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Robust Nonlinear Model Predictive Control of an
Autonomous Launch and Recovery System

Yujia Zhang , Hongbiao Zhao, Guang Li , Senior Member, IEEE,
Christopher Edwards , Senior Member, IEEE, and Mike Belmont

Abstract— Launching and recovering a lifeboat from a mother
ship is a critical task for rescuing people in high sea states,
which can be dangerous to both the mother ship crew and
lifeboat personnel. A reliable and efficient control system is
crucial to reducing the risk but has not been developed to a
mature stage to establish an autonomous launch and recovery
system (LARS). A successful manually controlled launch and
recovery (L&R) mission relies on empirically assessing the risk
and planning the operation ahead of initiating the process.
This article proposes a control scheme for the LARS which
executes the task in two stages: the L&R risk assessment is
conducted in the first stage before hoisting the lifeboat; then
in the second stage, input signals are manipulated to accomplish
the task once the mission is identified to be safe. We propose
a robust tube-based model predictive control (TMPC) law in
both stages. It can explicitly consider uncertainties in the LARS
model and guarantee constraint satisfaction by bounding possible
system trajectories in a predefined tube. Hence degradation of
control performance caused by inaccurate system modeling can
be minimized to improve the operation safety level of the entire
process. The performance of the proposed control scheme is
demonstrated by numerical simulations.

Index Terms— Launch and recovery (L&R), model predictive
control, safety enhancement.

I. INTRODUCTION

LAUNCH and recovery (L&R) plays a vital role in the
day-to-day operations of working boats and in emer-

gency evacuations. The daily uses of L&R coordinate between
offshore vehicles such as embarked aircraft, submersibles,
and tenders in support of military and civil tasks, includ-
ing naval patrols, offshore constructions, and reconnaissance
missions [1]. The L&R of lifeboats from mother ships can
rescue people in danger and thus has a higher safety standard
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compared with its routine uses. An efficient lifeboat L&R
system relies on accurate judgments and prompt actions of
crew members and highly relies on the experiences of the
rescue crew. Thus, designing an autonomous control scheme
for an L&R system (LARS) is advantageous to mitigating
human factors, potentially offering a revolutionary change in
L&R executions.

A typical L&R requires the rescue team to empirically
evaluate if the mission can proceed safely before initiating
the lifeboat hoisting task. This decision can be made more
reliably by an autonomous LARS to examine the feasibility of
executing the mission in a future period. The feasibility check
procedure is the first stage of the LARS control, including
the prediction of sea wave magnitudes and the computation
of the wave-induced mother ship’s motions. The motions are
later used as predictable disturbances for the LARS to judge
whether it is possible to guarantee a successful completion of
the L&R operation. The process will be repeated until a safe
window is found out for the execution of L&R. Once the time
window is identified, in the following Stage 2, the L&R strap
is attached to the link of the lifeboat prior to the identified
initiating time; then the hoisting process is accomplished by
the LARS control system within the time window. Both stages
require the preview information of waves, and thereby the
LARS operation is a noncausal control problem.

The main challenge associated with the LARS controller
design arises from the influence of inaccurate wave-induced
vessel motion predictions. The prediction accuracy has a direct
impact on the feasibility issue and influences the execu-
tion of L&R, but a highly accurate prediction is not likely
available using current technologies. First, the forecast wave
profile inevitably involves errors that are transmitted to the
mother ship’s motion responses. Second, the hydrodynamics
of the mother ship can only be approximately computed,
which further degrades the motion forecasting precision. Thus,
the controller is required to exhibit sufficient robustness to
disturbances associated with the LARS, including prediction
errors. In addition, practical limitations and constraints, e.g.,
actuators’ torque limits, swing angle constraints, and so on,
are imposed on the LARS control scheme. To the best of
our knowledge, very few researchers have investigated the
LARS control issue with a specific focus on fulfilling these
targets. We recently proposed a LARS modeling and robust
sliding mode control scheme that manages the hoisting of a
lifeboat recovery mission [2]. The method efficiently com-
pletes the task with guaranteed stability, but the controller

1063-6536 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Manchester. Downloaded on January 19,2024 at 16:35:09 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-1538-795X
https://orcid.org/0000-0001-9323-5076
https://orcid.org/0000-0002-2222-0640


ZHANG et al.: ROBUST NONLINEAR MODEL PREDICTIVE CONTROL OF AN AUTONOMOUS LARS 2083

cannot explicitly deal with model uncertainties; the swing of
the lifeboat is considered but is not suppressed by the control
system. In comparison, this article employs a tube-based
model predictive control (TMPC) scheme that explicitly copes
with the LARS plant-model mismatches and deals with practi-
cal restrictions including safety constraints, such as the swing
angle. Therefore, the risk of possible collisions between the
mother ship and the lifeboat can be reduced.

The applied TMPC is a robust optimization-based control
strategy with the guarantee of constraint satisfaction [3]. One
TMPC decision variable is the control input of the noise-free
nominal model state, solved online based on system dynamics
and the initial state. The resulting nominal controller can
achieve near-optimality for a high-fidelity model, but it is
susceptible to disturbances. Then, the control performance is
further improved via another portion of TMPC, to enhance
robustness by restricting a bundle of disturbance-involved
system trajectories in a tube centered around the nominal
state. Regarding the control of the LARS, the tube is obtained
from the application of an ancillary controller that penalizes
the discrepancy between the real-world LARS trajectories and
the nominal model trajectory over time. Hence the safety
constraints for all possible states can be satisfied by tightening
the constraint set with the predefined tube [3]. The success rate
of L&R is thereby greatly increased.

Some additional challenges associated with the LARS
TMPC problem and the corresponding solutions provided in
this article as follows.

1) The LARS model involves strong nonlinearities intro-
duced by the mother ship’s motions. In this sense,
the online tractability of the LARS TMPC problem
is ensured by utilizing a high-performance optimiza-
tion framework [4]. The strategy converts the nonlinear
predictive control problem into a standard quadratic
form by applying the sequential quadratic program-
ming (SQP) strategy. Then, the problem is ultimately
solved with a high-performance interior-point method
(HPIPM) [5]. Normally, one control step is computed
within milliseconds, which can guarantee the computa-
tional requirements for real-time implementation of the
proposed control algorithm.

2) The investigated LARS is underactuated, which makes
the control of the hoisting process and the suppression of
the lifeboat swing highly difficult [6]. Hence the adopted
TMPC objective mainly penalizes: i) the discrepancy
between the current lifeboat position and the expected
position; ii) the hoisting velocity L̇ , as a stable hoisting
process and a zero terminal velocity are usually required
for a L&R problem; and iii) the lifeboat swing angle or
the angular velocity, to avoid possible collisions between
the two vessels. Other states of the LARS are mostly
constrained but not dominantly penalized.

The contributions of this work and advantageous features
of the proposed LARS control scheme as follows.

1) A reliable and automatically controlled LARS is
developed in this work. Here the mother ship’s
hydrodynamics is employed for the prediction of the
ship’s heave, roll, and sway responses to waves prior

to computing the payload motion response to waves.
Computation of the hydrodynamics provides a funda-
mental basis to judge whether the forthcoming L&R
execution is safe and then the L&R initiation time is
determined accordingly. By contrast, the existing works
of offshore operation control schemes mostly assume
the mother ship’s motions are known to the payload
motion computation, which is not realistic in the real
world.

2) A LARS TMPC strategy is designed to explicitly
consider the optimality, system uncertainties, and con-
straints. By employing the controller, a relatively high
sea state is allowed for L&R missions once the control
problem is feasible over an examined period.

The rest of the article is structured as follows. Section II
presents the hydrodynamics computation of the mother ship
and the modeling of the L&R dynamics. Section III describes
the robust TMPC algorithm for the LARS control. Section IV
provides simulation results and detailed analysis. Finally,
conclusion is drawn in Section V.

II. DYNAMIC MODEL OF LARS

The LARS investigated in this article utilizes a stationary
davit unit composed of a davit mast, a lifting beam, hydraulic
power packs, winches, and a hoist trolley rigged with wire
ropes, which are all installed on a mother ship to launch
and recover a typical type of lifeboat known as a rigid-hull
inflatable boat (RHIB). A double-point lift is employed in the
davit system to avoid rotations of the RHIB from the end
of the hoist wire; bow or stern lines are used for the same
purpose. Swing motions of the RHIB are influenced by the
wave-induced motion of the mother ship, which has 6 degrees
of freedom (DOF), including heave, sway, surge, roll, pitch,
and yaw. The roll angle is denoted as α, sway as yO , and
heave as zO . The heave and roll movements play a dominant
role in influencing the swing of the RHIB while other factors
are negligible [7]. Hence the dynamic model of LARS can be
considered in a 2-D plane for the purpose of simplification.
The diagram is shown in Fig. 1.

Two coordinates are introduced for the LARS modeling:
1) the ship-mounted moving frame IS and 2) the ground
coordinate IN . In the IS coordinate, the centroid of the mother
ship is defined as the origin OS . The axis OS X S points to
the bow (invisible in the 2-D plane) and is perpendicular to
the YS − OS − ZS plane. The earth-fixed inertial reference
frame IN ≜ {ON , (X N , YN , Z N )} is developed as a stationary
reference, where Z N is perpendicular to the ground and X N
has the same orientation with X S . Note that the motions of
the RHIB are measured based on the IS coordinate, while the
mother ship’s motions are observed from the IN frame.

A. Mother Ship’s Motion Responses to Waves

The frequency response functions 8w for the heave of
the ship can be derived analytically [8]. Assuming that the
constantly added mass of the cross section is equivalent to the
displaced water, the equation of motion in a regular wave with
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Fig. 1. LARS and reference frames.

amplitude a can be written as

2
kw D
ω2 z̈O +

A2

kw Bχ3ω
żO + zO = aF cos(ϖ t) (1)

where kw is the wavenumber; ω is the wave frequency; B and
D are the breadth and draft of the mother ship, respectively.
The parameter χ is defined as

χ = 1 − Fr
√

kw Ll cos βh (2)

in which Ll is the length of the mother ship, and βh is the
heading angle. In addition, Fr is the Froude number, such
that Fr = V/(gLl)

1/2, where V is the forward speed. The
frequency of encounter ϖ can be expressed as

ϖ = ω − kwV cos βh = χω. (3)

The hydrodynamic damping of the cross section is modeled by
the dimensionless ratio between the incident wave amplitude
and the diffracted wave amplitude by the following approxi-
mation [9]:

A = 2 sin
(

ϖ 2 B
2g

)
e−

ϖ2 D
g = 2 sin

(
1
2

kw Bχ2
)

e−kw Dχ2
.

(4)

The driving force F of the mother ship is given by

F = κ f
2

ke Ll
sin

(
ke Ll

2

)
(5)

with

ke = |kw cos βh | . (6)

The Smith correction factor κ is approximated by

κ = exp(−ke D). (7)

1) Harmonic Oscillator With Sinusoidal Forcing: A second-
order mass-damper-spring system can approximate the decou-
pled heave zO and the roll motion α of the mother ship

ẍ + 2ξωn ẋ + ω2
n x =

F
m

sin(ωt) (8)

where x = [zO , α]; m is the system mass. The driving
frequency and the natural frequency are denoted by ω and ωn ,

respectively. The variable ξ represents the relative damping
ratio, given by

ξ =
d
2

√
1

mks
, ωn =

√
ks

m
. (9)

Here d is the system viscous damping coefficient, and ks is
the system elastic damping coefficient.

In this article, we only consider the steady-state solution of
the mother ship, which is independent of the initial conditions
and only depends on the driving force F

x =
F

m Zmω
sin(ωt + ε) (10)

with

Zm =

√
(2ξωn)2

+
1
ω2

(
ω2

n − ω2
)2 (11)

ε = arctan
(

2ξωnω

ω2 − ω2
n

)
(12)

where Zm is the absolute value of the impedance, and ε

is the phase of the oscillation relative to the driving force.
The impedance is the ratio of force F to velocity ẋ, which
represents the degree of the ship’s motion when subjected to
a sinusoidal force.

2) Decoupled Computation of the Mother Ship’s Natural
Periods: The linear decoupled heave and roll equations are
expressed in the center of flotation (CF) [10](

m + ACF
33 (ω3)

)
z̈O +

(
BCF

33 (ω3) + BCF
v,33 (ω3)

)
żO + CCF

33 zO

= 0 (13)(
I CF
x + ACF

44 (ω4)
)

α̈ +

(
BCF

44 (ω4) + BCF
v,44 (α4)

)
α̇ + CCF

44 α

= 0 (14)

where the potential coefficients ACF
i i and BCF

i i , viscous damp-
ing BCF

v,i i , spring stiffness CCF
i i (i = 3, 4), and moments inertia

I CF
x are computed in the CF, which is the ship rotation point

for a pure rolling motion under the assumption of constant
volume displacement. Suppose the natural frequencies are
computed in a point far from the CF using the decoupled equa-
tions (13) and (14). In this case, the results can be erroneous
since the eigenvalues of the decoupled equations depend on
the coordinate origin instead of the 6-DOF coupled system.
From (13) and (14), it follows that the natural frequencies and
periods of heave and roll in the CF are given by the implicit
equations

ω3 =

√
CCF

33

m + ACF
33 (ω3)

, T3 =
2π

ω3
(15)

ω4 =

√
CCF

44

I CF
x + ACF

44 (ω4)
, T4 =

2π

ω4
. (16)

Here T3 and T4 are the natural periods of the mother ship in
heave and roll; CCF

33 = ρg Aw and CCF
44 = ρg ▽GMT , where ρ

denotes the water density; Aw is the lateral area; ▽ represents
the displacement of the mother ship; GMT is the transverse
metacentric height, and GML is the longitudinal metacentric
height.
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3) Heave Response: Consider the harmonic oscillator

z̈O + 2ξωn żO + ω2
nzO = ω2

n Aa F cos(ϖ t). (17)

The wave amplitude Aa is the driving term. The oscillators
have a standard damping ratio ξ and a natural frequency ωn
such that

ξ =
ξ2

a

ks Bµ3ω
/2

√
2ks D
ω2 =

ξ2
a

Bµ3
√

8k3
s D

(18)

ωn =

√
ρgLl B/

(
m + ACF

33
)

=
√

g/2D (19)

where ξa is the sectional hydrodynamic damping and µ is the
ratio between the frequency of the encounter ϖ and the wave
frequency ω. Define the coefficient f as

f =

√
(1 − ks D)2

+

(
ξ2

a

ks Bµ3

)2

. (20)

Then the driving force F can be written as

F = κ f
sin ς

ς
(21)

where ς = ke Ll/2.
Based on (6) and (7), the heave response becomes

zO = Aa
ω2

n

Zmϖ
F cos(ϖ t + ε) (22)

where Zm and ε are given by (11) and (12).
4) Frequency Response Function of the Mother Ship’s Roll

Angle: If the roll motion is assumed to be decoupled from
other transverse motions, the equation of motion for a roll in
regular waves with unit wave amplitude is(

T4

2π

)2

C44α̈ + B44α̇ + C44α = M cos(ϖ t). (23)

Here B44 is the hydrodynamic damping for the ship; C44 =

ρ ▽ GMT is the restoring moment coefficient, and

B44 = 2ζ4

(
T4

2π

)
C44. (24)

Then an estimate of M as a function of the encounter angle
βe is

M =

√
ρg2

ϖ
B44 sin(βe). (25)

Hence the roll response of the mother ship is formulated as

α =
ω2

4
ρ ▽ GMT Zm,4ϖ

M cos(ϖ t + ε). (26)

5) Sway Response: For the sway motion, we can first refer
to the mathematical model of ship motions. Then, the ship
acceleration equation for the sway motion is given by

v̇s = fv(ν) +
τwv

mv

(27)

with

fv(ν) = −
mu

mv

ur −
dv1

mv

vs −
dv2

mv

|vs |vs −
dv3

mv

v3
s . (28)

Here τwv represents the influences from the unmodeled
dynamics and external disturbance; fv(ν) is the high-order
hydrodynamic effect. The term mv denotes the added mass
in transverse orientation in the IS coordinate. The variables
dv1, dv2, anddv3 represent the hydrodynamic damping terms.
Here the effect of the current is ignored when modeling the
motion of the mother ship caused by the waves since: 1) it is
challenging to precisely calculate the added mass of the ship
and the high-order hydrodynamic parameters; 2) the additional
transverse mass of the ship is much larger than the additional
longitudinal mass; and 3) the mother ship needs to be adjusted
to a position opposite to the direction of the current when
the rescue is carried out by releasing the lifeboat following
the maritime SOLAS convention described in [11]. The sway
motion responses of the mother ship are thereby ignored in
this article [10].

B. Motions of the Trolley and the Payload in the Body-Fixed
Noninertial Frame and the Earth-Fixed Inertial Frame

The dynamics of the ship-mounted LARS are analyzed
using the ship motion responses zO and α. Assume the masses
of the hoist trolley and RHIB are m1 and m2. As shown
in Fig. 1, h is the height of the lifting beam installed on
the mother ship. The trolley displacement along the beam is
denoted as Lx , where the trolley connects a hoist wire with
a length L . The swing angle of the RHIB is denoted as θ ,
which is associated with the L&R operational risk level. For
the convenience of establishing the L&R model, we denote
the positions of the trolley and the RHIB in the Is coordinate
as pS

1 and pS
2

pS
1 =

[
0 Lx h

]T (29)

pS
2 =

[
0 Lx + L Sθ h − LCθ

]T
. (30)

Here Sθ and Cθ represent the functions sin θ and cos θ .
The corresponding velocities of pS

1 and pS
2 are

ṗS
1 =

[
0 L̇x 0

]T (31)

ṗS
2 =

 0
L̇x + L̇ Sθ + LCθ θ̇

−L̇Cθ + L Sθ θ̇

 (32)

and their accelerations can be computed by taking the deriva-
tives

p̈S
1 =

[
0 L̈x 0

]T (33)

p̈S
2 =

 0
L̈x + L̈ Sθ + 2L̇Cθ θ̇ − L Sθ θ̇

2
+ LCθ θ̈

−L̈Cθ + 2L̇ Sθ θ̇ + LCθ θ̇
2
+ L Sθ θ̈

 . (34)

Since pi (i = 0, 1, 2) is depicted in the body-fixed frame IS ,
the coordinate transformation formula is introduced in (35) to
compute the motions in the earth-centered inertial system IN
as suggested by [7], where

pN
i = pN

S−org + RN
S pS

i . (35)

Here RN
S ∈ R3×3 is a rotation matrix between IS and IN given

by (36); Sα and Cα denote sin α and cos α, respectively; pN
S−org

is the centroid displacement of the mother ship in the inertial
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frame defined by its translational motion yO and heave motion
zO , such that pN

S−org =
[

0 yO zO
]T

RN
S =

 1 0 0
0 Cα Sα

0 −Sα Cα

 . (36)

The velocity and acceleration of pi (i = 0, 1, 2) in the
inertial frame are given by (37) according to [12]

ṗN
i = ṗN

S−org + ωS × pS
i + ṗS

i (37a)

p̈N
i = p̈N

S−org + εS × pS
i + p̈S

i + ωS ×

(
ωS × pS

i

)
+ 2ωS × ṗS

i (37b)

where ωS is the angular velocity of the mother ship’s rolling
angle α shown in Fig. 1, such that ωS =

[
α̇ 0 0

]T; εS is
the angular acceleration, where εS =

[
α̈ 0 0

]T.

C. Dynamic Model of LARS With the Lagrange Equation

A Lagrange equation (38) is employed in the body-fixed IS
frame for dynamic analysis, given that the dynamics can be
computed more straightforwardly in the frame attached to the
mother ship [13]

d
dt

(
∂T
∂q̇i

)
−

∂T
∂qi

= Qi (38)

where qi (i = 1, 2, 3) serves as a generalized coordinate, i.e.,
an independent system state to be controlled. We choose the
coordinate vectors for LARS as q1 = Lx , q2 = L , and q3 =

θ to describe the LARS dynamics. The generalized external
forces of the LARS are depicted by Qi (i = 1, 2, 3), in which
the inertial force brought by the relative motion of IS and
IN is included since qi is observed in IS . In addition, T is
the relative kinetic energy of the LARS, including the kinetic
energy of a trolley T1 and the RHIB T2, such that

T = T1 + T2 =
1
2

2∑
i=1

mi

(
ṗS

i

)T
ṗS

i =
1
2

(m1 + m2) L̇2
x

+
1
2

m2 L̇2
+

1
2

m2L2θ̇2
+ m2 L̇ L̇x Sθ + m2L L̇x θ̇Cθ .

(39)

By substituting (39) into (38), the left side of the Lagrange
functions is formulated in terms of each independent state

Q1 = (m1 + m2) L̈x + m2Sθ L̈ + m2Cθ L θ̈ + 2m2Cθ L̇ θ̇

(40a)

− m2L Sθ θ̇
2

Q2 = m2Sθ L̈x + m2 L̈ − m2L θ̇2 (40b)

Q3 = m2LCθ L̈x + m2L2θ̈ + 2 m2L L̇ θ̇ . (40c)

The control inputs of the LARS include the tension force Fl
along the hoist wire and the trolley driving force Fx . Denote
the gravitational forces of the trolley and the RHIB as G1 and
G2. The inertial forces of the trolley and the RHIB are denoted
as F1 and F2. Then, we utilize δW to denote the system’s
virtual work, which arises from the exerted forces (Fl , Fx ),
the gravitational forces Gi (i = 1, 2), and the inertial forces

Fi (i = 1, 2). In the generalized coordinates, the generalized
external force Qi is equivalent to (δW )/qi .

To compute Qi , we define the virtual work associated with
the driving forces as δWs , where δWs is given by

δWs = FxδLx + FLδL . (41)

Here δLx and δL are the variations of Lx and L .
Regarding the gravitational virtual work δWg , since gravity

in the noninertial frame IS is

Gi =
[

0 −mi gSα mi gCα

]T (42)

by coordinate transformation, δWg can be written as

δWg = (m1gSα + m2gSα) δLx

+ m2gCθ−αδL − m2gL Sθ−αδθ. (43)

The virtual work associated with the inertial forces is
denoted as δWs , which is formulated by

δWF =

2∑
i=1

Fi · δpS
i . (44)

According to D’Alembert’s principle of inertial forces, Fi (i =

1, 2) arises from: 1) accelerations of the trolley and the RHIB
observed in the noninertial frame and 2) relative motions
between IS and IN , where Fi can be computed by

Fi = −mi p̈N
i = −mi

[
p̈N

S− org + εS × pS
i + p̈S

i

+ ωS ×

(
ωS × pS

i

)
+ 2ωS × ṗS

i

]
.

(45)

Substituting (41), (43), and (44) into (38), the overall virtual
work is summarized as

δW =
(
Fx + m1gSα + m2gSα + fLx

)
δLx

+ (FL + m2gCθ−α + fL) δL

+ (−m2gL Sθ−α + fθ ) δθ. (46)

Considering Qi = (δW )/(δqi ), (i = 1, 2, 3), the general-
ized forces are established as

Q1 = Fx − (m1 + m2) L̈x − (m1 + m2) ÿO

+ (m1 + m2) gSα − m2Sθ L̈ + (m1 + m2) hα̈

+ (m1 + m2) α̈2Lx − m2
(
α̈ + θ̈

)
Cθ L

− 2m2θ̇Cθ L̇ + m2Sθ

(
α̇2

+ θ̇2
)

L (47a)

Q2 = Fl − m2 L̈ + m2Cθ z̈O − m2Sθ L̈x − m2Sθ ÿO

+ m2gCα−θ + m2

(
α̇2

− θ̇2
)

L + m2α̈Cθ Lx

− 2m2θ̇Cθ L̇x + m2α̈Sθ h + m2α̇
2Sθ Lx − m2α̇

2Cθ h

(47b)

Q3 =−m2

((
α̈ + θ̈

)
L2

−Sα−θ gL+2θ̇ L̇ L+Cθ

(
L̈x + ÿO

)
L

+ Sθ z̈O L + 2Cθ L̇x L̇ + α̈Sθ Lx L − α̈Cθ hL

− 2θ̇ Sθ L̇x L − α̇2Cθ Lx L − α̇2Sθ hL
)

. (47c)

Based on (38) and (47), the dynamic model of the LARS
is established as (48) with the approximations that sin α = α,
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cos α = 1, sin β = β, cos β = 1, sin θ = θ , and cos θ = 1 for
small angles

L̈x =

(
Fx L − m1 ÿO L + m1gαL + m1α̈hL + m1α̇

2Lx L

+ 2m2 L̇x L̇ − Flθ L + 2m2θ̇
2θ L2

+ m2θ
2 ÿO L

− m2α̈θ2hL − m2α̇
2θ2Lx L

) / (
2m1L − 2m2θ

2L
)

(48a)

L̈ =

(
− m1 Fl L + m2

×

(
z̈O L

(
−m1 + m2θ

2
)

+ L
(
−m1α̈Lx + θ Fx + m2gθ2

+ 2m2θ̇
2θ2L

+ m2α̈θ2Lx + m1g (−1 + αθ) + α̇2 (h − L)

×

(
m1 − m2θ

2
))

+ 2L̇x

(
m2θ L̇ + θ̇ L

(
m1 − m2θ

2
))))

/(
2m2L

(
−m1 + m2θ

2
))

(48b)

θ̈ =

(
−Fx L − 4θ̇ L̇ L

(
m1 − m2θ

2
)

− 2
(

m1 + m2 − m2θ
2
)

L̇x L̇ + α̈L (L + θ Lx )

×

(
−m1 + m2θ

2
)

+ θ L

×

(
Fl − m1 z̈O + 2m1θ̇ L̇x

− m1g + m1α̇
2h − 2m2θ̇

2L − m2gαθ + m2 z̈Oθ2

− 2m2θ
2θ̇ L̇x + m2gθ2

− m2α̇
2θ2h

))
/(

2L2
(

m1 − m2θ
2
))

. (48c)

Clearly, (48) demonstrates that: 1) the LARS states are cou-
pled with the motion predictions of the mother ship computed
from the preview wave information and ship hydrodynamics,
where the predictions play a vital role in determining the
safety of LARS operations; 2) the hoist cable length and
the corresponding velocity can be manipulated by controlling
the tension force Fl ; and 3) the payload swing angle θ is
dependent on and determined by both the tension force and the
trolley driving force. Hence moving the trolley in the direction
of the lifeboat sway is an effective approach to suppress the
swing.

Note that all generalized vectors associate with the
wave-induced motion responses of the mother ship. Thereby
the LARS states can be propagated forward once the heave
and roll motion predictions are available. It further implies
that the future LARS states and mother ship motions can be
predicted by forecasting waves, as the ship motion responses
to waves are obtained from (22) and (26).

III. TMPC-BASED L&R FORMULATION

Efficiently stowing the RHIB and reducing excessive swings
are of equal importance for LARS control. Overlong execution
time raises the risk of encountering large waves that may cause
injuries to lifeboat personnel. Once free from the anti-swing
control, the RHIB can move in all directions in response to the

hoisting force and the motion of the mother ship. To enhance
the reliability of LARS and keep the L&R operation safer,
several practical limitations and constraints are imposed on the
LARS, e.g., a short execution interval, motors’ torque limits,
swing angle constraints, and so on. The control objective is
to hoist the lifeboat lower down or higher up to reduce the
risk of damage from waves subject to the constraints. In this
sense, we develop a robust model predictive control scheme
that adopts an optimization objective (49) applicable to both
stages

V ∗
= min

∫ t f

t0

(
(x − xr )

T Q (x − xr ) + uT Ru
)

︸ ︷︷ ︸
f0(u(t),t)

dt (49)

where [t0, t f ] is a short time window following the current
moment, utilized in Stage 1 to check if the L&R mission can
be undertaken safely over the interval. Once the execution of
L&R is deemed to be safe during this period, the hoisting
can be initiated immediately at the time t0. The terminal
time t f equals t0 + Ns Ts if the sampling time of the LARS
is Ts and the simulation horizon is Ns . The state x =[

Lx L̇x L L̇ θ θ̇
]T in the control problem, is constrained

in a compact set X defined by the practical restrictions of
the L&R mechanical system such as the length of the lifting
beam. The set X also accounts for L&R operational safety,
e.g., regulating the swing of the RHIB. Note that the state
derivative ẋ = fc(x, u) is twice continuously differentiable.

The stage cost f0(u(t), t) in (49) penalizes the discrepancy
between the state x and its reference xr , to keep the state
trajectories tracking xr over time. Here we define the state
reference xr as

[
02×1 L f 03×1

]T, where L f is the target
terminal length. Penalization of the hoisting velocity is also
included in f0(u(t), t), as it can enable a stable hoisting process
and drive the terminal velocity to zero. Some additional
penalization terms include: 1) the swing angle θ or the angular
velocity θ̇ , since a small swing during L&R execution offers a
higher level of safety to the personnel on the RHIB and helps
to avoid possible collisions between the two vessels; and 2)
the trolley displacement Lx or the corresponding velocity L̇x ,
to make the motion of the trolley less aggressive, but both Lx
and L̇x are not main penalization terms since the two variables
are not directly related to the onboard personnel safety once
they are constrained. The weighting matrix Q is chosen to
tradeoff between different terms; the weight R is tuned to
limit the magnitude of the input signal u.

Given the motion prediction errors and plant-model mis-
matches resulting from unmodeled dynamics, the system
equation of the LARS involves unpredictable disturbances that
affect the forecasts of its states. Therefore, (49) is hard to
be resolved straightforwardly since accurate state predictions
are required. Thus, a robust TMPC strategy is employed to
convert the optimization problem (49) into two subproblems:
1) a nominal control problem (52) that generates a noise-free
central path and 2) an ancillary problem (58) that steers the
system trajectories to the central path to eliminate the state
discrepancy between the uncertain and nominal states. Hence
by tightening the original constraint sets with the boundary
of the discrepancy, the proposed TMPC can guarantee the
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satisfaction of practical constraints for the LARS. It is also
worth noting that both stages of the L&R operations require
resolving the two subproblems that jointly formulate the robust
LARS controller.

Regarding the implementation of the controller, we first
define the nominal LARS model as the derived dynamic model
with perfectly-predicted mother ship motions as presented in
(48). The predictions are nominal model parameters in the con-
trol problem, denoted as p̄ = (ȳO , z̄O , ᾱO , ¯̇yO , ¯̇zO , ¯̇αO , ¯̈yO ,
¯̈zO , ¯̈αO), where the nominal displacements, velocities, and
accelerations of the mother ship in response to waves are
included. The disturbance-involved mother ship motions are
represented by p = (yO , zO , αO , ẏO , żO , α̇O , ÿO , z̈O , α̈O).
In addition, the nominal state is defined as z, the uncertain
system state as x , and the external bounded disturbances
as {w|w ∈ W} (with W closed and bounded). Then, the
discretized nominal and uncertain L&R dynamics can be
described by (50) and (51), respectively, where z+ and x+

denote the successor states of the nominal and uncertain LARS
models

z+
= f (z, v, p̄) (50)

x+
= f (x, u, p) + w. (51)

In (50), f is the mapping from the current states to the succes-
sor states solved based on the continuous ordinary differential
equation fc; v is the optimal nominal input computed from a
nominal L&R control problem such that v = [F̄x , F̄l ]

T. The
solution for (50) is denoted by z(i) = φ̄(i; z, v) at time i with
the initial state z(0) and the initial time 0. Here v in φ̄(i; z, v)

represents the control sequence for the nominal MPC over the
horizon [0, N − 1] following the current time.

Based on the above definitions, the formulation of the
nominal L&R problem is provided by

V̄ ∗

N (z, xr , v)

= min
N−1∑
i=0

ℓ (σ (i), v(i)) (52)

s.t. ℓ (σ (i), v(i)) = σ(i)T Qσ(i) + v(i)T Rv(i) (52a)
σ(i) = z(i) − xr (i) (52b)

z(i) = φ̄(i; z, v) (52c)
Z = κ1X, V = κ2U (52d)
z ∈ Z ⊂ X, v ∈ V ⊂ U, xr ∈ Xr (52e)

where the parameters κ1 and κ2 are utilized to tighten the
original constraint sets X and U; Z and V denote the tightened
constraint sets lying in the interior of X and U. Thereby the
satisfaction of constraints on the controlled uncertain system
can be ensured for all possible disturbance sequences over
time [14]. The reference trajectory is bounded in the set Xr .

Remark 1: The tightened constraint sets in a linear TMPC
problem can be computed by applying the minimal robust
positive invariant set theory [15]. While in a nonlinear TMPC
problem, the determination of X and U is a semiinfinite
optimization problem such that the scale parameters κ1 and
κ2 should lie within a discrete subset of [0, 1], but the con-
straints for the optimization remain infinite dimensional [14].

One way to approximately solve the semiinfinite problem is
to apply the Monte-Carlo simulation since a small variation
of κ1/κ2 does not affect the operational safety as long as the
uncertain trajectories mainly stay inside the constraint sets.
The strategy can be implemented as follows.

1) Initial choices of the tightened state and control con-
straints are made such that κ1, κ2 = 1.

2) The closed-loop system is simulated using a large sam-
ple of disturbance sequences to check the maximum
resultant “spread” of system trajectories, say, 2di (i =

1, 2, . . . , 6) for a state or control signal.
3) The nominal state and control constraint set is tightened

by di for each state or control component so that
the disturbed trajectories can remain in the interior of
the constraint sets. Therefore, the choices of κ1 and
κ2 are neither too conservative nor too aggressive, thus
reducing the risk of control performance degradation and
violation of constraints.

Remark 2: Assume the resultant control sequence of (52)
is v = [vk|0, vk+1|1, . . . , vk+N−1|N−1]

T from the time k.
The corresponding optimal state σ is [σk+1|1, σk+2|2, . . . ,

σk+N |N ]
T if σk|0 ≜ σ(0). In MPC, only the first control signal

vk|0 is applied to the LARS at the time k that v∗(0) ≜ vk|0.
At the next sampling moment, the current state will be updated
by the state measurement at k + 1 to recompute the control
sequences.

Remark 3: Assume that the target state xr is admissible.
We outline the method to prove that z can asymptotically
converge to the reference trajectory xr with the nominal MPC
law applied.

The convergence can be verified by imposing a terminal
cost function V f (σ (N )), together with a terminal constraint set
σ f ≜ {σ(N ) ∈ σ f ⊆ (Z⊖Xr )} as described in [3]. We assume
the existence of a positive definite matrix {P | V f (σ (N )) ≜
σ(N )T Pσ(N )} and P is computed from V f (σ (N + 1)) −

V f (σ (N )) ≤ −ℓ(σ (N ), κ f (σ
∗

k+N |N )) under a local control
law vk+N |N = κ f (σ

∗

k+N |N ) to make the terminal constraint
set σ f invariant. Here vk+N |N can be selected as zero. Thus,

V̄ ∗

N (z, xr , v) = min
N−1∑
i=0

ℓ (σ (i) , v (i)) + V f (σ (N )) (53)

which yields an optimal control sequence v∗
=

[v∗

k|0, v
∗

k+1|1, . . . , v
∗

k+N−1|N−1]
T and an optimal state

sequence σ ∗
= [σ(k), σ ∗

k+1|1, σ
∗

k+2|2, . . . , σ
∗

k+N |N ]
T if

the initial time is k. At k + 1, the control sequence
v+

= [v∗

k+1|1, v
∗

k+2|2, . . . , v
∗

k+N−1|N−1, κ f (σ
∗

k+N |N )]T is
suboptimal by the designed control law κ f (σ

∗

k+N |N ), and
therefore,

V̄ ∗

N
(
z+, x+

r , v+
)

≤

N∑
i=1

ℓ (σ (i) , v (i)) + V f (σ (N + 1))

=

N−1∑
i=0

ℓ
(
σ ∗

k+i |i , v
∗

k+i |i

)
− ℓ

(
σ ∗

k|0, v
∗

k|0

)
+ ℓ

(
σ (N ) , κ f

(
σ ∗

k+N |N

))
+ V f (σ (N + 1))
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= V̄ ∗

N (z, xr , v) − ℓ
(
σ (0) , v∗

k|0

)
+V f (σ (N +1))−V f (σ (N ))+ℓ

(
σ (N ) , κ f

(
σ ∗

k+N |N

))
︸ ︷︷ ︸

≤0 by the above Assumption

(54)

which implies

V̄ ∗

N
(
z+, x+

r , v+
)
− V̄ ∗

N (z, xr , v) ≤ −ℓ
(
σ(0), v∗

k|0

)
. (55)

Here ℓ(σ (0), v∗

k|0) > 0 for σ(0) ̸= 0 or v∗

k|0 ̸= 0.
In addition, to prove the convergence, we assume that there

exist K∞ functions c1 and c f [3] satisfying

ℓ
(
σ(0), v∗

k|0

)
≥ c1|σ | (56a)

V f (σ (N )) ≤ c f |σ | (56b)

for ∀σ ∈ Z ⊖ Xr , then it can be proved following [3] that

c1|σ |
2

≤ V̄N (z, xr , v) ≤ c2|σ |
2 (57)

where c2 ∈ K∞. Since the objective is quadratic that
V̄N (z, xr , v) ≥ 0 (V̄N (z, xr , v) = 0 at equilibrium O and
V̄N (z, xr , v) > 0 at σ ∈ (Z ⊖ Xr ) \ O), the above equation
together with (55) implies that the objective function is a
Lyapunov function, and σ tends to converge to O over time.
Hence the nominal control v asymptotically steers the L&R
state z to its admissible reference xr .

Remark 4: The constraint set σ f ≜ {σ(N )|V f (σ (N )) ≤

ϒ} can guarantee the feasibility of the successor state if the
current state is feasible, where ϒ > 0. We suppose σ(k) is
feasible at time k and let v∗ be the optimal control sequence.
At time t +1, the control sequence v+ is feasible since σ ∗

k+N |N
is in the invariant set σ f and a feasible solution κ f (σ

∗

k+N |N )

can always be found to make σk+N+1|N+1 in σ f .
The disturbed trajectories are required to evolve around the

nominal state bounded in a tube. Hence an augmented input
u = [Fx Fl ]

T is introduced to enhance the robustness of the
computed nominal controller, solved from an ancillary control
problem (58) to steer the uncertain system states toward the
nominal trajectory. The objective (58) minimizes the cost
of the deviation between the trajectories of the two models
x+

= f(x, u, p) and z+
= f(z, v, p̄) [3]. Regarding the penalty

weights, we choose their values to be identical to Q and R in
the problem (52) for convenience. The weights can be tuned
to mitigate the effect of different disturbance sources

V ∗

N (x, z, u)

= min
N−1∑
i=0

ℓ
(
x(i) − z∗(i), u(i) − v∗(i)

)
(58)

s.t. ℓ
(
x(i) − z∗(i), u(i) − v∗(i)

)
=

(
x(i) − z∗(i)

)T Q
(
x(i) − z∗(i)

)
+

(
u(i) − v∗(i)

)T R
(
u(i) − v∗(i)

)
(58a)

z∗(i) ≜ φ̄(i; z, v), v∗(i) ≜ vi |0 (58b)
x ∈ X, u ∈ U. (58c)

Here x(i) is the solution of (51) if the control is u; z∗(i) is
the solution of (50) if the initial state is z and the associated

Fig. 2. Control framework of a robust LARS.

Algorithm 1 Robust Launch and Recovery Control Algorithm

control sequence is v. The initial state x(0) is the current
measured state for the disturbed LARS such that x(0) =[

Lx0 0 L0 0 θ0 0
]T. Likewise, the initial nominal state

z(0) ≜ zk|0 is obtained from measurement. Moreover, as the
state and the control input are constrained in X and U, the
tracking error between the uncertain and reference trajectories
is ultimately bounded by an error dynamic set � ≜ X ⊖ Z,
and the uncertain state ultimately stays within the set xr ⊕ �

according to Remark 3.
We summarize the control scheme in Fig. 2 following the

above discussions, with the implementation details shown in
Algorithm 1.

IV. NUMERICAL RESULTS

In this section, the JONSWAP wave spectrum [17] is
adopted to describe sea states for the L&R mission simulation.
The spectral density function is given by

Sw(ω) = 155
H2

s

T 4
l

ω−5e
−944

T 4
l

ω−4

γ Y (59)
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Fig. 3. One Hundred-s of wave profiles.

Fig. 4. Mother ship’s responses with JONSWAP spectrum.

where Hs is the significant wave height; Tl represents the
average wave period [17], and

Y = e
−

(
0.191ωTl −1

√
2η

)2

, γ = 3.3 (60)

with

η =

{
0.07, for ω ≤ 5.24/Tl

0.09, for ω > 5.24/Tl .
(61)

Here Hs = 2 m, Tl = 40 s, and ω ∈ (10−1.2, 100.5).
According to the wave energy spectrum theory, the nth wave
component possesses the energy of (1/2)1ωAn

2. Here An
is the amplitude of the nth wave component and 1ω is the
frequency increment, and An is

An =

√
2Sw(ω)1ω. (62)

The wave elevation in the time domain is

Z(t) =

∞∑
n=1

An cos(ωn t + φn). (63)

The time-domain wave profile with the frequency varying
from 10−1.0 to 10−0.3 is shown in Fig. 3.

Suppose the wave incident angle is 60◦ in a clockwise
direction to the bow of the mother ship. The heave and roll
motion responses of the mother ship are shown in Fig. 4.
The transverse displacement yO is resulted from the sway
motion vs of the mother ship and thus is trivial according
to Section II-A5.

The motion responses are applied as parameters of the
nominal LARS model. For a real-world LARS, the motion
prediction is computed from sea wave predictions and ship
hydrodynamics. The data used to make wave predictions is
obtained from scanned X -band RADAR images of the sea
clutter (operated in short pulse mode) of the region around
the vessel out to distances of 1–2 km. These backscatter
images are then utilized to create a linear sea model for
prediction purposes. Thus, the error in wave profiles arises
from both the measurement process and from the assumption
of linearity. For prediction times of 30 s ahead in moderate

TABLE I
PARAMETERS OF THE LARS

to large seas, the level of accuracy obtained in sea trials is
typically 80%–85% [18], [19]. In addition, inaccurate ship
hydrodynamics will also bring the model uncertainties as it can
influence the computation of motion predictions. The lumped
ship motion prediction error is the main source of LARS
model uncertainties. We show 40 trajectories of the RHIB’s
possible motions in Fig. 5. These trajectories evolve around the
nominal trajectory (solid lines). Trajectories from Monte-Carlo
simulations (dashed and dotted lines) show the robustness of
the controller. The first 5 s of the mother ship motion responses
is utilized to determine if the control problem is feasible to
safely proceed with the L&R operations. Note that choosing a
larger slot might include large waves during the time window
which makes the L&R problem infeasible. On the other hand,
if the hoisting time is designed to be too short, it can arouse
large swing angles and possibly very high hoisting velocities
according to the L&R system dynamics. For the weighting
matrices, we choose Q = diag(0, 0.2, 1, 1, 0, 0.5) and R =

diag(3 × 10−5, 5 × 10−5). The rest of the LARS parameters
and controller settings are shown in Table I.

The computation of the TMPC inputs and the corresponding
states employs the high-performance optimization framework
acados to ensure the real-time implementation, as each con-
trol step can be performed in milliseconds [4]. Given that
each receding-horizon subproblem of MPC is a nonlinear
optimal control problem (OCP), the solver can discretize
the OCP into a nonlinear programming (NLP) formulation
with multiple-shooting discretization [20]. Then, the NLP can
be converted into a standard quadratic form using the SQP
strategy [21]. The quadratic problem is approximately solved
by a Ricatti-based interior-point strategy using the recently
developed HPIPM [5].

The nominal trolley driving force F̄x and the nominal
tension force F̄l are shown in Fig. 6. The resultant control
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Fig. 5. Predictions of the mother ship’s roll angle and heave acceleration
responses and 40 trajectories of uncertainty-involved responses.

Fig. 6. Forty trajectories of trolley driving forces (Fx ) and tension forces
(Fl ) and the corresponding nominal control inputs.

signal F̄l steers the RHIB to the target position during the
specified time slot subject to constraints; F̄l together with F̄x
manipulates the swing of the RHIB. The magnitude of F̄x
is relatively small as the friction between the trolley and the
lifting beam is trivial, and the scale of the predicted rolling
angle leads to a much smaller trolley acceleration compared
with the acceleration of the payload. If the prediction errors
are considered, the control inputs (a set of dotted lines in
Fig. 6) utilize the solution from the ancillary controller (58)
to drive the uncertain trajectories close to the nominal state.
The results show that the tension force constraints are active
at the beginning.

Motion responses of the LARS are shown in Figs. 7–9
utilizing the obtained control inputs. Fig. 7 shows the changes
in the trolley position to suppress the swing of the RHIB.
Here the penalization coefficients of the terms |Lx − L̄x |

and |L̇x −
¯̇Lx | in the ancillary control problem are set to be

small, thus having negligible impacts on the position tracking
performance of the RHIB. In this sense, the discrepancies
between the trolley position and velocity between the nominal
and uncertain trajectories can be observed. Fig. 8 shows
the length of the hoist wire and the corresponding velocity.

Fig. 7. Forty trajectories of trolley position and velocity on the lifting beam
(Lx , L̇x ) and the corresponding nominal position and velocity.

Fig. 8. Forty trajectories of hoist wire’s length and velocity (L , L̇) and the
corresponding nominal length and velocity.

Regarding their constraints, the scalar tuning parameter of the
state κ1 is designed as 0.988 via Monte-Carlo simulations,
and the nominal constraints for the cable length and the
velocity are thereby tightened to the sets [κ1 L̄min κ1 L̄max]

and [κ1
¯̇Lmin κ1

¯̇Lmax], respectively. Hence the constraints for
the cable velocity are active during [0.3, 0.8] s. It is also
remarkable that the position of the RHIB keeps tracking the
target terminal position L f , which is achieved during the
required time period. The terminal velocity approaches zero to
stabilize the motion of the hoisted RHIB. Furthermore, despite
the existence of minor discrepancies between the nominal and
uncertain trajectories, the controller maintains the uncertain
system states in a reasonable neighborhood of the reference
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Fig. 9. Forty trajectories of swing angle and angular velocity (θ , θ̇ ) and the
corresponding nominal angle and angular velocity.

trajectory since the impact of model uncertainties is minimized
via the ancillary control objective. Therefore, the computed
control action is not inclined to be conservative.

Fig. 9 shows the swing angle and angular velocity responses
using the nominal and uncertain system dynamics. The nom-
inal value of the swing angle is controlled within its safety
constraints [κ1θ̄min κ1θ̄max] = [−4.94◦, 4.94◦

] , indicating
the hoist trolley is moved in the direction of lifeboat swing
to counteract the swing. With model uncertainties involved,
the system trajectories are regulated to evolve around the
nominal state, where all trajectories satisfy the state constraints
[−5◦, 5◦

] to avoid the possibility of collisions brought by
overlarge swings. The robustness of the LARS thereby can be
guaranteed, which acts as an additional safety feature and thus
the operation can proceed securely. Note that in the LARS
TMPC problem, the average simulation time for each MPC
loop is 4.2 ms. As the feasibility check is completed in prior
to the initiation time of L&R operations, the online tractability
is guaranteed.

V. CONCLUSION

A robust TMPC scheme tailored for an offshore LARS
is proposed in this article. Control of the LARS consists of
two stages. The controller feasibility is checked in Stage 1
to examine whether the L&R can proceed securely. Once a
feasible solution is found, the controller executes the hoisting
to accomplish the L&R mission in Stage 2. In this case, even in
a relatively high sea state, it is possible to undertake the L&R
mission with the proposed controller applied. In each stage, the
system robustness against disturbances can be guaranteed by
restricting the LARS uncertainties in a tube centered around a
nominal trajectory free of disturbances. To further enhance
the safety of the execution, operational limits of the L&R
mechanical system are fully considered to protect the LARS,

and the likelihood of overlarge payload swinging is reduced by
penalizing the angular velocity. Moreover, online tractability
is demonstrated despite the fact that the LARS dynamics
are profoundly nonlinear. The performance may be further
improved by investigating the 3-D modeling and control of
the LARS in the future.
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