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Abstract

The molecular complexity displayed in acute myeloid leukemia (AML) hinders patient

stratification and treatment decisions. Previous studies support the utility of using

specific gene panels for this purpose. Focusing on two salient features of AML, the

production of reactive oxygen species (ROS) by NADPH oxidases (NOX) and metabo-

lism, we aimed to identify a gene panel that could improve patient stratification.

A pairwise comparison of AML versus healthy gene expression revealed the down-

regulation of four members of the NOX2 complex including CYBB (coding for NOX2)

in AML patients. We analyzed the expression of 941 genes related to metabolism

and found 28 genes with expression correlated to CYBB. This panel of 29 genes

(29G) effectively divides AML samples according to their prognostic group. The

robustness of 29G was confirmed by 6 AML cohort datasets with a total of 1821

patients (overall accuracies of 85%, 78%, 80%, 75%, 59% and 83%). An expression

index (EI) was developed according to the expression of the selected discriminatory

genes. Overall Survival (OS) was higher for low 29G expression index patients than for

the high 29G expression index group, which was confirmed in three different datasets

with a total of 1069 patients. Moreover, 29G can dissect intermediate-prognosis

patients in four clusters with different OS, which could improve the current AML

stratification scheme. In summary, we have found a gene signature (29G) that can be

used for AML classification and for OS prediction. Our results confirm NOX and

metabolism as suitable therapeutic targets in AML.

1 | INTRODUCTION

Acute myeloid leukemia (AML) is the most prevalent leukemia in

adults, with an incidence between 3 and 5 cases per 100 000 individ-

uals, and median age at diagnostic around 67.1,2 AML is characterized

by the clonal proliferation of immature myeloid progenitors in bone

marrow, peripheral blood and other tissues. The classical French-

American-British (FAB) classification recognized eight different AML

subtypes (M0 to M7) according to morphological features.3 Evolution

of AML progenitors is triggered by the accumulation of multiple

genetic, epigenetic and cytogenetic alterations, with the possibility of

the existence of several competing clones. Indeed, mutations in more

than 250 genes can be found in AML patients, 23 of these genes are

repetitively mutated. Mutations can be functionally grouped as tran-

scription factor fusions, the NPM1 gene, tumor suppressor genes,

DNA methylation-related genes, signaling genes, chromatin-modifying
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genes, myeloid transcription factor genes, cohesin complex genes, and

spliceosome complex genes.4 This provides a complex molecular land-

scape that hinders patient stratification and treatment decisions. Bear-

ing this in mind, in 2010 a panel of experts on behalf of the European

LeukemiaNet (ELN) provided recommendations for AML stratification

(ELN2010),5 which have been revised in 2017 (ELN2017).4 Patients

are classified into three categories: favorable, intermediate and

adverse.6 The 5-year survival rates of patients below 60, are 64%,

42%, and 20% for each category respectively; while in patients over

60 survival is decreased to 37%, 16% and 6%.7 The presence of cyto-

genetic alterations and the occurrence of certain mutations (NPM1,

CEBPA, FLT3, RUNX1, TP53 and ASXL1) are taken into consideration

for stratification.4 However, it is convenient to highlight that around

45% of AML patients present a normal karyotype and that some

recurrent mutations (DNMT3A, IDH1, IDH2) have not yet been

assigned to a specific risk group.4 Previous reports support the use of

unbiased transcriptomic approaches for AML diagnosis.8–11 Said strat-

egy, which does not rely on the presence of genetic alterations, can

assist in patient stratification and management.12 Targeting these ana-

lyses to biological processes important in AML, such as metabolism,

may improve prognosis and unveil novel therapeutic targets.

Metabolism rewiring is an important hallmark of cancer.13 Many

tumor cells respond to the pattern described by Otto Warburg almost a

century ago and use aerobic glycolysis as the main source of energy.14

AML blasts are glycolytic,15 representing a paradigmatic example of

aerobic glycolysis, also known as the Warburg effect.14 Enhanced gly-

colysis has been associated with drug resistance,16 and a more aggres-

sive leukemic phenotype in AML.17 In contrast, AML leukemic stem

cells (LSCs) rely on oxidative phosphorylation (OXPHOS).18 Despite this

general view, AML blasts are distinguished by their metabolic plasticity,

and their capacity to switch from glycolysis to OXPHOS.19 Targeting

metabolism is a promising strategy that might have soon an important

clinical impact in the treatment of cancer,20,21 including AML.22

Reactive oxygen species (ROS) can promote leukemic cell prolifer-

ation23,24 while inducing DNA damage and genome instability, con-

tributing to tumor transformation.25 The NADPH oxidase family

(NOX) stands out among the cellular sources contributing to oxidative

stress in tumor cells.23,26 Some reports suggest the importance of

NOX for the regulation of energetic metabolism.27–29 AML cells

exhibit high levels of ROS, which has been attributed to excessive

NOX2 activity.30 This enhanced NOX2-driven ROS production sup-

ports AML cell proliferation through the activation of the glycolytic

pathway.31 Additionally, it seems that inhibition of NOX2 may also

alter lipid and nitrogen metabolism.32 This evidence supports the rele-

vance of NOX2 in the control of metabolism homeostasis in AML.

Bearing the foregoing in mind, here we have compared gene expres-

sion between bone marrow samples from AML patients and healthy

donors. Among more than 600 differentially expressed genes (DEGs), we

found four genes encoding NOX2 subunits to be downregulated in AML

samples, including CYBB (coding for NOX2). By analyzing the expression

of 941 genes associated with metabolism in groups with different CYBB

levels, we found 28 genes with expression correlated to CYBB. This panel

of 29 genes (29G) can predict AML prognosis with high accuracy.

Predictions were consistent across 6 different AML cohorts with a total

of 1821 patients, demonstrating the robustness of 29G. Moreover, a low

29G expression index (EI) was linked to a higher Overall Survival

(OS) which was confirmed by three independent datasets with a total of

1069 patients. Finally, 29G can dissect four clusters with different OS

within the intermediate prognosis group. All these features make 29G a

useful tool for AML prognosis, which could complement the current ELN

scheme, for better management and therapeutics decisions.

2 | METHODS

2.1 | Datasets

Gene expression levels from 1821 healthy and AML bone marrow

donors were publicly available obtained from the Gene Expression

Omnibus database. GSE1506133 was selected as the training dataset

while GSE14468,34 GSE10358,35 GSE6883336 and GSE16565637

were used for validation (Figure S1 and Table S1). Gene expression

data of one extra validation dataset (phs001657.v1.p1) were obtained

from Tyner et al.38 (Figure S1 and Table S1).

2.2 | Canonical Biplot, Linear discriminant analysis
(LDA) and Hierarchical k-means clustering

Discriminant functions of LDA and canonical axes of Canonical

Biplot were estimated as a linear combination of the 29 genes so

that the ratio of between-group variance to within-group variance

was maximized. Prognostic group discrimination abilities associated

with the expression of the 29G were graphically visualized in

reduced dimensional space generated by discriminant axes. LDA was

extended with Canonical Biplot analysis39,40 that enables the simul-

taneous representation of the three prognosis groups and the

29 genes, so that the relevance of each individual 29G gene to the

differences among prognosis groups could be visualized (described

in detail in Data S1).

Hierarchical k-means cluster was used to determine 4 non-

overlapping segments for GSE10358 and phs001657.v1.p1 intermedi-

ate samples based on 29G expression data. Each data point belongs

to one group only.

2.3 | Expression index groups generation

The EIi was computed as a linear combination of gene expression

values (gjÞ for each i-sample i¼1,…, Ið ), as follows:

EIi ¼ α1 � β1,1gi,1þ…þβ29,1gi,29
� �þα2 � β1,2gi,1þ…þβ29,2gi,29

� �

where αk denotes the overall accuracy of each k-discriminant function

(α1 for LD1 and α2 for LD2), βj,k denotes the discriminant coefficients

of each j-selected gene (j¼1,…,29, see results) in the corresponding
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k-discriminant function and gi,j refers to the gene expression values of

j-gene in i-sample.

AML patients were separated into Low-Index or High-Index

groups via ROC curve analysis conducted with an optimal EI cut-off

and sensibility and specificity properties established to maximize the

Youden index.

2.4 | Statistical analysis of clinical factors

For each continuous variable analyzed, the median and inter-

quartile range or mean and standard deviation (SD) were calculated

depending on the variable distribution. For categorical variables,

frequencies and percentages were reported. Statistical significance

(p-value <.05) of differences observed between groups was deter-

mined via Student's t-test (for quantitative parametric variables);

Mann–Whitney U and Kruskal–Wallis tests (for quantitative non-

parametric variables) or Chi-square test (for categorical variables).

The linear relationship between two continuous variables was

studied using Pearson's correlation. The Kaplan–Meier method

was used to construct OS and EFS curves, and the log-rank test

was used to assess the statistical significance of the survival curves

between groups (p-value <.05).

Bioinformatics analyses were executed in R41 (version 3.5.2;

http://www.r-project.org) and Bioconductor (http://www.

bioconductor.org) software tools. All described computations were

implemented using affy, GenomicFeatures, limma, MultBiplotR, MASS,

pROC, survminer and factorextra. Figures were generated via

geneplotter, ggplot and plotly R-packages.

3 | RESULTS

3.1 | CYBB is downregulated in AML patients and
correlates with FAB classification, RUNX1-RUNX1T1
translocation, as well as IDH1, IDH2, FLT3-TKD and N-
RAS mutations

To identify differentially expressed genes in AML which hold prognos-

tic value we chose a public data cohort (GSE15061)33 as a training set

that included information from AML and healthy samples (n = 449).

Box plots and density plots (Figure S2) ensured sample normalization.

Among more than 600 statistically significant DEGs identified, four

members of the NOX2 complex were downregulated in AML: NCF1

(coding for p47phox), NCF2 (p67phox), NCF4 (p40phox), and CYBB (NOX2

or gp91phox catalytic subunit), with fold change values of 5.14, 4.59,

2.26 and 2.45 respectively. No differences were found in the expres-

sion of CYBA (p22phox) (data not shown), an essential protein not only

for NOX2 complex but also for other NADPH oxidases.

The four NOX2 complex subunits perform a similar trend to infe-

rior expression pattern if compared to healthy donors suggesting a

coordinated action, and consequently an altered activity of NOX2

complex in AML patients (Figure S3). We decided to characterize the

samples based on the catalytic subunit CYBB as a reference for the

activity of the complex.

CYBB expression denoted wide variability among AML patients

(Figure 1A), which allowed the arrangement of AML samples into

three groups: High-CYBB (n = 64), Medium-CYBB (n = 234) and

Low-CYBB (n = 78) (Figure 1A). We next questioned the effect of

CYBB expression on the clinical characteristics of samples. To test

this, an AML data cohort (GSE14468)34 was used where clinical fea-

tures are registered (Table S2). No significant variation was found in

gender, age, prognosis, karyotype alteration or CEBPA, NPM1,

FLT3-ITD, K-RAS and EVI1 variables (p-value >.05). However, the

frequency of RUNX1-RUNX1T1 translocation and mutation of IDH1

and IDH2 increased in Low-CYBB samples (Figure 1B). Conversely,

N-RAS is more frequent in patients whose CYBB expression levels

are high, while FLT3-TKD presents the same trend, although not

reaching statistical significance (Figure 1C). In regards to FAB

classification,3 75% of High-CYBB cases belong to FAB M4 and M5,

whereas almost 60% of Medium-CYBB and 80% of Low-CYBB are

described as FAB M1 and M2 (Figure 1D). These results suggest

CYBB expression levels are associated with FAB classification,

RUNX1-RUNX1T1 translocation, and mutations of IDH1, IDH2,

FLT3-TKD and N-RAS.

3.2 | 28 metabolic genes show a linked expression
with CYBB in AML patients

Given the potential relevance of NOX2 in the regulation of metabo-

lism in AML,30–32 an analysis of the differential expression of

941 metabolic genes was performed on the GSE15061 dataset. Fol-

lowing the mentioned strategy for group generation (Figure 1A), dif-

ferentially expressed genes in CYBB, NCF1, NCF2 and NCF4

expression groups were evaluated. High versus Low group compari-

son for CYBB, NCF1 and NCF2 genes reported mostly shared genes

(Figure S4). Indeed, CYBB expression groups comparison resulted in

the shortest list of genes and, potentially the one with the greatest

clinical applicability. 10 genes were differentially expressed (p-value

<.05) between High-CYBB and Medium-CYBB and 35 genes were

distinctly expressed (p-value <.05) in High-CYBB vs. Low-CYBB. Of

the 35 DEGs identified, 6 genes were excluded since their expres-

sion was also altered upon the comparison of the High-CYBB group

with the healthy group. The remaining 29 genes (29G) (Figure S5)

are implicated in immune response and metabolic processes such as

NADPH oxidase activity, glucose metabolism, OXPHOS, fatty acid

biosynthesis or key metabolism regulation routes such as the p53

pathway (Figure S6). In particular, NCF2, HK3, IFI30 and FBP1

appeared even more downregulated than CYBB in Low-CYBB versus

High-CYBB groups (FC values of 19.6, 14.0, 9.2 and 6.8,

respectively). Discriminant analysis corroborated the ability of the

29G signature to separate CYBB groups (Figure S7). Moreover, 29G-

pairwise correlation showed a direct relationship between all genes

except PXDN which presented an inverse association (Figure 2A).

Said correlation was confirmed in validation datasets (Figure S8).
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Altogether, we have obtained a set of 28 genes whose expression is

correlated with CYBB, which could reflect a common system of

regulation.

3.3 | The 29 correlated genes constitute a
signature for AML patient prognosis

Multiple gene signatures have shown potential for AML prognosis.8–11

Therefore, we tested the prognostic value of 29G. Discriminant ana-

lyses showed that 29G efficiently separates healthy and AML samples

according to their prognostic group (Figures 2B and S9). The first dis-

criminant axis, LD1, was able to separate good from intermediate sam-

ples (p-value <.001), intermediate from poor samples (p-value <.001)

and good from poor samples (p-value <.001). The second discriminant

dimension, LD2, could separate intermediate from poor (p-value <.001)

and good from poor (p-value <.001) but was not effective in dis-

tinguishing between good and intermediate samples (p-value >.05).

3.4 | 29 gene-prognosis efficacy validation

To validate our findings, we used five additional independent datasets

including 862 samples classified according to ELN2010 (GSE10358,35

GSE14468,34 GSE6883336) and 510 samples classified according to

ELN2017 (phs001657.v1.p138 and GSE16565637), that corroborated

the efficacy of 29G to separate samples into prognosis groups, with

overall accuracies of 78%, 80%, 75%, 59.2% and 82.7% respectively

(Figure 2C and Figure S10). Of note, individuals with acute pro-

myelocytic leukemia (APL) – an example of a good prognosis - showed

the greatest pattern of separation, indicating a differential 29G

expression profile (first panel of Figure S10).

To further validate our gene panel, we compared its performance

with two different panels previously reported.9,11 The percentages of

correct classification were very similar among the three gene panels,

which strongly supports the robustness of 29G (illustrated for training

dataset in Figure S11 and described for validation datasets in Table S3).

We noticed that the accuracy of 29G classifying patients belonging to

Lorem ipsum Lorem ipsum
0

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

0 50 100 150 200 250 300 350 400 450 500

C
YB
B 

ge
ne

 e
xp

re
ss

io
n

Bone marrow donors (n=449)

0

5

10

15

20

25

IDH1 IDH2 RUNX1-RUNX1T1

*** * ***

%
 o

f s
am

pl
es

 w
ith

in
 F

AB
 c

la
ss

ifc
at

io
n

0

2

4

6

8

10

12

14

16

18

FLT3-TKD N-RAS

**

Low
CYBB

Medium
CYBB

(A) (B)

(C) (D)

%
 o

f s
am

pl
es

 w
ith

 th
e 

al
te

ra
tio

n
w

ith
in

 C
Y
B
B

 g
ro

up
s

High
CYBB

Low
CYBB

Medium
CYBB

High
CYBB

Low
CYBB

Medium
CYBB

High
CYBB

Low
CYBB

Medium
CYBB

High
CYBB

Low
CYBB

Medium
CYBB

High
CYBB M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

High-CYBB Medium-CYBB Low-CYBB

0

10

20

30

40

50

60

%
 o

f s
am

pl
es

 w
ith

 th
e 

m
ut

at
io

n 
w

ith
in

 C
Y
B
B

 g
ro

up
s

F IGURE 1 FAB classification, RUNX1-RUNX1T1 translocation and IDH1, IDH2, FLT3-TKD and N-RAS mutations are associated with CYBB in
AML patients. (A) CYBB expression levels in bone marrow cells - AML individuals (blue dots) and healthy donors (red dots) - extracted from
GSE15061 are shown. Distribution of CYBB-level groups are also illustrated as a result of cut-off points drawn in gray: 10th percentile of CYBB
expression in healthy donors (upper line) and 25th percentile of AML CYBB expression (lower line). (B) Bar plot representation showing the
percentage of GSE14468 samples positive for the mutations IDH1 and IDH2 as well as RUNX1-RUNX1T1 translocation in each of the CYBB
groups. (C) Bar plot representing percentage of GSE14468 samples positive for N-RAS and FLT3-TKD mutations in each of the CYBB groups.
(D) Bar plot showing percentage of GSE14468 samples classified in each FAB class within CYBB groups. (*) represents p-value <.05; (**) p-value
<.01 and (***) p-value <.001 in Chi-Square test
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the poor prognosis group tended to be higher than with the other gene

panels (76.1% of correct classification with 29G compared to 60.9 and

54.3 for Li et al.9 and Ng et al.11 respectively, in the training dataset).

As it can be analyzed from Figures 2D and S12, some genes of 29G

excelled especially on determining prognosis. IFI30, CD36, HK3 and

CYP1B1 appear downregulated in samples with a good prognosis; in

contrast, PXDN and ALOX5 exhibit high expression levels in the same

samples. Regarding intermediate prognosis samples, low expression

levels of PXDN and ALOX5 on par with upregulation of CD36, BLOC1S1,

FBP1 and SCO2 are characteristic. Finally, decreased SQOR and aug-

mented DAGT2 denote a poor patient prognosis.

3.5 | Low expression index of the 29 genes is linked
with higher OS and EFS

We next investigated whether 29G expression was linked to the

Overall Survival (OS) and Event Free Survival (EFS) of AML patients.
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To test this, we used 260 samples from GSE10358, where OS and

EFS information is available.36

We elaborated an expression index (EI) described as a linear com-

bination of the expression of 29G to distinguish AML patients in

terms of OS or EFS. A Receiver Operating Characteristic (ROC) curve

was computed to establish the optimal cut-off point of the diagnostic

EI to distinguish between Low- and High-risk survival samples. The

cut-off point was registered as �4.307, which showed a sensitivity of

0.826, a specificity of 0.887 and an area under the ROC curve (AUC)

of 0.916 (95% CI: 0.879–0.953) (Figure 3A). EI sample segregation

reported 83 cases in the Low-Index value group (median OS: 34.4 �
48.0 months) with the remaining 177 cases in the High-Index value

group (median OS: 17.0 � 33.0 months). Survival curves derived from

EI groups showed considerably significant differences in OS

(Figure 3B) and EFS (Figure 3C) between Low- and High-Index groups

of AML samples (p-value <.001 in both cases).

OS data corresponding to 384 samples from phs001657.v1.p1

was used for validation. EI sample segregation reported 204 cases in

the Low-Index value group (median OS: 329.5 � 385.3 days)

with the remaining 180 cases in the High-Index value group (median

OS: 319 � 390days). The Low-Index group of patients have

significantly better survival (Figure 3D), demonstrating that such an EI

could reliably report survival, and reinforcing the relevance of 29G.

Consistent results were found in the GSE14468 dataset (data not

shown).

In view of the increased population with high CYBB levels

observed in samples M4 and M5, we wonder whether 29G would be

equally prognostic in different FAB groups. Therefore, we segregated

GSE10358 into two groups based on their FAB classification: M0 to

M3 formed a group while M4 and M5 grouped together. Replicating

what was seen in the whole population, Low-Index samples demon-

strated longer survival, further the differences in survival between

Low-Index and High-Index are magnified for patients in the M4 and

M5 groups (Figure S13). The same results were observed in the

GSE14468 dataset (data not shown).

Similarly, we tested if 29G was useful for OS prediction within

young and older patients by establishing 60 years old as the cut-off

point for constituting two groups. Although no differences were

found when using phs001657.v1.p1 (data not shown), 29G could dis-

tinguish OS in young and older patients of the GSE10358 dataset

(Figure S14), supporting the interest of further analyzing this issue in

the future.
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3.6 | 29G complements ELN prognosis
classification

Patients included within the intermediate group present a very vari-

able response to therapy and a high degree of relapse, which makes

risk-stratification and treatment of this group enormously challeng-

ing.42 In fact, some authors propose dividing the intermediate group

into different subgroups.43 Bearing this in mind we decided to analyze

whether 29G could differentiate OS within the intermediate group.

Application of a hierarchical k-means clustering technique based on

29G expression to intermediate samples resulted in a separation into

four differentiated clusters (Figure 4A). Notably, said clusters showed

differences in OS and EFS Kaplan–Meier curves (Figure 4B, C). These

results were corroborated in the phs001657.v1.p1 validation dataset,

where 29G can also dissect four different OS groups within the inter-

mediate group (Figure 4D). Therefore, 29G could complement

ELN2017 classification by stratifying patients within the intermediate

group.

4 | DISCUSSION

Given the complexity of AML, a great effort has been made by the ELN

experts to provide a reliable system of patient classification, which is

broadly accepted.4,5 Screening of cytogenetic alterations and some recur-

rent mutations (NPM1, CEBPA, FLT3, RUNX1, TP53 and ASXL1) are the

main factors in the latest version of this scheme.4 However, a considerable

percentage of AML patients present a normal karyotype, and the relevance

in the prognosis of some recurrent mutations (DNMT3A, IDH1, IDH2) is yet

unknown.4 High throughput DNA sequencing techniques hold the poten-

tial to uncover gene panels with prognostic value for AML.8–11 Such an

approach could be applied indiscriminately to all patients, including those

with a normal karyotype and not bearing mutations, and therefore it could

be an interesting complement to ELN guidelines.

ROS has evolved from being non-desirable by-products of cellular

reactions to their consolidated role as essential secondary messen-

gers. In this progress, NADPH oxidases emerge from the dark as the

only cellular system whose main responsibility is ROS production.44
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NOX2, the first described isoform, stands out in the hematopoietic

system for its immune function, though it may also be involved in

hematopoietic differentiation,45 and leukemia.46,47

Here we have focused on two distinctive features of AML cells, the

relevance of NOX2 as a source of ROS,30 and the importance of metab-

olism rewiring for leukemic cells.22 We show that AML blast cells pre-

sent a reduced expression of CYBB compared with their sane

counterparts. This notion is in agreement with a recent publication.48

The use of specific gene signatures for the classification of AML is

supported by previous studies.8,9,11 Here, we present a list of 29 genes

sharing no commonalities with those previous panels, whose expression

effectively differentiates AML prognosis groups. The performance of

29G and that of the gene panels described by Li et al.9 and Ng et al.11

was very similar in six different datasets, further validating our results.

Even more important than the ability of 29G for patient classifica-

tion, is its predictive value regarding patient survival. By studying the

expression data of 29G, we provide a predictive function (29G EI) to cal-

culate the OS of AML patients, in which a low 29G EI correlates with a

better prognosis. Besides the possibility of applying 29G to all patients

regardless of whether they show genetic alterations or not, a great asset

of 29G is its potential to dissect patients belonging to the intermediate

group according to their OS. Risk stratification and treatment decisions

within the intermediate group are enormously challenging,42 and 29G

provides the possibility of improving the stratification of these patients.

All these features make 29G an interesting tool that could effectively

complement the current ELN classification system.

In contrast with some previous reports,8,9 but in line with Ng

et al,11 the genes belonging to 29G reflect a genetic program related to

the regulation of a biological process important for AML cells. 29G are

implicated in immune response and metabolic processes such as

NADPH oxidase activity, glucose metabolism, oxidative phosphoryla-

tion, fatty acid biosynthesis or key metabolism regulation routes such as

the p53 pathway. Thus, besides the predictive value of our panel, 29G

also highlights NOX2 as well as metabolism as a suitable therapeutic tar-

get. In line with this notion, it has been shown before that the use of a

NOX2 inhibitor reduces relapse risk in AML patients.49 Moreover, it

seems that the success of arsenic in the treatment of APL depends on

NOX activity.50,51 Interestingly our results show that APL patients dis-

play a differential 29G expression profile. We surmise that metabolic

rewiring may vary among AML prognosis groups, presenting a possibility

to design specific treatments based on the NOX2-metabolism axis.

Furthermore, our results reinforce the relevance of NOX2 in the

control of AML metabolism, as outlined by other authors.27,31,52 Our

data suggest that NOX2 could induce glycolytic metabolism in AML

by increasing glucose transport (SLC2A6), glycolytic rate (HK3), glu-

cose mobilization from glycogen (PGYL), and gluconeogenesis (FBP1).

Our analysis did not show the correlation between CYBB and lactate

dehydrogenase, however, we found a strong correlation between

CYBB with several genes involved in mitochondrial metabolism (SCO2,

SQOR, SUCLG2, CHCHD10), suggesting that CYBB would promote the

complete oxidation of glucose in AML cells.

The correlation between the expression of CYBB and the p53

pathway genes (SCO2, TIGAR), also called our attention. The activation

of the p53 pathway could also contribute to enhancing OXPHOS

metabolism in the High-CYBB AML group.53 We can surmise that

these patients would show a high level of intracellular ROS, derived

from NOX2 complex activity and mitochondrial metabolism. The

enhancement in the expression of enzymes involved in redox homeo-

stasis, especially with glutathione reduction (GLRX, GSR) and the p53

target TIGAR54 could allow AML cells to cope with a high level of oxi-

dative stress.

The implications of coexisting molecular alterations and their

effects on disease classification and treatment are fundamental to

developing more effective combination therapies. In the same line, we

analyzed whether CYBB levels were correlated with any of the recur-

rent genetic alterations observed in AML. Constitutive activation

mutations in FLT3 receptor (FLT3-ITD and FLT3-TKD)55 and RAS56

occur frequently in AML. Both FLT3 and RAS mutations increase

NADPH oxidase ROS production in AML.56 Interestingly, our results

show a correlation between high CYBB levels and mutations in

FLT3-TKD and RAS. FLT3 and RAS activating mutations would lead to

high ROS production through the NOX2 complex, which may confer

an advantage of increased proliferation with respect to other AML

clones.

Mutations in IDH1/2 and the RUNX1-RUNX1T1 chromosomal

rearrangements also appear with a high frequency in AML.4 Our

results show an inverse correlation between these genetic alterations

and CYBB levels. On the other hand, it seems that low CYBB expres-

sion is linked to a less differentiated phenotype, as it could be

expected, given the requirement of NOX2 for the innate immunity

mediated by terminal differentiated myeloid cells. In agreement with

this notion it has been described that NOX2 complex is highly

expressed in M4/M5 but not in M1/M2 AML samples.57,58 This could

be explained by the requirement of ROS for triggering myeloid differ-

entiation.59,60 The RUNX1-RUNX1T1 translocation is found in 40% of

the M2 FAB group.61 Therefore, it seems that a less differentiated

phenotype correlates with both a low CYBB expression and with the

occurrence of RUNX1-RUNX1T1.

In summary, here we present a panel of metabolic genes corre-

lated to CYBB (29G) as a tool for AML stratification and survival pre-

diction, indicating metabolism as a therapeutic target. Integrating all

genetic abnormalities into a prognostic scheme is becoming increas-

ingly difficult due to the vast array of such alterations and their

numerous possible combinations. The use of gene panels in prognosis

could be easily implemented into clinical practice and holds the possi-

bility to improve AML risk stratification. The robustness of the 29G

signature we describe is supported by the analyses of six different

AML cohorts with a total of 1821 samples, suggesting a great poten-

tial for future clinical applications.
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