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Abstract This study identifies temporal biases in the radiocarbon ages of the planktonic foraminifera
species Globigerina bulloides and Globigerinoides ruber (white) in a sediment core from the SW Iberian
margin (so‐called Shackleton site). Leaching of the outer shell and measurement of the radiocarbon content
of both the leachate and leached sample enabled us to identify surface contamination of the tests and its
impact on their 14C ages. Incorporation of younger radiocarbon on the outer shell affected both species and
had a larger impact downcore. Interspecies comparison of the 14C ages of the leached samples reveal
systematic offsets with 14C ages for G. ruber being younger than G. bulloides ages during the last deglaciation
and part of the Early and mid‐Holocene. The greatest offsets (up to 1,030 years) were found during Heinrich
Stadial 1, the Younger Dryas, and part of the Holocene. The potential factors differentially affecting these
two planktonic species were assessed by complementary 14C, oxygen and carbon isotopes, and species
abundance determinations. The coupled effect of bioturbation with changes in the abundance of G. ruber is
invoked to account for the large age offsets. Our results highlight that 14C ages of planktonic foraminifera
might be largely compromised even in settings characterized by high sediment accumulation rates. Thus, a
careful assessment of potential temporal biases must be performed prior to using 14C ages for paleoclimate
investigations or radiocarbon calibrations (e.g., marine calibration curve Marine13, Reimer et al.,
2013, https://doi.org/10.2458/azu_js_rc.55.16947).

1. Introduction

For decades, fossil planktonic foraminifera have been a valuable source of paleoceanographic information,
providing proxies for variations in ice volume, sea level, salinity, temperature, and nutrients (e.g., Pearson,
2012). Since the discovery of the radiocarbon (14C) dating technique in the late 1940s (Libby et al., 1949),
radiocarbon age determination of planktonic foraminifera has become a cornerstone for paleoclimate
investigations spanning the last 50,000 years. Most studies rely on this method to build chronostratigraphic
frameworks for marine sediment sequences and constrain changes in thermohaline circulation by
estimating radiocarbon ventilation ages. However, prior works have demonstrated that planktonic
foraminifera 14C ages might not always be a reliable indicator of their depositional ages due to numerous
causes, as summarized by Mekik (2014). For instance, contamination trough radiocarbon addition by
secondary calcite precipitation or adhesion of atmospheric carbon, which can go unnoticed during visual
sample inspection under an optical microscope, can lead to large deviations in 14C ages (Wacker et al.,
2014; Wycech et al., 2016). Other possible causes of temporal biases include bioturbation along with
differential dissolution and fragmentation (Barker et al., 2007, and references therein), differential
bioturbation coupled with species abundance gradients (e.g., Bard et al., 1987b), transport and deposition
of reworked specimens (Broecker et al., 2006), and distinct calcifying habitats (Lindsay et al., 2015). All these
might differentially affect foraminifera species, and their influence on foraminifera 14C ages might be largely
overlooked if, as in most paleoinvestigations, only samples of one species are analyzed per sediment horizon.
Thus, a more thorough assessment of the potential temporal biases between co‐occurring foraminifera
species is required prior conducting investigations primarily based on climate signals derived from
foraminifera tests. Given age discrepancies might exceed the duration of abrupt climate events
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(>1,000 years; Mekik, 2014), important questions arise in relation to the applicability of the latter approach
in regions where marine sediments have a unique potential to unravel rapid climate and environmental
changes.

In this regard, the so‐called Shackleton sites, MD95‐2042 and Integrated Ocean Drilling Program (IODP) Site
U1385, on the SW Portuguese margin constitute benchmark cores for paleocenographic studies. For
instance, Bard et al. (2004) produced a downcore sequence ofG. bulloides 14C ages in coreMD95‐2042, which
was incorporated into IntCal09/Marine09 (Reimer et al., 2009) and subsequent updates (Reimer et al., 2013).
This location has also emerged as one of the few regions in the world where direct correlation of marine
signals with both Greenland and Antarctic ice core signals is feasible (Shackleton et al., 2000), detailed
chronostratigraphies have been developed (e.g., Bard et al., 1987a; Shackleton et al., 2004), and where
ventilation and reservoir ages have been studied (Skinner et al., 2014; Skinner & Shackleton, 2004), all these
based on 14C ages of one species of planktonic foraminifera per sediment horizon.

Despite the importance attached to this location and prior works posing severe pitfalls to the latter approach,
assessment of potential temporal biases trough 14C determinations on paired species‐specific samples has
not yet been conducted. Consequently, potential temporal biases might have been disregarded in derived
paleoclimate interpretations from this key study area. We aimed at identifying possible temporal biases in
the 14C ages of planktonic foraminifera species, analyzed in samples from a sediment core retrieved close
to the location of IODP Site U1385, and assessing the potential causes for age deviations. To accomplish this,
we investigated paired 14C ages of two of the most commonly used planktonic foraminifera species:
Globigerina bulloides and Globigerinoides ruber (white) and measured complementary oxygen (δ18O) and
carbon (δ13C) isotopes, and species abundance data to elucidate possible reasons why radiocarbon ages
may diverge for different foraminifera species from the same sample.

2. Study Area

The SW Iberian margin (NE Atlantic Ocean) is a transitional region where the Portugal Current, a branch of
the North Atlantic Current, flows southward year round (Figure 1a; Brambilla et al., 2008; Pérez et al., 2001).
From October to March, the Iberian Poleward Current, a branch from the Azores Current, flows poleward
along the W Portuguese margin (Haynes & Barton, 1990). This shift in the near‐shore surface circulation is
linked to the seasonal changes in the regional atmospheric circulation, which determine two well‐
differentiated oceanographic regimes. From March/April to September/October, prevailing northeasterly
windsmay induce Ekman transport offshore and subsequent upwelling of subsurface waters. During the rest
of the year, coastal downwelling occurs under prevailing southwesterly winds (Peliz et al., 2005). Upwelled
subsurface (100–500 m) waters consist in North Atlantic Central Water of either subtropical (NACWst; 100–
250 m) or subpolar (NACWsp; 250–500 m) origin. The warmer and nutrient‐poor NACWst overlies the
colder, nutrient‐richer NACWsp, which only upwells during strong upwelling events. Below the NACW,
the denser Mediterranean OutflowWater flows poleward between 500 and 1,700 m. Below the intermediate
waters, the Northeast Atlantic Deep Water flows southward (van Aken, 2000), along with varying contribu-
tions of the Upper Circumpolar Deep Water, the Upper Labrador Sea Water, and the Antarctic Bottom
Water (Jenkins et al., 2015).

3. Materials and Methods

We analyzed downcore sediment samples from kasten core SHAK06–5K (37°34′N, 10°09′W, 2,646 m),
recovered by RSS James Cook during the cruise JC089 in 2013 in the vicinity of the Shackleton Sites
(Hodell et al., 2014).

3.1. Radiocarbon Determinations

The majority of the organic matter contained in the initial sediment was extracted with organic solvents fol-
lowing Ohkouchi et al. (2005) to use the organic fraction in a follow‐up investigation. To assess the possible
influence of this procedure on the foraminifera contained in the solvent‐extracted residue, we also analyzed
five samples of G. bulloides tests selected from nonextracted sediments. Between 15 and 30 g of dry sediment
were diluted in MiliQ® water and sonicated for only 15 s for disaggregation while avoiding shell fragmenta-
tion. The solution was then wet sieved through 300‐ and 250‐μmmesh sieves and thoroughly washed using a
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high‐pressure stream of MiliQ® water. The resulting 250‐ to 300‐μm size fraction was immediately dried at
60 °C overnight, prior to collecting 45–100 well‐preserved shells of G. bulloides or G. ruber from each
sample. In some intervals, only 7–20 specimens of G. ruber were available, limiting the amount of
measured carbon (Tables S1 and S2 in the supporting information). Radiocarbon determinations
(14C/12C) were performed with a gas ion source in a Mini Carbon Dating System at the Laboratory of Ion
Beam Physics, ETH Zürich, with an automated method for acid digestion of carbonates whose sensitivity
allows for less than10 μg of total carbon to be measured (Wacker et al., 2013). The method is outlined as
follows: vials (septa sealed 4.5‐ml exetainers vials from Labco Limited, UK) containing the samples were
purged for 10 min with a flow of 60 ml/min He to remove atmospheric CO2. Later, samples were briefly
leached by adding 100 μl of ultrapure HCl (0.02 M) with an automated syringe to remove possible surface
contaminants. The CO2 released from the leachate, referred to as leachate was transported by helium to a
zeolite trap and automatically injected into the ion source to be measured for radiocarbon. The remaining
sample, containing 12 μg C and referred to as leached sample, was subsequently acidified by adding 100 μl

Figure 1. Location of core SHAK06–5K and age‐depth model. Study area and surface circulation. PC: Portugal Current.
IPC: Iberian Poleward Current. Modified from Voelker and de Abreu (2011).
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of ultrapure H3PO4 (85%) that was heated to 60 °C for at least 1 hr. The
released CO2 was loaded in a second trap and injected into the ion source
to be analyzed for radiocarbon (Wacker et al., 2014). Bard et al. (2015)
showed that the F14C (fraction modern according to Reimer et al.
(2004)) of leachates from sequential leaching of discrete samples converge
toward a comparable value to that of the F14C of the leached sample (Bard
et al., 2015). Thus, we propose differences <5% between the two values as
an indication of near‐complete removal of surface contaminants. Five
replicates of G. bulloides samples, referred to as untreated, were directly
measured without leaching the outer shell to assess the necessity of this
method. This gas ion source Accelerator Mass Spectrometry (AMS) system
has a background 14C/12C value of F14C 0.0020 + −0.0010 (50000 BP),
determined on marble (IAEA‐C1). Radiocarbon determinations were cor-
rected for isotopic fractionation via 13C/12C isotopic ratios and are given
in conventional radiocarbon ages. Radiocarbon ages and errors were not
rounded to avoid artificial increments of age offsets and propagated errors.

3.2. Age‐Depth Model

The age‐depth model for core SHAK06–5K is a depositional model
(P_Sequence type) based on 41 14C ages of monospecific samples ofG. bul-
loides (Table 1) built with the calibration package Oxcal (Bronk Ramsey,
2009). Conventional radiocarbon ages were calibrated to incorporate a
static marine reservoir effect using Marine13 curve (Reimer et al., 2013).
The resulting age‐depth model spans the last 28,000 years.

3.3. Scanning Electron Microscope Imagery

Representative well‐preserved specimens were selected from discrete
intervals to assess surface preservation and possible early diagenetic over-
growth. Samples were graphite coated and scanning electron microscope
(SEM) images were generated using a JEOL JSM‐6390LA digital SEM
with a W filament.

3.4. Oxygen and Carbon Stable Isotope Analyses

Oxygen and carbon stable isotope analyses were determined every 2 cm
when possible. In total, 164 samples of G. bulloides and 140 samples of
G. ruber were considered. Between 6 and 12 specimens of each species
were measured with a Gas Bench II connected to a Delta V Plus isotope
ratio mass spectrometer at the Stable Isotope Laboratory of Climate
Geology, ETH Zurich (Breitenbach & Bernasconi, 2011). Calibration to
the Vienna Pee Dee Belemnite (VPDB) scale was accomplished using
two in‐house standards previously calibrated against the NBS‐18 and
NBS‐19 international standards. The associated long‐term standard devia-
tion is <0.07‰.

3.5. Species Abundance

Representative aliquots of the 250‐ to 300‐μm size fraction, containing at least 300 planktonic foraminifera
shells, were obtained with a splitter. The relative and absolute abundances of G. bulloides and G. ruber were
analyzed in 33 samples spaced every 10 cm. Absolute abundances were calculated using the dry weight of the
initial sieved sample.

4. Results

Radiocarbon ages of. G. bulloides samples from both extracted and nonextracted sediments show younger
leachates (up to 2,000 years) compared to the corresponding leached samples (Figure 2 and Table 2). The lea-
ched samples from both types of sediments agree very well within their 1σ error.

Table 1
Age Model for Core SHAK06–5 K, Based on Monospecific Samples of the
Planktonic Foraminifera Globigerina bulloides

Laboratory
code

Depth
(cm)

Radiocarbon age
(14C year BP) ± 1σ

Calendar age
(year cal. BP) ± 2σ

82182.2.1 0 790 ± 150 414 ± 112
82183.2.1 4 1,010 ± 150 591 ± 92
72979.2.1 10 1,250 ± 70 815 ± 72
82185.2.1 14 1,450 ± 70 1,001 ± 73
72981.2.1 20 1,820 ± 55 1,367 ± 60
72983.2.1 30 2,300 ± 50 1,920 ± 60
72985.2.1 40 3,090 ± 65 2,879 ± 82
75040.1.1 44 3,620 ± 75 3,514 ± 86
70397.1.1 48 3,760 ± 60 3,702 ± 82
75041.1.1 54 5,300 ± 80 5,670 ± 86
72987.2.1 60 7,470 ± 60 7,923 ± 68
72989.2.1 70 8,740 ± 70 9,404 ± 70
75042.1.1 76 9,960 ± 80 10,925 ± 128
72991.2.1 82 11,050 ± 85 12,566 ± 75
72993.2.1 90 11,450 ± 90 12,913 ± 108
70400.1.1 100 12,100 ± 110 13,517 ± 112
72995.2.1 110 12,400 ± 100 13,909 ± 117
72997.2.1 120 13,250 ± 95 15,276 ± 141
70403.1.1 130 13,600 ± 110 15,875 ± 149
72999.2.1 140 14,100 ± 100 16,522 ± 158
75043.1.1 146 14,300 ± 100 16,864 ± 161
73001.2.1 152 14,900 ± 100 17,527 ± 121
73002.2.1 160 14,900 ± 110 17,742 ± 113
73003.2.1 172 15,350 ± 110 18,219 ± 133
73005.2.1 180 15,950 ± 140 18,791 ± 122
75044.1.1 196 16,650 ± 120 19,642 ± 155
75016.1.1 200 17,100 ± 120 19,989 ± 143
75018.1.1 210 17,300 ± 120 20,347 ± 130
75020.1.1 220 17,400 ± 140 20,679 ± 162
75022.1.1 230 18,600 ± 180 21,899 ± 180
75024.1.1 240 18,750 ± 140 22,241 ± 131
70406.1.1 260 20,000 ± 180 23,537 ± 200
75028.1.1 270 20,400 ± 150 24,012 ± 156
75030.1.1 280 20,700 ± 150 24,482 ± 179
75048.1.1 284 21,000 ± 160 24,781 ± 215
75032.1.1 290 21,300 ± 160 25,245 ± 186
75033.1.1 300 22,100 ± 170 25,936 ± 125
75034.1.1 310 22,600 ± 180 26,416 ± 184
75036.1.1 320 23,000 ± 180 26,974 ± 210
75038.1.1 329 24,100 ± 200 27,800 ± 163

Note. Convention radiocarbon ages and associated 1σ uncertainties have
been rounded according to convention.
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The five untreated samples are younger than the paired leached samples and older than the leachate
(Figure 3a). Age discrepancies among these three types of material measurements increase downcore.

Radiocarbon determinations generally reveal younger ages for the leachate in relation to the corresponding
leached samples for both species (Figures 3a and 3b and Table 3). Leached samples display a systematic
aging downcore with few reversals of minimal magnitude. By contrast, 14C ages of the leachate deviate from
this trend, showing increasing variability downcore. While many of the age offsets between leached samples
and paired leachates within the top 90‐cm fall into their associated 1σ uncertainty envelope, they show an
apparent increase in magnitude downcore (up to 1,595–1,660 years for both species at 260 cm and up to
4,015 years for G. bulloides at the bottom of the core; Figure 3c and Table 3). Differences <5% between the
F14C of leachates and corresponding leached samples indicate near‐complete removal of surface contami-
nants for all the samples (Tables S1 and S2). Interspecies age differences of the leached sample reveal age
offsets of up to 1,030 years, and only three of them overlap within their associated 1σ uncertainty
(Figure 3d and Table 3). G. bulloides ages are generally older than G. ruber ones, a pattern that is reversed
for two samples of the last glacial maximum, and within the top 20 cm of the core. The largest offsets coin-
cide with the occurrence of three abrupt climate events: the Heinrich Stadial 1 (HS1), Younger Dryas (YD),
and part of the Holocene (approximately 9–6 kyr). Limited material prevented some samples to be leached
and were measured as untreated samples. Three of theseG. ruber samples (280 cm, 270 cm, and a replicate of
the latter) strongly deviate toward younger ages.

4.1. SEM Imagery

Overall, tests of both species exhibit good preservation with minor overgrowth (i.e., secondary calcite) on the
original base of the spines (Figure S1). Such features are consistently observed in all samples, irrespective of
their depth interval. Both G. bulloides and G. ruber show variable amounts of coccoliths glued on the outer
wall. Nevertheless, this feature does not affect all the samples nor all the specimens, and there is no relation-
ship between the presence nor the amount of coccoliths and sample depth.

4.2. Isotopic Composition of G. bulloides and G. ruber

Carbon isotopes of G. bulloides range between −0.4‰ and −1.8‰ and show higher values during the cold
intervals associated to the HS2, HS1, and YD, and part of the Holocene (Figure 4b). The δ13C data of G. ruber
vary between 1.4‰ and −0.4‰ and show relatively constant values for the first half of the record (340–
170 cm) and an increasing trend toward more positive values thorough the Holocene. Oxygen isotopes of

Figure 2. Influence of the sample preparation method on radiocarbon ages. (a) 14C ages of the leachate (open circle) and
the leached samples (dot) of G. bulloides picked from sediments extracted with organic solvents (light blue) and nonex-
tracted sediments (dark blue). (b) Age differences between paired leachates and leached samples from extracted (light
blue) and nonextracted (dark blue) sediments, and between paired leached samples (black diamonds).
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G. bulloides range between 0.1‰ and 3.0‰ and record short‐term isotopic changes
associated with HS2, HS1, and YD (Figure 4c). The δ18O data of G. ruber range
between −0.1‰ and 2.2‰. This record shows a smoother profile than that of G.
bulloides and lacks samples for part of HS1. Both isotopic curves are out of phase by
at least 10 cm for most of the last deglaciation (70–140 cm). The oxygen isotopic
difference between both species (Δδ18Ob‐r) ranges from −0.3‰ to 1.7‰ and shows
highest values during the HS2, HS1, and YD (Figure 3c).

4.3. Variation in Species Abundances

Average absolute and relative abundances of G. bulloides are 6 specimens per gram and
24%, respectively, and show large increases during the cold intervals HS2, HS1, and the
YD (up to 25 specimens per gram and 72%; Figure 4e). G. ruber shows average absolute
and relative abundances of 1 specimen per gram and 4%. This species is almost absent
during HS2, HS1, and YD, and increases to up to 8 specimens per gram and 13% during
the late Holocene (top 30 cm).

5. Discussion
5.1. Contamination Through Secondary Radiocarbon Addition: The Need for a
Leaching Step

Age discrepancies between paired leached samples and leachates highlight the second-
ary addition of younger carbon and subsequent contamination on the outer shell
(Figures 3a and 3b and Table 3), as observed by previous authors when applying similar
leaching steps (Bard et al., 2015). Such contamination was not introduced by using
organic solvents for lipid extraction, as the leachates were always younger than corre-
sponding leached samples, regardless of whether foraminifera come from solvent‐
extracted or nonextracted sediments (Figure 2 and Table 2). The magnitude of such
age discrepancy does not always agree for both methods, but this can be explained by
the varying and small amounts of C measured from the leachate (Table S1).
Moreover, comparison of 14C ages of leached samples from both types of sediments
shows negligible differences (Figure 2). These results are in line with previous findings
of Ohkouchi et al. (2005), who concluded that tests from solvent‐extracted sediments
can be reliably used for 14C determinations. Additional influence of other sample
preparation steps cannot be fully discarded. For instance, soaking of foraminifera
during wet sieving can activate their reactive surface and enable adhesion of ambient
carbon. However, we minimized the potential influence of this process by drying the
samples in the oven right after sieving. Another possibility to consider is the influence
of early diagenesis. Minor signs of secondary calcite precipitation are apparent by SEM
imagery in all the tests (Figure S1), regardless of sample depth and species. Diagenetic
alteration of shells through∑CO2 exchange with pore waters with a younger 14C signa-
ture might explain the negligible impact of secondary calcite precipitation on samples
from the top 60 cm and the more variable and larger effect observed downcore
(Figure 3c). These results highlight the need of a leaching step to remove surface
contaminants, especially for older samples, for which age biases can be greater than
1,000 years (Figure 1a and Table 3).

Regarding the untreated samples of G. ruber, two large deviations towars younger‐
than‐expected ages are also evident at the bottom of the core (Figure 3b). Within single
depth horizons of a core retrieved from the Portuguese margin, Löwemark and Grootes
(2004) found large intraspecies age discrepancies (up to 2,590 years) when comparing
sediments affected and unaffected by trace fossils indicating bioturbating organisms
(e.g., Zoophycos). Because ichnofossils occur throughout the sediments of IODP Site
U1385 (Rodríguez‐Tovar et al., 2015; Rodríguez‐Tovar & Dorador, 2014), they most cer-
tainly also affect the sediments of core SHAK06–5K. Their influence would imply that
discrete samples from the same sediment horizon would consist of a mixture inT
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Figure 3. Radiocarbon ages and related offsets of planktonic foraminifera. (a) Radiocarbon ages of G. bulloides and
(b) G. ruber. (c) 14C‐age discrepancies between the leached sample and the leachate of each species. (d) 14C‐age
discrepancies between leached samples of both species calculated as G. bulloides‐G. ruber. Open diamonds and dots in
(c) and (d) indicate age offsets that fall within the 1σ uncertainty envelope of the two 14C dates, respectively. Gray bars
mark periods or maximum age offsets, coinciding with the Heinrich Stadials (HS) 2 and 1, the Younger Dryas (YD), and
part of the Early and mid‐Holocene (E/M‐H).
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Figure 4. Oxygen isotopic records and abundances. (a) Sedimentation rate of core SHAK06–5K based on 14C ages of
leached samples of G. bulloides. (b) Carbon and (c) oxygen isotope record of G. bulloides and G. ruber. (d) Oxygen isotopic
difference between G. bulloides and G. ruber. (e) Species absolute and relative abundances. Gray bars mark periods or
maximum age offsets shown in Figure 3, coinciding with the Heinrich Stadials (HS) 2 and 1, the Younger Dryas (YD), and
part of the Early and mid‐Holocene (E/M‐H).
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different proportions of foraminifera tests from both bioturbated and non-
bioturbated material. The excellent agreement between the two replicates
of G. ruber samples from depth horizon 270 cm excludes bioturbation as
the reason for such age deviations. Addition of younger secondary calcite
might also explain these age deviations, although lack of material pre-
vented further assessment.

5.2. Interspecies Radiocarbon Age Differences

Assuming removal of the majority of external contamination by the leach-
ing step (Table S1), secondary radiocarbon addition does not account for
the 14C age differences between the leached samples of the two species
(Figure 3d), and mechanism(s) differentially affecting foraminifera spe-
cies must be sought to explain the systematic younger‐than‐G. bulloides
14C ages for G. ruber. Ideally, such mechanism(s) should also explain
changes in the magnitude of the observed age offsets with abrupt climate
events. In the following, we discuss four possible mechanisms.
5.2.1. Contrasting Calcifying Habitats
Differences in calcifying depth and season of the two species might have
also played a role in 14C age discrepancies. Mollenhauer (1999) demon-
strated that interspecies differences of 540 years are possible in upwelling
settings, where deep, less‐ventilated, older waters are upwelled to the sur-
face. Currently in the study area, the average living depths of G. ruber and

G. bulloides are 58 ± 6 and 102 ± 21 m, respectively (Rebotim et al., 2017). While G. ruber is characteristic of
winter hydrographic conditions, G. bulloides is more abundant during the upwelling season (i.e., summer;
Salgueiro et al., 2008). Figure 5 shows the natural radiocarbon content (Δ14C) depth profile from a station
corresponding to the water column overlying the depositional area of the study site, extracted from the
Global Ocean Data Analysis Project (Key et al., 2004). Corresponding natural Δ14C values for average living
depths of G. ruber and G. bulloides are −59‰ and ~−65‰, respectively, equivalent to an age discrepancy of
~50 years, which is insufficient to explain age offsets between species. As seasonality also impacts on the
optimal conditions for G. ruber and G. bulloides proliferation, we calculated the winter and summer natural
Δ14C for the upper 500 m of the water column. We applied the linear relationship between natural Δ14C and
dissolved silicate for North Atlantic latitudes (equation ((1))) proposed by Broecker et al. (1995), using sum-
mer and winter dissolved silicate estimates (García et al., 2014) averaged at 100‐ and 60‐m water depth,
respectively, from the 2013 World Ocean Atlas.

Natural Δ14C ¼ –60–dissolved silicate in μmol=kg (1)

Yet the estimated seasonal difference in Δ14C is minimal (−3.2‰) and negligible in relation to the large
uncertainty derived from the silicate method (±15‰; Rubin & Key, 2002).

However, it is still possible that the associated radiocarbon reservoirs (or at least one of them) varied in the
past during HS1, YD, and part of the Holocene related to the large hydrographic changes that occurred dur-
ing abrupt climate events in the study area (Voelker & de Abreu, 2011). This argument was put forward by
Löwemark and Grootes (2004) to explain the large age discrepancy they found between G. bulloides and G.
ruber during the YD on the Portuguese margin. In this regard, the incursion of intermediate, extremely
14C‐depleted waters characterized by high nutrient content has been suggested to reach latitudes as far as
60°N in the Atlantic during the abrupt cold intervals HS1 and YD (Pahnke et al., 2008; Rickaby &
Elderfield, 2005; Thornalley et al., 2011). The authors pointed to Antarctic Intermediate Water (AAIW),
which would have extended northward as a consequence of Atlantic Meridional Overturning Circulation
(AMOC) weakening or collapse. Indeed, such drastic reductions of AMOC during HS1 and YD prevented
the formation of new North Atlantic Deep Water (McManus et al., 2004), which would have then been
replaced by AAIW. However, the hypothesis of markedly different radiocarbon reservoirs affecting each
of the species is not fully supported by other data. G. ruber δ13C values give no clear indication of upwelling
of nutrient‐rich waters occurring during HS2 or YD, and lack of G. ruber during HS1 prevents further

Figure 5. Modern estimated natural Δ14C data at station ID15364 from
Global Ocean Data Analysis Project (Key et al., 2004) corresponding to the
overlying water column of SHAK06–5K core location. Data were plotted
with Ocean Data View (ODV) (Schlitzer, 2014).
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interpretation (Figure 4b). More positive δ13C values of G. bulloides rather suggest that upwelling had
decreased at those times. Although less negative δ13C values could also be the result of upwelling and sub-
sequent nutrient consumption by primary producers, resulting in a 13C‐enrichment of surrounding waters,
this scenario disagrees with previous studies. Estimates of export production by (Salgueiro et al., 2010) and of
primary productivity and upwelling occurrence by (Incarbona et al., 2010) are best explained with the arrival
of freshwater during HS1 and YD resulting in water column stratification, decreased upwelling, and a large
drop in productivity. Moreover, assuming that the general ecological preferences of each species remained
constant during the last deglaciation, upwelling of AAIW would preferentially affect G. bulloides. Yet radio-
carbon ages corresponding to the δ18O excursions of G. bulloides associated with HS2, HS1, and YD are in
very good agreement with the established age ranges for these abrupt climate events (Figure S2), which
underpins the notion that G. bulloides 14C ages are not, at least severely, biased in relation to their deposi-
tional ages. Additionally, we believe this mechanism fails to explain temporal discrepancies during the
Holocene. Even though a relative increase of AAIW influence in higher northern latitudes can be recognized
from neodymium isotope ratios (Pahnke et al., 2008), there is no evidence of a large reduction of AMOC at
that time, which is believed to have been relatively strong during the Holocene (Gherardi et al., 2005;
Thornalley et al., 2011). Although we cannot completely refute that the influence of water masses with dis-
tinct radiocarbon content (Δ14C) contributed to the observed age offsets during HS1 and YD, an additional
mechanism is needed to explain the smoothed δ18O curve of G. ruber in relation to that of G. bulloides
(Figure 4c) a feature typical of bioturbated sediment (Bard et al., 1987a).
5.2.2. The Barker Effect
The Barker effect (first proposed by Andree et al., 1984, Broecker et al., 1984, Peng & Broecker, 1984, and
Broecker et al., 2006, and coined by Broecker & Clark, 2011), refers to the differential effect of partial disso-
lution and subsequent fragmentation of shells along with bioturbation on the 14C ages of different species
planktonic foraminifera (Barker et al., 2007; Broecker & Clark, 2011). Given that different species may dis-
solve at different rates, fragile and dissolution‐prone species (i.e., G. ruber) will fragment in the sediment
mixed layer more easily than more robust, dissolution‐resistant species (i.e., G. bulloides; Berger, 1968,
1970). This translates into shorter residence times in the sediment for G. ruber relative to G. bulloides.
Consequently, the pool of nonfragmented shells of G. ruber at a given horizon will be biased toward younger
specimens, because specimens that reside in the bioturbated layer for longer periods are more likely to be
fragmented. As only well‐preserved whole tests were picked for 14C analyses, monospecific samples of G.
ruber will be, on average, younger than G. bulloides.

This effect was invoked to account for age discrepancies among planktonic foraminifera species of up to sev-
eral thousand years especially in cores characterized by low sediment accumulation rates (<3 cm/kyr;
Barker et al., 2007; Broecker et al., 2006; Broecker & Clark, 2011; Peng & Broecker, 1984). The latter is an
important factor to be taken into account since the lower the sedimentation rate, the longer the exposure
time to the effect of bioturbation. High sedimentation rates of core SHAK06–5K only decrease to aminimum
of 6 cm/kyr for the interval from 80 to 50 cm (Figure 4a). However, the observed apparent increase in the
interspecific 14C age offset is not exclusive to this horizon and visual inspection of nannofossils confirmed
their excellent preservation thorough the Holocene.

Yet highly productive settings may have favored acidification of underlying waters and pore waters through
CO2 release by respiration. Despite being part of a major upwelling system, total organic content in core
SHAK06–5K and broader region (Baas et al., 1997; Magill et al., 2018) ranges from only 0.2% to 0.7% for
the whole studied period, suggesting that substantial dissolution by organic carbon oxidation is unlikely.
Similarly, changes in the depth of the calcite lysocline are also assumed to have had a negligible effect,
because the water depth of the core (2,578 m) is located well above that level. Influence of more corrosive
water masses could have promoted increased dissolution of G. ruber. However, incursion of southern
sourced water mass was mostly limited to glacial periods (Skinner & Shackleton, 2004), characterized by
relatively high sedimentation rates. Therefore, we consider it is unlikely that the Barker effect had a major
influence in the observed 14C age discrepancies between foraminifera species.
5.2.3. Lateral and Along‐Slope Transport
Introduction of reworked specimens by advection and along‐slope sedimentary processes could also contri-
bute to radiocarbon age discrepancies, a mechanism proposed in cores from the Eastern Equatorial Pacific,
the Mid‐Atlantic Ridge, and the South China Sea (Broecker et al., 2006). Addition of reworked calcareous
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nannofossils by lateral transport has been observed in the study area (Incarbona et al., 2010) and in core
SHAK06–5K (Magill et al., 2018), especially during HS1. Simulated bottom velocities in the study area might
locally exceed 10 cm/s and be able to transport dense, 250‐ to 300‐μm sized grains of foraminifera when
locally reaching >40 cm/s (Hernández‐Molina et al., 2011). To explain the observed older‐than‐G. ruber ages
for G. bulloides by any of these mechanisms, transport and deposition of large numbers of reworked (old) G.
bulloideswould be necessary, along with preferential fragmentation of G. ruber during transport. This might
be a feasible scenario, albeit it would imply that samples of G. bulloides are the ones affected by a temporal
bias between biosynthesis and deposition. We thus discard this hypothesis based on (i) the good agreement
of G. bulloides δ18O excursions during short‐term climate changes and their associated established age
ranges (Figure S2) and (ii) the smoothed δ18O curve of G. ruber that hardly resolves the major abrupt climate
events occurred the last deglaciation (Figure 4c). Such results suggest that G. ruber, rather than G. bulloides,
accounts for the age offsets between the two species.
5.2.4. Differential Bioturbation Coupled With Changes in Species Abundances
The joint effect of downward mixing of foraminifera due to bioturbation and changes in their abundance
might promote 14C offsets between species (Andree et al., 1984; Bard et al., 1987a; Broecker et al., 1984,
1999; Peng & Broecker, 1984). Foraminifera will always be mixed from a horizon of high abundance to
low abundance. Given an increase (decrease) in the abundance of a certain species in a sediment horizon,
bioturbation is expected to downmix (upmix) some of these young (old) foraminifera. As a result, the horizon
underneath (above it) will be enriched in younger (older) specimens, leading to corresponding deviations in
their expected 14C ages. The clear aging trend with depth gives no indication of homogenization by biotur-
bation >10 cm (Figures 2a and 2b). However, the δ18O record of G. ruber lags that of G. bulloides by 10 cm
during the HS1, last deglaciation, and YD (Figure 4d). This shift is more apparent when comparing samples
at lower resolution (every 10 cm only; Figure S3) and suggests a mixed layer depth equivalent to ≤10 cm.
Similar out‐of‐phase relationships between species‐specific isotopic records have previously been explained
through this mechanism (Bard et al., 1987a, 1987b; Hutson, 1980). Löwemark and Grootes (2004) also
invoked it to account for differences of 75–350 years between G. bulloides and G. ruber in a nearby core from
the SW Portuguese margin. According to these authors, and given the large changes in the abundance of G.
bulloides relative to those of G. ruber (Figure 4e), a larger impact on the 14C ages of the former species would
be expected. This hypothesis is difficult to reconcile with the smoothed δ18O curve of G. ruber. We would
expectG. ruber to be the species more affected by differential bioturbation thanG. bulloides. Indeed, and with
the exception of the sample at 60 cm, each large increase in Δδ18O is followed by a rise in G. ruber absolute
abundance (Figures 3c and 3d) that, despite their moderate magnitude, also follow periods of extremely low
abundance or near absence. Our data are a faithful reproduction of previous mathematical simulations of
Trauth (2013) and Bard et al. (1987a), who demonstrated the effects of bioturbation coupled with abundance
changes in the oxygen isotopic record of a warm species (i.e., G. ruber) during deglaciation (see Figure 4 in
Bard et al., 1987a). Our results do not agree well with their model for the cold species (i.e., G. bulloides)
because they are permanently present, and authoctonous specimens can make up for the radiocarbon addi-
tion from foraminifera belonging to adjacent sediment horizons.

6. Conclusions

Radiocarbon dates of paired monospecific samples of G. bulloides and G. ruber (white) were determined in
marine sediments retrieved from the SW Iberian Margin. 14C age differences of several thousands of years
between paired leachates and leached samples indicate addition of younger radiocarbon in both species.
This process is attributed to precipitation of younger secondary calcite by∑CO2 exchange with

14C‐rich pore
waters and/or ambient carbon adhesion during sample sieving, thus having a more variable and greater
impact downcore. Leaching of the outer shell has proven to be a powerful diagnostic for external contami-
nation, andmore importantly, a tool to obtain more reliable radiocarbon dates, especially when dealing with
older samples (>10 kyr). Our findings underscore the need to properly leach foraminiferal samples prior to
radiocarbon dating.

Interspecies age discrepancies of the leached samples ranged between 60 and 1,030 years. G. ruber yielded
younger ages than paired G. bulloides in the same sample throughout most of the record. Larger age discre-
pancies were found during HS1, YD, and part of the Holocene and were attributed to the effects of
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bioturbation coupled with species abundance changes. This mechanism has a greater impact if the species in
question has periods of absence (i.e., G. ruber) rather than greater abundance changes (i.e., G. bulloides)
because the population of rarer species is more affected by the addition of asynchronous foraminifera com-
pared to a more abundant species. This process alone appears to provide a satisfactory explanation for the
observed age offsets, although additional influences such as past variations in the 14C reservoirs of the
respective calcifying habitats cannot be fully ruled out.

After a careful evaluation of potential 14C age anomalies in these two species, we conclude that unlike G.
ruber, G. bulloides can be reliably used to develop foraminifera‐based 14C age chronostratigraphies and to
assess ocean ventilation ages in the study area.
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