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A B S T R A C T   

The limited ability of Convolutional Neural Networks to generalize to images from previously unseen domains is 
a major limitation, in particular, for safety-critical clinical tasks such as dermoscopic skin cancer classification. In 
order to translate CNN-based applications into the clinic, it is essential that they are able to adapt to domain 
shifts. Such new conditions can arise through the use of different image acquisition systems or varying lighting 
conditions. In dermoscopy, shifts can also occur as a change in patient age or occurrence of rare lesion locali
zations (e.g. palms). These are not prominently represented in most training datasets and can therefore lead to a 
decrease in performance. In order to verify the generalizability of classification models in real world clinical 
settings it is crucial to have access to data which mimics such domain shifts. To our knowledge no dermoscopic 
image dataset exists where such domain shifts are properly described and quantified. We therefore grouped 
publicly available images from ISIC archive based on their metadata (e.g. acquisition location, lesion localiza
tion, patient age) to generate meaningful domains. To verify that these domains are in fact distinct, we used 
multiple quantification measures to estimate the presence and intensity of domain shifts. Additionally, we 
analyzed the performance on these domains with and without an unsupervised domain adaptation technique. We 
observed that in most of our grouped domains, domain shifts in fact exist. Based on our results, we believe these 
datasets to be helpful for testing the generalization capabilities of dermoscopic skin cancer classifiers.   

Introduction 

Convolutional Neural Networks (CNNs) in dermoscopic skin lesion 
classification tasks have been shown to be on par or even outperform 
dermatologists in experimental settings [3,11,17,28]. Nevertheless, due 
to generalization issues, these models are not yet ready to be translated 
into the clinic [33]. In conventional Computer Vision (CV) tasks, domain 
shifts (new conditions) are rarely present, which means that the source 
(training) and target (testing) datasets are drawn from the same data 
distribution. However, in real world scenarios that is usually not the 
case. In general, CNNs have limited capabilities to adapt to domain 
shifts, thus resulting in a decrease in performance [35,49,52]. Insuffi
cient generalization in safety-critical medical applications can poten
tially jeopardize patient safety. Although various methods have been 
proposed to tackle the generalization challenge, there is currently an 
inadequate amount of testing data available to verify that these methods 

are effective for medical image data, such as domain shifted dermo
scopic images. Recent research in the field of pathology highlights the 
significance of appropriately created datasets for assessing the perfor
mance of CNN models [21,22]. As the use of CNNs in medical settings 
becomes increasingly common, it is important to implement reliable and 
trustworthy models and enhance confidence in their results [31]. The 
creation of accurate and practical real-life datasets is a crucial step to
wards achieving this objective. 

Typical benchmark data for domain adaptation tasks exists, e.g. digit 
datasets (MNIST, MNISTM, rotated MNIST, USPS, SVHN) or office ob
jects (OFFICE dataset consists of three domains: Amazon, Webcam, 
DSLR) [45]. Different adaptation techniques work well on these datasets 
[13,14,58–60]. However, good adaptation in digit images does not 
guarantee the same in dermoscopic images, where the shifts are difficult 
to recognize visually (Fig. 1). For skin cancer classification tasks, there 
exist various sources which provide publicly available dermoscopic 
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images along with their metadata, such as PH2 [30], SKINL [8] and 
DERM7PT [26]. The largest and most popular collection of databases 
comes from the International Skin Imaging Collaboration (ISIC) [44] 
which contains skin lesion images from different clinics. This variety of 
clinics and the way these datasets are published makes it difficult to 
create a standardized environment for researchers to make their results 
reproducible. 

To our knowledge, none of these dermoscopic datasets are assembled 
to multiple domains which are designed to test the generalization ca
pabilities of skin lesion classification models. For the various publicly 
available dermoscopic images it can only be speculated how large 
domain shifts between different datasets truly are and what presumably 
could cause these shifts: technical or biological change? Also, there has 
been limited effort in understanding and quantifying the domain shift 
between and within datasets [56]. Domain shifts are either visually 
identifiable or are simply assumed to exist. 

For a successful translation of such diagnostic Artificial Intelligence 
(AI) systems into the clinic, approaches to properly handle domain shifts 
are needed to generalize well on unseen data. For this purpose, multiple 
methods, such as image normalization, data augmentation and domain 
adaptation can be used. In this work we want to focus on domain 
adaptation techniques to improve the performance of our classifier on 
the grouped domain shifted test sets. As a major limitation in the med
ical field is the lack of labelled data, especially unsupervised domain 
adaptation techniques are the ones of interest. There have been ad
vancements in the field of medical image classification using unsuper
vised domain adaptation (UDA) methods [15,16,41,42]. 

Our main contributions are summarized to:  

• Characterizing possible factors which lead to potential domain shifts 
in real world clinical dermoscopy.  

• Quantifying potential domain shifts in between different and within 
the same dataset based on feature-, image- and visualization-based 
methods.  

• Grouping of public dermoscopic images into domain shifted datasets. 
Our aim is to provide these grouped datasets for other researchers 
working with dermoscopic image data, so they can test the gener
alization capabilties of their models. For this we release a repository2 

to automatically download the domain shifted datasets.  
• Investigating the influence of domain shifts on one UDA method. We 

believe that it can give a better insight into the relationship between 
domain shifts and adaptation techniques. 

This work is structured into the following parts: The related work 
discussed in Section 2 deals with existing research on domain shifts and 
highlights our motivation to identify domain shifts in dermoscopic 
datasets. In Section 3 we discuss possible domains which can arise in 
skin lesion classification and our rationale behind splitting the data into 
different categories. We further verify if our grouped datasets are in fact 
domain shifted by using multiple quantification metrics in Section 4. 
Finally, on a melanoma vs. nevus classification task we compare the 
performances of a ResNet50 with and without an unsupervised domain 
adaptation method on all grouped domain shifted datasets. The meth
odology and results are presented in Section 5. We conclude the paper 
with our findings and discuss possible future research directions in 
Section 6. 

Related work 

When focusing on domain shifts, one dataset does not necessarily 

Fig. 1. Randomly selected nevus (nvs) and melanoma (mel) images from the ISIC datasets HAM, BCN and MSK.  

2 https://gitlab.com/dlr-dw/isic_download 
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have to represent only one domain [39]. In some cases, it is also possible 
that multiple sub-domains exist within the same dataset or that two 
different datasets are considered as only one domain. A domain shift in 
dermoscopic datasets can be caused by different factors which can be 
categorized into groups. [12], grouped clinical datasets into shifts by 
technology, population and behaviour. In this paper we want to take a 
slightly different direction focusing on dermoscopic data shifts specif
ically, where we mainly group the data into technical and biological 
shifts. Different image acquisition system settings like brightness and 
contrast or lighting conditions are designated as technical domain shift. 
On the other hand, biological domain shifts can be caused by variations 
in the lesion localization and different age groups of patients. However, 
for the existing dermoscopic datasets these shifts are not described and 
quantified, but rather just assumed to exist or completely disregarded. 
Therefore a quantification of the intensity of these differences is needed 
to properly test the ability of classification models to generalize across 
domains. 

Unfortunately there is no universal quantification measure. Diver
gence measures are widely used to quantify domain shifts across CV- 
[34,61] and NLP- [24] tasks, as well as in the medical field [23,49]. 

[49] estimated the mean divergence between the source and target 
datasets in the model specific latent representation space. It is calculated 
over all convolutional filters while discarding irrelevant features for the 
task to limit the model to learn only features that might be very specific 
to the domain. The authors used three types of divergence metrics: 
Wasserstein distance, Kullback-Leibler (KL) divergence [55] and Kol
mogorov Smirnov Statistic to measure the so-called -Ĳrepresentation 
shift-İ. Also, they state that between their representation shift and ac
curacy there is higher correlation using Pearson correlation coefficient 
than with other approaches. The larger the representation shift, the 
higher the risk of performance degradation. Due to the quantification on 
feature-level, the limitation of this metric is that it is tightly connected to 
the specific model. 

On feature-level, other works show that also Cosine similarity, for 
instance, can be used to measure the shift by calculating the distance 
between two image vectors in the feature space [57]. Besides, a KL 
divergence-based approach was used to compare the similarity between 
medical images [38]. 

There is also research based on image-specific calculations of simi
larity between pixel values [34]. [36] used only the Jensen-Shannon 
(JS) divergence to calculate the average difference between two prob
ability distributions. They calculated it pairwise on image-level, be
tween all possible pairs of images from two domains, intra- and 
inter-domain. Also they show an anti-correlation between JS diver
gence and their performance measure: lower inter-domain divergence 
results in better generalization from source to target. In comparison to 
[49], the limitation is that the quantification only happens in image 

space by using only one divergence measure. 
[40] combined statistical hypothesis testing with dimensionality 

reduction to detect domain shifts. The objective of their work is to 
differentiate between small and large domain shifts present in the data. 
For that, they evaluated the most similar and dissimilar images returned 
by a domain discriminator. 

Overall, works applying domain shift quantification use various ap
proaches while focusing on distinct details. Based on the absence of a 
universal measure, it could be incomplete to use only one quantification 
approach. However, what all works have in common is that they use 
some kind of divergence measure. Furthermore, they all show a corre
lation or anti-correlation between the divergence metric and the per
formance (drop) of the classifier. 

Apart from this, another popular method for visualizing feature 
distributions of different domains in datasets is t-distributed Stochastic 
Neighbor Embedding (t-SNE) [14,54]. t-SNE projections are widely used 
in domain adaptation applications for visualizing high dimensional data 
in 2D and for estimating the domain separations. In domain adaptation 
applications, results have proven that there is a correlation between 
performance of the adaptation methods and the overlap between do
mains [14]. In our analysis, we used t-SNE projections to estimate the 
domain shifts in the datasets. 

A further way to estimate the presence of domain shifts in datasets is 
by measuring the performance drop in a classification task between the 
source and the target sets [10,49]. This is achieved by a domain classifier 
which should be able to easily distinguish datasets from different do
mains, where a large domain shift exists in between them [49]. How
ever, due to the presence of duplicates in the datasets (except for HAM), 
a domain discriminator cannot be used as a reliable metric to quantify 
domain shifts in ISIC datasets [5]. Consequently, we did not use a 
domain discriminator as a primary quantification metric, but we 
correlated it with our quantification results in Section 6. 

Divergence measures like KL and JS divergence, as well as Cosine 
similarity are used in different CV-tasks by focusing on either feature- or 
image-level measurements. Areas which utilize these metrics are simi
larity detection [6], image segmentation [25], object identification and 
face verification [32], contrastive learning [43] and quality assurance 
[4]. In the medical field specifically, such measures are mostly used in 
areas like image segmentation [46,51] and image registration [29]. 

Grouping potential domain shifted datasets from ISIC archive 

To test the generalization capabilities of a skin lesion classifier or to 
prove how effective a UDA technique is in adapting images to new do
mains, it is important to have appropriate datasets from different 
domains. 

Fig. 2. Box plots of image properties (brightness, rms-contrast) in HAM, BCN and MSK datasets, which show differences on image-level.  
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ISIC archive and domain shifts 

ISIC archive is an open-source collection of databases from clinics 
across the globe, which contains over 69,000 dermoscopic images of 
benign and malignant skin lesions with corresponding patient metadata 
[44]. For the data grouping process we selected three large datasets from 
ISIC archive: HAM [53], BCN [7] and MSK [5], which are all also 
available on separate websites. HAM (Human Against Machine) com
prises 10,000 skin lesion images including a lesion ID to identify 
duplicate images. BCN is a collection of lesion images from facilities of 
the Hospital Clinic in Barcelona collected from 2010 to 2016. MSK 
consists of lesion images collected at the Memorial Sloan-Kettering 
Cancer Center in the US. Fig. 1 shows melanoma and nevus images 
from each of the datasets. It can be noted that it is challenging to visually 
distinguish between the different domains present in the images. Apart 
from that, Fig. 1 also demonstrates the presence of artefacts, as rulers, 
markers and black borders included in the images, which can highly 
affect performance results of a classifier. 

The images present within each of the datasets are obtained from a 
wide range of patients and can include multiple lesions of the same 
patient taken at different points in time. The differences in the images 
are chiefly caused due to the variation in the a) skin lesions from 
different patients and b) mechanism/device that captures the image. In 

this dermoscopic use case we categorise these two as potential technical 
and biological shifts.  

• Technical shifts: as HAM, BCN and MSK were acquired in different 
clinics and countries, different technical settings can be expected. 
Actual information about the acquisition systems capturing the im
ages is not available in the metadata of these datasets. Dermoscope 
settings and lighting conditions in the clinic, for instance, can cause 
the dermoscopic images to look differently. To confirm our 
assumption about differences in the image properties of the three 
datasets, we analyzed and compared brightness and RMS (Root Mean 
Squared)-contrast (Fig. 2), saturation and hue (Fig. 3) and blur 
(Fig. 4) of their images. As melanoma images may look darker 
overall, we analyzed the technical properties separately for the 
classes melanoma and nevus.  

• We can observe, that while using only a subset of the entire dataset 
(n = 450 per class and dataset), there is already a clear difference in 
between the image properties of the three datasets. We under
sampled by the dataset class of the smallest size. Unexpectedly, 
melanoma and nevus do not show large variations in image prop
erties. The technical differences in the images may have an influence 
on the performance of a model trying to classify one of the three 
datasets and training on another. Consequently, we focused on the 
origin of the datasets as technical shifts. the three represented 
datasets represent a technical shift.  

• Biological shifts: arise due to multiple patient- and lesion-related 
factors. As the dermoscopic images are collected from various pa
tients, there will be a range of different skin-types, -colors and -le
sions recognizable within the images. Another relevant factor is age, 
as age groups older than 30 typically have a higher risk of having 
melanoma [37]. As melanoma in men occurs as frequently as in 
women [37], it is most likely not a relevant factor for domain shifts. 
Recent works confirmed that gender does not correlate with the 
diagnosis [20,48]. Additionally, a complete male and female split 
would never happen in a real world setting, although the preferred 
melanoma localization differs by gender. Melanoma in men occurs 
mostly on the torso, while in women melanoma are mainly diag
nosed in the lower extremities [50]. The reason is probably the 
extent of sun-exposure in these body localizations, as these have a 
higher risk for melanoma [50]. Localization may represent a domain 
shift factor, because lesions localized at the torso and lesions local
ized at the palms and soles will look different, as well as their sur
rounding skin type. Taking into account the factors discussed above, 
we focused on age and localization as biological shifts in our 
grouping procedure. 

Fig. 3. Box plots of image properties (saturation, hue) in HAM, BCN and MSK datasets, which show differences on image-level.  

Fig. 4. Box plots of image properties (blur - Laplacian of HSV color space) in 
HAM, BCN and MSK datasets, which show differences on image-level. Outliers 
were excluded from the plot. 
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Grouping procedure 

We grouped the data present in ISIC archive into technical and bio
logical domains as shown in Fig. 5. This procedure needs to take into 
account the avoidance of data leakage and the reproducibility for further 
datasets. The three datasets HAM, BCN and MSK represent the technical 
shifts as the images are obtained from different clinics and acquisition 
systems. HAM was used as training and holdout-validation set (source), 
although it contains fewer images than BCN. As HAM is the only dataset 
that contains lesion IDs, while all three datasets contain potential du
plicates, it is considered an optimal training set to avoid the falsification 
of performance results due to data leakage. The typical patient with skin 
cancer is predominantly older than 30 and with a lesion localized in the 
main body area, including torso, upper- and lower extremities [37]. That 
is why images from patients with these properties are considered as 
default for our grouping procedure. 

Table 1 provides an overview of the resulting grouped datasets from 
HAM, BCN and MSK. While the rows are clustered into groups from the 
same dataset, the columns give further information. We emphasized 
potential domain shifts, which are either biological, technical or both, 
with checkmarkers. If each of the generated domain shifted datasets can 
in fact be considered as truly domain shifted has to be verified. Also 
abbreviations for the resulting domain shifted datasets, which will 

further be referred in the following sections, can be found in Table 1. The 
table also represents dataset sizes and class distributions for each 
resulting grouped dataset. Total sizes of each dataset are not comparable 
to the original downloaded sets, as we used only images which are 
classified as either melanoma or nevi, while excluding other lesion 
types. Grouped datasets which resulted in a small dataset size (≤200 
images in total) were removed from our experiments (e.g. Age > 30, Loc. 
= Oral/Genital with only 19 melanomas and 15 nevi). 

Quantification of domain shift 

Effective performance of UDA methods requires estimating and 
reducing the divergence of the source and the target domain [2]. That is 
because performance drop of a classification model on an external test 
set is related to the divergence between domains [10,49]. Possible 
domain shifts in dermoscopic datasets are discussed in Section 3. As can 
be seen in Fig. 1, melanoma often appear darker overall and may look 
different in general. The imbalanced class distribution and appearence 
of melanoma being darker overall may affect the results of the quanti
fication measures. To avoid any risks of affection, we quantified domain 
shifts for the two classes, melanoma and nevus, separately. As it is 
essential how machine learning models perceive these domain shifts, we 

Fig. 5. Overview of the grouping process to generate domain shifted datasets 
for dermoscopic images. The three datasets (HAM, BCN, MSK) follow the same 
splitting procedure, where they are grouped by patient age and different lesion 
localizations. The leaf nodes represent the resulting potential domain shif
ted datasets. 

Table 1 
Representation of grouped datasets resulting from HAM, BCN and MSK with its 
abbreviations. Additionally, dataset sizes and class distributions (melanoma: 
nevus (total)) are included. H is further split 80:20 (372: 3387 (3759), 93: 847 
(940)) to generate a train and holdout set. Potential biological or technical 
domain shifts are emphasized with checkmarks.  

Abbreviation Origin Biological 
factors 

Class 
distribution 

Biological 
shift 

Technical 
shift 

H HAM Age > 30,  
Loc. 

= Body 
(default) 

465: 4234 
(4699)   

HA HAM Age ≤ 30, 
Loc. 

= Body 

25: 532 
(557) 

✓  

HLH HAM Age > 30,  
Loc. 

= Head/ 
Neck 

99: 121 
(220) 

✓  

HLP HAM Age > 30,  
Loc. 

= Palms/ 
Soles 

15: 203 
(218) 

✓  

B BCN Age > 30,  
Loc. 

= Body 
(default) 

1918: 2721 
(4639)  

✓ 

BA BCN Age ≤ 30,  
Loc. 

= Body 

71: 808 
(879) 

✓ ✓ 

BLH BCN Age > 30,  
Loc. 

= Head/ 
Neck 

612: 320 
(932) 

✓ ✓ 

BLP BCN Age > 30,  
Loc. 

= Palms/ 
Soles 

192: 105 
(297) 

✓ ✓ 

M MSK Age > 30,  
Loc. 

= Body 
(default) 

565: 1282 
(1847)  

✓ 

MA MSK Age ≤ 30,  
Loc. 

= Body 

37: 427 
(464) 

✓ ✓ 

MLH MSK Age > 30,  
Loc. 

= Head/ 
Neck 

175: 117 
(292) 

✓ ✓  
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analyzed the outcome of two divergence metrics: Cosine similarity and 
JS divergence. We also visualized the t-SNE projections of the datasets to 
evaluate the feature space distribution of the data. 

Divergence metrics 

As discussed in Section 2, divergence metrics can be estimated in 
both, image- and feature-space. Primarily, we tried to evaluate the 
similarity of images in the feature space by using Cosine similarity. 
However, as the image features are extracted from a model, e.g. from the 
last hidden layer of a ResNet18 model pretrained on ImageNet, esti
mating this similarity of images in feature space is model-dependent. To 
overcome this limitation, we additionally calculated Jensen Shannon 
(JS) divergence in image space. These two measures have already been 
applied in the medical domain [1,36]. 

Both metrics are estimated by comparing H dataset with each of the 
other grouped domain shifted datasets in Table 1. The specifics for the 
quantification of Cosine similarity and JS divergence are the same, 
except that the first is calculated in feature space, while the second is 
measured in image space. Both metrics are computed pairwise for a 
random sample of 250 images per dataset. This experiment is repeated 
30 times with replacement, while calculating mean, median and stan
dard deviation of the metrics. In order to select an optimal number of 

image samples for these metrics we conducted experiments with a 
varying number of samples (Figs. A.2, A.3). Although the ideal way of 
measuring divergence between datasets is to compare each combination 
of the samples, this approach is computationally intensive. Apart from 
this, we are mainly interested in a relative separation between the 
datasets to identify domains in dermoscopic datasets. 

In Figs. A.2 and A.3 it can be noticed that beyond a sample size of 250 
images the results become more stable over all 30 runs, showing a 
smaller standard deviation. We verified this effect on small (MLH 
dataset of size 292) and on large (B dataset of size 4639) datasets. 
Consequently we selected a sample size of 250 images to quantify the 
divergence metrics resulting in Figs. 6 and 7. The diagrams show, that 
melanoma and nevus have a mainly similar distribution pattern. It can 
also be noticed in both metrics that there exists a clear separation of 
HAM datasets to BCN and MSK. Moreover, BCN datasets show larger 
domain shifts with respect to H dataset than MSK datasets. Overall, the 
standard deviation of all measures over 30 iterations is very low, which 
indicates a stable quantification. 

Domain discriminator as quantification measure 

A domain discriminator is the first and usual approach to measure 
the shift between two domains [10]. However, it cannot be used reliably 
as a primary quantification metric to evaluate domain shifts in ISIC 
archive due to the presence of duplicates in the datasets [5]. Never
theless, we implemented a domain discriminator to evaluate if it can still 
differentiate between the datasets from different domains and also if the 
results correlate with the divergence metrics discussed in Section 4. In 
this process, we train a ResNet50-based classifier pretrained on Image
Net to differentiate between a source (always H) and a target dataset. If 
the resulting performance is low, the discriminator is not able to 
differentiate well, which indicates a small domain shift. On the contrary, 
a high performance indicates a large domain shift. For this purpose, 
source and target datasets are combined and split into a new training 
and test set (testsize = 0.25). 

As can be seen in Table 1, the amount of images per class for H 
(source) is different to the amount of images per class in each of the 
target datasets, where we have very different dataset sizes overall. To 
overcome this, we used sampling with replacement (n = 100 images) to 
select an equal amount of samples per dataset. Apart from that, to 
handle the imbalance of class distributions we included a weighted 
random sampler to balance the data per batch over 20 epochs. As a 
baseline, we also tested the domain discriminator on classifying images 
from the exact same dataset (H dataset). 

The performance of the domain discriminator on all domain shifted 
datasets is represented in Fig. A.6. As expected, the performance be
tween training (H) and holdout (H) dataset is poor, indicating the 
domain discriminator is not able to distinguish well between images of 
the same dataset. MSK- and BCN-based datasets are showing a larger 
domain shift quantified by the domain discriminator. 

t-SNE visualization 

Apart from the quantification of domain shifts, we also verified how 
the feature space of different domains is separated in terms of t-SNE 
projections. For these visualizations, we used all the images in each 
dataset. The analysis is done for melanoma and nevus separately. Fig. 8 
shows the separation of H, B and M datasets (Table 1) which charac
terize technical shifts. The figure shows that nevus is more clearly 
separated compared to melanoma. We have also visualized the domain 
separation for H with respect to all other datasets originating from HAM 
(HA, HLH, HLP) (Fig. 9). Biological shifts are not as clearly separated as 
the technical shifts. These results agree with the divergence metrics 
shown in Fig. 6 and Fig. 7. Furthermore, we visualized t-SNE projections 
for BCN datasets (B, BA, BLH, BLP) (Fig. A.4) and MSK datasets (M, MA, 
MLH) (Fig. A.5) with respect to H dataset. 

Fig. 6. Cosine Similarity for 30 iterations per dataset for nevus and melanoma. 
A high value represents higher similarity. It shows overall low standard devi
ation. For dataset H we do not expect a domain shift. Dashed line is the mean of 
all runs. Abbreviations of the datasets are given in Table 1. 

Fig. 7. JS divergence for 30 iterations per dataset for nevus and melanoma. A 
low value represents higher similarity. It shows overall low standard deviation. 
For dataset H we do not expect a domain shift. Dashed line is the mean of all 
runs. Abbreviations of the datasets are given in Table 1. 
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Overall, the results of divergence measures agree with the t-SNE 
visualizations. We further use these verified domain shifted datasets for 
testing the performance with and without a UDA method discussed in 
Section 5. 

Influence of domain shifts on a UDA-method 

To analyze what influence different kinds of domain shifts have, we 
compared the performances of a ResNet50 with and without an unsu
pervised domain adaptation method while using our grouped domain 
shifted datasets. By comparing source only with one adaptation method 
we can show in what cases and for what kind of datasets or shifts the 
performance improves and for what cases it does not. 

Various unsupervised domain adaptation methods have been 
developed, focusing on e.g. discrepancy-based, adversarial-based and 
reconstruction-based methods [27]. Some of these methods have been 

tested on different domain adaptation datasets, although we did not find 
any relevant literature for dermoscopic datasets. The UDA method used 
in this experiment is based on a domain-adversarial neural network 
(DANN), which showed good results for the adaptation of digit image 
datasets [13,14]. Dermoscopic skin cancer classification is a much more 
complex case, where it is even difficult for dermatologists to differen
tiate between benign and malignant. Although we have labelled target 
data available in this scenario, we wanted to focus specifically on an 
unsupervised adaptation technique as it may be more useful for 
real-world use cases. 

The network architecture of DANN [13,14] consists of three parts: a 
feature extractor, a label classifier and a domain classifier. The first two 
represent the regular feed forward procedure. The domain classifier is 
added to discriminate between both domains (source and target). 
Weights are updated by a negative lambda-parameter during back
propagation, so the domain classifiers loss is increasing, while the label 

Fig. 8. t-SNE projection for H, B, M datasets, which represents the technical shifts between the datasets. Abbreviation of the datasets are given in Table 1.  

Fig. 9. t-SNE projection for all HAM datasets representing the biological shifts between datasets. Abbreviation of the datasets are given in Table 1.  
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classifiers loss is decreasing as usual. Discriminativeness is established 
with the label classifier and domain-invariance is ensured by the domain 
classifier. 

For the experiments we used a ResNet50 for feature extraction, 
which is a good performing backbone for CV tasks in general [19]. 
However, the choice of a backbone is not relevant in this case, as it is 
only used for feature extraction for both source-only (ResNet50) and the 
UDA method. Therefore it is exchangeable. The training-holdout split 
was performed by stratifying the label classes (melanoma, nevus) in H 
dataset (Table 1) to ensure an identical label distribution in both sets. 
The training consisted of 80 %, while the holdout set consisted of 20 % of 
the data. We conducted our training process using a pre-existing re
pository,3 without any modifications to its hyperparameters. We 
adapted the library to suit our dermoscopic datasets by making changes 
to the data loading process. Our experiments were conducted using five 
different seeds. 

As can be seen in Fig. 10, DANN improves the performance for almost 
every dataset (8 out of 10), except for HA (HAM age ≤30) and MA (MSK 
age ≤30). We expected the results of the source-only model to be worse 
than with a DANN, as the major limitation of existing models is to adapt 
to new and unseen domains. The results show, that DANN can indeed 
generally improve the performance on domain shifted datasets. 

Discussion 

As discussed in Section 3.2, we used H dataset as the training data for 
comparing and analyzing the domain shifts present in HAM, BCN and 
MSK datasets. We chose H (Table 1), because it represents the typical 
patient group with skin lesions in clinics, where the patients are usually 
older than 30 years and the localization of the lesion is either on the 
torso or on the extremities. All the other grouped datasets are used as 
real world domain shifts, because they represent less frequent and more 
specific skin lesion cases, which are not seen in the clinic every day, e.g. 
younger patients. But also for these rare cases we want classifiers used in 
the clinic to be able to classify with the same accuracy as typical cases. 

Characterization of domain shifts 

Presumably, there are many more new conditions than acquisition 
system settings, age and localization, which can be considered a domain 
shift. Our datasets provide a starting point in this direction. In further 
works, specifically artefacts in dermoscopic images, as rulers and black 
borders in the images and hair on the skin, could be considered for 
domain shift analysis and domain adaptation tasks. Although we 
excluded gender as a different domain (as explained in Section 3), it 
could be worthwhile to investigate. Male and female skin has different 
thickness and hair growth, so the background of these images could look 
slightly different. Also male have more melanoma on torso, while female 
usually get melanoma on the lower extremities. As there will probably 
be more male patients than female with torso melanoma, especially this 
case could be seen as a new rare domain. 

For the translation into the clinic, it would also be relevant to find 
and generate domain shifted datasets for multi-class classification 
problems with a sufficient amount of data. Especially rare subgroups of 
skin lesions can probably be seen as domain shifted datasets. Also, the 
grouped datasets do not need to be limited to classification tasks only. 
The grouping procedure could also be applied to other public or private 
dermoscopic datasets. Apart from this, the grouping method in Fig. 5 
could be further extended, e.g. for lesion diameters or ABCDE rules [9] 
to detect risky lesions. 

Utilization of quantification measures 

To prove that our grouped datasets are indeed domain shifted, we 
additionally focused on quantification measures for verification. In 
cases, where the domain shifts can obviously be recognized with the 
human-eye, as for instance, in the digit example (e.g. MNIST), it is easy 
to simply anticipate that they are shifted, if the digits are rotated or 
coloured. But in dermoscopic datasets, where even experienced doctors 
find it difficult to differentiate between melanomas and nevi, we cannot 
simply anticipate a domain shift. Hence, we evaluated multiple quan
tification metrics to measure the domain shift between datasets. We 
provide multiple examples, of how domain shifts can be measured, 
confirm the shift and also its intensity in the datasets. Our quantification 
results show, that all BCN and MSK originated datasets are considered 
domain shifted (w.r.t H dataset) by all measures. We can also observe 
that biological shift exists and has an effect. If there would only be 
technical shifts present in the datasets, the default sets (B, M) would 
show an equal domain shift than BA, BLH, BLP, MA and MLH. So we can 
confirm, that datasets which include a technical and a biological shift 
have a higher domain shift to the source dataset. 

Performance improvement with UDA method 

Moreover, we also verified the applicability of one UDA method on 
dermoscopic datasets, which is widely used for other domain adaptation 
tasks. Even though a domain adaptation method works well for one 
dataset, it might not result in a similar performance for another. How
ever, for domain shifted dermoscopic datasets the UDA method appears 

Fig. 10. Classification of melanoma and nevus. Comparison of AUROC- 
performance for ResNet50 with and without DANN for different domain- 
shifted datasets. Abbreviations of the datasets are given in Table 1. 

Table A.1 
Melanoma - Pearson correlation between performance drop and divergence 
measures.   

JS divergence Cosine similarity AUROC drop 

JS divergence 1 − 0.67 0.44 
Cosine similarity − 0.67 1 − 0.71 
AUROC drop 0.44 − 0.71 1  

Table A.2 
Nevus - Pearson correlation between performance drop and divergence 
measures.   

JS divergence Cosine similarity AUROC drop 

JS divergence 1 − 0.60 0.77 
Cosine similarity − 0.60 1 − 0.76 
AUROC drop 0.77 − 0.76 1  

3 https://github.com/thuml/Transfer-Learning-Library 
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Fig. A.1. Randomly selected dermoscopic images stratified by label per grouped dataset.  
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to reduce the domain gap between the datasets while adapting to new 
domains (Fig. 10). We chose DANN because of its popularity and the 
possibility to be added to any architecture that can be trained with 
backpropagation [13]. DANN improves the performance for 8 out of 10 
dermoscopic datasets. There could be multiple reasons, both biological 
and technical, why DANN is not able to improve the performance for HA 
and MA. In these two datasets of young patients also children are 
included. We did not consider children younger than 15 as a separate 
domain, as there were only few examples within HAM, BCN and MSK 
datasets. Children are usually a specific case in clinical diagnosis, where 

the typical ABCDE features cannot be applied, because the melanomas 
look differently [18,47]. Both datasets consist of around 15 % underaged 
patients. Even though BA (BCN age ≤30) dataset also consists of around 
15 % children. However, for BA dataset DANN seems to improve the 
performance. Also the distribution of nevi and melanomas in these 
underaged patients does not show any differences in comparison to the 
BCN dataset, except that the dataset itself is larger. Another reason for 
the bad performance could be the presence of inherent bias in the form 
of artefacts in the images, e.g. black areas. Our domain shift quantifi
cations do not show any significant differences regarding the intensity of 
the shifts when compared to other datasets. 

Correlations between domain shift quantifications 

To observe a potential linear relationship between the previously 
estimated domain shift quantifications, we measured the Pearson cor
relation coefficients between the performance drop of a domain 
discriminator and the divergence metrics, as it was done in other works 
[10,49]. 

In Tables A.1 and A.2, we can observe a strong linear relationship 
between the performance drop of the domain discriminator (AUROC) 
and the divergence metrics (JS divergence and Cosine similarity) for 
dermoscopic datasets. In addition to AUROC drop, we also measured the 
balanced accuracy drop. As both are highly correlated we show only one 
AUROC for the comparison. 

Cosine similarity negatively and JS divergence positively correlates 
with the performance drop of the domain discriminator. Therefore 
Cosine similarity and JS divergence have a strong negative correlation - 
what we already assumed in Section 4. 

Conclusions 

As, to our knowledge, no benchmark data for domain adaptation on 
dermoscopic images exists, we suggest a procedure to group images 
from the publicly available ISIC archive. These grouped datasets can be 
used to test the generalization capabilities of different models on domain 
shifted dermoscopic datasets. Along with the domain shifted datasets, 
we also provide our data grouping procedure, which serves as a starting 
point for the generation of further dermoscopic datasets for domain 
adaptation. Additionally, we quantified possible domain shifts in be
tween the different grouped datasets to verify if a shift in fact exists. Our 
measured divergence metrics agreed with the t-SNE-based visualiza
tions. Finally, we analyzed and compared the performance of a 
ResNet50-classifier with and without an unsupervised domain 

Fig. A.2. Cosine Similarity for a different number of samples. Small dataset is 
MLH (n = 292), large dataset is B (n = 4639). 

Fig. A.3. JS divergence for a different number of samples. Small dataset is MLH 
(n = 292), large dataset is B (n = 4639). 

a b

Fig. A.4. t-SNE projections for H and BCN datasets, which show the technical and biological shifts between the datasets. The top plot shows the separation between 
datasets in the melanoma class. The bottom plot represents the nevus class. Abbreviations of the datasets are given in Table 1. 
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adaptation method on all grouped datasets. DANN improves the per
formance compared to a source-only model in 8 out of 10 datasets and 
can therefore be used for better generalizability. 
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