
Comparative Genomics of the Genus Pseudomonas Reveals
Host- and Environment-Specific Evolution

Zaki Saati-Santamaría,a,b,c Riccardo Baroncelli,d Raúl Rivas,a,b,e Paula García-Frailea,b,e

aDepartamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
bInstitute for Agribiotechnology Research (CIALE), Villamayor, Salamanca, Spain
cInstitute of Microbiology of the Czech Academy of Sciences, Víde�nská, Prague, Czech Republic
dDepartment of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
eAssociated Research Unit of Plant-Microorganism Interaction, USAL-CSIC (IRNASA), Salamanca, Spain

ABSTRACT Each Earth ecosystem has unique microbial communities. Pseudomonas bacteria
have evolved to occupy a plethora of different ecological niches, including living hosts, such
as animals and plants. Many genes necessary for the Pseudomonas-niche interaction and their
encoded functions remain unknown. Here, we describe a comparative genomic study of
3,274 genomes with 19,056,667 protein-coding sequences from Pseudomonas strains iso-
lated from diverse environments. We detected functional divergence of Pseudomonas that
depends on the niche. Each group of strains from a certain environment harbored a
distinctive set of metabolic pathways or functions. The horizontal transfer of genes,
which mainly proceeded between closely related taxa, was dependent on the isolation
source. Finally, we detected thousands of undescribed proteins and functions associated
with each Pseudomonas lifestyle. This research represents an effort to reveal the mecha-
nisms underlying the ecology, pathogenicity, and evolution of Pseudomonas, and it will
enable clinical, ecological, and biotechnological advances.

IMPORTANCE Microbes play important roles in the health of living beings and in the
environment. The knowledge of these functions may be useful for the development of
new clinical and biotechnological applications and the restoration and preservation of natu-
ral ecosystems. However, most mechanisms implicated in the interaction of microbes with
the environment remain poorly understood; thus, this field of research is very important.
Here, we try to understand the mechanisms that facilitate the differential adaptation of
Pseudomonas—a large and ubiquitous bacterial genus—to the environment. We analyzed
more than 3,000 Pseudomonas genomes and searched for genetic patterns that can be
related with their coevolution with different hosts (animals, plants, or fungi) and environ-
ments. Our results revealed that thousands of genes and genetic features are associated
with each niche. Our data may be useful to develop new technical and theoretical advances
in the fields of ecology, health, and industry.

KEYWORDS Pseudomonas, environmental microbiology, genomics, host-cell
interactions, microbial ecology

P seudomonas is a large bacterial genus whose members are adapted to live in many
diverse biological niches, such as plants (1–3), mammals (4), reptiles (5, 6), insects (7–10),

nematodes (11), humans (12), rivers (13, 14), soils (13), and anthropogenic environments (15),
among others (16). Due to the ecological, clinical, and biotechnological importance of
Pseudomonas bacteria, many research efforts target their functions, such as those involved
in the modulation of nutrient cycles (17–19) or the production of secondary metabolites (20, 21)
and those responsible for their behavior as beneficial or pathogenic commensals of higher hosts
(1, 22–25). Despite this information, many genes and metabolic pathways of Pseudomonas
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remain undescribed, as does much of the genetic basis of its adaptation and specialization
to different lifestyles.

Discovering novel microbial functions is a complex task, for which laborious wet lab
experiments are usually required (i.e., in vivo transcriptome sequencing [RNA-seq], transpo-
son mutagenesis and phenotype evaluation, and targeted gene editing) (22, 26–29). Even
so, these techniques may cause large studies to yield undesired results when the targeted
gene/pathway is not properly selected or the first hypothesis is not adequate. Conversely,
comparative genomics is rising as a powerful methodology that helps to unveil genes asso-
ciated with phenotypes or ecological features, reducing research risks and aiding in relevant
breakthroughs in understanding microbe mechanisms (30–33). The reduced sequencing
costs and the development and easy use of DNA databases have allowed the scientific com-
munity to sequence and share thousands of microbial genomes worldwide. Thus, the study
of publicly available genomes helps reveal microbial evolution and adaptation in a low-cost
and profitable way.

We aimed to explore the potential ecological functions of Pseudomonas and its genomic
adaptability to diverse lifestyles and to discover novel genes and functions that participate in
the interaction of these bacteria with the environment. We created a database of high-quality
publicly available genomes of 3,274 Pseudomonas strains with known isolation sources. Then,
we used pangenomic and comparative genomic strategies to find differential features among
genomes grouped by habitat or host. This work is reinforced by the large genome data set of
closely related strains used, providing powerful findings that advance the knowledge of
Pseudomonas ecology and evolution.

RESULTS
Obtaining a curated pangenome from high-quality Pseudomonas genomes. With

the aim of studying genes or functions related to the adaptation of Pseudomonas to differ-
ent hosts or niches, we retrieved 11,167 Pseudomonas genome sequences from public data-
bases. These genome sequences were filtered to retain only high-quality genomes from
Pseudomonas strains for which the isolation origin is available publicly. Genomes too phylo-
genetically distant from the remaining Pseudomonas genomes (there were some clades that
were located in an extremely far branch, see the GitHub repository for more details online at
https://github.com/zakisaati/Pseudomonas_pangenome) were also eliminated due to their
possible misidentification. This filtering led to 3,274 high-quality genomes with trustworthy
metadata (Materials and Methods; Fig. 1; see Table S1 in the supplemental material). These
genomes have a mean coding region density of 71%, 129 contigs, an N50 value of 1,042,151
and L50 value of 15 (Table S1) and were classified in 393 different species according to the
Genome Taxonomy Database (GTDB). Pseudomonas aeruginosa is the most represented spe-
cies (n = 1,661), followed by Pseudomonas avellanae (n = 177), Pseudomonas amygdali (n =
78), and Pseudomonas syringae (n = 50). A total of 26 species encompass #49 and $10
genomes of the data set. A total of 170 species have #9 and $2 representatives. The
remaining 192 genomes belong to unique species. Notably, this analysis is based on the
GTDB nomenclature, which splits some valid species into several groups, considering
that some strains should represent different taxa. In case those groups were categorized
into the current valid taxonomic names, a few species would be more represented. For
instance, Pseudomonas fluorescens groups would sum 103 genomes; P. syringae, 93 genomes;
Pseudomonas chlororaphis, 73 genomes; Pseudomonas putida, 48 genomes; and Pseudomonas
stutzeri, 39 genomes; among others. Of those strains belonging to the same species, only 71
share average nucleotide identity (ANI) values of .99,999% (ANI matrixes are available at
Zenodo, https://doi.org/10.5281/zenodo.7105218).

We built a Pseudomonas pangenome, obtaining 326,707 protein clusters (fasta file
available at Zenodo, https://doi.org/10.5281/zenodo.7105218) from a total of 19,056,667
coding sequences (CDSs) (70% similarity, 80% coverage). We found a very narrow core genome
comprising 65 genes, while most of the genes shaped the accessory genome (see Table S2
in the supplemental material). Each genome has 1,085 to 1,645 soft-core genes (genes pres-
ent in the 95% of the genomes), which represents 18 to 43% of the total number of genes.
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The pangenome curve did not reach a plateau, suggesting that a fraction of the diversity of
Pseudomonas genes remains cryptic (curve available at Zenodo, https://doi.org/10.5281/
zenodo.7105218).

Divergent niche specialization in Pseudomonas. We manually classified the ge-
nome collection into several categories based on the isolation source (Fig. 1; see Table S3 in
the supplemental material). This classification also included broad categories comprising dif-
ferent isolation sources, such as “animals,” “host associated,” (HA), and “non-host associated”
(NHA).

Next, we constructed a phylogenomic tree to determine whether the different genomic
categories showed evolutionary divergence related to the isolation origin. As shown in Fig. 1,
some phylogenetic clades, mainly those including human-related and some plant-related
Pseudomonas genomes, were associated mostly with specific environmental niches. This find-
ing suggests that species from these clades experienced specialization events related to their
association with hosts, while some other categories may be represented by less niche-specific
species. Indeed, the number of genes per genome differed significantly among the isolation
sources (see Fig. S1 in the supplemental material).

This evolutionary tendency was also preserved in regard to the functional (Clusters
of Orthologous Genes [COG] content) profiles of Pseudomonas (Fig. 2; see Fig. S2 in the

FIG 1 Phylogeny and niche distribution of 3,274 Pseudomonas genomes. The phylogenetic tree was built with the 3,274 Pseudomonas genomes depicting
the isolation source for each strain. Each isolation source is labeled with a different color. There are 3 differently colored circles that represent the isolation
sources at different levels. The inner circle includes all the different categories. In the following circle, these categories are merged into 5 categories. Then,
the third circle comprises the host relatedness (yes versus no). Finally, the outer circle shows the most represented species (.30 genomes) in this genome
collection according to the GTDB.
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supplemental material). We found 3 main functional clusters of genomes that comprised (i)
human-related Pseudomonas, (ii) some plant-related Pseudomonas, and (iii) the remaining
Pseudomonas genomes. Interestingly, the second genome cluster included epiphytic and
phytopathogenic Pseudomonas, while rhizospheric and plant-beneficial Pseudomonas mem-
bers were included in the third and most diverse cluster (Fig. 2).

Diversity of Pseudomonas functions. We examined the diversity of nonredundant
COG functions within each of the genome categories. HA genomes are slightly more func-
tionally diverse (higher number of nonredundant COGs) than NHA genomes (Tukey honestly
significant difference [HSD], adjusted P value [p-adj] = 2.22e-16) (Fig. 3; see Table S4 in the
supplemental material). The genomes with the highest COG diversity are those within the
categories “human” and “mammals.” Plant-associated Pseudomonas strains are less func-
tionally diverse than those associated with mammals, humans, fungi, and soil (Tukey HSD,
p-adj, 0.05); however, this category encompasses the highest diversity of unique functions
(2,002 different COGs) (Fig. 3).

Despite the considerable amount of genetic diversity found in the pangenome analyses
of Pseudomonas, where we found a small core pangenome (65 genes present in all the
genomes), 1,822 COGs were shared among the broadest categories (animals, plants, HA,
NHA, aquatic environments, soil, and wastewater) (Fig. 3), which implies a large core functional
pangenome (COG functions present in all the strains) in Pseudomonas. This result means that
there is a large genetic variability in those Pseudomonas genes that are related with core meta-
bolic functions.

Insights into the metabolism of carbohydrates and proteins. Carbohydrates are
the main carbon source for most living organisms. The ability to use carbohydrates present
in a certain niche is crucial for the successful adaptation of most bacteria to a given ecosys-
tem. Each host or environment harbors different amounts and diversities of carbohydrates.
We aimed to study the potential of the different Pseudomonas strains to metabolize carbo-
hydrates. To do so, we annotated the genomes with the Carbohydrate Active EnZymes

FIG 2 Pseudomonas genomes sharing similar habitats have functional resemblance. The principal-component analysis (PCA) is based on the nonredundant
presence of Clusters of Orthologous Groups of proteins (COGs) of each of the 3,274 Pseudomonas genomes of this study. Each symbol represents an
isolation category. We depict 3 main functional clusters of genomes that comprise (i) human-related Pseudomonas, (ii) some plant-related Pseudomonas
(mainly epiphytic and phytopathogenic strains), and (iii) the remaining Pseudomonas genomes.
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FIG 3 The lifestyle of Pseudomonas strains is a key factor that determines their metabolic range. (a, b, c, d) Intersection plots showing the number
of nonredundant Clusters of Orthologous Groups of proteins (COGs) in each category and the unique COGs shared by two or more categories. (e)
Density plots relating the number of genomes with the COG content. The red dashed line represents 1,400 COGs as a reference to compare
different plots. (f) Table of total unique COGs within each isolation source category.
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(CAZy) database, which returned a total of 305,915 proteins involved in carbohydrate metabo-
lism (see Table S5 in the supplemental material). Our results suggest a niche-dependent poten-
tial to metabolize these compounds (Fig. 4). The Pseudomonas strains isolated from plants,
which are hosts with large amounts of complex carbohydrates, showed a higher CAZy con-
tent (.100 CAZys/genome), while wastewater-associated Pseudomonas represented the cat-
egory with the lowest number of CAZys (,80 CAZys/genome) (Fig. 4).

Peptidases catalyze the cleavage of a vast variety of peptides and are associated with
many diverse biological functions. Thus, the adaptability of bacteria can be influenced by
this proteolytic ability. Here, we show that the lifestyle of the Pseudomonas strains signifi-
cantly influences the peptidase content (Fig. 4). This finding denotes that the mean content
of peptidases on the studied strains is significantly related to the isolation source (Tukey
HSD; p-adj, 0.05). For example, the strains living in wastewater environments carry a lower
number of peptidases than those isolated from other niches (Fig. 4).

Both CAZys and peptidases can be secreted or placed within the outer membrane,
enabling a broader set of interactions with the environment and surrounding microbes.
Signal peptides are markers that allow proteins to enter secretion pathways. Consequently,
the presence of signal peptides on these enzymes can be crucial for the adaptability, fitness,
and interaction of Pseudomonas within its ecosystem. Interestingly, despite having the high-
est CAZy content, plant-associated Pseudomonas showed far fewer secreted CAZys than the
strains belonging to the animal, human, and aquatic categories (Fig. 4). Similarly, the pres-
ence of peptidases with signal peptides per genome was the lowest in the group “plants”
(Fig. 4). This result suggests that plant-associated Pseudomonas strains use most of their deg-
radative arsenal to metabolize carbohydrates and peptides in the cytoplasm in order to
obtain energy, carbon, and nitrogen, while a larger proportion of enzymes with signal pep-
tides encoded by the other strains may be dedicated to interactions with the environment.

Stress resistance. In certain environments, bacterial survival requires resistance to
environmental threats (heat, presence of antibiotics, metals, and biocides; see Materials and
Methods). Thus, we looked for mechanisms enabling Pseudomonas to resist these stress con-
ditions, and we analyzed their distribution (see Table S6 in the supplemental material).

FIG 4 The potential to metabolize carbohydrates and proteins is shaped by the isolation source. This figure includes boxplots that represent the content of
either CAZy and peptidase per each genome and isolation source, as well as the enzymes with signal peptides. Different letters represent groups with significant
differences (p adj , 0.05).
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Among the Pseudomonas strains studied in this work, those isolated from humans possess
the most genetic machinery related to the mentioned threats. In contrast, plant-associated
strains possessed the smallest number of stress resistance mechanisms, even smaller than
the number observed for strains isolated from bulk soil (p adj, 0.05) (see Fig. S3 in the sup-
plemental material), suggesting that the plant environment protects bacteria from environ-
mental stresses or microbiological competition. Overall, HA Pseudomonas have a broader
resistance potential (mainly antimicrobial resistance) than NHA strains (p adj, 0.05).

Thousands of proteins and functions show specific associations with the environ-
ment in Pseudomonas. Each microenvironment where Pseudomonas bacteria live has
unique physicochemical characteristics, available molecules for bacterial nutrition, or,
in the case of host-related niches, defense mechanisms. To adapt to the different natu-
ral conditions of the niches they inhabit, Pseudomonas bacteria should have under-
gone adaptation events driven by the evolution of their accessory genome, offering
some survival advantage. We used a comparative genomics approach to study protein
and functional (COGs, resistance-related proteins, and CAZys) enrichment in each
niche/isolation category. We used Scoary to detect specific enrichments, yielding thou-
sands of proteins and functions associated with different niches or hosts (Table 1; see
Files S3 to S6 in the supplemental material).

We found that a large proportion of the proteins detected with Scoary that seem to be
related to the isolation source do not have any functional annotation (hypothetical proteins).
Additionally, considering host relatedness, we found that more proteins were associated with
the NHA category, while the number/diversity of COGs and resistance-related proteins associ-
ated with hosts (HA) was higher. Focusing on clear isolation sources, the genomes isolated
from plants were associated with the most proteins. Similarly, human-related strains showed
more unique associations of COGs and stress resistance-related proteins. Additionally,
Pseudomonas strains isolated from plants, soils, and natural aquatic environments were
associated with the highest number of CAZys (Table 1; Table S5). Many protein clusters are
significantly associated with more than one niche (see Fig. S4 in the supplemental material).
For instance, 4,052 proteins are associated with “animals,” “humans,” “mammalia,” and “hosts,”
probably due to a bias toward the higher number of human isolates present in our animal/
mammalia/host data sets which implies an overlap between these niches. Similarly, 165 pro-
teins are significantly associated with both “soil” and “plants” categories, which could be due
to isolation or metadata bias, or even due to some role in the rhizosphere environment. We
also compared the proteins associated with HA and NHA categories and found substantial
similarity (see Fig. S5 in the supplemental material), suggesting that these associations do not
include large groups of extremely evolutionarily distant proteins.

TABLE 1 Number of proteins or functions associated with the isolation origin of
Pseudomonas strains

Category

No. of:

Protein clustersa (HPb) COGsa
Resistance-related
proteinsc CAZysc

Aquatic environment 4.841 (3.327) 93 16 145
Fish 663 (472) 3 1 34
Fungi 263 (115) 7 4 53
Humans 7.060 (4.308) 465 58 108
Mammals (nonhuman) 2.563 (1.337) 81 6 64
Nematodes 677 (409) 24 2 54
Plants 10.916 (7.214) 211 12 344
Soil 3.476 (1.767) 142 13 254
Insects 77 (19) - 2 96
Wastewater 524 (283) 17 7 70
Animals 6.837 (4.202) 431 55 107
Host associated 6.975 (4.173) 315 34 162
Not host associated 9.099 (5.382) 225 20 309
aP, 1026 (Benjamini-Hochberg correction).
bHP, hypothetical protein.
cP, 1022 (Benjamini-Hochberg correction).
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Focusing on the metabolic pathways or metabolism categories in which niche-associated
COGs are classified (Fig. 5), we show that carbohydrate metabolism is specifically enriched in
plant-associated strains. Additionally, human- and aquatic environment-related Pseudomonas
strains have a large proportion of enriched COGs associated with the transport and metabo-
lism of inorganic ions. The largest proportion of HA COGs was observed for energy metabo-
lism or the metabolism of inorganic ions and amino acids.

Additionally, among the enriched proteins mentioned above, some have already been
suggested to function within Pseudomonas habitats. For example, the HCN-ABC operon
appears to be associated with humans (34), the metapyrocatechase enzyme (also named
catechol 2,3-dioxygenase, responsible for toluene degradation) (35) was found to be enriched
in wastewater environments, and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase is
enriched in Pseudomonas strains isolated from plant environments (36) (File S3). Additionally,
we found proteins involved in vitamin B12 synthesis associated with insect niches; B12 supply
has been suggested to play an endosymbiont role in insects (37, 38), but this role has never
been proven in Pseudomonas.

In contrast, many of the genes found to be enriched in some groups of Pseudomonas
have never been described as relevant for interactions with the environment or the host.
For instance, we found that a protein similar to the biofilm dispersion protein (BdlA) is strongly
enriched in those isolates associated with nematodes (Benjamini-Hochberg’s [B-H] p-adj =
4.39 � 10210), which suggests its potential importance for the removal of biofilm in these
hosts. Similarly, the YdeP protein, which is suggested to be related with acid resistance, is
enriched in the isolates associated with insects (B-H p-adj = 7.86 � 10214). The protein with
the best significant association to plant-niche encodes an L-glyceraldehyde 3-phosphate
reductase (B-H p-adj = 2.11 � 102305). Similarly, the enrichment of a blue-light photoreceptor

FIG 5 The metabolic profile based on the niche-associated COGs in Pseudomonas reveals metabolic
categories enriched in each group of genomes. The heatmaps represent the different categories of Clusters
of Orthologous Groups of proteins (COGs) enriched in Pseudomonas genomes. At the top is shown the sum
of significantly enriched COGs falling within a certain category. At the bottom, each count of COGs has
been relativized to the total number of COGs associated with each host or niche.
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in soil associated pseudomonads (B-H p-adj = 8.57 � 10251) might be linked with the
dynamics or the response of bacterial cells to the soil depth. More examples are the YjcH
protein and a xanthine permease in human-associated Pseudomonas, the transcriptional
regulator XynR in plant-associated strains, and an operon homologous to the Yop virulon
in fish-related strains, or in a broader sense, any of the thousands of hypothetical proteins
associated with each niche.

Genetic dynamics. Since horizontal gene transfer (HGT) influences bacterial adapt-
ability to novel environmental conditions, we searched for Pseudomonas genes that may
have been acquired from other microbial taxa via this process. A total of 11.5% of the rep-
resentative sequences of the Pseudomonas pangenome were detected as potential hori-
zontally transferred genes. Of these genes, the majority could have a bacterial origin, primarily
from Proteobacteria, followed by Burkholderiales (Fig. 6). Additionally, there are also proteins for
which the origin is suggested to be domain Archaea, superphylum Terrabacteria, or phylum
Firmicutes, among other groups, even though these proteins are present in a smaller propor-
tion within the pangenome (Fig. 6).

The composition of the different microbiomes or the features of a certain niche may
imply differential dynamics in the transfer of genes. In this regard, HA strains of Pseudomonas
showed slightly higher gene transfer rates than NHA strains (Fig. 6), which may be influenced
by the antibiotic resistance spread of P. aeruginosa (HA) strains. The most notable difference
is that between the animal (mean, 885 HGTs/genome) and plant (mean, 718 HGTs/genome)

FIG 6 Gene dynamics in the Pseudomonas genomes. (a) This figure represents the number of detected HGT genes classified based on the taxa that is supposed to
be the source of the horizontal transfer. Only the 20 most abundant taxa are displayed. (b) Bars represent the number of genes derived from HGT events according
to the categories in which the encoded protein is classified based on the COG annotation. (c, d) Boxplots showing the number of HGT and RGP events per genome
and classified into the different isolation sources. Different letters represent groups with significant differences (p adj , 0.05).
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categories (Tukey HSD p-adj = 1.62 � 10211). The Pseudomonas strains isolated from soils
and wastewater showed high variability in their HGT content (Fig. 6).

With regard to the functional annotation of the representative genes/proteins of the
pangenome likely acquired by HGT events, 134 were annotated as resistance-related pro-
teins (55.4% of the total number of resistance-related proteins detected). Moreover, several
invertases (proteins that switch antibiotic-resistance regulatory genes, among other functions
[39]) appear to be acquired from Klebsiella species. Similarly, 850 of 3,245 CAZys would have
been horizontally acquired. Additionally, the classification of these proteins within COG cate-
gories reveals that most of them do not have an assigned functional category, whereas the
assigned proteins belong mainly to the “transcription,” “amino acid and transport metabo-
lism,” “energy production and conversion,” and “lipid transport and metabolism” categories
(Fig. 6).

Commonly, clusters of genes acquired by HGT are located in regions of genome
plasticity (RGPs), such as genomic islands or plasmids. We looked for RGPs through the
graphical and partition-driven methods implemented in PPanGGOLiN (Materials and Methods).
We detected 499,509 RPGs in total (152,6 RGPs/genome). We found that lifestyle impacts the
RGP content per genome (Fig. 6). The Pseudomonas strains isolated from soils showed the
fewest RGPs, those isolated from humans had intermediate numbers of RGPs/genome,
and those isolated from plants had the most RGPs.

DISCUSSION

Earth ecosystems and living organisms (hosts such as animals or plants) are strongly
influenced by their microbiomes (40–43). Thus, understanding the functions of bacteria
in their biological niches is of utmost importance and can be profitable for the study of
animal or plant illnesses and for the development of biofertilizers and bioremediation agents,
among others. (3, 9, 27, 44, 45). A common integrant of the microbiomes inhabiting many
diverse habitats and hosts is the genus Pseudomonas (16). The variability of niches where
Pseudomonas can survive makes the study of both the ecological functions and the metabolic
potential of these bacteria very appealing. To perform deep analyses of the ecological
functions of bacteria belonging to this genus, we implemented a comparative genomics
study of more than 3,000 Pseudomonas strains, revealing their probable roles in their isolation
niches and providing an understanding of their likely evolution and adaptation mechanisms.

We found that plant-associated Pseudomonas strains have smaller genomes than other
strains of this genus. This finding may indicate a more intimate cross-kingdom interaction
and specialization within these hosts (46). Nonetheless, this tendency does not stand out
when HA and NHA genomes are compared. We also found that HGT events affect 10 to
20% of the genes in each Pseudomonas genome. Most of these events involved bacteria
from the same phylum (Proteobacteria), which usually represents a relevant proportion of
the bacterial communities of the common habitats of Pseudomonas (47–52). More than one-
half of the detected clusters of resistance genes could have been horizontally acquired. This
finding supports those of Freschi et al. (53), who showed that HGT events drive the gain of
antibiotic resistance and virulence in P. aeruginosa.

Our findings indicate that strains associated with humans have a larger number of
resistance-related genes than other strains. Nevertheless, this difference could be the
result of biased annotation; while many P. aeruginosa resistance genes are included in
the available databases, the resistance genes belonging to less-studied environmental
Pseudomonas strains may have never been elucidated.

Here, we show that plant-related Pseudomonas strains have enriched genetic ma-
chinery for carbohydrate metabolism, probably to adapt to the complex carbohydrate
content in the plant environment (54, 55). Levy et al. (56) reached similar conclusions
when comparing genomes belonging to different phyla associated or not associated
with plants. The enrichment of signal peptides among CAZys encoded by animal-related
Pseudomonas strains may be due to the involvement of these enzymes in biofilm formation
and/or the degradation of host tissues. In contrast, the CAZys of strains isolated from plant
hosts seem to be locatedmainly in the cytoplasm, suggesting an enhanced ability to metabolize
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carbohydrates for use as a C or energy source. Similarly, we found variation in the content of
secreted peptidases in the categories of genomes examined in this work, suggesting a
role of these proteins in the lifestyle adaptations of Pseudomonas. These findings agree
with those of Nguyen et al. (57), who found segregation of extracellular peptidases of bacteria
and archaea according to their habitats.

We found an enrichment of inorganic ion metabolism in human-associated Pseudomonas,
which was due mainly to the enrichment of proteins related to H1 transport and iron metabo-
lism. The first process may aid in the adaptability of P. aeruginosa to the variability of H1 levels
in lung tissues (58, 59). Additionally, the enrichment of iron-related functions is related to
siderophore production by this pathogenic species, which also serves as a mechanism of
niche competition (60).

Adding to previous comparative genomic works aiming to find undescribed microbial
genes with ecological functions (31–33, 61, 62), we discovered thousands of such genes that
may have key functions in the environmental interaction or the adaptation of Pseudomonas
(File S3 to S6). Interestingly, the annotation processes identified many of them as hypothetical
proteins. Here, we provide a catalogue of genes with likely relevant roles in the lifestyle of
Pseudomonas bacteria, allowing researchers to direct efforts toward deeply investigating their
functions and to discover new bacterial functionalities that currently remain hidden (27, 63–65).
Those proteins with the highest odds ratio and lowest Benjamini-Hochberg’s (B-H) adjusted P
value found on each of the tables presented in File S3 should be considered strongly related
with the Pseudomonas lifestyle in each niche. Hence, to further use our data, the main findings
might be prospected carefully based on the interest of the research. For instance, we suggest
using the representative sequences for the Pseudomonas-pangenome proteins (https://doi.org/
10.5281/zenodo.7105218) to compare (i.e., blastp searches) our data with particular proteins of
interest and thereby translate the ecological importance found for the query protein (if any).

Despite the large genome data set, which provides us high statistical confidences,
there are some issues that may obscure the results, which are as follows: (i) it is possible that
the genome metadata obtained from databases were not sufficiently detailed or even incor-
rect; (ii) the isolation of bacterial strains in a niche does not always imply a strict adaptation of
that strain into the niche, since it may be a transient cell in the environment or even a contam-
inant; and (iii) biases inherent to in silicomethods (i.e., difficulty to cluster proteins/genes with
similar functions properly) may draw some wrong conclusions. Also, some of the results may
be just the consequence of phylogenetic signals that may bias the presence/absence of
genes/proteins in some groups of genomes (i.e., the category of human isolates is comprised
mainly by P. aeruginosa). Thus, for better confidence to use our results, they should be vali-
dated experimentally (e.g., genetic modifications and transcriptional information).

In summary, we show the genomic adaptability patterns of Pseudomonas strains to
different lifestyles. For example, plant-associated Pseudomonas strains dedicate the largest
number of genes to the metabolism of carbohydrates, but the involved proteins are likely
located in the cytosol, in contrast to other strains that present a higher proportion of CAZys
in the outer envelope or excrete them. Additionally, contrary to plants, the human/animal
environment seems to add pressure to resist stresses, although this issue may be biased to-
ward the better understanding of clinically relevant genes. Furthermore, the association
of Pseudomonas with higher hosts increases the probability of gene exchange through
horizontal transfer. Overall, our results will facilitate studies focusing on the evolutionary
dynamics, ecology, biotechnology, and clinical relevance of bacteria. New insights into
genes or functions associated with isolation niches can inspire scientific applications in
infectious disease diagnosis and treatment or even the development of engineered strains
with biotechnological uses.

MATERIALS ANDMETHODS
Creation of a collection of genomes with a known ecological niche of isolation.We downloaded

a total of 11,167 genomes of the bacterial genus Pseudomonas with their metadata from the JGI-IMG database
(https://img.jgi.doe.gov/), Pseudomonas Genome DB (https://www.pseudomonas.com), EzBioCloud Genome
Database (https://help.ezbiocloud.net/ezbiocloud-genome-database/), and NCBI genome database (https://
www.ncbi.nlm.nih.gov/genome/). We manually inspected the list of genomes to remove all those that did
not have concise information about the isolation source or those that, according to the name of the strain,
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were redundant between genomes from different databases. The quality of the genomes was evaluated
with QUAST (v5.2.0) (66) and BUSCO (v5.4.3) (67). Genomes with less than 95% completeness and/or that
were highly fragmented were removed for this study. We built a phylogenetic tree with all remaining
genomes with the UBCG program (68), which extracts, concatenates, and aligns 92 housekeeping genes
from each genome and then builds the tree. UBCG was set to use codon-based alignment with FastTree (maxi-
mum likelihood; GTR1 CAT model) and a gene support index threshold of 95%. The cutoff for gap-containing
positions was set at 50%. The phylogeny was visualized with the iTOL program (69), where genomes that were
placed out of the phylogenetic tree (see picture in extended methods described online at https://github.com/
zakisaati/Pseudomonas_pangenome) were identified and removed from the analysis. Finally, we created a
new phylogenetic tree with the remaining 3,274 genomes, and we depicted the isolation metadata in iTOL.

Pangenome analysis. We annotated the 3,274 genomes with Prokka (v1.14.6) (70). Once the
genomes were annotated, the files in gene feature format (GFF) were used to perform the pangenome
calculations and comparative genomics analyses. To do these analyses, we ran PPanGGOLiN (71)
(v1.1.96) following the instructions of the developers and using the default values at each step of the
process except for the MMseqs2 (72) clustering of proteins, for which an identity percentage of 70% was
chosen. PPanGGOLiN uses a sophisticated method that defines partition nodes to build pangenome
graphs used to classify gene families into persistent (conserved in the majority of genomes), shell (pres-
ent at intermediate frequencies in the genome collection), and cloud (present at low frequency) (see the
methods described by Gautreau et al. [71]). Scripts from this program were used to generate a matrix of
the presence/absence of protein families. We obtained pangenome statistics from this program. Then,
we used the roary_plots.py script (https://sanger-pathogens.github.io/Roary/) to generate graphs of the
pangenomes, using the phylogenetic tree built with the UBCG program as the basis.

Search for protein functions. We annotated the proteomes with the dbCAN2 program (73) (stand-
alone v2.0.11; https://github.com/linnabrown/run_dbcan) to search for enzymes related to carbohydrate me-
tabolism (CAZys). We retained only the CAZys detected by at least 2 of the 3 algorithms (HMMER, DIAMOND,
and HotPep) used by the program. Peptidases were detected through a DIAMOND (74) search (E value thresh-
old, 1023) against the MEROPS database (75). The search for proteins related to resistance to antimicrobials,
biocides, and other abiotic stresses was carried out by annotating the representative sequences of the groups
of orthologous proteins (obtained with PPanGGOLiN) with the AMRFinderPlus (76) program (v3.9.8). The signal
peptide search was performed via SignalP (v5.0b) (77). COG terms were retrieved from Prokka annotations.

Gene dynamics. Possible HGT events were estimated using the HGTector program (v2.9b3) (78), with
the following flags: method = diamond, E value = 1e-10, and tax-unirank = species. The protein database was
compiled from all protein sequences of NCBI RefSeq genomes of bacteria, archaea, viruses, fungi, and protozoa
(1 genome per species) plus all NCBI-defined reference, representative, and type material genomes.

We looked for RGPs with the panRGP (79) algorithm implemented within the PPanGGOLiN program (71).
These regions correspond to genomic islands, plasmids, and regions that are missing in multiple strains.

Statistical analyses and measurement of protein enrichment among different isolation catego-
ries.We used the Scoary program (v1.6.16) (80) to study the association of genes, proteins, or functions
with the isolation source. To do so, a presence/absence matrix of genes/proteins/functions in each genome and
a comma-delimited table (.csv) encoded in binary code (0 and 1) were used as input so that each genome was
assigned with corresponding metadata. Statistical calculations were performed using a P value adjusted with
Benjamini-Hochberg’s (B-H) method for the correction of multiple comparisons (81). The results tables were inves-
tigated to select only those data with P values (BH correction) lower than the chosen threshold, which was set to
1022 for comparisons of CAZYs and resistance-related genes and 1026 for the protein and COG function analyses.
Genes with functions with odds ratios higher than 1 and P values less than the selected threshold were consid-
ered to be associated with the isolation source.

We searched for significant variation in the number of different functions of the genomes of Pseudomonas
associated with distinct niches by using Tukey’s test for multiple comparisons (Tukey HSD) in the analysis of
variance (ANOVA) framework with the “stats” R package (v4.0.2). The differences were visualized with the
ggplot2 (v3.3.2) (82) package for R and the UpSetR package (v1.4.0) (83).

We built a sequence similarity network (SSN) comprising proteins significantly associated with HA or
NHA categories with the Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST) (84). Then, we visualized
this SSN in Cytoscape (v3.7.2) (85).

Taxonomic analysis of the genome collection.We used the GTDB-Tk program (v2.1.1) (86) to clas-
sify each genome into a Pseudomonas species though the “classify_wf” command. This workflow uses the closest
ANI value to locate the user strain into the closest species in the GTDB.

We also compared the pairwise similarity of the genomes (all versus all) by measuring the ANI distances
with FastANI (v1.33) (87) and adding the “–matrix” flag.

Data availability. There are files hosted at Zenodo (https://doi.org/10.5281/zenodo.7105218). This
repository includes the following: (i) the pangenome rarefaction curve in html format, (ii) the representative
sequences of the protein clusters of the Pseudomonas pangenome, (iii) a folder with the 3,274 genomes of our
study, and (iv) two large files which are the output from executing FastANI on the genome collection.

We also included bioinformatic codes and source data in the GitHub repository created for this article
(https://github.com/zakisaati/Pseudomonas_pangenome).

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, XLSX file, 1.2 MB.
SUPPLEMENTAL FILE 2, PDF file, 2.5 MB.
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SUPPLEMENTAL FILE 3, XLSX file, 12.1 MB.
SUPPLEMENTAL FILE 4, XLSX file, 0.5 MB.
SUPPLEMENTAL FILE 5, XLSX file, 0.4 MB.
SUPPLEMENTAL FILE 6, XLSX file, 0.1 MB.
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