
Genome analysis

Genome-wide search of nucleosome patterns

using visual analytics

Rodrigo Santamarı́a1,*, Roberto Therón1, Laura Durán2, Alicia Garcı́a2,

Sara González2, Mar Sánchez2 and Francisco Antequera2

1Departmento de Informática y Automática, Universidad de Salamanca, Salamanca 37008, Spain and 2Instituto de

Biologı́a Funcional y Genómica, Unidad de Dinámica del Genoma y Epigenética, CSIC.USAL, Salamanca 37007,

Spain

*To whom correspondence should be addressed.

Associate Editor: Inanc Birol

Received on August 10, 2018; revised on November 19, 2018; editorial decision on November 24, 2018; accepted on November 28, 2018

Abstract

Motivation: The Burrows-Wheeler transform (BWT) is widely used for the fast alignment of

high-throughput sequence data. This method also has potential applications in other areas of bio-

informatics, and it can be specially useful for the fast searching of patterns on coverage data from

different sources.

Results: We present a nucleosome pattern search method that converts levels of nucleosomal

occupancy to a sequence-like format to which BWT searches can be applied. The method is

embedded in a nucleosome map browser, ‘Nucleosee‘, an interactive visual tool specifically

designed to enhance BWT searches, giving them context and making them suitable for visual dis-

course analysis of the results. The proposed method is fast, flexible and sufficiently generic for the

exploration of data in a broad and interactive way.

Availability and implementation: The proposed algorithm and visual browser are available for

testing at http://cpg3.der.usal.es/nucleosee. The source code and installation packages are also

available at https://github.com/rodrigoSantamaria/nucleosee.

Contact: rodri@usal.es

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The Burrows-Wheeler transform (BWT; Adjeroh et al., 2002;

Burrows and Wheeler, 1994) is a method used to compress data in a

way that permits fast searches. Briefly, BWT takes a sequence of

characters and computes all cyclic rotations over the sequence to

generate a matrix of sequences. After sorting the rows alphabetical-

ly, the last column of the matrix is the BWT. Such a transformation

has two useful properties: firstly, similar patterns are grouped to-

gether; and second, it permits retrieval of the original sequence

allowing fast identification of similar sequences without losing the

connection to the raw data. More than a decade after its appear-

ance, BWT approaches to next-generation sequencing alignments

have been developed, driven by the need for faster methods of

analyzing the increasing amount of available genomic data (Kim

et al., 2015; Langmead and Salzberg, 2012; Li and Durbin, 2009).

High-throughput techniques are also used to determine sequence

coverage, allowing nucleotide-resolution analysis of transcriptomes

(Wang, 2009) along with other applications such as nucleosome

mapping (Jiang and Pugh, 2009), and area where several computa-

tional resources are available (Teif, 2016).

High-throughput sequencing has also triggered the development of

interactive visualization tools (Kerpedjiev et al., 2017; Lekschas et al.,

2017; Yardimci and Noble, 2017) focussed on viewing large-scale

data, but, in general, without incorporating pattern search techniques.

Nucleotide-resolution or nucleotide-based pattern searches remain a

challenge, both to expand searches beyond gene or transcript

VC The Author(s) 2018. Published by Oxford University Press. 2185

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 35(13), 2019, 2185–2192

doi: 10.1093/bioinformatics/bty971

Advance Access Publication Date: 29 November 2018

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/35/13/2185/5216313 by guest on 04 July 2019

http://cpg3.der.usal.es/nucleosee
https://github.com/rodrigoSantamaria/nucleosee
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty971#supplementary-data
https://academic.oup.com/

annotations, and to provide fast and reliable results that can be corro-

borated against the original data.

In the following sections we describe an approach that integrates

a novel BWT-based search method into a genome browser especially

designed for visualization of results.

2 System and methods

The general architecture of Nucleosee involves three main phases:

pre-processing, search and visualization (Fig. 1). In this section, we

will detail each of these phases, with a more technical description

included in the Sections 3 and 4.

2.1 Pre-processing
The first procedure necessary to be able to apply BWT to high-

throughput numerical (i.e. coverage) data is to transform the data to

a ‘character’ sequence. The advantage of such a transformation is

twofold: firstly, it reduces the dimensionality of the data by binning

continuous numerical ranges into a defined number of percentile

ranges; secondly, the percentile ranges can then be treated as a char-

acter sequence that can be transformed by BWT for fast searching.

Such data discretization is performed as follows. Let A ¼
a0; . . . ; an be the original sequence of numbers. Let w be the window

size and d the number of discrete levels. The discretized sequence

S ¼ s0; . . . ; sm can be obtained with Equation (1):

sk ¼ pd

Pðkþ1Þw
i¼kw ai

w

 !
; for k ¼ 0; . . . ;m (1)

Where pdðxÞ assigns a character to x depending on the percentile

range it falls into, having taken d equally sized ranges into account

(Fig. 2).

2.2 Search
Search is implemented as an approximate pattern matching algo-

rithm on BWT data, which is described in Section 3. The method

provides flexibility on up to v character variations with respect to

the search pattern, and also permits filtering by genomic features

(genes, intergenic regions, exons or untranslated regions).

We tested the recovery power of our method using the genomic

nucleosome occupancy map generated by micrococcal nuclease of

the yeast Schizosaccharomyces pombe. The dataset included

processed data of two biological replicates carried out on the 972-h

strain, which is commonly used as a wild type reference (González

et al., 2016) (accession number GSE84910). Given that mononu-

cleosomal DNA wrapped around the histone core spans 147 bps

(Luger et al., 1997) and that the level of occupancy is usually sym-

metrical relative to the central (dyad) position, a search for the

abcba pattern with Nucleosee should generate a genome-wide map

of nucleosomal occupancy. To test this possibility, we allowed v ¼ 2

variations on the searched pattern, or abcba(2), to identify well-

positioned nucleosomes that might not exactly fit the abcba pattern

(Fig. 3, Supplementary Material S1).

We compared the results of Nucleosee with those generated by

the widely used nucleosome search algorithm DANPOS (Chen et al.,

2013) (Supplementary Material S2). We also searched for the same

pattern abcba(2) on chemical nucleosome maps (Moyle-Heyrman

et al., 2013) and compared them with their reported unique nucleo-

somes. Although Nucleosee searches are designed for generic pat-

terns, it is capable of recovering most of the reported nucleosomes

by these two methods, with high sensitivity for sound margins of

error. For example, Nucleosee is able to retrieve DANPOS nucleo-

somes with a sensitivity of 87.9% and a specificity of 68.5%

for a margin of error of 40 bps, which relates to the error due

to the discretization resolution (see Supplementary Methods and

Supplementary Figs S1 and S2).

Finally, our search design permits differential pattern search,

by defining two same-length pattern searches for two distinct

Fig. 1. System architecture. The three basic phases: (i) pre-processing, which is time intensive but performed just once per dataset; (ii) search for patterns based

on the BWT data structures generated, fast and flexible; and (iii) browse for search matches and enrichment, which allows visualization of results, original data

and annotations

Fig. 2. Example of pre-processing. Numerical data are discretized into d ¼ 3

percentile ranges or bins (a–c) on a window w basis. The resulting sequence

can be searched for patterns such as well-positioned nucleosomes (abcba) or

nucleosome depletion (aaaaa) using BWT

2186 R.Santamarı́a et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/35/13/2185/5216313 by guest on 04 July 2019

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty971#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty971#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty971#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty971#supplementary-data

datasets, an performing the intersection, union or difference be-

tween the two resulting match sets. The design also permits differ-

ential agnostic or exploratory searches (without a specific

predetermined pattern). To do so, the discretized genome is

searched for windows of a defined length that differ in more than n

characters between two samples.

2.3 Visualization
High-throughput data and pattern matches are visualized on a gen-

omic browser designed to search, analyze and confirm results from

the original data. Based on this premise, the visual analytics design

focuses on pattern search narrative rather than on the traditional

topological pan-and-zoom interfaces (Kent et al., 2002; Nicol et al.,

2009; Skinner et al., 2009). This design unfolds into three levels par-

allel to the concept of semantic zoom (that is, adding different visual

features based on the scale of the visualization; see, e.g. Westesson

et al., 2013) towards what we can call a ‘narrative zoom’ (see Fig. 4).

The genome level displays the chromosomes of the analyzed or-

ganism (three in the case of S. pombe) and the number of matches

found on each of them. The chromosome level displays the distribu-

tion of identified pattern matches along the entire chromosome at a

resolution of several thousands of nucleotides per pixel (in the case

of Chromosome 1 of S. pombe in Fig. 4, about 4000 per pixel). If

there is functional enrichment, it is visualized at this level as a word

cloud where more enriched terms (those with lower corrected P-val-

ues) are larger. If several data samples are loaded, their lines appear

overlapped at this level, with different colours. Match locations for

the specific searched pattern can be hovered over for detailed inspec-

tion at the gene level. Finally, the gene level focuses on a single pat-

tern match, usually on a 1:1 pixel to nucleotide scale, including pan-

and-zoom navigation and gene annotations. If several data samples

are loaded they appear stacked as separate tracks at this level. If a

data sample is comprised of several replicates, the between replicate

variation is represented as a shaded area around the mean coverage.

All elements in the visualization are interactive: chromosomes can

be selected at the chromosome level, matches can be hovered over to

show the pattern at the gene level, gene ontology (GO) terms can be

selected to highlight corresponding matches and gene annotations

can be hovered over to check details or clicked to gain focus. The use

of a backend supported by BWT fast searches smooths the inter-

action by minimizing computation times. A Supplementary Video

explaining the interactive power for visual discourse with the data is

available at http://vis.usal.es/rodrigo/nucleosee/nucleosee.mp4

3 Algorithm

The central algorithm of Nucleosee is the BWT search algorithm

(see Algorithm 1). This algorithm is based on an adaptation of the

BWMatching algorithm (Compeau and Pevzner, 2014), which

requires BWT data structures to operate, in particular:

• The bwt matrix for fast retrieval of the pattern matches.
• A suffix array to recover the original genomic positions of

searches.
• A first occurrence array with starting positions of each discrete

level on the bwt.

Several other minor data structures and methods have been

implemented to optimize time performance and reduce memory

requirements. All these structures are built on the pre-processing

step discussed in Section 2.1.

The BWT search algorithm splits the original pattern into sub-

patterns (or seeds) that are searched with a BWT exact search. The

resulting seed matches are reported if, when extended, they do not

Fig. 3. (a) Examples of nucleosome peaks characterized by the pattern

abcba(2), which allows up to two variations relative to the abcba pattern

(top). (b) Examples of peaks that will not be reported in the search

Algorithm 1 BWT search

procedure bwtSearch(bwt, fo, sa, pattern, v)

text : pre� processed genome as discretised levels

bwt : BWT sorted list of cyclic rotations of text

fo : first occurrence of each symbol on bwt

sa : integer array with the genomic positions of

the BWT suffixes

pattern : character string to search

v : integer with the number of variations from pattern

step jpatternj=ðvþ 1Þ " minimal exact length for

v mismatches

matches fg
for i ¼ 0; i � jpatternj; i increases by step do

seed pattern[i: iþstep]

seed_matches fg " search for seeds of minimal

exact length

top 0

bottom jbwtj � 1

while top � bottom do " BWT exact search

if seed has more symbols then

symbol next letter in seed

fos fo[s]

top fos þ #times symbol occurs in bwt[: top]

bottom fos þ #times symbol occurs in bwt[:

bottom þ 1] -1

else

add sa½top : bottomþ 1� to seed matches

for pos in seed_matches do " seed extension

mm mismatches of seed to text½pos : posþ jpatternj�
if mm � v then add pos to matches end if

return matches

Visual nucleosome pattern search 2187

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/35/13/2185/5216313 by guest on 04 July 2019

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty971#supplementary-data
http://vis.usal.es/rodrigo/nucleosee/nucleosee.mp4

deviate from the original search pattern by more than v. Several

other algorithms are implemented for data pre-processing, including

GO enrichment, functional annotation, data visualization, storage,

concurrency and interaction. All of them are based on well-known

existing solutions which we adapted to our needs.

4 Implementation

Nucleosee is implemented as a web browser. The backend is imple-

mented in Python 3 and constitutes the grounds for BWT pre-

processing and searching. It makes use of the following libraries:

• pickle for pre-processed data management.
• numpy for numerically complex computations.
• fisher for statistical enrichment.
• flask to provide searching and pre-processing as web services.

The frontend is implemented in Javascript and comprises the gen-

omic browser and its interface. It makes use of the following libraries:

• D3.js for visual elements and interface.
• bootstrap for css style definition.
• jquery for communication with the web services.

The source code is distributed free with a GPL 3.0 licence and is

available at https://github.com/rodrigoSantamaria/nucleosee. This

website also offers a Docker container with a ready to run stable

version of Nucleosee on a Debian OS with Python 3.

A Nucleosee genomic browser has been set up for testing with

pre-processed data for examples discussed in this article (http://

cpg3.der.usal.es/nucleosee). It includes a Help document explaining

how to use the tool (http://cpg3.der.usal.es/nucleosee/help.pdf) and

a video tutorial (http://vis.usal.es/rodrigo/nucleosee/nucleosee.mp4)

showing the visual interaction for several of the cases discussed in

this article.

4.1 Genome annotation and GO enrichment
Genome annotation data is retrieved from the latest versions of the

public repositories corresponding to each organism (gff or gff3 files).

GO terms (Ashburner et al., 2000) are taken from obo files at http://

geneontology.org and annotations are taken from the latest versions

of the corresponding organisms’ public repositories (goa files). GO

enrichment is implemented by a Fisher’s exact test based on

Python’s fisher library, discarding electronically inferred annota-

tions and terms with less < 5 or >500 annotated genes. A false dis-

covery rate multiple hypothesis tests’ correction is applied, with a

threshold for the corrected P-value of 0.01. All these parameters

(correction method, P-value threshold and discard options) are con-

figurable on the backend web services.

4.2 Time performance
One of the most important advantages of BWT searches is time per-

formance. Search times of around 1 s permit integration of searches

into visual interfaces for a seamless dialogue between the analyst

and the data. All performance tests described below were performed

on a personal computer with a 2.4 GHz Intel Core 2 Duo processor

and 16 GB RAM running a Debian 9.5 (Stretch) operating system.

To determine the effect of pattern length on time performance,

we averaged the time performance of 20 searches for pattern lengths

from 2 to 20 characters. Patterns were composed with random char-

acters to avoid pattern composition biases.

To determine the effect of pattern flexibility, we averaged the

time performance of 20 searches allowing variations in zero to three

characters, for five-length random-character patterns. These tests

were performed using two wild type replicates of genome-wide

maps of nucleosomal occupancy of S. pombe, pre-processed with

w ¼ 30 and d ¼ 3.

To determine the effect of genome size, we selected high-throughput

data from four organisms: Saccharomyces cerevisiae, Caenorhabditis

elegans, Drosophila melanogaster and Oryza sativa taken from publicly

available wig files (GEO accession numbers GSM585199,

GSM2417781, GSM883798 and GSE81436, respectively), which were

pre-processed with w ¼ 30 and d ¼ 3. Time performance was averaged

from 20 searches for five-length, random-character patterns.

To determine the effect of the pre-processing parameters, we

pre-processed the above cited S. pombe maps with ranges for d (two

to five discrete levels) and w (10, 30, 50 and 100 bp windows).

Then we performed exact searches (v ¼ 0) as in the pattern length

case, for the different pre-processed data.

The results of the time performance tests (Fig. 5) show that

search of genomes in the order of 10 Mbps and pattern sizes larger

Fig. 4. Visual analytics design of the Nucleosee browser on three levels. The narrative zoom search for three nucleosomes matching exactly the pattern abcba # 3

is shown. Notice that, e.g. the higher nucleosome in blue right before the match responds to pattern aacca instead of abcba and therefore is not included in an

overlapping nucleosome triplet (Color version of this figure is available at Bioinformatics online.)

2188 R.Santamarı́a et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/35/13/2185/5216313 by guest on 04 July 2019

https://github.com/rodrigoSantamaria/nucleosee
http://cpg3.der.usal.es/nucleosee
http://cpg3.der.usal.es/nucleosee
http://cpg3.der.usal.es/nucleosee/help.pdf
http://vis.usal.es/rodrigo/nucleosee/nucleosee.mp4
http://geneontology.org
http://geneontology.org

than two took well below 1 s provided that the allowed number of

variations was zero (see Fig. 5a). Patterns of length below six have

higher search times because they become ubiquitous in the genome

and hard to pack by BWT. Variations larger than v ¼ 0 severely

affected the time performance, although performance remained ac-

ceptable while v < 3 (Fig. 5b). This is because patterns are divided

into seeds (sub-patterns) that are then searched based on v (see

Algorithm 1). Depending on the pattern size and v, small-sized seeds

might compromise the performance and increase searching times as

seen in Figures 5a and b. Searches of a few hundred bps (e.g. pat-

terns of length five with a discretization window w � Oð10Þ and v

¼ 0) on genomes up to 0.5 Gbps were also generally below one se-

cond as expected by the linear complexity of BWT searches

(Fig. 5c). For larger genomes, memory consumption is usually a

bottleneck, considering personal computers typically have 8 or

16GB RAM, but this can be overcome by the installation of the

backend on a more powerful server. To increase the number of dis-

crete levels improves time performance, as it permits early discard of

larger sections of the genome (see Fig. 5d), although gains are small

if d � 3. Window size (w) effect on time performance is negligible,

except if d ¼ 2, were it become a parameter more relevant that the

number of discretization levels.

5 Discussion

5.1 Pattern search
In addition to the fast and reliable identification of well-positioned

nucleosomes (Fig. 6), Nucleosee main goal is to allow search for

pattern definitions. For example, 600 bp long regions depleted of

nucleosomes could be identified by searching for the a*20(1) pat-

tern in the 972-h strain, which reports 206 occurrences, of which

137 partially overlap genes and 67 map fully inside them. The

chromosome level shows that enrichment identifies six of these

genes as related to the plasma membrane, three of which (ght6,

ght8 and SPCC794.04c) are closely located in the initial section of

Chromosome 3 (Fig. 7).

Another example of a possible search is for isolated nucleo-

somes, defined as nucleosomes flanked by 150 bp long nucleosome-

depleted regions (NDRs). In this case, the BWT search pattern

would be a*5þabcbaþa*5(1). Nucleosee identifies 74 regions

with this pattern in the genome, which are mostly located between

genes. Chromosome level visualization of Chromosome 3 reveals

that two pairs of occurrences are very close, flanking the wtf13 and

wtf23 repetitive elements (Fig. 8). Further inspection of the wtf fam-

ily (20 genes in S. pombe, all of which are Chromosome 3) shows

Fig. 5. Time performance for different searches. (a) Performance across different pattern sizes (v ¼ 0). (b) Performance across different variation values for a pat-

tern of size five. (c) Performance across different genome sizes. (d) Performance for different pre-processing scenarios

Fig. 6. A 600 bps length NDRs partially overlapping with genes on Chromosome 3. Five occurrences are on the first section of the chromosome, three of which

are annotated with the GO term plasma membrane. One of these genes, ght8, is selected and visualized in the gene level below. Genes are show at the bottom

and the pattern found by Nucleosee is highlighted with a bold line

Fig. 7. Peak detection by NucleoSee and DANPOS. NucleoSee reported peaks for abcba patterns with two allowed variations. DANPOS results for a height cut-off

of 1, and S. pombe nucleosomal occupancy as detected by MNase analysis (González et al., 2016) (section of Chromosome 1, between 2 425 000 and 2 435 000)

Visual nucleosome pattern search 2189

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/35/13/2185/5216313 by guest on 04 July 2019

that at least half of the genes are flanked by isolated nucleosomes at

one or both ends (see Supplementary Video).

We have not tested Nucleosee on larger genomes (e.g. mammals)

because available maps do not show a regular distribution of nucleo-

somes along the genomes. This could represent the real situation

in vivo or could be a consequence of the lower sequencing coverage

due to the large size of their genomes. This means that discretization

and search for specific patterns with Nucleosee would not yield

results as clear as in yeasts.

5.2 Differential search based on other patterns and

genomic features
Nucleosee can also identify pattern differences between two datasets.

It is possible, e.g. to search for well-positioned nucleosomes in a strain

that have become misplaced in another. To illustrate this, we searched

for regions encompassing five consecutive well-positioned nucleo-

somes in the 972-h S. pombe strain (abcba*5) that are delocalized in

the mutant strain hta1D (b*25), allowing three single-character devi-

ations from the patterns (v ¼ 3). The search reported two matches

corresponding to genes nap1 and yap18 (Fig. 9).

As the BWT searches are connected to the visual interface which

integrates genome annotations and GO enrichment, the user can see

that the GO term DNA replication-independent nucleosome assem-

bly is enriched (one out of the seven genes annotated with this term -

nap1- appears in our search with a corrected P-value of 2:6� 103).

Although the enrichment is weak, this option allows the user to

identify this term as possibly relevant but weak and performs a

search without losing context for the remaining six genes in the

term. Some of these genes’ profiles also indicated nucleosome mis-

placement, but such misplacement did not match the original

Fig. 8. ‘Isolated nucleosome’ patterns flank wtf genes. (a) Chromosome 3 track detail reveals close pattern occurrences. (b) Gene level tracks for wtf13 and wtf23

reveal the pattern is present at both sides of these elements

Fig. 9. Loss of positioning of five nucleosomes of the yap18 (a) and nap1 (b) genes on hta1D with respect to the 972-h strain, as detected by BWT searches

abcba*5 and b*25 (v ¼ 3). (c) Visual inspection of hip4, also annotated with DNA replication-independent nucleosome assembly, indicates misplaced

nucleosomes

2190 R.Santamarı́a et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/35/13/2185/5216313 by guest on 04 July 2019

pattern search (e.g. hip1 and hip4; see Fig. 9, bottom). This way, the

search algorithm, the data visualization, the integrated annotations

and the automatic enrichment collaborate to assist the analyst with

the discursive process (see Supplementary Video for the full analysis

flow).

5.3 Differential agnostic search
To illustrate differential agnostic searches we searched for windows

1 kbps long with differences on at least 700 bps between the 972 h

and hta1D strains. Taking into account the BWT pre-processing

(Fig. 2), this means changes on 23 out of 33 bins of 30 nucleotides.

A total of 28 regions were identified that fit this definition, all of

them corresponding to gene regions where the nucleosome position

is fuzzy on both samples but occupancy is higher on one of them

(Fig. 10). Again, direct comparison of the results with the original

data facilitates further analyses such as the anomalous variation of a

region of the pfl3 gene between the two biological replicates

(Fig. 10, notice the shaded area in the curve).

6 Conclusion

Discretization has been used on several pattern analysis methods to

reduce complexity, taking care that sensitivity is not affected. For ex-

ample, it has been successfully applied to biclustering algorithms

(Prelic et al., 2006), with only two discrete or binary levels. In this

case, we detected no significant loss of recovery power in peak re-

trieval from nucleosome maps compared with a slope-change algo-

rithm (Chen et al., 2013). Pre-processing parameters depend on the

data to be analyzed. Although a discretization of 30 bps windows on

three percentile ranges is generically sound, variations on defaults can

improve sensitivity and performance in specific cases. For example,

RNA-seq data of organisms with large genomes could benefit from

larger windows (100 to 1000 bps) and only two percentile ranges.

The visual interface has been designed to provide a means for the

analyst to carry out visual discourse analysis. We adhere to a recent

trend in visual analytics (Endert et al., 2014) which is the transition

from a ‘human in the loop’ philosophy to a ‘human is the loop’ ap-

proach. That is to say, the analyst’s work processes are understood

and the visual analytical tools facilitate the interactive process

through which analysis is performed. Therefore Nucleosee provides

a flexible search for patterns that can be visualized in real time along

with the original data, genomic annotations and functional enrich-

ment, seeking to replicate a classical analyst’s reasoning-based

workflow. The link between the results of analyses and the original

data, although it may appear trivial, is lacking in several currently

available approaches, despite its value in confirming that findings

actually fit the data. We believe that leaving this confirmation to the

analyst, as part of a seamless dialogue with data and analysis is key

for pattern discovery.

Acknowledgements

We would like to thank Eamonn Maguire for initial discussions on the application

of BWT to coverage data, and Alejandro Benito for testing the production tool.

Funding

This work was supported by the Government of Spain, Ministerio de

Economı́a y Competitivad [Refs. BFU2017-89622-P and PCIN-2017-064].

Conflict of Interest: none declared.

References

Adjeroh,D. et al. (2002) DNA sequence compression using the

Burrows-Wheeler Transform. In: Proceedings. IEEE Computer Society

Bioinformatics Conference, Institute of Electrical and Electronic Engineers

(IEEE) Inc., Stanford, California, pp. 303–313.

Ashburner,M. et al. (2000) Gene ontology: tool for the unification of biology.

Nat. Genet., 25, 25–29.

Burrows,M. and Wheeler,D.J. (1994) A block-sorting lossless data compres-

sion algorithm. Technical report. Systems Research Center La Jolla, CA,

USA.

Chen,K. et al. (2013) DANPOS: dynamic analysis of nucleosome position and

occupancy by sequencing. Genome Res., 23, 341–351.

Compeau,P. and Pevzner,P. (2014) Bioinformatics Algorithms: An Active

Learning Approach. Active Learning Publishers.

Endert,A. et al. (2014) The human is the loop: new directions for visual ana-

lytics. J. Intell. Informat. Syst., 43, 411–435.

González,S. et al. (2016) Nucleosomal signatures impose nucleosome positioning in

coding and noncoding sequences in the genome. Genome Res., 26, 1532–1543.

Jiang,C. and Pugh,B.F. (2009) Nucleosome positioning and gene regulation:

advances through genomics. Nat. Rev. Genet., 10, 161–172.

Fig. 10. Higher nucleosomal occupancy of the pfl3 (a) and ubi4 (b) genes on the S. pombe hta1D mutant relative to 972h- cells. Variation between duplicates is un-

usually high on a region of the pfl3 gene in the hta1D mutant

Visual nucleosome pattern search 2191

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/35/13/2185/5216313 by guest on 04 July 2019

Kent,W.J. et al. (2002) The human genome browser at UCSC. Genome Res.,

12, 996–1006.

Kerpedjiev,P. et al. (2017) HiGlass: web-based visual comparison and explor-

ation of genome interaction maps. 19, 125.

Kim,D. et al. (2015) HISAT: a fast spliced aligner with low memory require-

ments. Nat. Methods, 12, 357–360.

Langmead,B. and Salzberg,S.L. (2012) Fast gapped-read alignment with

Bowtie 2. Nat. Methods, 9, 357–359.

Lekschas,F. et al. (2017) HiPiler: visual exploration of large genome interaction

matrices with interactive small multiples. IEEE Trans. Vis. Comput. Graph, 99, 1.

Li,H. and Durbin,R. (2009) Fast and accurate short read alignment with

Burrows-Wheeler transform. Bioinformatics, 25, 1754–1760.

Luger,K. et al. (1997) Crystal structure of the nucleosome core particle at 2.8

A resolution. Nature, 389, 251–260.

Moyle-Heyrman,G. et al. (2013) Chemical map of Schizosaccharomyces

pombe reveals species-specific features in nucleosome positioning. Proc.

Natl. Acad. Sci. USA, 110, 20158–20163.

Nicol,J.W. et al. (2009) The Integrated Genome Browser: free software for dis-

tribution and exploration of genome-scale datasets. Bioinformatics, 25,

2730–2731.

Prelic,A. et al. (2006) A systematic comparison and evaluation of biclus-

tering methods for gene expression data. Bioinformatics, 22,

1122–1129.

Skinner,M.E. et al. (2009) JBrowse: a next-generation genome browser.

Genome Res., 19, 1630–1638.

Teif,V.B. (2016) Nucleosome positioning: resources and tools online. Brief.

Bioinform., 17, 745–757.

Wang,Z. (2009) RNA-Seq, a revolutionary tool for transcriptomics. Nat. Rev.

Genet., 10, 1–7.

Westesson,O. et al. (2013) Visualizing next-generation sequencing data with

JBrowse. Brief. Bioinform., 14, 172–177.

Yardimci,G.G. and Noble,W.S. (2017) Software tools for visualizing Hi-C

data. Genome Biol., 18, 26.

2192 R.Santamarı́a et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/35/13/2185/5216313 by guest on 04 July 2019

