
Evaluation of Model-based Real-time Latency Compensation for
Unmanned Aircraft Remote Control

Ole A. Ostermann∗, Martin Laubner† and Sven Lorenz‡
DLR - German Aerospace Center, Braunschweig, 38108, Germany

For advanced flight testing of novel Unmanned Aircraft Systems (UAS) based on a synthetic
vision, special skills and properties are required for direct First Person View (FPV) remote
control. Necessary wireless data links and computer based data processing will introduce
latency into the system. A UAS demonstration system has previously been built at the German
Aerospace Center (DLR). For this system it was observed that the overall latency of the system
reaches a magnitude where Pilot Induced Oscillation (PIO) occurs. In addition, bandwidth
limitations result in low sampling rates in the downlink, leading to jerking flight information
displays and visualizations. Due to those influences, handling qualities are fairly poor and
will further decrease for Beyond Visual Line Of Sight (BVLOS) operations. To provide a
pilot with smooth, accurate, and up-to-date visual cues, a compensation approach is developed
that accounts for the full combination of: Delays, low sample rates, unavailable aircraft state
measurements, modelling uncertainties, disturbances and sensor noises. An evaluation of three
model-based methods is performed in this work, supported by a pilot-in-the-loop simulation
test campaign. The measured accuracy of the compensated output as well as the subjective
handling quality surveys show very promising results.

I. Nomenclature

𝑨, 𝑩,𝑪, 𝑫 = state space system matrices
ℎ = altitude
𝐾 = Kalman Filter gain
𝑷 = state covariance estimate matrix
𝑞 = pitch rate
𝑸 = process noise power spectral density matrix
𝑹 = measurement noise covariance matrix
𝑧 = complex frequency in Laplace domain
𝑢, 𝑤 = velocities (aircraft body, wind)
𝑣 = measurement noise
𝑤 = process noise
𝑤𝑅𝑖 = induced downwash velocity at rotor
𝒖, 𝒙, 𝒚 = system input-, state- and output vector
𝒙̂, 𝒚̂ = estimated system states/outputs
𝑥 = geodetic position
𝛼 = aerodynamic angle of attack
𝛽𝐵𝑙𝑐 = maximum blade flapping angle
𝛾 = flight path angle
𝛿𝑇𝑊 = thrust (engines)
𝛿(𝑡) = Dirac-Impulse
𝜂𝑅𝐻 = rotor head steering angle
𝜏 = delay time
𝜃 = pitch angle
Ω𝑅 = rotational speed of the rotor
Ω𝑇𝑊 = rotational speed of the engine
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II. Introduction

First Person View (FPV) remote control capabilities are desired for flight testing of novel Unmanned AircraftSystems (UAS) and can serve as a backup for prospective autonomous systems as well. The German Aerospace
Center’s (DLR) unmanned testbed ALAADy-Demonstrator [1], a 450 kg gyroplane, is a demonstrator for unmanned
freight transportation, and is used as an example unmanned system for evaluation. In its FPV Ground Control Station
(FPV-GCS), sensor-based synthetic vision is utilized in addition to a live, close to real time, video system. The testbed
is shown in Figure 1 with the demonstrator aircraft on the left and a FPV-GCS setup on the right (live-video on the large
upper screen and experimental synthetic vision on the bottom left screen). In future, the synthetic vision may replace
the live-video system due to its following benefits:

• unrestricted field of view in arbitrary direction whereas cameras for live-videos are fixed in their installed location
and demand a free direction of view,

• independence of visibility conditions (e.g. due to fog, rain, night, etc.),
• lower bandwidth requirements, particularly for future Beyond Visual Line Of Sight (BVLOS) applications (videos
contain more data than pure sensor information),

• sensor information is typically available in a ground control station for monitoring, whereas live video requires
additional data transmission,

• latency and bandwidth constraints might be easier to compensate for synthetic visualizations,
• and the ability to combine them with virtual reality systems for an even more immersive piloting experience.

(a) DLR’s UAS gyroplane demonstrator (b) FPV-GCS setup

Fig. 1 ALAADy-Demonstrator

A wireless data link, that synthetic vision based remote control relies on, will introduce additional transmission
delays into the system [1–4] (besides existing delays e.g. from computational processing). The delay has been observed
to reach an order of magnitude of 100 ms in previous flight tests of the DLR’s demonstrator system. This number
might still increase specifically with new connection methods for BVLOS scenarios like cellular networks or satellite
connections (the latter can suffer from delays up to the order of seconds) [1–4]. In addition, limited bandwidth leads to
common sensor data sampling rates of only about 2 - 4 Hz in the downlink. This results in poor handling characteristics
that can lead to Pilot Induced Oscillations (PIO) if direct control is implemented only. A compensation method is
desired to provide the pilot with smooth, accurate and nearly up-to-date visual cues and thus reduce the danger of PIOs.
Figure 2 presents a block diagram describing the problem and indicating where a compensation method will be applied.
Some latency or sample rate compensation approaches have been tested for remote control applications of aircraft

[3, 4] or robots [5] in the recent past but to the knowledge of the authors the full combination of: Delays, low sample
rates, unavailable aircraft state measurements, modelling uncertainties, disturbances (e.g. wind) and sensor noises has
not been considered in literature yet. Therefore, three different methods are tested and compared against an undisturbed
reference model as well as the emulated raw sensor measurements. The three tested methods are:
1) linear Kalman Filter (KF) with inherent wind estimation,
2a) the linear KF with an additional prediction by means of a Smith Predictor and
2b) the linear KF with an additional prediction by means of a "Recalculation".
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Pilot Aircraft

Compensator
(Method 1, 2a, 2b)

Latency

Fig. 2 Latency compensation scheme - block diagram
𝑢 - pilot control input, 𝑦 - output (sensor measurements), 𝑦̂ - compensated output estimations, 𝜏 - latency, up - uplink, down - downlink

The evaluation is supported by a pilot-in-the-loop simulation test campaign for which a handling quality survey and
data recordings are analyzed. In summary, the objective of this work is to find a compensation method that provides the
pilot with:

• Smooth and up-to-date synthetic visualizations,
• accurate flight information and
• copes with the full combination of impairments.

III. Flight Dynamics Model
For the fundamental comparison of different compensation methods and their resulting handling qualities it is deemed

sufficient to only use the longitudinal model of the ALAADy-Demonstrator gyroplane which can be entirely separated
from the lateral model [6]. The reduced complexity allows for a simpler implementation and analysis of different
compensation methods. The non-linear 3-degrees-of-freedom model is implemented similarly to the explanations and
relations in [6, 7].
In future applications with the real flying system, one may use the complete non-linear dynamics model of the aircraft

for the model-based compensation methods. This model should resemble the real system sufficiently well. However,
model uncertainties will always remain. Those are here described as process noise. For the technology exploration and
evaluation of compensation methods for synthetic visualization in this paper, only models and simulations are used. It is
thus decided to use the non-linear model as the "true" reference model and use only linearized and therefore further
imperfect Linear Time Invariant (LTI) models for the model-based compensation methods. This artificially introduces
more modelling errors compared to the non-linear model. Furthermore, it simplifies rapid implementation and analysis
for this study.
The LTI state space model is represented by the system matrices 𝑨, 𝑩, 𝑪, 𝑫 (displayed in detail in the Appendix) as

¤𝒙 = 𝑨 𝒙 + 𝑩 𝒖

𝒚 = 𝑪 𝒙 + 𝑫 𝒖
(1)

with the input-, state- and output vectors 𝒖, 𝒙, 𝒚 respectively described by

𝒖 = [𝛿𝑇𝑊 , 𝜂𝑅𝐻 , 𝑢𝑤𝑖𝑛𝑑 , 𝑤𝑤𝑖𝑛𝑑]T

𝒙 = [𝜃, 𝑤, 𝑢, 𝑤𝑅𝑖 , Ω𝑅, 𝛽𝐵𝑙𝑐 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑜𝑟 , 𝑞, ℎ, 𝑥]T

𝒚 = [𝛼, 𝑢, 𝑤, 𝑞, 𝜃, ℎ, 𝛾, 𝑉𝑇𝐴𝑆 , Ω𝑇𝑊 , Ω𝑅, 𝑥]T

(2)

for which the individual variables are described in Table 1.
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Table 1 Description of inputs, states and outputs

𝛿𝑇𝑊 𝜂𝑅𝐻 𝜃 𝑢, 𝑤 𝑤𝑅𝑖 Ω𝑅

thrust
input

rotor head
steering angle

pitch
angle

velocity in
x, z-direction

induced downwash
vel. at rotor

rot. speed
of the rotor

Ω𝑇𝑊 𝛽𝐵𝑙𝑐 𝑞 𝑥, ℎ 𝛼 𝛾

rot. speed
of the engine

max. blade
flapping angle

pitch
rate

position
/altitude

aerodynamic
angle of attack

flight path
angle

IV. Compensation Techniques

A. State Estimation and Filtering
State estimators, filters, or observers have proven to be a powerful tool especially in the area of sensor fusion for

compensating for low sample rates, measurement noises and drift by utilizing an observable model of the system
[5, 8, 9]. The Kalman Filter (KF) is a popular state estimator for which the controller gains of the observer are calculated
iteratively based on knowledge and statistical Gaussian assumptions on the disturbances and noises in the system.
Its least-squares approach yields the best linear estimator [8, 10]. The KF is computationally little demanding and
recursive which allows real-time application. Kalman filters are kind of standard for the estimation of states in inertial
navigation applications to compensate for measurement noises, modelling uncertainties, non-measurable states and
low measurement update rates. Similarly to those sensor fusion applications, the filter may be used to mitigate these
challenges in remote control applications. This has been shown for a virtual reality robot remote control problem in [5]
for instance and is therefore also selected as a promising technique in this paper.
Assuming the availability of proper computing power for the synthetic vision in the FPV-GCS, the state space system

can be handled in continuous time here, whereas the measurements inherently become available in discrete time. The
hybrid (also called continuous-discrete) KF version can then be applied, which yields the advantage that measurements
can be processed whenever they are received while in the absence of measurement updates, the filter continuously
performs only predictions using its inherent model. This makes it very easy to handle irregular data transfer [8] as is
expected for the downlink connection. This system can be represented by

¤𝒙(𝑡) = 𝑨 𝒙(𝑡) + 𝑩 𝒖(𝑡) + 𝒘(𝑡)
𝒚𝑘 = 𝑪𝑘 𝒙𝑘 + 𝑫𝑘 𝒖𝑘 + 𝒗𝑘

(3)

where 𝒙𝑘 = 𝒙(𝑡𝑘) and 𝒙𝑘+1 = 𝒙(𝑡𝑘+1). The vectors 𝒘 and 𝒗𝑘 are the process and measurement noise respectively. The
measurement noise vector is defined as

𝒗𝑘 ∼ 𝑁
(
0, 𝑹𝑘

)
(4)

in discrete time with the covariance matrix 𝑹𝑘 = 𝐸
{
𝒗𝑘 𝒗

T
𝑘

}
, 𝑹𝑘 > 0. The symbol 𝐸 depicts the expected value. The

process noise vector is similarly defined as
𝒘(𝑡) ∼ 𝑁

(
0, 𝑸(𝑡)

)
(5)

in continuous time [8, 9] with the power spectral density matrix defined in 𝑸 𝛿(𝑡 − 𝑡1) = 𝐸
{
𝒘(𝑡) 𝒘(𝑡1)T}, 𝑸 ≥ 0 where

𝛿(𝑡 − 𝑡1) is the Dirac-Impulse.
The equations of the hybrid KF can be taken from textbooks like [8] and have been altered here to include the

feed-through matrix 𝑫. The KF state update calculation is divided into two steps:
1) The prediction step
2) and the correction step.

The prediction step calculates the a priori state estimate 𝒙̂𝑘 |𝑘−1 = 𝒙̂ (𝑡𝑘) and state covariance estimate 𝑷𝑘 |𝑘−1 = 𝑷 (𝑡𝑘) as

¤̂𝒙(𝑡) = 𝑨(𝑡) 𝒙̂(𝑡) + 𝑩(𝑡) 𝒖(𝑡)
¤𝑷(𝑡) = 𝑨(𝑡) 𝑷(𝑡) + 𝑷(𝑡) 𝑨(𝑡)T + 𝑸(𝑡).

(6)

The subscript "k|k-1" is resembling the Bayesian notation here and reads "k" given the evidence of "k-1". Equation 6
continuously predicts the system’s state by using a representation of the system, in this case an LTI state space model

4



and estimates the confidence (covariance 𝑷) in this prediction based on the covariance of the last time step (affected
through the system dynamics) and our estimation of the process noise.
The correction step, also referred to as the measurement update, then uses the measurements from the real system

𝒚𝑘 and the estimation of their accuracy (measurement noise covariance) as well as the state estimate 𝒙̂𝑘 |𝑘−1 together
with the confidence (covariance 𝑷𝑘 |𝑘−1) in it from the prediction step as

𝑲𝑘 = 𝑷𝑘 |𝑘−1𝑪
T
𝑘

(
𝑪𝑘 𝑷𝑘 |𝑘−1 𝑪

T
𝑘 + 𝑹𝑘

)−1
𝒙̂𝑘 = 𝒙̂𝑘 |𝑘−1 + 𝑲𝑘

(
𝒚𝑘 − 𝑪𝑘 𝒙̂𝑘 |𝑘−1 − 𝑫𝑘 𝒖𝑘

)
𝑷𝑘 = (𝑰 − 𝑲𝑘 𝑪𝑘) 𝑷𝑘 |𝑘−1

(7)

to obtain the a posteriori state estimate 𝒙̂𝑘 and covariance estimate 𝑷𝑘 - valid for the optimal Kalman gain 𝑲𝑘 . In case
the assumptions of the process and measurement noises as Gaussian noise are incorrect, the Kalman gain diminishes
from being the optimal gain to being the best linear estimator in which case the covariance estimate 𝑷𝑘 instead has to
be calculated according to the more complex Joseph form [8, 70,73], which is also more robust to roundoff errors -
therefore preferred in software implementations - and is thus the one that is actually implemented in the corresponding
Simulink® block by Mathworks Inc. [11]

𝑷𝑘 = (𝑰 − 𝑲𝑘 𝑪𝑘) 𝑷𝑘 |𝑘−1 (𝑰 − 𝑲𝑘 𝑪𝑘)T + 𝑲𝑘 𝑹𝑘 𝑲
T
𝑘 . (8)

In other words the correction step corrects the estimated state based on the measurements and the confidence in
both measurements and prediction through a weighted average represented by the KF gain 𝑲𝑘 . The KF gain essentially
minimizes the quadratic cost function [10]

𝑱 = lim
𝑡→∞

𝐸
{
(𝒙(𝑡) − 𝒙̂(𝑡))T · (𝒙(𝑡) − 𝒙̂(𝑡))

}
(9)

The KF estimation will asymptotically converge (as quickly as desired) when the system is detectable (observable) [8]
and when the dynamics of the KF’s inherent model with the disturbance assumptions sufficiently match the dynamics of
the actual system [12].
A special use case of KFs is the error state estimation [9]. It is a method for estimating anticipated deficiencies in

the inherent model or external disturbances when it is known how they would affect the model while their quantities are
unknown. For instance, it is common to estimate and correct inertial navigation system errors (like sensor drift) in
sensor fusion algorithms or to estimate quantities like gravity or moments of inertia in space applications. By giving
the KF a placeholder for disturbances in form of additional states and modeling how these would influence the model,
the KF can better fit its inherent model’s dynamics to the measurements and thereby the dynamics of the real system.
It estimates the disturbances through the Kalman Gain. This estimation is subject to a delay which varies with the
measurement update rate. In this work, the error state estimation method is applied for estimating wind disturbances as
in [13]. The estimated wind could potentially be used also for surveillance purposes in future. However, the estimates
have to be considered with caution, as the KF could project other errors such as delays or deviations from the estimated
trim condition into the wind error states as well.

B. State Prediction
While the basic KF can help on filtering noises and modelling errors, estimating non-measurable states as well as

smoothing data, a dedicated prediction is required to target the delay. Two different methods are considered:
1) The Smith Predictor
2) and a "Recalculation" method.

1. Smith Predictor
The Smith Predictor was originally developed specifically to cope with delays within a control loop and is exemplarily

shown in Figure 3. It has been tested for delay compensation in UAS remote control in [4] while the approach had been
adopted from online multiplayer video game technology. Downlink connection delays of 500 and 1000 ms were tested
for a video quadcopter. Predicted roll-angles were used to artificially turn the FPV video image.
The Smith Predictor uses the output that is affected by transmission delays and executes two estimations in parallel

(𝐺̂ with and without delay). The latter is running up to the present while the first one is artificially delayed by the same
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Smith Predictor

Pilot G(z)

Ĝ(z)

+

Fig. 3 Smith Predictor block diagram

Δ 𝑦̂ - predicted output estimate, 𝐺 (𝑧) - real plant, 𝐺̂ (𝑧) - plant model, 𝜏𝑑𝑜𝑤𝑛 - downlink latency

time that the actual system is. This way the Smith Predictor continuously uses the actual system’s output until the time it
is available and interpolates from there to the present using the estimation. The inaccurate estimation is deducted for the
time horizon for which real system measurements are available. This can be represented by

𝑦 =

(
𝐺 𝑧−𝜏𝑑𝑜𝑤𝑛 + 𝐺̂ − 𝐺̂ 𝑧−𝜏𝑑𝑜𝑤𝑛

)
𝑢 (10)

where 𝐺 represents the real system and 𝐺̂ represents the model.

2. Recalculation
The "Recalculation" method is an alternative approach that has been tested with a Diamond DA42 aircraft model

for compensation of remote control transmission delays using non-linear model-based prediction [3]. The principle is
illustrated in Figure 4.

“Recalculation”

Buffer Propagation

Ĝ(z)

Fig. 4 Recalculation method block diagram illustration

The remote pilot flies in a synthetic vision simulation based on a model 𝐺̂. The pilot’s control input history is
continuously stored in a sufficiently long buffer. Each time a measurement update arrives, a recalculation is triggered:
The buffered control input history is utilised together with a state vector that must be obtained from the newmeasurements,
to initialize and propagate a separate model from the time at which the measurement was taken until the present (which
is essentially the delay time). The output of this propagation is then used to periodically reset/correct the synthetic
vision simulation.

V. Evaluation Setup

A. Combination of Methods and Implementation
For this evaluation of model-based real-time latency compensation, the linear KF with wind estimation is chosen as

basic filter. The through the KF yet unresolved pure delay can then either be neglected because it is still expected to
be small (Method 1) or it can be separately addressed by an additional prediction method (Method 2). In these cases
the compensation method can be described as a two-step process. The first step consists of the KF that receives the

6



transmission-delayed measurements plus the pilot control inputs which are artificially delayed by the same downlink
delay time. All inputs are thus received in a time-consistent manner and the KF is executed using this data from the past.
In the second step, the estimated, continuous states from the KF are then used for an additional prediction to specifically
target the downlink delay. This is achieved by making use of the remaining time history of the pilot control input.
For this prediction, the "Recalculation" method seemed to deliver more accurate results through the complete reset

of the synthetic vision simulation after each measurement update & propagation but therefore provides less smooth
outputs than the simpler Smith Predictor. Both methods are therefore selected for further testing (Method 2a and 2b),
resulting in essentially 3 different methods to be tested in the flight simulation campaign.
In contrary to the KF, the prediction methods are not possible to be used alone as they are not able to handle the

remarkably low sample rates. Additionally, disturbances and noises could not be sufficiently compensated either. The
"Recalculation" method requires knowledge about the full state vector and would thus require some state observer
anyway because not all states are measurable with this aircraft model.
The inputs, states and outputs (compare with Equation 2) that are applied for the KF are:

𝒖𝐾𝐹 = [𝛿𝑇𝑊 , 𝜂𝑅𝐻 ]T

𝒙𝐾𝐹 = [𝜃, 𝑤, 𝑢, 𝑤𝑅𝑖 , Ω𝑅, 𝛽𝐵𝑙𝑐 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑜𝑟 , 𝑞, ℎ, 𝑥, 𝑤𝑤𝑖𝑛𝑑 , 𝑢𝑤𝑖𝑛𝑑]T

𝒚𝐾𝐹 = [𝛼, 𝑢, 𝑤, 𝜃, ℎ, 𝑉𝑇𝐴𝑆 , Ω𝑅, 𝑥]T.

(11)

Measurements of the rotation speed of the engineΩ𝑇𝑊 , the pitch rate 𝑞 and the flight path angle 𝛾 are not made available
for the KF in order to see how it handles a limited number of outputs. Nevertheless, the resulting LTI model remains
observable. Especially the pitch rate has a comparably high noise to signal ratio particularly for gyroplanes due to the
oscillations of the rotor. Therefore its inclusion provides no benefit to the KF (already receiving the pitch angle 𝜃) and is
disregarded. Theoretically a reduction of the number of utilized outputs could also reduce the required bandwidth and
therefore increase the measurement sample rate for the downlink in future. This would require further investigation
because a lower number of outputs would decrease the KF’s accuracy while a higher sample rate would significantly
increase it. The presented selection of outputs is in-line with the readily available data in the existing downlink of the
DLR’s ALAADy-Demonstrator. The noise characteristics in this evaluation are modelled in conservative accordance
with previous flight test log files. Possible covariances in the measurement noises due to periodic vibrations from the
rotor are not accounted for so far.
The state vector for the KF model has two additional states for the wind estimations and the input vector does

not have wind inputs (because it is unknown). It was observed that the wind estimation is strongly dependent on the
measurement’s sample rate. It works very well with continuous measurements while its precision significantly decreases
with lower update rates. Especially after extending the methods to lateral dynamics and potentially non-linear models, a
reevaluation of the wind estimation technique is advised.
The initial conditions will probably never be known exactly in reality, which is why a deviation is also added to the

initial condition vector 𝑥𝐾𝐹,0 of the KF here (rad for angles and rotations and meter for velocities and positions) as

𝒙𝐾𝐹,0 = [0.001, 0.1, −0.3, 0.1, −0.5, 0, 0, 0.1, 0.1, 0.1, 0.1]T. (12)

Initial condition errors of e.g. -0.3 m/s for the aircraft flight speed shall prove that the implemented KF is robust. In fact,
as an additional error, the LTI model for the considered horizontal wings-level flight at 90 km/h is actually trimmed with
a descent velocity of 0.1 m/s.
The process noise is difficult to estimate because inaccuracies of the flight dynamics model are typically not perfectly

known. Estimations are commonly made empirically by means of tuning campaigns to adjust the entries of the power
spectral density matrix 𝑸 defined in Equation 5. For the real system implementation a possibility would be to conduct
extensive flight test campaigns and compare the measurements with corresponding simulations [9]. The adjustment
of the process noise characterization in the KF (in 𝑸) could then be handled as an optimization problem that seeks
to minimize the error between real-world measurements and simulated outputs. This was actually done in this study
using the non-linear model as the reference and comparing it to the LTI model. A mathematical optimization was
utilized to obtain some first indications of the entries in the power spectral density matrix 𝑸. Further fine-tuning
was executed manually to achieve a balance of accuracy over smoothness. The utilized noise matrices are shown in
Equation 13. Although there will most certainly be cross correlations between the different states they were neglected to
not overburden this optimization problem for the first evaluation in this project and leaving room for further optimizing
the KF. Cross correlations are also indirectly introduced through the calculation of the state covariance estimate 𝑷 by
multiplication with the state transition matrix 𝑨 in the prediction step (Equation 6).
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𝑹 = diag(0.0087, 0.005, 0.005, 0.0003, 0.02, 0.02, 0.5, 0.02)
𝑸𝐾𝐹1 = diag(1e-5, 1, 1, 1e-5, 1e-5, 1e-5, 0.5, 10, 10, 50, 50)
𝑸𝐾𝐹2 = diag(1e-5, 1, 1, 1e-5, 1e-5, 1e-5, 5, 10, 10, 25, 25)

(13)

B. Simulation Test Campaign Setup
To investigate the effects of each compensation method with different delays and different available measurement

update rates on the handling qualities of the aircraft, pilot in the loop flight simulation tests were conducted. A non-linear
undisturbed model of the ALAADy-Demonstrator’s longitudinal motion is used as the reference model for comparison.
The final flight simulation campaign test setup with a desktop computer is shown in Figure 5. On the right, a visualization
is shown in-flight above the runway of the Brunswick research airport with images from Cesium®. The black flight
information HUD is laid on top. A velocity indicator for the true airspeed 𝑉𝑇𝐴𝑆 was given on the left together with a
percentage for the engine input. A basic consumer joystick was used that has a small built-in throttle lever.

Fig. 5 Test campaign setup

A number of nine candidates were recruited as test pilots. Three candidates are licensed pilots. One has experience
on gyroplanes, one flies various general aviation and aerobatics aircraft and one is trained on airliner aircraft. The
majority of candidates had flown in flight simulations before, some of them regularly on the proper gyroplane flight
simulator at the DLR. Two of the candidates performed the tests twice with a break of more than one week in between.
The results of those two candidates were used to analyse consistency and validity of the handling quality survey. This
amounts to a total number of eleven flight test runs for a latency setting of 200 ms and 4 Hz sample rate. For a brief
outlook and comparison three of the candidates were available to additionally fly the tests with a latency setting of
400 ms and 2 Hz update rate. After each tested compensation method the pilots were asked to subjectively rate the
handling qualities.
For the simulation flight test mission it was chosen to prescribe an altitude profile to be followed by the pilots

(outlined in Table 2) while being exposed to modest wind disturbances, sensor noises, latency and low sample rates.
Before starting the flight tests, each candidate was given some time to familiarize themselves with the gyroplane’s flight
dynamics, the visualization setup and the flight mission. This training was performed with the non-linear reference
model. Depending on the candidate’s experience it was needed to specifically get used to the interactions between rotor
head angle control, pitch angle, airspeed and thrust. At last, another final training flight was conducted using only the
emulated raw measurement data (subject to latency and noises) for visualization. This gave the pilots an idea of the
worst-case scenario so that they could later evaluate the different compensation methods relatively. The wind profile
was varied randomly for the training.

Table 2 Mission: Altitude above ground flight tasks

time period [s] Start 0 - 40 40 - 80 80 - 120
height [ft] 330 300 330 400
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Working solely with longitudinal dynamics, vertical disturbances are introduced that push the aircraft off the
demanded altitude. This shall urge the pilots to do control inputs which is required to evaluate the danger of PIOs as well
as the ability of the pilots to follow the flight plan despite disturbances. A simple sequence of vertical wind was modeled
to resemble gusts. The wind velocity is changed every 5 seconds. To obtain a smooth and more realistic wind profile the
discrete wind profile is low-pass filtered. This can be seen later in the results in Figure 8. During the campaign the wind
profile was kept the same for all test flights. This poses the danger that pilots can possibly memorize the wind pattern
after a while. On the other hand, the wind pattern heavily influences the pilot’s performance. To give an example, it
is much more difficult to reach a demanded altitude when a heavy gust occurs during the climb. Pilots often either
struggle to keep the airspeed and climb rate or substantially overshoot the demanded altitude. To compare different
latency compensation methods and to validate the pilots performance with them against the original non-linear model, it
is thus beneficial to keep the wind profile the same for all tests. The training effect of memorizing the wind’s pattern is
statistically mitigated by letting each pilot fly the different models and compensation methods in a different order.

VI. Results
The analysis of the flight simulation tests with visualized outputs of the five different methods/models (undisturbed

non-linear reference model, emulated raw measurements,Method 1 with a pure KF,Method 2a with a KF plus Smith
Predictor and Method 2b with a KF plus "Recalculation") is divided into 3 aspects:
(A) The performance of the pilot to fulfill the flight mission,
(B) the performance of the methods to accurately and smoothly estimate the real/reference system states in order to
provide the pilot with a truthful and consistent visual of the aircraft,

(C) and lastly the subjective assessment of the handling qualities by the pilots themselves.

A. Pilot Performance
The deviations of the altitude from flight plan were the primary focus of the flight mission for the pilots. Considered

are the time averages of the Median, the Mean and the Standard Deviation (SD) of the candidates at each time step. The
results are shown in Figure 6. The uncompensated raw measurements were the most difficult to fly with and the original
undelayed reference model visualizations showed the best results which both meet the expectations and thus serves as
validation of the results. Compared to the raw measurements, all compensation methods enhanced the experience for the
candidates enabling them to perform better. The statistical parameters are lying in between measurements and reference
model. The methods with prediction are superior to the pure KF method when looking at the median. Results are yet
relatively close to each other and should therefore rather be taken as indications. It has to be noted that the candidates
had a limited average skill level and were only given limited time to train with the somewhat unusual flight dynamics of
the gyroplane. However, the median is less sensitive to individual candidate failures and the analysis is supported by the
test runs with stronger latency settings which show the same trend but significantly more pronounced.

B. Compensation Method Performance/Accuracy
Similarly to the pilot performance analysis, time averages of the median, mean and mean with standard deviation of

the different test runs are calculated for the output errors. The output errors are the differences between the compensation
method outputs that are shown to the pilot and the output of the reference model that was simulated in parallel with the
same input (obviously including the same uplink delay). As an example, the errors for the altitude are shown in Figure 7.
Performance errors for other relevant variables e.g. the pitch angle look very similar.
Stronger latencies lead to worse performances for all methods as expected. The compensation methods performed

substantially better in both latency settings compared to raw measurements for which errors were more than twice
as high. The prediction methods both outperformed the pure KF implementation, while the "Recalculation" method
performed best with a slight margin.

1. Wind Estimation
Wind estimation results are similar for Method 2a and 2b because they use the same KF constellation, whereas

estimations with Method 1 are different. Results are exemplary shown for the Smith Predictor method tests in Figure 8.
Displayed are the vertical wind estimates of all test runs for the 200 ms and 4 Hz scenario as dotted lines where each
color describes one pilot recording. The true wind is shown with the red curve. The wind pattern is estimated mostly
accurate but with a delay of around one second which is best visible whenever the wind changes are very sudden.
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Fig. 6 Average Flight Plan Deviations (over the last 20 s of each demanded altitude)
SD - standard deviation, Real - non-linear undelayed reference model, Meas - emulated raw measurements,

KF - Kalman Filter (Method 1), Smith - KF + Smith Prediction (Method 2a), Rec - KF + Recalculation (Method 2b)
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Fig. 7 Filter Errors Average - Altitude

Investigations showed that individual/local outruns (e.g. at around 90 s) coincided with increasing output errors at
the same time and for the same candidates. By comparison with pure linear model outputs (that were simultaneously
recorded during the campaign), they were discovered to result from validity limitations of the linearized model when
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Fig. 8 Wind estimation: Smith Prediction Method
- 4 Hz and 200 ms, (one color per pilot)

very low flight speeds are reached. It is thus expected that compensation method accuracies (including wind estimation)
can be significantly improved further by accounting for non-linearities in future (through enhancement of compensation
methods e.g. adaptive or extended KF). Estimations were significantly more noisy with only the pure KF (Method 1).

C. Pilot Evaluations
Pilot evaluation results are shown in Table 3. Inquired were ratings on the overall handling qualities (scale: 1-10),

the ability to observe the state of the aircraft from the visualization ("observability", scale: 1-4) and how fast the
aircraft appeared to respond to their control inputs ("responsibility", scale: 1-4). The lowest number always translates
as "worst" and the highest number translates as "best". The latency compensation methods are rated slightly lower
compared to the undisturbed non-linear reference model without latencies which is expected. However, they are all
assessed substantially better than the usage of only the raw uncompensated measurements in all aspects. In-between the
compensation methods, the recalculation method performed overall worse from the pilots point of view. Here, even the
responsiveness is valued less than the pure KF which might be the result of the strong corrections due to the low sample
rate which gives the pilot a subjective feeling of slower control input response because it is harder to observe. The other
two methods gave very good results in the opinion of the pilots.

Table 3 Handling Qualities Survey Results (Averages)

Latency
Settings Method Overall Handling

Qualities (1-10)
Observability

(1-4)
Responsiveness

(1-4)
4 Hz Non-linear Model 8.4 3.6 3.5

& 200 ms Raw Measurements 3.5 1.9 1.3
Kalman Filter 7 3.3 2.9

KF + Smith Prediction 7.7 3.4 3.3
KF + Recalculation 7.1 2.9 3.1

2 Hz Non-linear Model 8.3 3.7 3.7
& 400 ms Raw Measurements 2.7 1.3 1.7

Kalman Filter 7 3.3 3
KF + Smith Prediction 8 3.7 3.3
KF + Recalculation 6.3 2.7 2.7

A rating with "1" translates as "worst", the highest number translates as "best". Please note that
the rating scales are standalone and not related to the Cooper–Harper rating scale.
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VII. Summary and Conclusion
The target of this work was a technology exploration and evaluation of model-based latency compensation methods

for FPV remote control which account for the full combination of: Measurement transmission delays, low sample rates,
unavailable aircraft state measurements, modelling uncertainties, (wind) disturbances and sensor noises. The methods
were selected from examples in literature on sensor fusion as well as robot and aircraft remote control which focused on
different subsets of the combination of impairments. A hybrid KF with wind estimation as well as its combination
with two different prediction methods were investigated further in a flight simulation test campaign. The longitudinal
flight dynamics model of the ALAADy-Demonstrator UAS, a 500kg weighing gyroplane from the DLR, served as an
example. Based on a pilot evaluation and the recorded data from the flight simulations, an analysis of the improvement
of handling qualities as well as the sensitivity to latency and update rate is performed, with a focus on the accuracy of
the method’s outputs.
The results of this study show a remarkable improvement of the synthetic visualizations for FPV remote control

through model-based latency compensation. All methods are substantially better than the usage of the emulated raw
measurements in all evaluated aspects: Errors to the real flight condition, pilot flight mission performance and the
handling quality assessment through a survey. The KF in combination with an additional, separate prediction method
delivers most suitable results. The "Recalculation" approach achieves slightly higher accuracy but is rated inferior by the
pilots due to its less smooth output. In conclusion, the authors suggest the Smith Prediction method for future application
because it is similarly accurate but also provides a very smooth output. This gives the pilots a subjective feeling that
almost reaches the undisturbed non-linear model - even for the more severe delay & sample rate combination.

Appendix

A. LTI State Space System Matrices

𝑨 =



0 0 0 0 0 0 1 0 0
25.74 −1.277 −0.1227 1.146 −0.5446 −25.75 24.84 0 0
3.518 −0.1829 −0.1596 0.175 −0.05926 −13.33 −0.04412 0 0
−161.6 6.869 −1.499 −36.87 3.247 161.6 0 0 0
−16.59 0.7055 0.1164 −0.7053 −0.0446 16.59 0 0 0
9.456 0 0 0 0 −9.456 0 0 0
−13.47 −0.03917 0.06042 −0.07675 0.006578 13.47 −0.1972 0 0
−25 1 −0.001776 0 0 0 0 0 0

−1.2e-10 0.001776 1 0 0 0 0 0 0



𝑩 =



0 0 0 0
0 −1.618 0.125 1.277

0.01347 −0.8376 0.1599 0.1827
0 10.16 1.487 −6.872
0 1.043 −0.1177 −0.7053
0 9.456 0 0

−0.003701 0.8464 −0.06035 0.03928
0 0 0 0
0 0 0 0


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𝑪 =



0 0.04 −7.103e-05 0 0 0 0 0 0
−1.2e-10 0.001776 1 0 0 0 0 0 0

−25 1 −0.001776 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0
1 −0.04 7.103e-05 0 0 0 0 0 0
0 0.001776 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1



, 𝑫 =



0 0 8.346e-15 −0.04
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 −1 1.183e-14
1 0 0 0
0 0 0 0
0 0 0 0


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