced cases, but may mislead in balanced cases
or where the negatives are rare. When using only AUPRC, it can be
difficult to compare results across datasets with different class ratios
and dataset sizes. The reason for this is the varying baseline of this
metric, as it is dependent on the ratio of the positive class. There-
fore, we computed both metrics, while also focusing on the AUPRC
improvement (in %) compared to the unadapted baseline method (Src),
as suggested by Zhang et al. [66]. With this approach, the results can
be compared across methods and datasets equally.

For the experiments, we included a weighted random sampler to
maintain equal class ratios per batch during model training. We also
adopted five-fold cross-validation to use all images of the available
datasets. From each fold, we selected the best epoch (out of 20) and
averaged the results. Additionally, we ran the experiments with five
seeds to observe the variability of the results over different runs. For
the end results, we averaged the values over five seeds. The seeding
makes the performance results more robust and that way shows more
realistic values.

4. Results and discussion

If a UDA method performs well on one dataset, it does not guaran-
tee similar performance on other datasets. As discussed in Section 3,
we have selected eight state-of-the-art UDA methods to evaluate the
performance on the domains present in our ten dermoscopic datasets.
We compared all adaptation methods with our non-adapted baseline
approach.

4.1. Benchmarking UDA methods on dermoscopic datasets

As stated in Section 3.3, we computed AUROC and AUPRC scores

for different derived datasets and methods, which can be seen in

https://github.com/thuml/Transfer-Learning-Library
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Table 3
Comparison of AUPRC results across different derived datasets and UDA methods. The columns represent the domain shifted datasets (target) for the source dataset H (not listed
here). Each row represents the results for a particular UDA method, with the first row indicating the results for the unadapted baseline method (Src). The best-performing UDA
method for each dataset is highlighted in bold. The percentage for each dataset shows the ratio of melanoma in that dataset, which serves as the baseline for AUPRC. The source
dataset H comprises only 10% melanoma.

Domain shifted dataset

HA HLH HLP B BA BLH BLP M MA MLH

Mel (%) 4 45 7 41 8 66 65 31 8 60

(U
DA

)
m

et
ho

d

Src 0.14±0.02 0.69±0.04 0.37±0.15 0.57±0.02 0.19±0.06 0.73±0.03 0.77±0.05 0.34±0.01 0.15±0.04 0.68±0.03

DAN 0.12±0.02 0.77±0.02 0.47±0.14 0.60±0.04 0.20±0.02 0.78±0.01 0.83±0.03 0.37±0.03 0.13±0.03 0.69±0.03

JAN 0.15±0.04 0.82±0.05 0.56±0.08 0.72±0.02 0.34±0.02 0.85±0.02 0.82±0.03 0.44±0.03 0.14±0.01 0.73±0.03
DANN 0.17±0.01 0.81±0.04 0.55±0.07 0.74±0.02 0.32±0.03 0.85±0.01 0.84±0.01 0.44±0.01 0.18±0.04 0.72±0.02

ADDA 0.18±0.06 0.81±0.02 0.55±0.03 0.74±0.01 0.36±0.03 0.87±0.01 0.83±0.02 0.44±0.02 0.17±0.03 0.73±0.03
CDAN 0.14±0.02 0.82±0.03 0.54±0.06 0.73±0.02 0.33±0.02 0.85±0.01 0.84±0.02 0.47±0.02 0.14±0.01 0.73±0.02
BSP 0.16±0.03 0.82±0.02 0.65±0.04 0.75±0.01 0.34±0.05 0.86±0.01 0.83±0.02 0.46±0.02 0.17±0.03 0.73±0.01
AFN 0.11±0.02 0.83±0.02 0.57±0.13 0.73±0.01 0.35±0.03 0.84±0.01 0.86±0.02 0.43±0.02 0.16±0.02 0.71±0.02

MCC 0.15±0.04 0.83±0.07 0.57±0.05 0.69±0.02 0.30±0.08 0.83±0.01 0.81±0.04 0.41±0.02 0.14±0.03 0.71±0.03
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Table A.1 and Table 3, respectively. To provide a better understanding
of our comparison and to demonstrate the quantified changes com-
pared to Src method, we also looked at the AUROC- (Table A.2) and
AUPRC (Table A.3) improvement (in %). In these tables, negative val-
ues, which indicate performance degradation after domain adaptation,
occur rarely.

Our results indicate, that all selected UDA methods achieve a per-
formance improvement (in %) compared to Src method over most
available domain shifted datasets (Fig. 1). BSP, ADDA and DANN, which
are all adversarial types of techniques, achieve the largest performance
improvement. According to our results, these three UDA methods were
able to improve the performance of 10 out of 10 domain shifted
dermoscopic datasets.

The performance change (in %) of each individual domain shifted
dataset per method is represented in Fig. 2. For this overview, we
combine performance change, melanoma ratio, and target dataset size
in one figure. While the performance is demonstrated in the upper
point plot, the melanoma ratio per dataset can be observed in the lower
illustration. In both sub-figures the domain shifted datasets on the 𝑥-
axis are ordered by target dataset size in an ascending order from left
to right. The largest improvements are achieved on dataset BA using
ither ADDA or AFN as the UDA method. However, although BA has the

highest improvement, it has also a high variance between the methods’
results, which ranges from 5.26% to 89.47%. All UDA methods, except
for DAN, achieved maximum performance improvement at least for one
dataset, as shown in Table A.3. It is also noteworthy that the MLH
dataset posed the greatest challenge for adaptation, as all UDA methods
seem to encounter difficulties with it (Fig. 2).

4.2. Influential factors on the performance improvement

We evaluated the results from multiple perspectives, including
dataset- and method-specific factors, which could influence the per-
formance. Of course, these factors are not exclusive and may have a
different strength of influence in other applications or tasks.

4.2.1. Dataset-specific factors
Our analysis revealed that the amount of melanoma images in the

target datasets affects the performance of UDA methods, as demon-
strated in Table 3 and Fig. 2. Several derived datasets, including HA,
LP, MA, and BA, have a low number of melanoma cases and also

epresent larger disparities between the results of all UDA methods
Table A.3). Datasets HLH, B and M have a more balanced distribution
etween both classes and therefore show more agreeing results between
ll UDA-methods (Table 1). Adversarial methods and their extensions
ppear to perform better for such imbalanced datasets. For instance,
DDA is the most effective UDA method for dataset HA, which has the

owest melanoma ratio of 4%. On the other hand, some datasets such as
5

BLP, BLH, and MLH are dominated by melanoma cases and therefore all
ethods show similar improvement in AUPRC scores. Although there

re cases where no improvement can be detected from the unadapted
aseline, we observe that most methods agree with each other when it
omes to datasets with a high melanoma ratio (Fig. 2).

It is worth noting that MA, HA, and BA datasets contain images of
kin lesions from patients below the age of 30. These datasets include
oth, young patients and children, as we have previously noted in our
ork [31]. Diagnosing melanoma in children is a unique challenge in

linical diagnosis, as they do not show typical ABCDE features [67]
sed to identify melanomas in adults due to their different appear-
nce [68]. This may result in a lower performance improvement after
daptation.

In order to achieve performance improvements in UDA methods, it
s necessary to have a large dataset available for the training process
f the adaptation method [69]. As shown in Table 3 and Fig. 2 this
s a fact we can confirm, because for the larger datasets M and B,
ost of the methods (except for DAN) showed higher improvement

n performance compared to other datasets. Interestingly, these two
atasets have a balanced class distribution, too, which is most likely
nfluential, as well. An exception to this observation is dataset HLP
here most methods show agreement despite the small dataset size
nd low melanoma ratio. We assume this is because of the relative
imilarity of the target dataset to the source dataset (H). In our previous
nalysis [31], we found that HLP is one of the most similar datasets
o H in terms of melanoma images, as measured by cosine similarity
nd JS-divergence. Additionally, it is worth pointing out that for this
ataset, the variation between the least performing DAN and the best
erforming BSP method is high.

In our study, we were under the assumption that higher divergence
orresponds to lower performance, therefore leading to an important
nvestigation into the relationship between domain shift measures and
erformance. For JS-divergence and AUROC (mean across all methods),
s well as JS-divergence and AUROC (best-performing method) we
bserved only a moderate correlation. Interestingly, when observing
he behavior of the two separate classes, melanoma and nevus, the
orrelation was slightly stronger for the nevus class. When comparing
hese findings to the domain shift measure cosine similarity, we found
hat only the nevus class exhibited moderate correlations. Specifically,
he AUPRC (mean across all methods) and the AUPRC (best-performing
ethod) showed moderate correlations with cosine similarity. The

mprovement percentage and the variation intensity between the per-
ormances did not show any correlation with one of the domain shift
uantification measures. Nevertheless, when examining the domain
hift qualitatively, it appears to be challenging to improve performance
sing UDA methods when both, biological and technical shifts are
epresented.

In summary, various dataset-specific factors contribute to the per-
ormance of UDA methods, such as melanoma ratio, target size, and
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Fig. 2. Change in AUPRC (in %) with respect to the unadapted baseline model (Src). Individual UDA methods (color-coded) are illustrated across all domain shifted datasets
(x-axis). The upper panel of the figure shows the AUPRC change (in %). The black line at 0 on the 𝑦-axis highlights the methods that show a performance degradation or no
improvement (w.r.t the unadapted baseline method). The lower panel shows the melanoma ratio for each dataset. The datasets on the 𝑥-axis are ordered by total target size in an
scending manner.
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4

ow similar or dissimilar datasets are with respect to the source dataset
. At present, it remains unclear which factor has the greatest influence
n performance improvement with UDA. More likely, the performance
s influenced by a combination of multiple factors. Therefore, it is
ssential to continue investigating and exploring influential factors to
etter understand their impact on UDA performance. Our analysis was
imed to understand if UDA methods are effective for adapting to
nseen skin lesion domains. In this process, we tried to estimate what
actors might have resulted in the final performance seen in Fig. 2,
owever, we believe there are other influencing variables in addition
o what was discussed.

.2.2. Method-specific factors
As shown in Fig. 1, BSP is the best-performing method with higher

ean AUPRC change compared to all the approaches used. This can
e attributed to the fact that BSP utilizes regularization, which can
e incorporated into adversarial domain adaptation networks [39]. It
enalizes the spectral norm of the adaptation layers, which is believed
o have an effect on the domain shifts specific to our datasets.

The next best performing method is ADDA, which is also an ad-
ersarial approach focusing on discriminative adaptation. This method
ombines the key strategies of previously demonstrated domain adap-
ation approaches into one method [10]. The authors of the approach
eveloped this method as a more generalized framework for adversarial
daptation that includes other adversarial approaches. We assume that
ight be one of the reasons for it to be one of the top-performing
odels.

Another method is DANN, an adversarial-based approach that com-
ines a domain discriminator with a label classifier. The success of
his approach is based on the ability to learn domain-invariant features
etween different domains in our skin lesion datasets. It is also the
odel that showed the highest improvement in performance for the

hallenging MA dataset. At this point, it is essential to emphasize that
n our analysis, the top performing model BSP is a regularizer on top
f DANN.
JAN is the leading moment matching approach performance-wise.

undamentally it is learning transferable representations between our
6

omains. We assume that this model worked better in comparison to t
ther moment matching methods because it reduces the shift in joint
istributions of the activation in the networks task-specific layers in
omparison to matching the marginal distributions of features across
omains. However JAN works on 9/10 datasets, unlike the above
hree methods that improved the performance on all available domains.
AN (0.14 AUPRC) did not seem to improve the performance for the
hallenging MA dataset in comparison to the unadapted baseline (0.15
UPRC).

We were able to observe that the extension to the adversarial gen-
rative approach (CDAN) did not perform as well as purely adversarial
ethods. This might be due to the fact that CDAN is developed for

ligning different domains of multi-modal distributions in an adversar-
al framework. Similarly to the performance of JAN, even CDAN failed
o show an improvement in performance for MA. A different way to
andle domain adaptation represents AFN, which showed performance
mprovement for MA dataset, but performance degradation for HA,
here it is the least performing method in comparison to all other
ethods as shown in Fig. 2. This shows that progressively adapting

he feature norms of specifically HA did not result in a transfer gain
etween the domains. Also the idea of utilizing less class confusion
o imply more transferability in MCC did not seem to lead to an
mprovement in most of the domains. As seen in Fig. 2 and Table A.3,
CC is consistently one of the bad-performing methods in most of the

omains.
Of all the models we experimented with, DAN is the least perform-

ng model for all domains. Also, as shown in Table A.3, DAN is the
nly model that did not work as the best performer to even at least
ne dataset. This shows that the architecture of DAN does not seem to
e tailored for our skin lesion task.

Regarding the AUROC and AUPRC metrics, it appears that ad-
ersarial methods and their extensions generally outperform moment
atching methods, with the exception of JAN for the MLH dataset

n terms of AUPRC score. This finding is consistent with existing
iterature indicating that adversarial methods tend to perform better
han moment matching methods [11].

.3. Performance of UDA methods on non-dermoscopic datasets

One of the main reasons for the usage of AUROC for evaluation is

hat various works on UDA methods compare their results either with
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Table A.1
Comparison of AUROC results across different derived datasets and UDA methods. The columns represent the domain shifted target datasets for the source dataset H (not listed
here). Each row represents the results for a particular UDA method, with the first row indicating the results for the unadapted baseline method (Src). The best-performing UDA
method for each dataset is highlighted in bold.

Domain shifted dataset

HA HLH HLP B BA BLH BLP M MA MLH

(U
DA

)
m

et
ho

d

Src 0.65±0.04 0.74±0.05 0.82±0.08 0.65±0.01 0.58±0.05 0.61±0.03 0.62±0.07 0.51±0.01 0.60±0.05 0.57±0.03

DAN 0.64±0.06 0.79±0.02 0.85±0.06 0.67±0.02 0.59±0.02 0.65±0.02 0.70±0.06 0.52±0.02 0.52±0.05 0.59±0.04

JAN 0.71±0.04 0.85±0.03 0.92±0.02 0.76±0.01 0.69±0.01 0.74±0.02 0.69±0.04 0.62±0.03 0.55±0.06 0.61±0.02

DANN 0.73±0.03 0.84±0.03 0.91±0.03 0.78±0.01 0.67±0.02 0.75±0.01 0.72±0.02 0.62±0.01 0.60±0.03 0.62±0.03

ADDA 0.74±0.06 0.84±0.01 0.92±0.01 0.78±0.01 0.68±0.04 0.77±0.01 0.70±0.03 0.62±0.01 0.59±0.03 0.63±0.03
CDAN 0.71±0.05 0.85±0.01 0.90±0.03 0.77±0.01 0.68±0.03 0.75±0.02 0.71±0.02 0.64±0.02 0.56±0.02 0.62±0.03

BSP 0.72±0.03 0.84±0.01 0.94±0.02 0.78±0.01 0.70±0.04 0.75±0.02 0.71±0.02 0.64±0.02 0.56±0.02 0.62±0.02

AFN 0.67±0.03 0.85±0.02 0.92±0.05 0.76±0.01 0.66±0.01 0.73±0.01 0.73±0.03 0.60±0.01 0.55±0.02 0.60±0.02

MCC 0.70±0.01 0.87±0.03 0.94±0.02 0.76±0.01 0.68±0.03 0.73±0.01 0.70±0.04 0.61±0.03 0.58±0.08 0.59±0.02
AUROC or accuracy. In particular, in the medical field it is common
practice to compare methods based on AUROC scores [70–72]. Most
of the domain adaptation studies use accuracy as their metric for
comparisons of methods, but none of these studies discuss the possible
imbalance in their datasets.

Typical datasets used for domain adaptation tasks are, for instance,
MNIST or Office-31. These images are easier to adapt to and differ a
lot more than dermoscopic images do. Moreover, benchmark datasets
for UDA are typically large, have almost balanced classes and the
classification ability can even be validated by non-expert humans. On
the contrary, dermoscopic images look very similar, making the task
not only difficult for medical experts but also for the neural network.
Backgrounds can contain unwanted complex structures used by the
neural networks for training, such as black borders or hair.

When comparing all used methods, DAN performs poorly in our
dermoscopic scenario, as well as in other adaptation tasks [10,11,18–
20,24,39,41]. Our selection of UDA methods is benchmarked on Office-
31-, Office-Home, ImageCLEF-DA-, and VisDA17-datasets. It is worth
noting that not all UDA methods are compared in each work and on
each of these datasets. Therefore, a fair comparison of non-dermoscopic
results is not possible.

We can observe, that the adversarial UDA methods, namely BSP
and ADDA, which are overall performing better in our dermoscopic
scenario, also perform very well in other image classification tasks.
According to the authors of [39], their method BSP specifically boosts
the performance on relatively difficult tasks, where the source domain
is quite small. ADDA was not often compared in these works, but it
is outperformed by CDAN in the Office-31 adaptation. For all other
methods, it is not possible to provide a clear order of performance im-
provements as they are compared on different tasks and with different
methods. DAN, DANN and JAN are outperformed by all mentioned
methods in Office-31-, ImageCLEF-DA-, Office-Home- and VisDA17-
adaptation. CDAN is outperformed in Office-Home-, Office-31- and
VisDA17-adaptation by AFN, MCC and BSP+CDAN.

5. Conclusion

This is the first work benchmarking UDA methods on dermoscopic
datasets. We enable the reproducibility of results and their interpreta-
tions due to the utilization of publicly available datasets. Furthermore,
the domain shifts between the derived datasets were quantified, unlike
for most benchmark studies. Our analysis reveals that all selected UDA
methods from different technical approaches improve the performance
for most datasets compared to the unadapted baseline, however to
different extents.

We have additionally performed a comparative analysis to exam-
ine how the performance of UDA methods is influenced by dataset-
and method-specific factors, such as class imbalance and type of ap-
proach. It became evident that the overall performance of UDA methods
depends on combinations of these factors.
7

Moreover, we compared the resulting performance of our selected
UDA methods on dermoscopic images to the performance of other
common benchmark adaptation tasks. In most cases, the UDA methods
that performed well on dermoscopic datasets also proved to be the top
performers in other non-dermoscopic tasks.

In our analysis, our aim was to compare different UDA methods to
the same (well-established) ResNet-50 model as a baseline. However,
the selection of the pre-trained model typically impacts the overall
performance, which could be investigated in the future. Additionally,
it is worth noting that noise in dermoscopic images may also affect
a classifier’s performance. Implementing denoising techniques for skin
lesion classification could therefore be an interesting direction in the
following studies. Investigating the intensity of performance degrada-
tion when gradually reducing the target dataset size or melanoma ratio
should be investigated, too. Another possible area of interest is multi-
source domain adaptation, where multiple modalities, e.g. clinical and
dermoscopic images, are included in a skin lesion classifier. Our gen-
eral recommendations favor the use of adversarial methods for UDA,
as these consistently demonstrated substantial improvements. Ideally,
the datasets should be large and balanced, because a low melanoma
ratio was indicative of a high performance variance, thus making the
performance of the applied methods uncertain.
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See Tables A.1–A.3.
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Table A.2
Comparison of change in AUROC results for each UDA method with respect to the unadapted baseline method (Src) for different datasets. H is the source dataset and the target
datasets are listed in columns. The rows represent the improvements (in %) for each UDA-method.

Domain shifted dataset

HA HLH HLP B BA BLH BLP M MA MLH

U
DA

m
et

ho
d

DAN −1.54 6.76 3.66 3.08 1.72 6.56 12.9 1.96 −13.33 3.51
JAN 9.23 14.86 12.20 16.92 18.97 21.31 11.29 21.57 −8.33 7.02

DANN 12.31 13.51 10.98 20.00 15.52 22.95 16.13 21.57 0 8.77
ADDA 13.85 13.51 12.20 20.00 17.24 26.23 12.90 21.57 −1.67 10.53
CDAN 9.23 14.86 9.76 18.46 17.24 22.95 14.52 25.49 −6.67 8.77
BSP 10.77 13.51 14.63 20.00 20.69 22.95 14.52 25.49 −6.67 8.77
AFN 3.08 14.86 12.20 16.92 13.79 19.67 17.74 17.65 −8.33 5.26
MCC 7.69 17.57 14.63 16.92 17.24 19.67 12.9 19.61 −3.33 3.51
Table A.3
Comparison of change in AUPRC results for each UDA method with respect to the unadapted baseline method (Src) for different datasets. H is the source dataset and the target
datasets are listed in columns. The rows represent the improvements (in %) for each UDA-method.

Domain shifted dataset

HA HLH HLP B BA BLH BLP M MA MLH

U
DA

m
et

ho
d

DAN −14.29 11.59 27.03 5.26 5.26 6.85 7.79 8.82 −13.33 1.47
JAN 7.14 18.84 51.35 26.32 78.95 16.44 6.49 29.41 −6.67 7.35

DANN 21.43 17.39 48.65 29.82 68.42 16.44 9.09 29.41 20.00 5.88
ADDA 28.57 17.39 48.65 29.82 89.47 19.18 7.79 29.41 13.33 7.35
CDAN 0 18.84 45.95 28.07 73.68 16.44 9.09 38.24 −6.67 7.35
BSP 14.29 18.84 75.68 31.58 78.95 17.81 7.79 35.29 13.33 7.35
AFN −21.43 20.29 54.05 28.07 84.21 15.07 11.69 26.47 6.67 4.41
MCC 7.14 20.29 54.05 21.05 57.89 13.70 5.19 20.59 −6.67 4.41
References

[1] Barros Mendes Danilo, Correia da Silva Nilton. Skin Lesions Classification Using
Convolutional Neural Networks in Clinical Images. 2018, http://dx.doi.org/10.
48550/arXiv.1812.02316.

[2] Pious Ignatious K, Srinivasan R. A review on early diagnosis of skin cancer
detection using deep learning techniques. In: 2022 international conference on
computer, power and communications. IEEE; 2022, http://dx.doi.org/10.1109/
iccpc55978.2022.10072274.

[3] Goceri Evgin. Automated skin cancer detection: Where we are and the way to the
future. In: 2021 44th international conference on telecommunications and signal
processing. 2021, p. 48–51. http://dx.doi.org/10.1109/TSP52935.2021.9522605.

[4] Yap Jordan, Yolland William, Tschandl Philipp. Multimodal skin lesion classi-
fication using deep learning. Exp Dermatol 2018;27(11):1261–7. http://dx.doi.
org/10.1111/exd.13777.

[5] Bissoto Alceu, Fornaciali Michel, Valle Eduardo, Avila Sandra. (De)constructing
bias on skin lesion datasets. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition (CVPR) workshops. 2019, http://dx.
doi.org/10.48550/arXiv.1904.08818.

[6] Sun Qilin, Huang Chao, Chen Minjie, Xu Hui, Yang Yali. Skin lesion classification
using additional patient information. BioMed Res Int 2021;2021:1–6. http://dx.
doi.org/10.1155/2021/6673852.

[7] Goceri Evgin. Convolutional neural network based desktop applications to
classify dermatological diseases. In: 2020 IEEE 4th international conference on
image processing, applications and systems. 2020, p. 138–43. http://dx.doi.org/
10.1109/IPAS50080.2020.9334956.

[8] Yosinski Jason, Clune Jeff, Bengio Yoshua, Lipson Hod. How transferable are
features in deep neural networks? In: Advances in neural information processing
systems. Vol. 27. 2014, http://dx.doi.org/10.48550/arXiv.1411.1792.

[9] Ovadia Yaniv, Fertig Emily, Ren Jie, Nado Zachary, Sculley D, Nowozin Se-
bastian, et al. Can you trust your model’s uncertainty? Evaluating predictive
uncertainty under dataset shift. In: Wallach H, Larochelle H, Beygelzimer A,
d’ Alché-Buc F, Fox E, Garnett R, editors. Advances in neural information
processing systems. Vol. 32. Curran Associates, Inc.; 2019, http://dx.doi.org/
10.48550/arXiv.1906.02530.

[10] Tzeng Eric, Hoffman Judy, Saenko Kate, Darrell Trevor. Adversarial discrimi-
native domain adaptation. In: 2017 IEEE conference on computer vision and
pattern recognition. IEEE; 2017, http://dx.doi.org/10.1109/cvpr.2017.316.

[11] Xu Ruijia, Li Guanbin, Yang Jihan, Lin Liang. Larger norm more transferable:
An adaptive feature norm approach for unsupervised domain adaptation. In:
2019 IEEE/CVF international conference on computer vision. IEEE; 2019, http:
//dx.doi.org/10.1109/iccv.2019.00151.

[12] Yao Huaxiu, Wang Yu, Li Sai, Zhang Linjun, Liang Weixin, Zou James, et
al. Improving out-of-distribution robustness via selective augmentation. In: In-
ternational conference on machine learning. PMLR; 2022, p. 25407–37. http:
//dx.doi.org/10.48550/arXiv.2201.00299.
8

[13] Goceri Evgin. Medical image data augmentation: Techniques, comparisons and
interpretations. Artif Intell Rev 2023;56(11):12561–605. http://dx.doi.org/10.
1007/s10462-023-10453-z.

[14] Wang Jindong, Lan Cuiling, Liu Chang, Ouyang Yidong, Qin Tao. Generalizing
to unseen domains: A survey on domain generalization. In: Proceedings of the
thirtieth international joint conference on artificial intelligence. International
Joint Conferences on Artificial Intelligence Organization; 2021, http://dx.doi.
org/10.24963/ijcai.2021/628.

[15] Wang Mei, Deng Weihong. Deep visual domain adaptation: A survey.
Neurocomputing 2018;312:135–53. http://dx.doi.org/10.1016/j.neucom.2018.
05.083.

[16] Guo Lin Lawrence, Pfohl Stephen R, Fries Jason, Johnson Alistair, Posada Jose,
Aftandilian Catherine, et al. Evaluation of domain generalization and adaptation
on improving model robustness to temporal dataset shift in clinical medicine.
Cold Spring Harbor Laboratory; 2021, http://dx.doi.org/10.1101/2021.06.17.
21259092.

[17] Quinonero-Candela Joaquin, Sugiyama Masashi, Schwaighofer Anton,
Lawrence Neil D. Dataset shift in machine learning. Mit Press; 2008,
http://dx.doi.org/10.7551/mitpress/9780262170055.001.0001.

[18] Long Mingsheng, Cao Yue, Wang Jianmin, Jordan Michael. Learning transferable
features with deep adaptation networks. In: International conference on machine
learning. PMLR; 2015, p. 97–105, URL https://dl.acm.org/doi/10.5555/3045118.
3045130, retrieved on 12/08/23.

[19] Ganin Yaroslav, Lempitsky Victor. Unsupervised domain adaptation by back-
propagation. In: International conference on machine learning. PMLR; 2015,
p. 1180–9, URL https://dl.acm.org/doi/10.5555/3045118.3045244, retrieved on
12/08/23.

[20] Long Mingsheng, Cao Zhangjie, Wang Jianmin, Jordan Michael I. Conditional ad-
versarial domain adaptation. In: Bengio S, Wallach H, Larochelle H, Grauman K,
Cesa-Bianchi N, Garnett R, editors. Advances in neural information processing
systems. Vol. 31. Curran Associates, Inc.; 2018, https://proceedings.neurips.cc/
paper/2018/file/ab88b15733f543179858600245108dd8-Paper.pdf, retrieved on
12/08/23.

[21] Pan Sinno Jialin, Yang Qiang. A survey on transfer learning. IEEE Trans Knowl
Data Eng 2010;22(10):1345–59. http://dx.doi.org/10.1109/TKDE.2009.191.

[22] Patel Vishal M, Gopalan Raghuraman, Li Ruonan, Chellappa Rama. Visual
domain adaptation: A survey of recent advances. IEEE Signal Process Mag
2015;32(3):53–69. http://dx.doi.org/10.1109/msp.2014.2347059.

[23] Zhang Youshan. A survey of unsupervised domain adaptation for visual
recognition. 2021, http://dx.doi.org/10.48550/arXiv.2112.06745.

[24] Jin Ying, Wang Ximei, Long Mingsheng, Wang Jianmin. Minimum class confusion
for versatile domain adaptation. In: Computer vision – ECCV 2020. Springer
International Publishing; 2020, p. 464–80. http://dx.doi.org/10.1007/978-3-
030-58589-1_28.

[25] Guan Hao, Liu Mingxia. Domain adaptation for medical image analysis: A survey.
IEEE Trans Biomed Eng 2022;69(3):1173–85. http://dx.doi.org/10.1109/tbme.
2021.3117407.

http://dx.doi.org/10.48550/arXiv.1812.02316
http://dx.doi.org/10.48550/arXiv.1812.02316
http://dx.doi.org/10.48550/arXiv.1812.02316
http://dx.doi.org/10.1109/iccpc55978.2022.10072274
http://dx.doi.org/10.1109/iccpc55978.2022.10072274
http://dx.doi.org/10.1109/iccpc55978.2022.10072274
http://dx.doi.org/10.1109/TSP52935.2021.9522605
http://dx.doi.org/10.1111/exd.13777
http://dx.doi.org/10.1111/exd.13777
http://dx.doi.org/10.1111/exd.13777
http://dx.doi.org/10.48550/arXiv.1904.08818
http://dx.doi.org/10.48550/arXiv.1904.08818
http://dx.doi.org/10.48550/arXiv.1904.08818
http://dx.doi.org/10.1155/2021/6673852
http://dx.doi.org/10.1155/2021/6673852
http://dx.doi.org/10.1155/2021/6673852
http://dx.doi.org/10.1109/IPAS50080.2020.9334956
http://dx.doi.org/10.1109/IPAS50080.2020.9334956
http://dx.doi.org/10.1109/IPAS50080.2020.9334956
http://dx.doi.org/10.48550/arXiv.1411.1792
http://dx.doi.org/10.48550/arXiv.1906.02530
http://dx.doi.org/10.48550/arXiv.1906.02530
http://dx.doi.org/10.48550/arXiv.1906.02530
http://dx.doi.org/10.1109/cvpr.2017.316
http://dx.doi.org/10.1109/iccv.2019.00151
http://dx.doi.org/10.1109/iccv.2019.00151
http://dx.doi.org/10.1109/iccv.2019.00151
http://dx.doi.org/10.48550/arXiv.2201.00299
http://dx.doi.org/10.48550/arXiv.2201.00299
http://dx.doi.org/10.48550/arXiv.2201.00299
http://dx.doi.org/10.1007/s10462-023-10453-z
http://dx.doi.org/10.1007/s10462-023-10453-z
http://dx.doi.org/10.1007/s10462-023-10453-z
http://dx.doi.org/10.24963/ijcai.2021/628
http://dx.doi.org/10.24963/ijcai.2021/628
http://dx.doi.org/10.24963/ijcai.2021/628
http://dx.doi.org/10.1016/j.neucom.2018.05.083
http://dx.doi.org/10.1016/j.neucom.2018.05.083
http://dx.doi.org/10.1016/j.neucom.2018.05.083
http://dx.doi.org/10.1101/2021.06.17.21259092
http://dx.doi.org/10.1101/2021.06.17.21259092
http://dx.doi.org/10.1101/2021.06.17.21259092
http://dx.doi.org/10.7551/mitpress/9780262170055.001.0001
https://dl.acm.org/doi/10.5555/3045118.3045130
https://dl.acm.org/doi/10.5555/3045118.3045130
https://dl.acm.org/doi/10.5555/3045118.3045130
https://dl.acm.org/doi/10.5555/3045118.3045244
https://proceedings.neurips.cc/paper/2018/file/ab88b15733f543179858600245108dd8-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/ab88b15733f543179858600245108dd8-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/ab88b15733f543179858600245108dd8-Paper.pdf
http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.1109/msp.2014.2347059
http://dx.doi.org/10.48550/arXiv.2112.06745
http://dx.doi.org/10.1007/978-3-030-58589-1_28
http://dx.doi.org/10.1007/978-3-030-58589-1_28
http://dx.doi.org/10.1007/978-3-030-58589-1_28
http://dx.doi.org/10.1109/tbme.2021.3117407
http://dx.doi.org/10.1109/tbme.2021.3117407
http://dx.doi.org/10.1109/tbme.2021.3117407


Informatics in Medicine Unlocked 44 (2024) 101430S. Chamarthi et al.
[26] Ayan Enes, Ünver Halil Murat. Data augmentation importance for classification
of skin lesions via deep learning. In: 2018 electric electronics, computer science,
biomedical engineerings’ meeting. 2018, p. 1–4. http://dx.doi.org/10.1109/
EBBT.2018.8391469.

[27] Pham Tri-Cong, Luong Chi-Mai, Visani Muriel, Hoang Van-Dung. Deep CNN
and data augmentation for skin lesion classification. In: Intelligent information
and database systems. Springer International Publishing; 2018, p. 573–82. http:
//dx.doi.org/10.1007/978-3-319-75420-8_54.

[28] Goceri Evgin. Comparison of the impacts of dermoscopy image augmentation
methods on skin cancer classification and a new augmentation method with
wavelet packets. Int J Imaging Syst Technol 2023;33(5):1727–44. http://dx.doi.
org/10.1002/ima.22890.

[29] Yoon Chris, Hamarneh Ghassan, Garbi Rafeef. Generalizable feature learning in
the presence of data bias and domain class imbalance with application to skin
lesion classification. Lecture notes in computer science, Springer International
Publishing; 2019, p. 365–73. http://dx.doi.org/10.1007/978-3-030-32251-9_40.

[30] Bissoto Alceu, Barata Catarina, Valle Eduardo, Avila Sandra. Artifact-based
domain generalization of skin lesion models. Lecture Notes in Computer Science,
Springer Nature Switzerland; 2023, p. 133–49. http://dx.doi.org/10.1007/978-
3-031-25069-9_10.

[31] Fogelberg Katharina, Chamarthi Sireesha, Maron Roman C, Niebling Julia,
Brinker Titus J. Domain shifts in dermoscopic skin cancer datasets: Evaluation
of essential limitations for clinical translation. New Biotechnol 2023;76:106–17.
http://dx.doi.org/10.1016/j.nbt.2023.04.006.

[32] Ben-David Shai, Blitzer John, Crammer Koby, Kulesza Alex, Pereira Fernando,
Vaughan Jennifer Wortman. A theory of learning from different domains. Mach
Learn 2009;79(1–2):151–75. http://dx.doi.org/10.1007/s10994-009-5152-4.

[33] Huang Jiayuan, Gretton Arthur, Borgwardt Karsten, Schölkopf Bernhard,
Smola Alex. Correcting sample selection bias by unlabeled data. In: Schölkopf B,
Platt J, Hoffman T, editors. Advances in neural information processing systems.
Vol. 19. MIT Press; 2006, URL https://proceedings.neurips.cc/paper/2006/file/
a2186aa7c086b46ad4e8bf81e2a3a19b-Paper.pdf, retrieved on 12/08/23.

[34] Sugiyama Masashi, Nakajima Shinichi, Kashima Hisashi, Buenau Paul, Kawan-
abe Motoaki. Direct importance estimation with model selection and its
application to covariate shift adaptation. In: Platt J, Koller D, Singer Y,
Roweis S, editors. Advances in neural information processing systems. Vol. 20.
Curran Associates, Inc.; 2007, URL https://proceedings.neurips.cc/paper/2007/
file/be83ab3ecd0db773eb2dc1b0a17836a1-Paper.pdf, retrieved on 12/08/23.

[35] Pan Sinno Jialin, Tsang Ivor W, Kwok James T, Yang Qiang. Domain adaptation
via transfer component analysis. IEEE Trans Neural Netw 2010;22(2):199–210.
http://dx.doi.org/10.1109/TNN.2010.2091281.

[36] Gong Boqing, Grauman Kristen, Sha Fei. Connecting the dots with landmarks:
Discriminatively learning domain-invariant features for unsupervised domain
adaptation. In: International conference on machine learning. PMLR; 2013,
p. 222–30, URL https://proceedings.mlr.press/v28/gong13.html, retrieved on
12/08/23.

[37] Zhang Kun, Schölkopf Bernhard, Muandet Krikamol, Wang Zhikun. Domain
adaptation under target and conditional shift. In: Proceedings of the 30th
international conference on machine learning. Proceedings of machine learning
research, vol.28, (3):PMLR; 2013, p. 819–27, URL https://proceedings.mlr.press/
v28/zhang13d.html, retrieved on 12/08/23.

[38] Courty Nicolas, Flamary Rémi, Habrard Amaury, Rakotomamonjy Alain. Joint
distribution optimal transportation for domain adaptation. In: Advances in neural
information processing systems. Vol. 30. 2017, http://dx.doi.org/10.48550/
arXiv.1705.08848.

[39] Chen Xinyang, Wang Sinan, Long Mingsheng, Wang Jianmin. Transferability vs.
Discriminability: Batch spectral penalization for adversarial domain adaptation.
In: Chaudhuri Kamalika, Salakhutdinov Ruslan, editors. Proceedings of the 36th
international conference on machine learning. Proceedings of machine learning
research, vol.97, PMLR; 2019, p. 1081–90, URL https://proceedings.mlr.press/
v97/chen19i.html, retrieved on 12/08/23.

[40] Zellinger Werner, Grubinger Thomas, Lughofer Edwin, Natschläger Thomas,
Saminger-Platz Susanne. Central moment discrepancy (cmd) for domain-invariant
representation learning. 2017, http://dx.doi.org/10.48550/arXiv.1702.08811.

[41] Long Mingsheng, Zhu Han, Wang Jianmin, Jordan Michael I. Deep transfer
learning with joint adaptation networks. In: International conference on ma-
chine learning. PMLR; 2017, p. 2208–17, URL https://dl.acm.org/doi/10.5555/
3305890.3305909, retrieved on 12/08/23.

[42] Sun Baochen, Saenko Kate. Deep coral: Correlation alignment for deep domain
adaptation. In: Computer vision–ECCV 2016 workshops. Springer; 2016, p.
443–50, URL http://dx.doi.org/10.1007/978-3-319-49409-8_35.

[43] Zhao Sicheng, Yue Xiangyu, Zhang Shanghang, Li Bo, Zhao Han, Wu Bichen, et
al. A review of single-source deep unsupervised visual domain adaptation. IEEE
Trans Neural Netw Learn Syst 2022;33(2):473–93. http://dx.doi.org/10.1109/
tnnls.2020.3028503.

[44] Saito Kuniaki, Watanabe Kohei, Ushiku Yoshitaka, Harada Tatsuya. Maximum
classifier discrepancy for unsupervised domain adaptation. In: 2018 IEEE/CVF
conference on computer vision and pattern recognition. IEEE; 2018, http://dx.
doi.org/10.1109/cvpr.2018.00392.
9

[45] Goodfellow Ian, Pouget-Abadie Jean, Mirza Mehdi, Xu Bing, Warde-Farley David,
Ozair Sherjil, et al. Generative adversarial nets. In: Ghahramani Z, Welling M,
Cortes C, Lawrence N, Weinberger KQ, editors. Advances in neural information
processing systems. Vol. 27. Curran Associates, Inc.; 2014, URL https:
//proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-
Paper.pdf, retrieved on 12/08/23.

[46] Arjovsky Martin, Bottou Leon. Towards principled methods for training
generative adversarial networks. In: International conference on learning rep-
resentations. 2017, URL https://openreview.net/forum?id=Hk4_qw5xe, retrieved
on 12/08/23.

[47] Arora Sanjeev, Ge Rong, Liang Yingyu, Ma Tengyu, Zhang Yi. Generalization
and equilibrium in generative adversarial nets (GANs). In: Precup Doina,
Teh Yee Whye, editors. Proceedings of the 34th international conference on
machine learning. Proceedings of machine learning research, vol.70, PMLR; 2017,
p. 224–32, URL https://proceedings.mlr.press/v70/arora17a.html, retrieved on
12/08/23.

[48] Mirza Mehdi, Osindero Simon. Conditional generative adversarial nets. 2014,
http://dx.doi.org/10.48550/arXiv.1411.1784.

[49] Liu Ming-Yu, Breuel Thomas, Kautz Jan. Unsupervised image-to-image translation
networks. 2017, http://dx.doi.org/10.48550/arXiv.1703.00848.

[50] Sankaranarayanan S, Balaji Y, Castillo CD, Chellappa R. Generate to adapt:
Aligning domains using generative adversarial networks. In: 2018 IEEE/CVF
conference on computer vision and pattern recognition. Los Alamitos, CA, USA:
IEEE Computer Society; 2018, p. 8503–12. http://dx.doi.org/10.1109/CVPR.
2018.00887.

[51] Hoffman Judy, Tzeng Eric, Park Taesung, Zhu Jun-Yan, Isola Phillip,
Saenko Kate, et al. Cycada: Cycle-consistent adversarial domain adaptation.
In: International conference on machine learning. Pmlr; 2018, p. 1989–98,
URL http://proceedings.mlr.press/v80/hoffman18a/hoffman18a.pdf, retrieved on
12/08/23.

[52] Gu Yanyang, Ge Zongyuan, Bonnington C Paul, Zhou Jun. Progressive transfer
learning and adversarial domain adaptation for cross-domain skin disease clas-
sification. IEEE J Biomed Health Inform 2020;24(5):1379–93. http://dx.doi.org/
10.1109/jbhi.2019.2942429.

[53] Ahn Euijoon, Kumar Ashnil, Fulham Michael, Feng Dagan, Kim Jinman. Unsuper-
vised domain adaptation to classify medical images using zero-bias convolutional
auto-encoders and context-based feature augmentation. IEEE Trans Med Imaging
2020;39(7):2385–94. http://dx.doi.org/10.1109/tmi.2020.2971258.

[54] Ringwald Tobias, Stiefelhagen Rainer. Adaptiope: A modern benchmark for un-
supervised domain adaptation. In: 2021 IEEE winter conference on applications
of computer vision. WACV, IEEE; 2021, http://dx.doi.org/10.1109/wacv48630.
2021.00015.

[55] Peng Xingchao, Usman Ben, Kaushik Neela, Wang Dequan, Hoffman Judy,
Saenko Kate. VisDA: A synthetic-to-real benchmark for visual domain adaptation.
In: 2018 IEEE/CVF conference on computer vision and pattern recognition
workshops. IEEE; 2018, http://dx.doi.org/10.1109/cvprw.2018.00271.

[56] Nagananda Navya, Taufique Abu Md Niamul, Madappa Raaga, Jahan Chowd-
hury Sadman, Minnehan Breton, Rovito Todd, et al. Benchmarking domain
adaptation methods on aerial datasets. Sensors 2021;21(23):8070. http://dx.doi.
org/10.3390/s21238070.

[57] Saat Parisa, Nogovitsyn Nikita, Hassan Muhammad Yusuf, Ganaie Muham-
mad Athar, Souza Roberto, Hemmati Hadi. A domain adaptation benchmark for
T1-weighted brain magnetic resonance image segmentation. Front Neuroinform
2022;16. http://dx.doi.org/10.3389/fninf.2022.919779.

[58] Cassidy Bill, Kendrick Connah, Brodzicki Andrzej, Jaworek-Korjakowska Joanna,
Yap Moi Hoon. Analysis of the ISIC image datasets: Usage, benchmarks and
recommendations. Med Image Anal 2022;75:102305. http://dx.doi.org/10.1016/
j.media.2021.102305.

[59] Tschandl Philipp, Rosendahl Cliff, Kittler Harald. The HAM10000 dataset, a
large collection of multi-source dermatoscopic images of common pigmented skin
lesions. Sci Data 2018;5(1):1–9. http://dx.doi.org/10.1038/sdata.2018.161.

[60] Combalia Marc, Codella Noel CF, Rotemberg Veronica, Helba Brian, Vila-
plana Veronica, Reiter Ofer, et al. BCN20000: Dermoscopic lesions in the wild.
2019, http://dx.doi.org/10.48550/arXiv.1908.02288.

[61] Jiang Junguang, Shu Yang, Wang Jianmin, Long Mingsheng. Transferability in
deep learning: A survey. 2022, http://dx.doi.org/10.48550/arXiv.2201.05867,
arXiv:2201.05867.

[62] He Kaiming, Zhang Xiangyu, Ren Shaoqing, Sun Jian. Deep residual learning
for image recognition. In: 2016 IEEE conference on computer vision and pattern
recognition. IEEE; 2016, http://dx.doi.org/10.1109/cvpr.2016.90.

[63] Jiang Junguang, Chen Baixu, Fu Bo, Long Mingsheng. Transfer-learning-library.
2020, GitHub repository, GitHub, https://github.com/thuml/Transfer-Learning-
Library, retrieved on 12/08/23.

[64] Saito Takaya, Rehmsmeier Marc. The precision-recall plot is more informative
than the ROC plot when evaluating binary classifiers on imbalanced datasets.
PLoS One 2015;10(3):e0118432, URL http://dx.doi.org/10.1371/journal.pone.
0118432.

[65] Zhang Tianran, Chen Muhao, Bui Alex AT. AdaDiag: Adversarial domain adap-
tation of diagnostic prediction with clinical event sequences. J Biomed Inform
2022;134:104168. http://dx.doi.org/10.1016/j.jbi.2022.104168.

http://dx.doi.org/10.1109/EBBT.2018.8391469
http://dx.doi.org/10.1109/EBBT.2018.8391469
http://dx.doi.org/10.1109/EBBT.2018.8391469
http://dx.doi.org/10.1007/978-3-319-75420-8_54
http://dx.doi.org/10.1007/978-3-319-75420-8_54
http://dx.doi.org/10.1007/978-3-319-75420-8_54
http://dx.doi.org/10.1002/ima.22890
http://dx.doi.org/10.1002/ima.22890
http://dx.doi.org/10.1002/ima.22890
http://dx.doi.org/10.1007/978-3-030-32251-9_40
http://dx.doi.org/10.1007/978-3-031-25069-9_10
http://dx.doi.org/10.1007/978-3-031-25069-9_10
http://dx.doi.org/10.1007/978-3-031-25069-9_10
http://dx.doi.org/10.1016/j.nbt.2023.04.006
http://dx.doi.org/10.1007/s10994-009-5152-4
https://proceedings.neurips.cc/paper/2006/file/a2186aa7c086b46ad4e8bf81e2a3a19b-Paper.pdf
https://proceedings.neurips.cc/paper/2006/file/a2186aa7c086b46ad4e8bf81e2a3a19b-Paper.pdf
https://proceedings.neurips.cc/paper/2006/file/a2186aa7c086b46ad4e8bf81e2a3a19b-Paper.pdf
https://proceedings.neurips.cc/paper/2007/file/be83ab3ecd0db773eb2dc1b0a17836a1-Paper.pdf
https://proceedings.neurips.cc/paper/2007/file/be83ab3ecd0db773eb2dc1b0a17836a1-Paper.pdf
https://proceedings.neurips.cc/paper/2007/file/be83ab3ecd0db773eb2dc1b0a17836a1-Paper.pdf
http://dx.doi.org/10.1109/TNN.2010.2091281
https://proceedings.mlr.press/v28/gong13.html
https://proceedings.mlr.press/v28/zhang13d.html
https://proceedings.mlr.press/v28/zhang13d.html
https://proceedings.mlr.press/v28/zhang13d.html
http://dx.doi.org/10.48550/arXiv.1705.08848
http://dx.doi.org/10.48550/arXiv.1705.08848
http://dx.doi.org/10.48550/arXiv.1705.08848
https://proceedings.mlr.press/v97/chen19i.html
https://proceedings.mlr.press/v97/chen19i.html
https://proceedings.mlr.press/v97/chen19i.html
http://dx.doi.org/10.48550/arXiv.1702.08811
https://dl.acm.org/doi/10.5555/3305890.3305909
https://dl.acm.org/doi/10.5555/3305890.3305909
https://dl.acm.org/doi/10.5555/3305890.3305909
http://dx.doi.org/10.1007/978-3-319-49409-8_35
http://dx.doi.org/10.1109/tnnls.2020.3028503
http://dx.doi.org/10.1109/tnnls.2020.3028503
http://dx.doi.org/10.1109/tnnls.2020.3028503
http://dx.doi.org/10.1109/cvpr.2018.00392
http://dx.doi.org/10.1109/cvpr.2018.00392
http://dx.doi.org/10.1109/cvpr.2018.00392
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://openreview.net/forum?id=Hk4_qw5xe
https://proceedings.mlr.press/v70/arora17a.html
http://dx.doi.org/10.48550/arXiv.1411.1784
http://dx.doi.org/10.48550/arXiv.1703.00848
http://dx.doi.org/10.1109/CVPR.2018.00887
http://dx.doi.org/10.1109/CVPR.2018.00887
http://dx.doi.org/10.1109/CVPR.2018.00887
http://proceedings.mlr.press/v80/hoffman18a/hoffman18a.pdf
http://dx.doi.org/10.1109/jbhi.2019.2942429
http://dx.doi.org/10.1109/jbhi.2019.2942429
http://dx.doi.org/10.1109/jbhi.2019.2942429
http://dx.doi.org/10.1109/tmi.2020.2971258
http://dx.doi.org/10.1109/wacv48630.2021.00015
http://dx.doi.org/10.1109/wacv48630.2021.00015
http://dx.doi.org/10.1109/wacv48630.2021.00015
http://dx.doi.org/10.1109/cvprw.2018.00271
http://dx.doi.org/10.3390/s21238070
http://dx.doi.org/10.3390/s21238070
http://dx.doi.org/10.3390/s21238070
http://dx.doi.org/10.3389/fninf.2022.919779
http://dx.doi.org/10.1016/j.media.2021.102305
http://dx.doi.org/10.1016/j.media.2021.102305
http://dx.doi.org/10.1016/j.media.2021.102305
http://dx.doi.org/10.1038/sdata.2018.161
http://dx.doi.org/10.48550/arXiv.1908.02288
http://dx.doi.org/10.48550/arXiv.2201.05867
http://arxiv.org/abs/2201.05867
http://dx.doi.org/10.1109/cvpr.2016.90
https://github.com/thuml/Transfer-Learning-Library
https://github.com/thuml/Transfer-Learning-Library
https://github.com/thuml/Transfer-Learning-Library
http://dx.doi.org/10.1371/journal.pone.0118432
http://dx.doi.org/10.1371/journal.pone.0118432
http://dx.doi.org/10.1371/journal.pone.0118432
http://dx.doi.org/10.1016/j.jbi.2022.104168


Informatics in Medicine Unlocked 44 (2024) 101430S. Chamarthi et al.
[66] Zhang Luxin, Germain Pascal, Kessaci Yacine, Biernacki Christophe. Interpretable
domain adaptation for hidden subdomain alignment in the context of pre-trained
source models. In: Proceedings of the AAAI conference on artificial intelligence.
Vol. 36, no. 8. Association for the Advancement of Artificial Intelligence (AAAI);
2022, p. 9057–65. http://dx.doi.org/10.1609/aaai.v36i8.20890.

[67] Duarte Ana F, Sousa-Pinto Bernardo, Azevedo Luís F, Barros Ana M, Puig Susana,
Malvehy Josep, et al. Clinical ABCDE rule for early melanoma detection. Eur J
Dermatol 2021;31(6):771–8. http://dx.doi.org/10.1684/ejd.2021.4171.

[68] Scope Alon, Marchetti Michael A, Marghoob Ashfaq A, Dusza Stephen W,
Geller Alan C, Satagopan Jaya M, et al. The study of nevi in children:
Principles learned and implications for melanoma diagnosis. J Am Acad Dermatol
2016;75(4):813–23. http://dx.doi.org/10.1016/j.jaad.2016.03.027.

[69] Motiian Saeid, Jones Quinn, Iranmanesh Seyed Mehdi, Doretto Gianfranco. Few-
shot adversarial domain adaptation. In: Proceedings of the 31st international
conference on neural information processing systems. Red Hook, NY, USA:
Curran Associates Inc.; 2017, p. 6673–83, URL https://dl.acm.org/doi/10.5555/
3295222.3295412, retrieved on 12/08/23.
10
[70] Purushotham Sanjay, Carvalho Wilka, Nilanon Tanachat, Liu Yan. Variational
recurrent adversarial deep domain adaptation. In: International conference
on learning representations. 2017, URL https://openreview.net/forum?id=
rk9eAFcxg, retrieved on 12/08/23.

[71] Zhou Jieli, Jing Baoyu, Wang Zeya, Xin Hongyi, Tong Hanghang. SODA:
Detecting COVID-19 in chest X-Rays with semi-supervised open set domain
adaptation. IEEE/ACM Trans Comput Biol Bioinform 2022;19(5):2605–12. http:
//dx.doi.org/10.1109/tcbb.2021.3066331.

[72] Feng Yangqin, Wang Zizhou, Xu Xinxing, Wang Yan, Fu Huazhu, Li Shaohua,
et al. Contrastive domain adaptation with consistency match for automated
pneumonia diagnosis. Med Image Anal 2023;83:102664. http://dx.doi.org/10.
1016/j.media.2022.102664.

http://dx.doi.org/10.1609/aaai.v36i8.20890
http://dx.doi.org/10.1684/ejd.2021.4171
http://dx.doi.org/10.1016/j.jaad.2016.03.027
https://dl.acm.org/doi/10.5555/3295222.3295412
https://dl.acm.org/doi/10.5555/3295222.3295412
https://dl.acm.org/doi/10.5555/3295222.3295412
https://openreview.net/forum?id=rk9eAFcxg
https://openreview.net/forum?id=rk9eAFcxg
https://openreview.net/forum?id=rk9eAFcxg
http://dx.doi.org/10.1109/tcbb.2021.3066331
http://dx.doi.org/10.1109/tcbb.2021.3066331
http://dx.doi.org/10.1109/tcbb.2021.3066331
http://dx.doi.org/10.1016/j.media.2022.102664
http://dx.doi.org/10.1016/j.media.2022.102664
http://dx.doi.org/10.1016/j.media.2022.102664

	Mitigating the influence of domain shift in skin lesion classification: A benchmark study of unsupervised domain adaptation methods
	Introduction
	Related work
	Materials and Methods
	Datasets
	UDA Methods
	Experimental setup

	Results and Discussion
	Benchmarking UDA methods on dermoscopic datasets
	Influential factors on the performance improvement
	Dataset-specific factors
	Method-specific factors

	Performance of UDA methods on non-dermoscopic datasets

	Conclusion
	Declaration of competing interest
	Acknowledgments
	Appendix
	References


