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Abstract: Although isometric contractions in human muscles have been analyzed several times, 

there are no FEA models that allow us to use the same modeled joint (the elbow under our case) in 

different conditions. Most elbow joints use 3D elements for meshing. Representing the muscles in 

the joint is quite useful when the study is focused on the muscle itself, knowing stress distribution 

on muscle, and checking damage in muscle in a detailed manner (tendon–muscle insertion, for 

example). However, this technique is not useful for studying muscle behavior at different positions 

of the joint. This study, based on the mechanical model of the elbow joint, proposes a methodology 

for modelling muscles that will be studied in different positions by meshing them with 1D elements. 

Furthermore, the methodology allows us to calculate biceps and triceps efforts under load for 

different angles of elbow joint aperture. The simulation results have been mathematically modelled 

to obtain general formulations for these efforts, depending on the load and the aperture angle. 

Keywords: FEM analysis; biomechanics; effort mathematical models; NMR reconstruction; reverse 

engineering; elbow joint 
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1. Introduction 

Over the years, the finite element method (FEM or FEA model) has become the 

preferred tool [1,2] by researchers for the study of analyzes of practically any type. The 

main reason for this preference is the accuracy [3,4] in the solution and the flexibility to 

simulate almost any physical event that may be explained by mathematical equations. 

One of the fields in which the finite element method has been used on numerous 

occasions has been biomechanics [5–11], with applications to specific studies such as joint 

analysis, prosthesis design and muscle behavior analysis. 

Li et al. [5] used the FEM method to run a simulation of fluid structure interactions 

coupling the lattice Boltzmann method and the FEM, and this new study can be used on 

blood flow and the heart, or urine interaction with bladder. Della Rosa et al. used the FEM 

method to validate the new fixator with application in fractures [6]. Zhang et al. 

developed a FEM analysis of a lumbar spine implanted with a lordotic cage [7] at L3-L4, 

and the results were validated by in vitro testing. The stress distribution on the cage and 

the range of motion (ROM) of L3-L4 were used to assess the stability of the implant. 

Denozière and Ku, in their study, proposed a three-dimensional model of a two-level 

Citation: Lechosa Urquijo, E.; Blaya 

Haro, F.; Cano-Moreno, J.D.; 

D’Amato, R. and Juanes Méndez, 

J.A. Mechanical Model and FEM 

Simulations for Efforts on  

Biceps and Triceps Muscles under 

Vertical Load. Mathematical  

Formulation of Results. Mathematics 

2022, 10, 2441. https://doi.org/ 

10.3390/math10142441 

Academic Editors: Higinio Rubio 

Alonso, Alejandro Bustos Caballero, 

Jesus Meneses Alonso and Enrique 

Soriano-Heras 

Received: 21 June 2022 

Accepted: 11 July 2022 

Published: 13 July 2022 

Publisher’s Note: MDPI stays 

neutral with regard to jurisdictional 

claims in published maps and 

institutional affiliations. 

 

Copyright: © 2022 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 



Mathematics 2022, 10, 2441 2 of 36 
 

 

ligamentous lumbar segment [8], simulated by static analyses with the FEM software to 

predict that mobility after arthrodesis at the upper level was reduced in all rotational 

degrees of freedom by an average of approximately 44%, relative to healthy normal discs. 

Samani et al. proposed a breast biomechanical model using a FEM formulation [9], 

specially focused on the modeling of breast tissue deformation which takes place in breast 

imaging procedures. 

The study proposed by Martinez [12] is focused on the characterization of the muscle 

and its response under different conditions. Muscle length changes and the internal stress 

distribution for different electrical stimulations were studied. Weiss et al. [13] described 

strategies for addressing technical aspects of the 3D computational modelling of ligaments 

with FEM analysis. Islan et al. [14], studied the behavior of the glenohumeral joint under 

different postures that represent the routine of a violinist from an ergonomic point of view 

(RULA method) and using a 3D FEM model to study this movement for a high number 

of cycles. Sachenkov et al. [15] studied the movement of the femur in the hip, using 1D 

models for the muscles. Martins et al. [16] presented a study with FEM techniques applied 

to the pelvic floor, using the Hill model for muscles as a 1D element, extrapolating it to 

2D and 3D models, working with isometric and isotonic contractions. Tang et al. [17] 

studied muscle fatigue with a 3D muscle model in different activation situations. Syomin 

et al. [18] performed a numerical simulation of contraction of the left ventricle 

approximated by the axisymmetric body.  

Perreault and Heckman evaluated the ability of the Hill model for muscles to 

describe muscle force responses for naturally and electrically stimulated muscles [19]. 

Alonso et al. [20] proposed a static physiological optimization model instead of the 

dynamic optimization model. For this purpose, they used a modeling of muscles by means 

of 1D elements along with the line of action of the same. Holzbaur et al. proposed a 

different biomechanical model representing the upper extremity, including shoulder, 

forearm and arm [21]. The muscles are replaced by a 1D element with a force generation 

parameter based on experimental data. Park et al. [22] proposed a torque estimation 

method at the joint of an index finger in the human hand while pinching, the study is 

supported by electromyography and Hill muscle model. Soechting and Flander used a 

simplified muscle model [23] to predict torques during arm movement, comparing their 

prediction with the EMG results measured in 20 subjects. The muscle model is also based 

on the Hill muscle model. Zajac developed a mathematical model to analyze the muscle 

tendon, ‘musculotendon’ actuator [24] based only on the ration between tendon length 

and muscle fiber length, both at rest. 

In the study and FEM analysis of human joints, bones are considered rigid elements, 

their geometry does not vary when the joint moves, the same happens with cartilages, and 

they can be approximated to rigid, nondeformable parts [25]. On the other hand, when 

meshing a muscle in 3D elements into a joint, this mesh is only valid for a certain position, 

and if there is need to study a different position in the joint, the muscles should be 

remeshed once again. This problem disappears by using a 1D element, rod-type, to mesh 

the muscles in the joint. Ligaments can be modeled as springs, 1D elements with two 

nodes. According to this, a model meshed with 3D elements for rigid bodies and 1D 

element for muscles elements, can adopt different positions just by moving the elements 

of the rigid bodies to the new positions. 

In the case of 1D elements with just two nodes, if those nodes move in the space, the 

element will move as well. As ligaments are defined from two different nodes of two 

different bones, if the bones move to another position, the ligament will adopt the new 

position. This allows us to reuse the same meshed model in several configurations. For 

this reason, the final objective of this study is discovering the equation that would allow 

one to create a new finite element type that could be used in biomechanics analysis where 

muscles forces are involved in “isometric contractions”. This study focuses on the analysis 

of human muscle behavior in order to define a new equation that could predict the muscle 

force that would appear in a certain muscle under known conditions. The human joint 
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under study will be the elbow. The proposed FEM analysis is focused only on the biceps 

and triceps muscles and the muscle elbow joint considered in this study are (Figure 1): 

• Long biceps 

• Short biceps 

• Brachii 

• Long supinator 

• Long triceps 

• Medium triceps 

• Lateral triceps 

 

Figure 1. Flexors (left) and extensors (right) elbow muscles identification. 

Since muscles can only work under traction (they do not transmit compression 

loads), different models must be proposed for a separate study of the triceps and biceps 

muscles. Several analyses, on different aperture angles of the elbow, will be solved looking 

for the effort needed on referred muscles, biceps or triceps, to balance 150 N applied on 

the wrist in an “isometric contraction”. The scope of the study includes the following 

aspects: 

• Analyzing the elbow under load at different angles; 

• Obtaining efforts in different muscles involved in the joint for different positions; 

• Defining mathematical models to predict efforts in muscles depending on: 

• Joint angle or muscle length; 

• Applied load on the wrist. 

2. Materials and Methods 

The proposed methodology will allow one to calculate elbow muscle effort. 

Furthermore, a post-processing of the results is proposed in order to obtain the 

formulation of efforts in the studied muscles when the load applied changes. These efforts 

are referred to isometric load cases. An isometric load involves muscle contraction against 

resistance in which the length of the muscle remains constant. The research can be divided 

into two main parts: 

1. Finite element models of the mechanism of elbow joint. The 3D anatomical model 

developed is based on two diagnostic imaging techniques. CT for the bones and MRI 

for the muscles. From this three-dimensional model, different FEM models were 

generated, for biceps and triceps muscles studies.  

2. Mathematical models predicting efforts in muscles studied. From FEM models, 

isometric muscle efforts will be obtained for a vertical load applied on wrist, 150 N 



Mathematics 2022, 10, 2441 4 of 36 
 

 

including forearm mass, at different angles of aperture in the joint, from 44 to 164 

degrees. These efforts will be extrapolated for any load applied on the wrist. 

The first part is based on previous studies [25]. This model is shown in Figure 2, and 

it will be described in the more detail in next section.  

  

Figure 2. FEA model, muscles identification, flexors (left) and extensors (right). 

2.1. Finite Element Model 

For the creation of the FEM model, a 3D CAD model of the elbow joint is necessary, 

from which the mesh of the FEM model will be created. 

Said CAD model is obtained starting from the images obtained by means of CT and 

MRI, of the elements of the joint (bones and muscles). Thanks to the use of software for 

generating 3D CAD models from point clouds, Geomagic Desing X, we can generate the 

CAD model of solid bodies. 

The FEA model was implemented in Siemens FEMAP 10.2 as preprocessor and 

postprocessor, and NX Nastran 7.1, as solver. FEA software was described in detail in 

previous research [25]. Figure 3 shows the two developed FEA models for the biceps and 

triceps FEM analysis. 

  

Figure 3. FEA model, biceps study (left) and triceps study (right), 74° aperture angle. 
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2.1.1. FEA Model Creation Meshing Process, Element Types 

Different types of elements have been used for different components: 

• Bones. They are meshed using 3D elements (tetrahedral type, 2nd order, 10 nodes). 

Teo et al. [26] use 3D elements for meshing neck and head parts of the joints in their 

study. In the same way, Donahue et al. [27] use 3D elements with axisymmetric 

condition, to model knee parts involved in the study. 

• Cartilages. They are meshed using 3D elements (tetrahedral type, 2nd order, 10 

nodes). Donahue et al. [27] and also Abidin et al. [28] model cartilages using 3D 

elements. 

• Bone cartilage junction. Since the cartilage and bone form a solidary union between 

both parts, during the meshing process, a coincidence of the nodes of the bone and 

the cartilage in the contact area has been carried out. By ensuring that the bone and 

cartilage nodes coincide in that area, it is possible to ensure that the transmission of 

efforts between both parts is correct. 

• Contact between cartilages. It has been modeled using rigid elements that join the 

nodes of both cartilage meshed parts involved in the joint, as explained in previous 

studies [25], using an RBE2 element. In the RBE2 elements used, the degrees of 

rotation freedom have been released so that only forces are transmitted in the X, Y or 

Z axes. 

• Muscles. These are meshed using 1D elements (the type is discussed in this study). 

Previous studies have considered muscles in this manner, as 1D element acting along 

the imaginary axis of the muscle. Alonso et al. [20] model muscles in the leg to study 

human march in the same manner, 1D elements aligned with the axis of the muscles; 

Sachenkov et al. [29] use the same approximation for muscles, Parekh [30] 

approximates muscles to a 1D FEM element aligned with the muscle axis. This is a 

simplification, but it is used by several authors because fusiform muscles only have 

two insertion points and low pennation angles. Thus, fibers are aligned so with this 

imaginary axis which is formed by joining both insertion points. 

• Tendons. These are meshed in combination with muscles, as a unique element 

musculotendon (MTU). The same 1D element is considered for tendons.  

• Tendon insertion in bone. It has been modeled by adding a rigid element (RBE2), 

joining the end node of the 1D MTU element with several nodes in the bone, and thus 

distributing the reaction force in the area of the insertion of the tendons, as explained 

in previous research [25]. Of the restrictions that an element with these characteristics 

can apply, only the displacements in the X, Y and Z axes have been applied, freeing 

the turns around them. In this way, and since the MTU only transmits axial forces, 

we eliminate any possible bending moments that may affect the insertion of the 

tendon in the bone. 

The RBE2 elements constitute constraint equations between the nodes to which the 

element is connected, they are characterized by having a node, called independent, and 

whose degrees of freedom are independent. The rest of the nodes connected to the RBE2 

element are called dependent, and in them it must be fulfilled that the displacements of 

the independent node must be the same as in the dependent nodes. 

That is why they are commonly known as rigid elements, since the distance between 

the component nodes remains unchanged. 

In Figure 4, an example of an RBE2 element can be found, with an independent node 

(i) and four dependent nodes (j1…j4). 
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Figure 4. RBE2 element example: 1 Independent node and 4 dependent nodes. 

The force balancing equation on an RBE2 is such that the reactions that appear on 

dependent nodes of the element must balance the force applied in the independent node: 

∑ {𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑓𝑜𝑟𝑐𝑒𝑠}

𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡

=  𝐹𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 (1) 

In this way, using an element of this type to simulate tendon insertion in the bone, 

the stress that appears in the 1D element that simulates MTU in the insertion zone is 

distributed, eliminating stress concentrations. 

Figure 5 shows the application of this insert model. 

 

Figure 5. Biceps tendon insertion using RBE2 element. 

2.1.2. FEA Model Creation Muscles Modeling 

Given that the proposed study is focused on knowing the forces developed by each 

of the muscles of the elbow joint, in different load situations, the modeling of the muscle 

must be such that it allows one to obtain these values. 

As mentioned above, the objective is to be able to use a 1D element that allows us to 

reuse the mesh created to solve the FEM simulation without the need to re-mesh the entire 

model for each position of the joint. 

The behavior of the element used in our study to simulate the muscle in the joint 

must be such that: 

• It works only in traction. 

• The force of the element used must be generated along the axis that joins the two 

nodes that define it; it must not have transverse forces. 
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• It must not present deformations or displacements that alter the isometric character 

of the contraction studied. Therefore, the deformations have to be low. 

• The 1D-type elements existing in FEM analysis tools are described below, also 

indicating the reasons that lead us to discard them as valid for our purpose. 

• Constant spring stiffness. In this case, the results are not valid, since a spring delivers 

the force along a curve according to the equation F = K·x, where K is its stiffness 

(N/mm) and x is its elongation (mm). The use of this element would mean that a 

muscle would deliver a single force value for a given length, which is not true. A 

muscle at a given length is capable of delivering a force between 0 and the maximum 

force that muscle fibers are capable of developing. 

• Variable spring stiffness. For the same reason as before, although in this case the 

maximum force could adjust according to the length of the muscle, it does not serve 

the purpose of the proposed study. The muscle can deliver a force between 0 and the 

maximum force for a given length. In the case of using a spring element, there is also 

the drawback of not always being able to balance the joint and the present study 

would no longer be isometric. 

• Beam element. With this element, it is possible to obtain the necessary force in the 

joint to balance it. Beam elements are characterized in that they present axial, shear, 

and bending forces, and the muscles only transmit axial tensile forces. 

• Rod element. The use of this element meets the study requirements; it only transmits 

axial forces, and we can decide on a rigidity in it such that the joint does not present 

large displacements and therefore it is no longer considered an isometric contraction.  

In search of the element that best reflects the behavior of the muscle within the joint, 

the ROD element, given that it only presents axial forces, is the one that best suits the 

needs of the proposed mathematical study. However, the said element can work under 

tension and/or compression, which would alter the results. That is why two different FEM 

models are generated for the study of the biceps or triceps muscles. One in which the 

triceps muscles are re-moved, and another in which the biceps muscles are removed. In 

this way, and considering the direction of the applied load, it can be ensured that the 

analyzed muscles work only under traction. 

Several tests have been carried out to define the characteristics of the ROD element 

that will be used, maintaining the objective of minimizing its stiffness and keeping the 

element deformations at low values so as not to lose the isometric load condition in the 

analyzes. 

For these reasons, the elements used in the FEA models are defined as: 

▪ Rod element (1D element);  

▪ Constant cross section: 100 mm²; 

▪ Material parameters: 

▪ Young modulus: 2000 MPa; 

▪ Poisson coefficient: 0.43. 

This type of element transmits only axial forces. Its constitutive equation is shown 

below. 

[
𝐹
𝑀

] = [
𝐾𝑥 0
0 𝐾𝑇

] · [
𝜀𝑥

𝛼𝑥
] (2) 

where 

• 𝐹 is the axial force in the element; 

• 𝑀 is the moment along the axis of the element; 

• 𝐾𝑥, is the axial stiffness of the element; 

• 𝐾𝑇 is the rotational stiffness along the axis of the element; 

• 𝜀𝑥 is the length variation of the element; 

• 𝛼𝑥 is the angle rotated along the element axis; 
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To ensure that no torsional stresses are produced in the element, it is sufficient to 

assign a value of 𝐾𝑇 = 0. 

2.1.3. Material Properties 

The meshing process of the 3D bodies that comprise the model, bones and cartilage, 

has been carried out automatically using the meshing tool that includes Femap. The 

geometric characteristics of the elements used are common to both bones and cartilage; 

they are: 

• Second-order tetrahedral elements, 10 nodes; 

• Nominal element size 1.5 mm. 

The materials considered for each body have the following characteristics, taken from 

the CES Edu Pack [31].  

The use of an isotropic and linear material for cartilage has previously been used in 

those cases in which the duration of the applied load is less than the time constant of the 

viscoelastic properties of cartilage, around 1500 s. In this case, given that it is considered 

an isometric contraction, in which there is no displacement in the joint and the application 

time is considered well below the 1500 s indicated, it is possible to consider it as isotropic, 

linear, and elastic with the properties indicated in Table 1. Donahue et al. [27] considered 

isotropic, linear and elastic tissue for cartilages in the knee joint in their study of tibio-

femoral contact in the human knee joint, based on the time required to apply the load 

compared to the time constant for viscoelastic properties of cartilages, for the same reason. 

Abidin et al. [28] consider cartilage as an isotropic, linear and elastic material in their study 

on a human knee joint model and verification. 

Table 1. Tissue properties for bones and cartilages. 

 Young’s Modulus 

(Mpa) 
Poisson 

Density  

(Kg/m3) 

Bone 17200 0.41 1790 

Cartilage 8 0.49 1150 

The use of an isotropic material for bone modelling is known and has previously 

been used, Teo et al. [26], meshed head and spine using 3D elements with bone tissue as 

isotropic, linear, and elastic.  

2.1.4. Mesh Resume 

The summary of the FEM mesh is as follows: 

• Number of elements: 548,139; 

• Number of nodes: 821,755; 

• Number of second-order tetrahedral elements: 546,035; 

• Number of 1D ROD elements: 4 (for biceps analysis) 3 (for triceps analysis); 

• Number of rigid elements RBE2: 2100. 

A study of the quality of the mesh, based on the Jacobian value of the elements, shows 

us how good its quality is for our objective. Figure 6 shows the elements that are below 

the limit value of 0.6 (good quality for the considered analysis). 
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Figure 6. Mesh quality. Jacobian criteria for evaluating mesh quality. Value represented is (1-

measured value on element/ideal value on element). Maximum threshold defined as 0.6. 

2.1.5. Boundary Conditions 

For the boundary conditions, the scapula is considered fixed in the area (pink color 

on the below image) where the muscles of the scapula would be inserted. These muscles 

(see Figure 7) are: 

1. Levator scapula muscle; 

2. Rhomboid minor muscle; 

3. Rhomboid major muscle. 

  

Figure 7. Boundary condition, muscles fixing scapula (left), constrain in FEA model, (right), scapula 

fixed. 

2.1.6. Load Application 

In order to be able to validate results of the analysis, the load considered must be 

easy to replicate in a controlled environment; that is why we have defined the load as the 

mass of a dumbbell of 15 Kg (approximately, 150 N) for the biceps analysis. In the case of 

triceps loading, the simulation is more similar to the exercise done using a guided load 

machine.  

The application point of this load is the wrist (the hand is not modeled) and although 

this can affect slightly to the results, due to the difference in distance of the load applied 

in the joint, this can be solved varying the load as needed when applied in the hand. 

All models have the same load applied, at the same node, and in the same vertical 

direction (see Figure 8). 
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Figure 8. Applied load (150 N) in wrist, vertical direction, biceps analysis (left) and triceps analysis 

(right). 

The load is applied in vertical direction, positive axis (ascending) when analyzing the 

triceps and vertical direction, negative axis (descending) when analyzing the biceps. All 

load cases are considered as static load cases, isometric contraction of the muscle, and, to 

avoid compression loads on muscles, two different models have been developed; one of 

them includes only biceps muscles, with descending load, and the other one includes only 

triceps muscles, with ascending load.  

In the model, gravity force has also been considered. Thus, the mass of the arm is 

considered in the analysis. 

To do so, the density of elements has been modified so that the values of the upper 

arm and forearm mass are [32]: 

• Forearm mass: 2.5 Kg; 

• Upper arm mass: 4.3 Kg. 

All load cases are considered as static load cases; due to the isometric contraction of 

the muscle, there must be no displacement in the joint. 

2.1.7. Design of Experiment 

The FEM model is considered linear and static. No non-linearity has been considered, 

neither in the materials nor in the restrictions of the model. That is why the general 

equation of the calculation is so important and can be written as follows: 

[𝑅] = [𝐾] · [𝑈] (3) 

where 

[R] = global loading matrix; 

[K] = global stiffness matrix; 

[U] = global displacement matrix. 

Equation (3) can be solved directly using the Gauss elimination method, there is no 

iterative process, and the solution is unique. 

The resolution of the problem is carried out through several linear static analyses, 

each one of them representing a different load condition in the joint, and the result of them 

is the necessary effort in each muscle of the joint to balance the applied force on the wrist. 

As mentioned above, there are two different models, thus guaranteeing that the 

muscles work only in traction, to study the biceps and the triceps muscles. 

In each of the models, the configuration of the joint will be modified by varying its 

angle between 44 and 164°, at intervals of 10°. 

The applied load will always be 150 N. 

As a reference for the reading of the results, the fully extended arm corresponds to 

164 degrees and the fully flexed arm corresponds to 44 degrees (see Figure 9).  
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Figure 9. FEA model, minimum (left) and maximum (right) studied angles. 

2.1.8. FEA model Solution 

The FEA model has been solved on a workstation with the following characteristics. 

• Windows 10, 64-bit, operating system; 

• Intel(R) Core (TM) i9-10900X CPU @ 3.70 GHz Processor (20 cores); 

• 128 GB RAM memory; 

• 1 TB SSD disk drive. 

The solution time for any configuration is approximately 20 min. 

As contacts in cartilages have been replaced by rigid elements, RBE2 type with free 

rotation on both nodes, the solution time has been reduced from 67 h to 20 min. 

As described in a previous study [23] the results, comparing the model with contacts 

and the model with rigid elements instead, are similar in both cases, and therefore the use 

of rigid elements improves the efficiency of the analysis. 

2.2. Mathematical Approach 

In this work, several mathematical models are derived from the results of the FEM 

simulation. First, there are grade 6 polynomial curves, which represents the efforts of the 

five muscles involved for the simulated cases, described in previous section, for a vertical 

force of 150 N applied on wrist. Muscle effort is defined as the total force that appeared in 

the 1D element used for each muscle in FEM models. These models make it possible to 

obtain this effort for each muscle by following an equation for each muscle, with the 

following general formulation: 

𝑀𝑢𝑠𝑐𝑙𝑒𝑒𝑓𝑓𝑜𝑟𝑡 = ∑ 𝑎𝑖 ∙ 𝛼𝑖

𝑖=6

𝑖=0

  (4) 

Once the forces needed in muscles have been calculated to balance the joint, with 

different angles and with a load of 150 N applied at the wrist, a mathematical approach 

will be proposed for obtaining these efforts for other loads, due to the mechanism type 

considered in the elbow joint, the applied forces and torque analysis done in the joint. The 

value of the force exponent is 1 in all cases, so there is a linear relation between the force 

applied and the muscle reaction force [33]. According to this, the greater the force applied 

to the wrist is, the greater the muscle force must be, and both values are proportional. 

Figure 10 and the following equations justify this simplification in the analysis, where: 
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• 𝑊𝑠 means the weight of the forearm; 

• 𝑊𝑠’ means the equivalent force for Ws applied at the wrist. The moment created by 

Ws or Ws’ is the same referred to O point; 

• 𝑊𝑞 means the load applied in the wrist; 

• α means the angle between biceps axis and the normal to the radius longitudinal axis; 

• β means the angle between the vertical and the longitudinal axis of the radius; 

• a, b and c are geometrical dimensions. 

 

Figure 10. Forces scheme in elbow joint. 

The left image considers the proper mass of the arm located in its center of gravity. 

Balancing equation on that forces scheme, referred to O point scheme, is: 

𝐹𝑚 =
(𝑊𝑠 · 𝑎 +  𝑊𝑄 · 𝑏) · sin 𝛽

𝑐 · cos 𝛼
    (5) 

Instead of using Ws, we can use Ws’, applied on the wrist (right image). This Ws’ 

should comply: 

𝑊𝑠 · 𝑎 · 𝑠𝑖𝑛 𝛽 = 𝑊𝑠′ · 𝑏 · 𝑠𝑖𝑛 𝛽 (6) 

So, the balancing equation would be the following: 

𝐹𝑚 = (𝑊𝑞 + 𝑊𝑠
′)

𝑏 · 𝑠𝑖𝑛 𝛽

𝑐 · 𝑐𝑜𝑠 𝛼
 (7) 

As seen in Equation (7), the relation between Fm and Wq + Ws’ is linear, and constant 

for a certain angle only depending on b and c and α and β angles. 

According to this, the forces in the muscles when the load is different from the 150 N 

applied in this study (including the 𝑊𝑠′ in this 150 N) can be obtained by the relation 

between the external load applied and the reaction in the muscle. 

𝑊𝑞 + 𝑊𝑠
′

𝐹𝑚

=
𝐹𝑒𝑥𝑡

𝑅𝑚𝑢𝑠𝑐

=
𝑐 · 𝑐𝑜𝑠𝛼

𝑏 · 𝑠𝑖𝑛𝛽
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡(𝛼, 𝛽) =  

150 𝑁

𝐹𝑚(150𝑁)
 (8) 

In summarizing, forces in muscles depend on: 
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• Muscle length (or elbow angle); 

• Force applied to wrist. 

By applying these mathematical approaches, several polynomial equations have 

been obtained, one per muscle, which establishes the relation between force in muscle as: 

𝐹𝑚 =  𝐹𝑚(𝑊, 𝛼) (9) 

where: 

• 𝐹𝑚 is the force in the muscle (N); 

• α is the angle of the elbow; 

• 𝑊 =  𝑊𝑞 + 𝑊𝑠
′, is the load applied on the wrist (N). 

In all mathematical models of muscle efforts, the effort could be obtained for any 

angle, 𝛼, and for any vertical load, 𝑓𝑣. If the forearm mass, 𝑚𝑓𝑎, is considered and 𝑔 is the 

gravity acceleration (9.81 m/s2) 𝑊𝑠
′ can be expressed as follows: 

𝑊𝑠
′ = 𝑊𝑠 ∙

𝑎

𝑏
= 𝑚𝑓𝑎 ∙ (

𝑎

𝑏
∙ 𝑔) (10) 

Thus, for obtaining the effort: 

𝐸𝑓𝑓𝑜𝑟𝑡(𝑓𝑣) = 𝐹𝑚 (𝑓𝑣 + 𝑚𝑓𝑎 ∙ (
𝑎

𝑏
∙ 𝑔) , 𝛼) (11) 

General equations will be obtained describing the effort in each muscle depending 

on the angle of the joint and the load applied. These equations and their surface 

representations will be the results of this research. Both of them, the equations and 

surfaces, have been obtained using the curve fitting tool from MATLAB. It has been noted 

that these effort models for the five involve muscles are only used to study isometric 

muscular contractions, when muscle length does not vary. 

3. Results 

The model analyzed includes all muscles in the elbow joint, but the post-processing 

results are only applied to the biceps and triceps muscles. 

3.1. FEM Simulations, 3D Results 

Figure 11 shows the results of running the design of the experiment described 

hereinbefore for the 13 cases of elbow angle for the biceps model. The figure represents 

the Von Mises stress in the involved bones due to the action of the 150 N as a vertical force 

(descendent) on the wrist. Each of the images represents the stress map resulting from the 

study of an isometric contraction in the elbow joint at the angle indicated in the image for 

a load of 150 N applied to the wrist, vertically and downward. 
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44° 54° 64° 74° 84°  

 

 

     

94° 104° 114° 124° 134° 

     

144° 154° 164°   

   

  

Figure 11. Different elbow angle configuration: bone Von Mises stress distribution under biceps 

loading (150 N on wrist) cases. Figures are included in more quality in Appendix A. 

Similarly, Figure 12 shows the Von Mises stresses on the bones due to the FEM 

simulation of 150 N of vertical load (ascendant) on the wrist. Each of the images represents 

the stress map resulting from the study of an isometric contraction in the elbow joint at 

the angle indicated in the image for a load of 150 N applied to the wrist, vertically and 

upward. 

  

Units. MPa 
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44° 54° 64° 74° 84° 
 

 

     

94° 104° 114° 124° 134° 

     

144° 154° 164°   

   

  

Figure 12. Different elbow angle configuration: bone Von Mises stress distribution  under triceps 

loading (150 N on wrist) cases. Figures are included in more quality in Appendix A. 

3.2. Numerical Axial Efforts on Main Different Muscles 

This subsection collects axial efforts on biceps and triceps involved muscles for the 

26 FEM simulations (13 for biceps and 13 for triceps). These efforts correspond to the 

reaction obtained in the muscle itself, and length corresponds to the length of the muscle 

(the whole muscle length including tendons) measured in the FEA model, in that certain 

elbow angle. Table 2 has these results if the form of force and the corresponding length 

for this applying force for all muscles studied: 

• Biceps muscles (long and short biceps); 

• Triceps muscles (lateral, medial and long triceps). 

  

Units. MPa 
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Table 2. Axial efforts (N) in main simulated muscles, 150 N applied on wrist. Isometric contractions 

at each angle value considered. 

 Long Biceps Short Biceps Lateral Triceps Medial Triceps Long Triceps 

Elbow 

Angle (°) 

Force 

(N) 

Length 

(mm) 

Force 

(N) 

Length 

(mm) 

Force 

(N) 

Length 

(mm) 

Force 

(N) 

Length 

(mm) 

Force 

(N) 

Length 

(mm) 

44 244 373 96 310 148 217 70 211 269 284 

54 330 375 136 312 128 216 144 209 312 282 

64 341 383 152 320 212 215 115 208 340 281 

74 341 391 161 328 208 215 119 208 347 281 

84 340 399 168 336 235 214 150 207 340 280 

94 333 407 170 344 263 214 186 207 347 279 

104 302 415 181 351 233 213 164 207 331 279 

114 301 422 159 359 233 213 176 206 307 278 

124 274 429 143 365 213 211 170 204 271 276 

134 261 435 95 371 177 207 150 201 226 273 

144 185 439 87 375 131 203 120 197 175 269 

154 121 442 46 379 79 199 82 192 119 264 

164 52 445 1 381 24 194 40 188 58 260 

3.3. Mathematical Models for Muscle Efforts 

3.3.1. Efforts for 150 N of Vertical Load 

The obtained R-square values are 99.3%, 98.2%, 99.9%, 93.6%, and 97.2%, respectively 

(see Table 3). Showing results in graph form, one graph for biceps muscles and the other 

for triceps muscles, a tendency can be observed in both of them. Figure 13 shows the 

efforts of biceps muscles at each angle (dots) and the mathematical curves (dash point 

line) that approximate them. The effort in muscle (y-axis on the graph) is related to the 

elbow angle (x-axis on the graph). The red color is associated with long biceps and the 

blue color is associated with short biceps. These curves represent the total effort of each 

muscle involved. Thus, long biceps, for a constant vertical load on the wrist, including 

forearm mass, reach the maximum effort (340 N) between 60–90°, while for short biceps 

the maximum effort (170 N) is achieved for the range of 90–110°. 

Table 3. The equations developed as polynomial curves of grade 6th, based on the general 

formulation of Equation (4), has the following constant values for each muscle involved. 

Muscle 𝒂𝟎 𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟒 𝒂𝟓 𝒂𝟔 SSE R2 RMSE 

Long biceps 

−2323  

(−3730, 

−916.1) 

136.6 

(55.39, 

217.8) 

−2.7  

(−4.477, 

−0.9232) 

0.02579 

(0.007278, 

0.04431) 

−0.0001193  

(−0.0002116, 

−2.692 × 10−5) 

2.116 × 10−7 

(3.433 × 10−8, 

3.889 × 10−7) 

0 694.5 0.993 10.76 

Short biceps 
−409  

(−1729, 911.5) 

24.12  

(−52.09, 

100.3) 

−0.4361  

(−2.104, 

1.232) 

0.004284  

(−0.01309, 

0.02166) 

−2.182 × 10−5  

(−0.0001085, 

6.486 × 10−5) 

4.28e-08 

(−1.236 × 10−7, 

2.092 × 10−7) 

0 367.3 0.982 7.82 

Long 

Triceps 

−1550  

(−3477, 377.3) 

110.4  

(−23.88, 

244.7) 

−2.702  

(−6.433, 

1.028) 

0.03508  

(−0.01795, 

0.0881) 

−0.0002503  

(−0.0006584, 

0.0001577) 

9.18e × 10−7  

(−7 × 10−7, 2.536 × 

10−6) 

−1.354 × 10−9 

(−3.945 × 

10−9, 1.236 × 

10−9) 

102.3 0.999 4.13 

Medium 

Triceps 

−6448  

(−1.38 × 104, 

908.4) 

442  

(−70.71, 

954.7) 

−11.9  

(−26.14, 

2.344) 

0.1638  

(−0.0386, 

0.3662) 

−0.001217  

(−0.002775, 

0.0003408) 

4.643 × 10−6  

(−1.534 × 10−6, 

1.082 × 10−5) 

−7.144 × 10−9 

(−1.703 × 

10−8, 2.743 × 

10−9) 

1491 0.936 15.76 

Lateral 

Triceps 
4661  −311.3  8.397  −0.1143  0.0008424  −3.214 × 10−6 4.975 × 10−9 1664 0.972 16.65 
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(−3110, 1.243 

× 104) 

(−852.8, 

230.3) 

(−6.645, 

23.44) 

(−0.3281, 

0.09946) 

(−0.0008029, 

0.002488) 

(−9.738 × 10−6, 

3.309 × 10−6) 

(−5.468 × 

10−9, 1.542 × 

10−8) 

 

Figure 13. Calculated (dots) and tendency polynomial equation (dash point line) comparison, for 

biceps forces (Y-axis). Isometric contractions on the elbow at different positions, from 44 to 164 

degrees (X-axis) and 150 N are loaded on the wrist. 

Analogously, Figure 14 shows the efforts of the triceps muscles (dots) and the 

mathematical curves (dash point line) which approximate them. The effort in the muscle 

(y-axis in the graph) is related to the elbow angle (x-axis in the graph). In the figure, the 

red color is associated with medium triceps, the green color is associated with long triceps, 

and the blue color is associated with the lateral triceps. These curves can be used to know 

efforts on the three muscles involved in the triceps FEM model. Additionally, as an 

example, if a muscle had limited effort for any reason, we could know which positions of 

the elbow joint are not recommendable to use. Therefore, for an isometric contraction with 

150 N as a vertical load on the wrist (including the forearm mass), for a maximum effort 

of 200 N in the lateral triceps, it is necessary to avoid placing the elbow joint between 65° 

and 130 degrees approximately. 
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Figure 14. Comparison of the (continuous line) calculated and (dash point line) comparison, for 

triceps forces (Y-axis). Isometric contractions on the elbow at different positions, from 44 to 164 

degrees (X-axis) and 150 N are loaded on the wrist. 

3.3.2. General Formulation 

Applying the mathematical approach described above, equations of efforts for the 

five muscles involved will be presented, for any wrist load and elbow angle. 

The approximation is done according to a fourth-grade polynomial with the general 

equation: 

𝑓(𝛼, 𝑤) = 𝑝00 +  𝑝10 · 𝛼 +  𝑝01 · 𝑤 +  𝑝11 · 𝑤 · 𝛼 +  𝑝20 · 𝛼^2  +  𝑝21 · 𝑤 · 𝛼^2  +  𝑝30 · 𝛼^3      

+ 𝑝31 · 𝑤 · 𝛼^3  +  𝑝40 · 𝛼^4   

(12) 

where α is the angle of the elbow and 𝑤 is the load applied to the wrist. 

All coefficients have been calculated for a 95% confidence bound. 

The surface of Figure 15 shows the tendency of the effort appearing in the short 

biceps muscle as a result of applying a vertical load on the wrist. As an example, for a 

constant vertical load of 750 N (including forearm mass), we could limit the short biceps 

effort to 200 N if we put the elbow joint angle between 150° to 164°. 

p00 =77.91 (−184.3, 340.2) 
p10 =−3.618 (−14.77, 7.534) 
p01 = −0.8343 (−1.183, −0.4855) 
p20 = 0.06135 (−0.1079, 0.2306) 
p11 =0.04654 (0.03494, 0.05813) 

p30=−4.245× 10−04 (−0.001526, 

0.0006774) 
p21 = −2.803× 10−04 (−0.0003988, 
−0.0001619) 
p40 = 1.022× 10−06 (−1.595× 
10−06, 3.64× 10−06) 
p31 = 1.695× 10−07 (−2.081× 
10−07, 5.471× 10−07) 

Goodness of fit: 
SSE: 9.822e+04 
R-square: 0.9916 
Adjusted R-square: 
0.9913 
RMSE: 22.98 
 

 

Figure 15. General formulation of short biceps efforts in function of wrist load (W) and elbow angle 

(α) and surface reconstruction of the proposed polynomial. 
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In the range of the example of the previous figure, 150–164°, we could find an effort 

on long biceps bigger than in short biceps, reaching around 600 N. Figures 16-19 collect 

the results of the surface reconstruction for the rest of studied muscles. 

4. Discussion 

In this study, an analytical calculation method is proposed to obtain the forces in the 

flexor muscles (long and short biceps) and extensors (long, lateral, and middle triceps) in 

any configuration of the opening angle of the elbow joint and to any load applied to the 

wrist. The final objective of this study is to allow the creation of a new type of finite 

element that can be included in a musculoskeletal model that can be analyzed in different 

positions and configurations without the need to repeat the model meshing process. 

There are several studies along the same lines. Therefore, Martinez [12] is focused on 

the analysis of a certain muscle in a certain load situation, analyzing what happens in the 

muscle itself. Islan et al. [14], are focused on the muscles involved in the shoulder joint, 

under static condition predicting the fatigue and cumulative damage to the muscles. 

Alonso et al. [20] study the forces in the muscles involved in the human march under 

certain load conditions, weight and step frequency. Park et al. [22] develop a predictive 

method for muscle forces based on electromyography techniques. Teo et al. [26] are 

focused on the effect of a collision on the neck muscles. As can be seen, none of them 

addresses the problem from our perspective. The use of the finite element method is 

widely recognized as a calculation tool for structural, static, and/or dynamic problems. 

However, characterization of the muscle, so that it is easy to include it in an FEM model 

has not been addressed until now. 

The main drawbacks presented by the studies carried out so far, in order to include 

the muscle in a valid finite element model to analyze the behavior of a muscle within a 

joint in various positions of this, are as follows: 

• Studies have focused on one joint position, obtaining results related to muscle effort 

that are difficult to extrapolate to different positions. Ramírez [12] obtains the results 

for the anterior tibial muscle under study conditions, but moving the results to other 

load situations should be difficult to solve. 

• The equations obtained to characterize the muscle are difficult to implement in a FEM 

model. Sachenkov et al. [29] use 1D elements to simulate muscles, but there is no 

single equation for any muscle to implement it in another analysis. The same happens 

with Alonso et al. [20], where the result is based on a static and physiological 

optimization that integrates the forces of any Hill MTU unit. 

• Several of these studies use 3D elements to represent the muscle, which allows a 

better understanding of the internal behavior of the muscle itself (distribution of 

stresses and strains, deformations, etc.) but does not allow the created mesh to be 

reused in other positions of the joint. Therefore, Martínez [12] studies the anterior 

tibia muscle in a certain position, and if the muscle length changes, a new mesh 

should be developed. Another example is shown in research by Islan et al. [14], where 

they analyze the shoulder muscles of a violin player holding the instrument, and so, 

if the shoulder position changes, the mesh will do as well, remeshing the muscles 

into their new position. 

With this work, and in a first approximation, we have obtained the equations that 

govern the behavior of the flexor and extensor muscles of the elbow, only in isometric 

contractions and referring to this behavior to its response in the form of force provided, 

throughout the flexion path of the joint for any load applied to the wrist. 

For example, to calculate the estimated force that must appear in each of the joint 

muscles to support a load applied to the wrist of 235 N with the elbow forming an angle 

of 119 degrees, we need to substitute the values of α and 𝑤 in Equation (12), depending 

on which muscle we want to analyze. 
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Changing the indicated values in Equation (12) would obtain the following estimated 

forces in the muscles. 

Vertical downward load, strength in Biceps muscles. 

• Long biceps: 477 N; 

• Short biceps: 245 N. 

Upward vertical load, strength in the triceps muscles. 

• Long triceps: 438 N; 

• Middle triceps: 231; 

• Side triceps: 304. 

In addition to what has been said, the equations obtained to characterize the muscles 

in their response are easy to implement mathematically, which will undoubtedly help in 

the future in the possibility of creating a new type of finite element that responds to these 

behavioral equations obtained. 

With the creation of this new type of finite element to represent muscles, a very 

interesting possibility is opened to analyze the behavior of the joint in different positions, 

with variable loads, different load cycles, etc. notably reducing the study work since the 

meshing process of the model is eliminated by being able to reuse the mesh for the desired 

positions. 

Regarding the analysis of the results obtained, it is worth mentioning the following 

important aspects of the study. 

Applying the proposed methodology and using the finite element method, we can 

obtain the forces that must appear in the muscles involved in the elbow joint to keep it in 

balance, in any position between 44 and 164 degrees of opening, with a load applied to 

the wrist of 150 N (Table 2, Figures 13 and 14). 

Through this same analysis it is possible to obtain the tensions that appear in the 

insertions of the tendons of the joint, which allows us to foresee damage before certain 

load situations (Figures 11 and 12). 

This same analysis allows us to obtain a map of tensions in the rigid tissues of the 

joint, bones, and cartilage. This allows a detailed study of damage to the elements 

mentioned (Figures 11 and 12). 

There are no previous studies that carry out studies similar to the proposed study, so 

a direct comparison with what has already been done is not possible. However, the trend 

observed in muscle effort during joint movement is similar to what other studies have 

published, [34], where the results of the torque in elbow vs. elbow angle shape are 

consistent with our results and [35] where the relation between the torque of the elbow 

and angle of the elbow is similar to our expressions, although these studies measure the 

moment in the joint (or what is the same, the sum of the moments generated by each 

muscle) and not the independent force in each muscle the results presented in these 

investigations are similar to those presented in this study in terms of the evolution of the 

moment in the joint, or of the force in the muscle in our case, along the angle of the joint. 

The correlation also presents high R values, which confirms the validity of the 

analysis (Figures 13 and 14). 

Through the application of classical mechanics and the balance of forces and 

moments in the joint, we can extrapolate the results obtained for a specific load, 150 N in 

our case, to different loads applied to the joint (Figures 15–19). 
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p00 =−2019 (−2461, −1578) 
p10 =94.81 (76.03, 113.6) 
p01 = 0.04386 (−0.5435, 0.6312) 
p20 =−1.544 (−1.829, −1.259) 
p11 =0.05606 (0.03653, 0.07558) 
p30 =0.01047 (0.00861, 0.01232) 
p21 = −0.0003463 (−0.0005458, 
−0.0001468) 
p40 = −2.516× 10−05 (−2.957× 
10−05, −2.075× 10−05) 
p31 = 1.082× 10−07 (−5.277× 10−07, 
7.442× 10−07) 

Goodness of fit: 
SSE: 2.786e+05 
R-square: 0.9938 
Adjusted R-square: 0.9935 
RMSE: 38.7 
 

 

Figure 16. General formulation of long biceps efforts based on wrist load (W) and elbow angle (α) 

and surface reconstruction of the proposed polynomial. 

p00 = 1081 (600.3, 1561) 
p10 =−50.7 (−71.1, −30.3) 
p01 =−0.6042 (−1.241, 0.0324) 
p20 = 0.8263 (0.5171, 1.136) 
p11 = 0.03876 (0.01759, 0.05992) 
p30 = −0.005601 (−0.007613, 
−0.00359) 
p21 = −9.62× 10−05 (−0.0003124, 
0.00012) 
p40 =1.346× 10−05 (8.688× 10−06, 
1.824× 10−05) 
p31 = −6.915× 10−07 (−1.381× 10−06, 
−2.262× 10−09) 

Goodness of fit: 
SSE: 3.273e+05 
R-square: 0.9841 
Adjusted R-square: 0.9834 
RMSE: 41.95 

 

Figure 17. General formulation of lateral triceps efforts based on wrist load on the wrist (W) and 

elbow angle (α) and surface reconstruction of the proposed polynomial. 

p00 = −13.56 (−161.9, 134.8) 
p10 = 0.6366 (−5.664, 6.937) 
p01 = −0.2656 (−0.4622, −0.06901) 
p20 = −0.01038 (−0.1059, 0.08512) 
p11 = 0.06707 (0.06053, 0.0736) 
p30 = 7.035× 10−05 (−0.000551, 
0.0006917) 
p21 = −0.0004743 (−0.000541, 
−0.0004075) 
p40 = −1.691× 10−07 (−1.645× 10−06, 
1.306× 10−06) 
p31 = 5.439× 10−07 (3.31× 10−07, 
7.568× 10−07) 

Goodness of fit: 
SSE: 3.122e+04 
R-square: 0.9993 
Adjusted R-square: 0.9992 
RMSE: 12.96 

 

Figure 18. General formulation of long triceps efforts based on wrist load (W) and elbow angle (α) 

and surface reconstruction of the proposed polynomial. 
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p00 = −118.9 (−648.6, 410.9) 
p10 = 5.576 (−16.92, 28.07) 
p01 = 0.2513 (−0.4506, 0.9533) 
p20 = −0.09088 (−0.4318, 0.2501) 
p11 = 0.0002843 (−0.02305, 0.02362) 
p30 = 0.000616 (−0.001603, 0.002835) 
p21 = 0.0002236 (−1.48× 10−05, 
0.000462) 
p40 = −1.481× 10−06 (−6.749× 10−06, 
3.787× 10−06) 
p31 = −1.375× 10−06 (−2.135× 10−06, 
−6.152× 10−07) 

Goodness of fit: 
SSE: 3.98e+05 
R-square: 0.9603 
Adjusted R-square: 0.9586 
RMSE: 46.26 

 

Figure 19. General formulation of the medium triceps efforts based on wrist load (W) and elbow 

angle (α) and surface reconstruction of the proposed polynomial. 

Finally, it should be mentioned that the equations that predict the force in each of the 

muscles in the joint are obtained as a function of the opening angle of the elbow and the 

applied load. 

5. Conclusions 

The use of a simplified model of the muscle, as a 1D element with axial forces only 

(ROD type element), into a FEA model allows one to calculate the forces that must be 

generated in the muscles involved in the joint. 

It is also possible to predict the force required in each muscle for different load 

situations. 

On the basis of the same analysis, the stresses that appear in other elements of the 

joint, bones, tendon insertions, or cartilage, can be obtained. With the obtained 

characteristic equations, different lines of research are opened focused on a better 

characterization of the muscles. It seems necessary to evolve the equations obtained in this 

study to obtain those that give the force of the muscle as a function of the speed of 

contraction. Or, based on studies conducted to assess muscle fatigue, they could be 

modified to predict it in a moving joint. 

The evolution of this study should follow the following stages: 

• Validation of the theoretical model obtained through testing with individuals with 

whom it is possible to measure the forces in cases of biceps and/or triceps load that, 

by means of comparison with this study, allows for knowing its validity. 

• Modification of the equations obtained in this study in order to obtain their evolution 

for concentric or eccentric contractions. 

• Creation of a new type of 1D element for application in finite element models that 

allows the behavior of a muscle to be characterized according to the equations 

obtained for any type of contraction, isometric, concentric, or eccentric. 

Once these phases are completed, the work could be extrapolated to other types of 

muscle (flat, or peniform) in order to characterize more muscles that allow us to study 

new joints according to the proposed methodology. 

One limitation of the presented study is the approximation of the muscle to the 1D 

element. This implies that following this methodology cannot obtain information 

regarding what happens inside the muscle. 

Another one is that the analysis is performed for a certain size of elbow joint, and so 

the FEA model created is valid for this joint size; in any other case (children, older people, 

etc.), the FEA model should be resized, and the same methodology should be applied. 
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Appendix A 

In this appendix, the sub-Figures included in Figures 11 and 12 are going to be 

collected with higher quality. 
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Figure A1. Different Elbow Angle Configuration: Bone Von Mises Stress Distribution Biceps 

Loading Case (150 N on wrist). 
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Figure A2. Different Elbow Angle Configuration: Bone Von Mises Stress Distribution Triceps 

Loading Case (150 N on wrist). 
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