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Abstract.
This paper introduces and investigates ranked hesitant fuzzy sets, a novel

extension of hesitant fuzzy sets that is less demanding than both probabilistic
and proportional hesitant fuzzy sets. This new extension incorporates hierar-
chical knowledge about the various evaluations submitted for each alternative.
These evaluations are ranked (for example by their plausibility, acceptability,
or credibility), but their position does not necessarily derive from supplemen-
tary numerical information (as in probabilistic and proportional hesitant fuzzy
sets). In particular, strictly ranked hesitant fuzzy sets arise when no ties exist,
i.e., when for any fixed alternative, each submitted evaluation is either strictly
more plausible or strictly less plausible than any other submitted evaluation. A
detailed comparison with similar models from the literature is performed. Then
in order to produce a natural strategy for multi-criteria multi-agent decisions
with ranked hesitant fuzzy sets, canonical representations, scores and aggrega-
tion operators are designed in the framework of ranked hesitant fuzzy sets. In
order to help implementation of this model, Mathematica code is provided for
the computation of both scores and aggregators. The decision-making technique
that is prescribed is tested with a comparative analysis with four methodologies
based on probabilistic hesitant fuzzy information. A conclusion of this numer-
ical exercise is that this methodology is reliable, applicable and robust. All
these evidences show that ranked hesitant fuzzy sets are an intuitive extension
of the hesitant fuzzy set model designed by V. Torra, that can be implemented
in practice with the aid of computationally assisted algorithms.

Keywords. Hesitant fuzzy set; aggregation operator; score; ranking; deci-
sion making.
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1. Introduction

Semantics for the evaluation of information have evolved rapidly during
the last few years. Linguistic assessments, hesitation and multi-evaluations,
or temporal models have extended the purview of Zadeh’s fuzzy sets tremen-
dously (Zadeh, 1965). This paper contributes to this field of research with an5

intuitive extension of hesitant fuzzy sets (Torra, 2010) that despite its concep-
tual simplicity, is totally new in the literature. The new model will be called
ranked hesitant fuzzy sets.

To motivate the need for this framework, first the characteristics of several
important approaches to the modelization of uncertain knowledge will be re-10

called in section 1.1. Then section 1.2 will give facts about some models that
are directly comparable to our proposal, in a critical review of literature con-
cerning extensions of the hesitant fuzzy set model. That being established, the
main traits of ranked hesitant fuzzy sets and research goals will be established
in section 1.3. Section 1.4 outlines the rest of this paper.15

1.1. A concise review on the modelization of uncertain knowledge

As is well known, Zadeh’s fuzzy sets (together with related tools like fuzzy
logic) enable us to produce formal arguments with partial memberships. The
success of this model invited many authors to make substantial headway in
modeling uncertain knowledge and practical problems. Direct extensions include20

type-2 (and type-n) fuzzy sets (Zadeh, 1975), intuitionistic fuzzy sets (Atanassov,
1986), or hesitant fuzzy sets (Torra, 2010). These models were differently in-
spired. Linguistic variables were the motivation behind Zadeh (1975): type-2
fuzzy sets enable us to incorporate linguistic uncertainties efficiently. Intu-
itionistic fuzzy sets split membership and non-membership, which is no longer25

determined by membership in its entirety. Hesitant fuzzy sets allow for hesita-
tion: multiple membership degrees are allowed for each individual object. This
model includes the case of interval-valued fuzzy sets (Zadeh, 1975) for which
the membership degrees assigned to each object consist of closed intervals in
[0, 1]. But alternative viewpoints produce altogether different approaches to30

the modelization of vaguely perceived or uncertainly defined objects. In this
regard, rough sets (Pawlak, 1982) and soft sets (Molodtsov, 1999) stand out for
their tractability and hybridization ability. Indeed many authors were quick to
define and investigate fuzzy rough sets and rough fuzzy sets (Dubois & Prade,
1990), as well as fuzzy soft sets (Maji et al., 2001), as a short sample of hybrid35

models. Fundamental insights from some models have often been transferred
into another model, and so for example, the idea of lower and upper approxima-
tions in rough set theory makes a convincing case that necessary and possible
hesitant fuzzy sets are a helpful extension of hesitant fuzzy sets (Alcantud &
Giarlotta, 2019). The crucial fact is that the lower and upper approximations40

of a ‘roughly defined’ set respectively capture the elements that necessarily and
possibly belong to the set, and by the same token, this quality can be exported
to hesitant evaluations.
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Applications of various extensions of fuzzy sets (especially to multi-criteria
decision making) abound, whether for intuitionistic fuzzy sets (Cheng et al.,45

2020), hesitant fuzzy sets (Farhadinia, 2013), or other related models. This ar-
ticle is especially motivated by the applicability of hesitant fuzzy sets and their
evolved forms. Concerning managerial implications, a multi-criteria decision
making model that combines hesitant and interval type-2 fuzzy sets has been
proposed by Deveci et al. (2018), who apply it to improve the quality of service50

in three major Turkish airlines. And also Deveci et al. (2022) make further use of
this framework to develop an entropy-based WASPAS approach multi-criteria
decision-making method that yields an aircraft type selection. Recently, the
ELECTRE-I approach has been extended to data with hesitant Pythagorean
fuzzy information, and applied to risk evaluation, by Akram et al. (2022). Fo-55

cusing on the model as originally envisaged by Torra, decisions with hesitant
fuzzy information were the subject of Wang et al. (2021b).

Industrial applications of models that implement hesitant fuzziness have
thrived in recent years too. Dinçer et al. (2019a) have used a hybrid hesitant
fuzzy decision-making approach for the analysis of European energy investment60

policies. Narayanamoorthy et al. (2019) approached industrial robots selec-
tion by means of an interval-valued intuitionistic hesitant fuzzy entropy based
VIKOR method. In the drone industry, Biswas et al. (2019) use intuitionistic
hesitant fuzzy sets to achieve image enhancement for low illuminated drono-
grams. Dinçer et al. (2019b) have taken advantage of hesitant fuzzy information65

from experts to design a balanced scorecard based SERVQUAL model to rank
competitors in the banking sector. Wang et al. (2021a) have set forth a hes-
itant fuzzy wind speed forecasting system. In the analysis of the reliability of
engineering systems, Mahapatra et al. (2022) model the redundancy allocation
under a hesitant fuzzy framework as a multi-objective problem. The hesitant70

fuzzy approach improves the degree of accuracy of the decision analysis model
for outsourcing risk measurement proposed by Yazdani et al. (2021).

The possibilities of other models are endless. A shortlist of applications in-
cludes automated diagnosis of breast cancer with the assistance of fuzzy rough
sets (Onan, 2015), selection of offshore wind farms sites with the assistance of75

interval-valued fuzzy rough sets (Deveci et al., 2020), bibliometric data analy-
sis (Onan, 2019b), imbalanced learning (Onan, 2019a), and text classification
and categorization (Onan et al., 2016; Onan, 2018).

As a sign of the rising popularity of hesitancy, many extensions were pro-
duced in addition to the aforementioned necessary and possible hesitant fuzzy80

sets and hesitant Pythagorean fuzzy sets. The next section focuses on a crit-
ical overview of certain enhanced versions of hesitant fuzzy sets. It is in this
framework that this paper will contribute with an original model.

1.2. Related work on extensions of hesitant fuzzy sets

One of the reasons for hesitancy is that in a fuzzy context, the practitioners85

may have decided to avail themselves of various sources in order to obtain the
appropriate membership degrees. Some authors expressed concerns that simply
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collecting all the evaluations to form a hesitant fuzzy set disregards the identi-
ties of the sources, which may have very different qualities. When the names
of the sources should be preserved, then expanded or extended hesitant fuzzy90

sets can be employed (Alcantud & Santos-Garćıa, 2017; Zhu & Xu, 2016). If
however, in this context people only want to retain how many sources support
each membership degree (e.g., because they are all equally reliable), then a pro-
portional hesitant fuzzy set can be used (Xiong et al., 2018). This model is
simpler, yet includes supplemental information that is potentially valuable for a95

joint judgment of the assessments. A formally similar model stems from proba-
bilistic considerations. In this case, it is assumed that in the hesitant assessment
of every fixed alternative, there is a known probability for each membership de-
gree to be the ‘right’ assessment. Then one has a probabilistic hesitant fuzzy
set (Zhu & Xu, 2018). This model also applies if one decides to use a random100

device per alternative, in order to select which of its membership degrees should
be accepted. When a residual probability may exist (for example, to capture
the probability that neither of the membership degrees is right) then one has
a weak probabilistic hesitant fuzzy set (Zhang et al., 2017). A controversial
issue is that justifications pertaining to the proportional hesitant fuzzy spirit105

are sometimes expressed in probabilistic terms: see e.g., Zhang et al. (2017,
Examples 2 and 3), Xu & Zhou (2017, Example 1) and Li et al. (2019, Section
4.2). Controversy aside, this issue proves the formal sameness of proportional
and probabilistic hesitant fuzzy sets. Applications of the later model to decision
making include Lin et al. (2020) and Jiang & Ma (2018) in a multi-criteria set-110

ting. Its spirit has exerted influence on the analysis of preferences in a hesitant
fuzzy environment (Zhou & Xu, 2018). A critical examination of its uncer-
tainty measures has been performed by Farhadinia et al. (2020). Correlation
coefficients were defined and applied to medical diagnosis in Liu et al. (2021).

Other non-hesitant models radiate from situations where in a fuzzy context,115

the expers avail themselves of various sources. It may be the case that one can
associate ‘weights’ with each source (for example, because of their reliability or
expertise). Then models like n-dimensional fuzzy sets (Shang et al., 2010) or
multi-fuzzy sets (Sebastian & Ramakrishnan, 2011) could be used. This is a
different avenue that will not be pursued here.120

Lastly, dual thinking produced dual hesitant fuzzy sets (Zhu et al., 2012a).
They utilize both a membership and a nonmembership hesitancy function. This
paper will not consider this avenue either, althouth it is worth explaining that
probabilistic dual hesitant fuzzy sets have been defined and applied e.g., to risk
evaluation (Hao et al., 2017).125

Section 2 below will give technical details and a concise summary of the
characteristics of all the relevant models. Let us say, for the moment, that the
new model that this paper introduces lies in between hesitant fuzzy sets and
probabilistic/proportional fuzzy sets. The next section motivates this model
and states the main research targets of this article.130
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1.3. Ranked hesitant fuzzy sets: characteristics and research objectives

Let us revisit the case where in a fuzzy context, information from various
sources is collected (cf., Section 1.2). The next situation is quite reasonable
but no study has ever considered it: some sources are admittedly more plau-
sible than others, but no numerical assessment (like weights or probabilities)135

supports this qualitative judgement. One can easily observe that neither of the
models described in the literature captures all the features of this exact situa-
tion. Either hesitant fuzzy sets are used and then the ordinal comparison among
sources is missing, or fictitious probabilities are brought into play in order to
use probabilistic hesitant fuzzy sets, or proportions are computed in order to140

use proportional hesitant fuzzy sets. Should one use a proportional hesitant
fuzzy set, he will be losing the information about the different credibilities of
the evaluations because one can only register how many sources support each
membership degree. Certainly some authors have resorted to fictitious probabil-
ities to model the situation described above: see for example the aforementioned145

Zhang et al. (2017, Examples 2 and 3), Xu & Zhou (2017, Example 1) and Li
et al. (2019, Section 4.2). But this is not tenable, as the choice of the proba-
bilities that implement the reliability of the membership degrees determines all
subsequent computations (and both concepts are semantically unrelated).

More faithful results will be derived if the researchers restrict themselves to150

the exact characteristics of the information that has been acquired. Ranked
hesitant fuzzy sets will be the formal representation allowing everyone to take
full advantage of the information described above, without distorting it with
additional fictitious elements. Like hesitant fuzzy sets and its probabilistic and
proportional improvements, ranked hesitant fuzzy sets admit hesitancy in the155

acquisition of fuzzy information. And they enhance Torra’s hesitant fuzzy set
model, quite like probabilistic and proportional hesitant fuzzy sets. However,
unlike the later models, ranked hesitant fuzzy sets do not need to use additional
numbers to express a prioritization of the fuzzy data.

Notice that the utilization of extended or expanded hesitant fuzzy sets raises160

the same problems as proportional hesitant fuzzy sets: those models simply
register the sources of information without taking advantage of the qualitative
information about them. They are insufficient to capture the information em-
bodied by a ranked hesitant fuzzy set. Duality considerations are out of the
question (and dual hesitant fuzzy sets disregard the ordinal information about165

the various sources too). Nonetheless all these models also enhance Torra’s
hesitant fuzzy sets, a feature that they share with ranked hesitant fuzzy sets.

Many real situations testify to the existence of ranked information. Hiring
committees are typically formed by persons with varying ranks, and positions
(like president or secretary) are often assigned by seniority. When a decision170

must be made in a company (like the launch of a marketing campaign or a
product, or the selection of a site for a Volkswagen’s battery factory for electric
cars to be built in Spain1), a team leader is appointed that gathers input from

1See news at The Corner, 24th March 2022.
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the team and then decides. In the United Nations, there are various ranks, with
5 permanent members and 10 elective members2. Also, Member States that175

are not members of the Security Council can take part in the Security Council
through the figure of the Representative to the Council. When a committee of
referees (for simplicity) evaluates a set of contributions for their inclusion in a
special session, some opinions are more valuable than others (e.g., by seniority
or closeness to the field).180

The discussion above motivates the need for a new model of fuzzy evaluations
under hesitancy. Ranked hesitant fuzzy sets will be defined to accommodate a
novel concept of relative value, importance, or likelihood of the membership
degrees associated with any alternative. By doing so, they provide a swift tran-
sition from hesitant fuzzy sets to numerically enhanced models like probabilistic185

or proportional hesitant fuzzy sets. Indeed this article will produce methods for
these models to induce ranked hesitant fuzzy sets, and for them to induce hes-
itant fuzzy sets. Then meaningful constructions of scores for ranked hesitant
fuzzy elements (the constituents of a ranked hesitant fuzzy set), and of aggre-
gation operators for ranked hesitant fuzzy sets, will be presented. Scores will190

adhere to well-established arguments in the investigation of hesitant fuzzy ele-
ments. Aggregation of relatively ordered membership degrees will be achieved
by the Borda rule. These elements will support the crucial steps of a novel
decision-making mechanism that uses ranked hesitant fuzzy information in a
multi-agent, multi-criteria framework. Thus this mechanism integrates and jus-195

tifies the introduction of its accessory elements.
It is timely to explain that the special case with a strict prioritization of

the evaluations will be the subject of a separate study in order to facilitate the
comprehension of the general case (where various evaluations may be equally
plausible) and of the tools that will be developed.200

1.4. Outline of this paper

This study consists of the following parts. Section 2 gives preliminary facts
concerning hesitant fuzzy sets and related notions like scores and probabilis-
tic hesitant fuzzy sets. Section 3 gives the new definitions of both the general
model that motivates this paper and a particular, simpler instance called strictly205

ranked hesitant fuzzy sets. Their relationships with other models are examined
and graphically summarized. Then canonical representations are defined for
both ranked hesitant fuzzy elements and sets. These representations are useful
to define a new family of scores for ranked hesitant fuzzy elements. Here some
special cases are studied too. Mathematica code is provided for the computation210

of the “standard” instance or S-score. With its help a comparison is performed
with scores of probabilistic hesitant fuzzy elements and hesitant fuzzy elements.
Section 4 establishes the procedure for the aggregation of ranked hesitant fuzzy
elements, that takes advantage of canonical representations. Then it compares

2See UN Webpage.
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the performance of this procedure with the aggregation of probabilistic hesi-215

tant fuzzy elements. Mathematica code for its calculation is provided too. To
facilitate reproducibility of the results, both Mathematica notebooks can be
downloaded from https://github.com/jcralcantud/RHFS. Section 5 shows how
the tools described above permit to propose a novel decision-making mechanism
for ranked hesitant fuzzy data. Its performance is contrasted with four solutions220

achieved by two other adaptable methodologies. This comparative analysis con-
firms the reliability of the novel method, and it is done with a revision of the
case study in Li et al. (2019). Then it is used to analyze sensitivity and conclude
that the new mechanism is robust. Section 6 offers some concluding remarks,
as well as lines for future research.225

2. Preliminaries

Let I = [0, 1] denote the set of all possible membership degrees. Set In¬ =
{(r1, . . . rn) ∈ In|ri 6= rj if i 6= j}. Thus In¬ captures the set of all ordered
vectors formed by n pairwise different membership degrees. Set also En¬ =
{(r1, . . . rn) ∈ In|ri < rj if i < j}. Thus En¬ ⊂ In¬ captures the set of all ordered230

vectors formed by a strictly increasing sequence of n membership degrees. When
n = 1, one has I = In = In¬ = En¬.

The remaining of this article refers to a fixed non-empty set of alternativesX.
Then P∗(X) denotes the set of its non-empty subsets, and P(X) = P∗(X)∪{∅}
is the set of all its subsets. In addition, F∗(X) denotes the set of non-empty235

finite subsets of X.
Now some relevant concepts from fuzzy sets and hesitant fuzzy sets will be

recalled.
A fuzzy subset (FS) A of X is characterized by a function µA : X → [0, 1].

When x ∈ X, the number µA(x) ∈ [0, 1] is called the degree of membership of240

x in the subset. It represents the degree of truth of the statement “x belongs
to A”. Zadeh’s fuzzy subsets of X are denoted by FS(X).

This paper originates with two related concepts, namely, hesitant fuzzy ele-
ment and hesitant fuzzy set:

Definition 1. (Xia & Xu, 2011) A hesitant fuzzy element (HFE) is a non-245

empty, finite subset of [0, 1].

The set of HFEs coincides with F∗([0, 1]) by definition. It is standard prac-
tice to express an HFE as h = {h1, ..., hlh}, with the convention h1 < . . . < hlh .
This notation ensures that lh is the cardinality of h. Particular cases include
h = {1}, the full HFE, and h = {0}, the empty HFE.250

Definition 2. (Torra, 2010) A hesitant fuzzy set (HFS) on X is a function
hM : X −→ P([0, 1]).

The concept of typical hesitant fuzzy set is often used in applications. For
each element of X, a HFSs on X gives a set of membership values, and they are
HFEs when the HFS is typical:255
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Definition 3. (Bedregal et al., 2014) A typical hesitant fuzzy set (THFS) on
X is hM : X −→ F∗([0, 1]).

Henceforth HFS(X) denotes the set of all HFSs on X, and HFSt(X) denotes
the set of all THFSs on X. Notice that HFSt(X)⊆HFS(X).

Definitions 2 and 3 can be formally defined as follows:260

i) a HFS is M ⊆ X × P([0, 1]) such that for any x ∈ X, a unique hM (x) ∈
P([0, 1]) exists (but it might be ∅) for which (x, hM (x)) ∈M .

ii) a THFS is M ⊆ X × F∗([0, 1]) such that for any x ∈ X, a unique (non-
empty) hM (x) ∈ F∗([0, 1]) exists for which (x, hM (x)) ∈M .

A hesitant fuzzy set hM is usually represented by M = {〈x, hM (x)〉 | x ∈ X}.265

Notable examples include the ideal or full HFS, M∗ = {〈x, {1}〉 | x ∈ X}, and
the anti-ideal or empty HFS on X, M− = {〈x, {0}〉 | x ∈ X} (Torra, 2010).

Remark 1. Any FS on X with membership function µM : X −→ [0, 1] such
that µM (x) = Mx can be identified with the THFS hM described as M =
{(x, hM (x)) | x ∈ X,hM (x) = {Mx}}. In this fashion one can naturally embed270

FS(X) into HFSt(X) and therefore into HFS(X).
In other words, FSs are special THFSs with the natural identification ex-

plained above.

For each typical hesitant fuzzy set hM on X, let

hM (x) = {h1M (x), ..., h
lM (x)
M (x)} (1)

where h1M (x) < . . . < h
lM (x)
M (x), and lM (x) = |hM (x)|, the length of hM (x), is

the cardinality of the HFE hM (x). Since hM (x) is a set, repetitions are excluded275

by definition.
Typical hesitant fuzzy elements can be compared by their scores, i.e., the

value of some functions that satisfy a minimal set of technical requirements (Al-
cantud & Giarlotta, 2019, Definition 8). They are conceived so that hesitant
fuzzy elements consisting of low, resp. high, membership values have small,280

resp. high, scores. Next some examples are presented, although many other
score functions can be thought of (Alcantud & Giarlotta, 2019, Example 1).
More detailed analyses are found in Farhadinia (2013, 2014); Wang et al. (2019);
Xia & Xu (2011).

Definition 4. For each h = {h1, . . . , hn}, with h1 < . . . < hn,285

(i) its Xia–Xu score is s
X

(h) =
∑n

i=1 h
i

n ,

(ii) its Farhadinia score associated with δ, where δ = {δn}∞n=1 is a fixed non-

decreasing sequence of positive numbers, is sF(h) =
∑n

i=1(δih
i)∑n

i=1 δi
, and

(iii) its geometric mean score is sg(h) =
(∏n

i=1 h
i
)1/n

.
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The most standard application of the Farhadinia score uses the sequence290

δ = {1, 2, 3, . . .}. Notice that the Farhadinia score with δn = 1 for all n produces
the Xia–Xu score.

Some relationships among hesitant fuzzy sets and other soft computing mod-
els exist (Alcantud, 2016). Alcantud & Torra (2018) prove the first decomposi-
tion theorems and formulate extension principles for hesitant fuzzy sets.295

Definition 5. (Zhu & Xu, 2018; Zhang et al., 2017) A probabilistic hesitant
fuzzy element (PHFE) is denoted as hP = {h1P (p1), . . . , hlP (pl)}, where hiP , p

i ∈
[0, 1] for each i = 1, . . . , l, and

∑l
i=1 p

i 6 1. The set of all PHFEs will be
denoted by P.

A probabilistic hesitant fuzzy set (PHFS) on X is a mapping that associates
a PHFE with each element of X. Briefly expressed,

P = {(x, hP (x)) | x ∈ X,hP (x) ∈ P for each x ∈ X}.

This definition adopts the terminology of Zhang et al. (2017) who relax300

the requirement
∑l
i=1 p

i = 1 in Zhu & Xu (2018). To maintain precision, the

PHFS will be called full when the condition
∑l
i=1 p

i(x) = 1 holds for each
x ∈ X. Zhang et al. (2017) define a normalization of probabilistic hesitant
fuzzy sets that performs two operations. First for each x ∈ X, a normalization
of the probabilities achieves a full PHFS. Then a conservative expansion adds305

evaluations with zero probability so that all probabilistic hesitant fuzzy elements
have equal length. Notice that this process implicitly assumes some further
structure, like the finiteness of X. Zhang et al. (2017, Example 5) illustrates
this two-stage process.

As in the case of hesitant fuzzy elements, probabilistic hesitant fuzzy ele-310

ments can be compared by their respective scores defined as follows:

Definition 6. (Zhang et al., 2017, Definition 5) If hP = {h1P (p1), . . . , hlP (pl)}
is a probabilistic hesitant fuzzy element, then its score is

∑l
i=1 h

i
P p

i∑l
i=1 p

i .

Applications of the probabilistic hesitant fuzzy model include Xu & Zhou
(2017) and Jiang & Ma (2018), or Li et al. (2019) in a context of expression of315

preferences. A variation of this model uses proportions instead of probabilities,
so a fundamentally semantical difference exists between both approaches:

Definition 7. (Xiong et al., 2018, Definition 6) If in Definition 5, the prob-

abilities are replaced with proportions in such way that
∑l
i=1 p

i = 1, then we
have proportional hesitant fuzzy elements (PrHFE) and proportional hesitant320

fuzzy sets (PrHFS).

Both PHFEs and PrHFEs produce associated HFEs by removing the in-
formation about probabilities or proportions. Thus the HFE associated with
hP = {h1P (p1), . . . , hlP (pl)}, a PHFE, is {h1P , . . . , hlP }.

The next section introduces a new model called ranked hesitant fuzzy sets.325

Table 1 summarizes the main features of the models presented above (and some
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related models that we mentioned in the Introduction), and it helps to fully
grasp the novelty of ranked hesitant fuzzy sets and their main traits.
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3. Ranked hesitant fuzzy sets

Ranked hesitant fuzzy sets and elements are easy to understand but diffi-330

cult to define and manipulate. To facilitate the understanding of their general
structure a particular case will be explored first, namely, strictly ranked hesitant
fuzzy sets and elements. This preliminary exploration is done because both the
formal structure and manipulations are simpler in strictly ranked hesitant fuzzy
sets than in the general model that we shall describe afterwards in section 3.2.335

However their fundamental analyses are very similar. Ranked hesitant fuzzy
sets will be compared with other models from the literature in section 3.3. In
section 3.4 their canonical representations will be defined. Then section 3.5
will introduce a family of scores, and afterwards their relationships with scores
for hesitant fuzzy elements and probabilistic hesitant fuzzy elements will be340

explored in section 3.6.

3.1. Introducing strictly ranked hesitant fuzzy sets

In order to define this first original concept, the standard convention for the
manipulation of hesitant fuzzy sets will be modified as follows:

Definition 8. A strictly ranked hesitant fuzzy set (SRHFS) on X consists of a

set of pairs indexed by X, ~S = {〈x, h~S(x)〉 | x ∈ X}, such that

h~S : X −→
⋃
a∈N

Ia¬

x 7−→ h~S(x) = (R1(x), . . ., Ra(x)(x)) ⊆ Ia(x)¬ .

(2)

The index a(x) in Equation (2) is called the amplitude of x in ~S.345

Any vector from
⋃
a∈N I

a
¬ is called a strictly ranked hesitant fuzzy element

(SRHFE) of amplitude a.

The semantics of these concepts is very natural: for each x ∈ X, a strictly
ranked hesitant fuzzy element is associated. This evaluation h~S(x) consists of an
ordered list (R1(x), . . ., Ra(x)(x)) of a(x) possible membership degrees which are350

(i) pairwise different, and (ii) ordered by their increasing plausibility. Strictly
ranked hesitant fuzzy sets do not allow for equally plausible evaluations; this
case will be modelled by the general concept of ranked hesitant fuzzy set. As
explained above, the presentation of this model is postponed until section 3.2
due to its technical complexity.355

The amplitude of x in ~S captures the height of the hierarchy that describes
the comparative plausibilities of the membership degrees associated with x. It
is not necessarily common to all x ∈ X. Put briefly, each x ∈ X has its own
amplitude which corresponds to the number of evaluations submitted for x.

It is very important to keep in mind that the ordering in the vector h~S(x)360

is not a convention, like in the case of the arrangement of elements in a HFE.

Equation (1) describes the constituent hM (x) = {h1M (x), ..., h
lM (x)
M (x)} of a HFS

with the assumption h1M (x) < . . . < h
lM (x)
M (x). Thus hM (x) = {0.1, 0.9} and
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hM (y) = {0.9, 0.1} associate the same THFEs and the verdicts on x and y are

the same. However when ~S is a SRHFS that declares h~S(x) = (0.1, 0.9) and365

h~S(y) = (0.9, 0.1), ~S is expressing that
(i) for x, two membership degrees are feasible, namely, 0.1 and 0.9; but 0.9

is strictly more credible than 0.1; and
(ii) for y, the only feasible membership degrees are 0.1 and 0.9; but 0.1 is

strictly more credible than 0.9.370

An inspection of this issue from a formal standpoint will be performed in
section 3.4.

The practical differences between SRHFSs and HFSs are brought to light in
the next example. It also clarifies some concepts and notation described above:

Example 1. Let X = {x, y} and let

h~S = {〈x, (0.7, 0.1, 0.3)〉, 〈y, (0.6, 0.3, 0.35, 0.4)〉}

be a SRHFS on X. Two SRHFEs are associated with h~S, namely, (0.7, 0.1, 0.3) ∈375

I3¬ and (0.6, 0.3, 0.35, 0.4) ∈ I4¬. Thus a(x) = 3 and a(y) = 4. The vector h~S(x)
consists of 3 components, whereas h~S(y) has 4 components.

The possible degrees of membership of x are: 0.7; 0.1 (which is strictly more
plausible than 0.7); and 0.3 (which is strictly more plausible than both 0.7 and
0.1).380

The possible degrees of membership of y are: 0.6; 0.3 (which is strictly more
plausible than 0.6); 0.35 (which is strictly more plausible than both 0.6 and 0.3);
and 0.4 (which is strictly more plausible than 0.6, 0.3, and 0.35).

The fundamental hallmarks of the model that will be investigated have been
captured by SRHFSs, except one. Indeed, as explained above, the existence385

of membership degrees with exactly the same plausibility is not permitted in
the evaluation of any fixed alternative by an SRHFS. The model in section 3.2
takes shape by allowing the possibility that two or more membership degrees
are equally plausible in Definition 8.

3.2. The general concept of ranked hesitant fuzzy set390

Section 3.1 has explained the semantics and formal definition of strictly
ranked hesitant fuzzy sets. In the next definition the condition that the mem-
bership degrees in the assessment of each alternative must be strictly ranked
will be relaxed, in such way that ties be allowed:

Definition 9. A ranked hesitant fuzzy set (RHFS) on X consists of a set of

pairs indexed by X, ~R = {〈x, h~R(x)〉 | x ∈ X}, such that

h~R : X −→
⋃
a∈N
F∗(X)× a. . . . . . . . . ×F∗(X)

x 7−→ h~R(x) = (R1(x), . . ., Ra(x)(x)) ∈ F∗(X)× a(x). . . . . . . . . ×F∗(X)

(3)
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with the condition that for each x ∈ X, Ri(x) ∩ Rj(x) = ∅ for each i, j ∈395

{1, . . . , a(x)} with i 6= j.

The index a(x) in Equation (3) is called the amplitude of x in ~R. For each
i = 1, . . . , a(x), li(x) = |Ri(x)| is called the girth of the ith hierarchical rank of

x in ~R.
Any vector from

⋃
a∈N F∗(X)× a. . . . . . ×F∗(X) is called a ranked hesitant400

fuzzy element (RHFE) of amplitude a.

The semantics of the concepts given in Definition 9 are related to those of
strictly ranked hesitant fuzzy sets and elements, with the proviso that now it is
admitted that several evaluations be equally plausible. Therefore to summarize,
for each x ∈ X, the vector h~R(x) –which itself is a RHFE– captures an ordered405

list of a(x) subsets of possible membership degrees; these degrees are (i) pairwise
different, and (ii) equally plausible when they belong to the same subset; in
addition, (iii) degrees from different components are ordered by their increasing
plausibility.

The amplitude of x in ~R captures the height of the hierarchical ranking that410

describes the comparative plausibilities of the membership degrees associated
with x. And the number of equally plausible evaluations at each height gives its
girth for x. In contrast with the case of SRHFSs, now the number of evaluations
submitted for x is given by the sum of the a(x) girths defined for x.

The next example illustrates the new concepts presented in this section.415

Example 2. Let X = {x, y} and let

h~R =
{
〈x, ({0.2, 0.5}, {0.25, 0.3, 0.35}, {0.8, 0.9, 0.95})〉,

〈y, ({0.7, 0.75, 0.8}, {0.15}, {0.25, 0.3}, {0.05, 0.1})〉
}

be a RHFS on X. Two RHFEs are constituents of h~R, namely,

({0.2, 0.5}, {0.25, 0.3, 0.35}, {0.8, 0.9, 0.95}) ∈ F∗(X)×F∗(X)×F∗(X)

and

({0.7, 0.75, 0.8}, {0.15}, {0.25, 0.3}, {0.05, 0.1}) ∈ F∗(X)×F∗(X)×F∗(X)×F∗(X).

They are respectively associated with x and y thus a(x) = 3 and a(y) = 4: vector
h~R(x) consists of 3 components, whereas h~R(y) has 4 components.

The girths of the hierarchical ranks of x are l1(x) = 2, l2(x) = 3, and
l3(x) = 3. The information about the possible degrees of membership of x is
that they are either420

0.2 and 0.5 (which are equally plausible), or

0.25, 0.3, and 0.35 (which are equally plausible, but each of them is strictly
more plausible than 0.2 and 0.5), or
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0.8, 0.9, and 0.95 (which are equally plausible, but each of them is strictly more
plausible than 0.2, 0.5, 0.25, 0.3, and 0.35).425

The girths of the hierarchical ranks of y are l1(y) = 3, l2(y) = 1, and
l3(y) = l4(y) = 2. The information about the possible degrees of membership of
y is that they are either

0.7, 0.75 and 0.8 (which are equally plausible), or

0.15 (which is strictly more plausible than 0.7, 0.75 and 0.8), or430

0.25 and 0.3 (which are equally plausible, but each of them is strictly more
plausible than 0.7, 0.75, 0.8, and 0.15), or

0.05 and 0.1 (which are equally plausible, but each of them is strictly more
plausible than 0.7, 0.75, 0.8, 0.15, 0.25 and 0.3).

The next concept will prove useful in the study of decision-making with435

ranked hesitant fuzzy information:

Definition 10. The complement of the ranked hesitant fuzzy set ~R = {〈x, h~R(x)〉 |
x ∈ X} described in Definition 9 is ~Rc = {〈x, hc~R(x)〉 | x ∈ X}, such that

hc~R : X −→
⋃
a∈N
F∗(X)× a. . . . . . . . . ×F∗(X)

x 7−→ hc~R(x) = ((1−R1)(x), . . ., (1−Ra(x))(x))

(4)

where (1−Rj)(x) = {1− y | y ∈ Rj(x)}, for each x ∈ X and j = 1, . . . , a(x).

The intuitive description of complements is that at each point, the evalua-
tions submitted by the ranked hesitant fuzzy set are subtracted from one, and
the results are ranked in the same order.440

3.3. Some relationships

From the comparison between Definitions 8 and 9, one can draw the con-
clusion that strictly ranked hesitant fuzzy sets can be identified with ranked
hesitant fuzzy sets for which li(x) = 1 for all x ∈ X and i ∈ {1, . . . , a(x)}. The
process simply identifies each membership degree m with the singleton {m}.445

The next example insists on this trivial fact:

Example 3. Let X = {x, y} and

h~R = {〈x, ({0.7}, {0.1}, {0.3})〉, 〈y, ({0.6}, {0.3}, {0.35}, {0.4})〉}

be a RHFS on X. All girths are 1. This RHFS can be identified with the SRHFS
defined in Example 1.
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Of course, ranked hesitant fuzzy elements whose girths are 1 can be identified
with strictly ranked hesitant fuzzy elements by the same procedure.450

Similarly, hesitant fuzzy sets can be identified with ranked hesitant fuzzy
sets for which a(x) = 1 for all x ∈ X. The idea is that when all amplitudes are
1, there is no evidence that some membership degrees are more credible than
others. The next example insists on this situation:

Example 4. Let X = {x, y} and

h~R = {〈x, ({0.1, 0.3, 0.7})〉, 〈y, ({0.3, 0.35, 0.4})〉}

be a RHFS on X. All amplitudes are 1. This RHFS can be identified with the455

hesitant fuzzy set hM = {〈x, {0.1, 0.3, 0.7}〉, 〈y, {0.3, 0.35, 0.4}〉}. Intuitively, the
reason is that there is no clue as to which of the three feasible membership degrees
for x, resp. y, are more tenable.

As shown in Example 4, ranked hesitant fuzzy elements of amplitude 1 are
hesitant fuzzy elements.460

Now suppose that a probabilistic HFS on X (cf., Definition 5) is given.
If one only retains its ordinal information about how likely each membership
degree is, and the cardinal measurement embodied in a probabilistic expression
is discarded, then a RHFS on X obtains. The same is true for probabilistic
HFEs, which become RHFEs when only the comparative information about the465

degrees is preserved. And similar facts hold for the proportional hesitant fuzzy
model (Xiong et al., 2018). An example from the interesting case study in Zhang
et al. (2017, Section 4) illustrates this relationship.

Example 5. Three experts provide their opinions on five car brands, denoted
by X = {A1, . . . , A5}. They are asked to submit assessments for five elements
of their safety systems {C1, . . . , C5}. Afterwards an aggregate probabilistic HFS
is constructed for each attribute (Zhang et al., 2017, Section 4). The exercise
concentrates on the aggregate PHFS given for the first one, namely, C1 (brake
system). The values collectively assigned to each car brand are the following
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probabilistic HFEs:

hP (A1, C1) = {0.56(0.0375), 0.59(0.0625), 0.61(0.075), 0.62(0.025), 0.63(0.125),

0.64(0.0375), 0.66(0.1125), 0.67(0.0375), 0.68(0.075), 0.69(0.0875),

0.7(0.125), 0.71(0.025), 0.72(0.05), 0.73(0.0375), 0.74(0.0625), 0.76(0.025)}
hP (A2, C1) = {0.52(0.125), 0.55(0.075), 0.56(0.3125), 0.59(0.1875), 0.6(0.1875),

0.62(0.1125)}
hP (A3, C1) = {0.59(0.0375), 0.61(0.0875), 0.63(0.05625), 0.64(0.13125), 0.65(0.0225),

0.67(0.14625), 0.68(0.2525), 0.7(0.07875), 0.72(0.05625), 0.73(0.13125)}
hP (A4, C1) = {0.72(0.075), 0.73(0.1), 0.74(0.075), 0.75(0.045), 0.76(0.135),

0.77(0.145), 0.78(0.075), 0.79(0.075), 0.8(0.1), 0.81(0.075), 0.82(0.03),

0.83(0.04), 0.84(0.03)}
hP (A5, C1) = {0.64(0.125), 0.67(0.125), 0.68(0.1), 0.69(0.125), 0.71(0.225),

0.72(0.1), 0.73(0.025), 0.74(0.1), 0.75(0.025), 0.76(0.025), 0.78(0.025)}

This information can be used to generate a ranked hesitant fuzzy set on X
as follows:

h1~R = {〈A1, ({0.62, 0.71, 0.76}, {0.56, 0.64, 0.67, 0.73}, {0.72}, {0.59, 0.74},
{0.61, 0.68}, {0.69}, {0.66}, {0.63, 0.7})〉,

〈A2, ({0.55}, {0.62}, {0.52}, {0.59, 0.6}, {0.56})〉
〈A3, ({0.65}, {0.59}, {0.63, 0.72}, {0.7}, {0.61}, {0.64, 0.73}, {0.67}, {0.68})〉

〈A4, ({0.82, 0.84}, {0.83}, {0.75}, {0.72, 0.74, 0.78, 0.79, 0.81}, {0.73, 0.8}, {0.76}, {0.77})〉
〈A5, ({0.73, 0.75, 0.76, 0.78}, {0.68, 0.72, 0.74}, {0.64, 0.67, 0.69}, {0.71})〉}

Intuitively, for each car brand all the evaluations for which the probabilities
coincide are gathered; and then they have been ranked from lowest to highest470

probability.

Remark 2. The complement (Xu & Zhou, 2017, Definition 4) of a probabilistic
hesitant fuzzy element hP = {h1P (p1), . . . , hlP (pl)}, where hiP , p

i ∈ [0, 1] for

each i = 1, . . . , l, and
∑l
i=1 p

i 6 1, is hcP = {(1 − h1P )(p1), . . . , (1 − hlP )(pl)}.
Complements of probabilistic hesitant fuzzy sets are the natural expansion of this475

concept. One can readily observe that the complement of the ranked hesitant
fuzzy set derived from a probabilistic hesitant fuzzy set coincides with the ranked
hesitant fuzzy set derived from the complement of the probabilistic hesitant fuzzy
set. The same statement is true at the level of (probabilistic/ranked) hesitant
fuzzy elements.480

Similarly, if an RHFS on X is given and one dispenses with its ordinal infor-
mation about how likely each membership degree is, an HFS on X is produced
that is called its original HFS (or OHFS). The same is true for ranked hesitant
fuzzy elements: they induce hesitant fuzzy elements by discarding the ordering
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imposed on the degrees, and they will be called their original hesitant fuzzy485

elements (or OHFEs). The terminology is borrowed from Zhang et al. (2017).
In fact, the original hesitant fuzzy set of a probabilistic hesitant fuzzy (Zhang
et al., 2017) is the original hesitant fuzzy set of the ranked hesitant fuzzy set
induced by it. And the same can be said about their constituent elements.

Example 6. Consider h~R, the RHFS defined in Example 2. Then h~R induces
the following OHFS on X = {x, y}:

hM =
{
〈x, {0.2, 0.25, 0.3, 0.35, 0.5, 0.8, 0.9, 0.95}〉,

〈y, {0.05, 0.1, 0.15, 0.25, 0.3, 0.7, 0.75, 0.8}〉
}

The two RHFEs associated with h~R (one for x, one for y) respectively induce the490

OHFEs {0.2, 0.25, 0.3, 0.35, 0.5, 0.8, 0.9, 0.95} and {0.05, 0.1, 0.15, 0.25, 0.3, 0.7, 0.75, 0.8}.

Figure 1 summarizes the relationships among models that have been stated
above.

PHFS PrHFS

RHFS SRHFS

HFS

TFS

FS

P
robabilities

discarded

O
rder

is
retained Proporti

ons disc
arded, order

ret
ained

Girths are 1

Amplitudes are 1, or we dispense

with ordinal information
Probabilities
are discarded

Proportions are discarded
Lengths are finite

Lengths are 1

Figure 1: A summary of relationships among various models, including the new models defined
in Section 3 (in coloured boxes with rounded corners). A dotted arrow means ‘becomes under
the condition(s)’.

3.4. Canonical representations

To better understand the formal differences among the concepts defined495

above, their respective ‘canonical’ representations will become useful. Intu-
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itively speaking, ‘canonical’ means that membership degrees that are equally
ranked will be arranged by ascending order, i.e., from smallest to largest. For
illustration, the inspirational case of hesitant fuzzy elements (where all mem-
bership degrees are equally ranked) and hesitant fuzzy sets will be considered500

firstly.
Any hesitant fuzzy element can be identified with a unique element from⋃

n∈NE
n
¬. For example, both {0.1, 0.9} and {0.9, 0.1} are canonically repre-

sented by (0.1, 0.9) ∈ E2
¬. This process gives a canonical representation for

HFSs too. In this way a hesitant fuzzy set on X is canonically represented by

hM : X −→
⋃
n∈N

En¬ (5)

As En¬ ⊂ In¬ for all n, Equations (2) and (5) warrant a canonical embedding
of HFSs into SRHFSs. This is a simply algebraic fact, and of course there is
no claim that HFS ‘are’ SRHFSs. Section 3.3 explained that HFS ‘are’ RHFS
whose amplitudes are always 1.505

In a similar fashion, a canonical representation for ranked hesitant fuzzy
elements and sets will be suggested. It is theoretically important that a uniquely
defined way to view all RHFEs and RHFSs becomes available in order to avoid
uncertainty in subsequent definitions. In addition, note that section 3.5 will
make explicit use of this canonical form.510

Definition 11. A ranked hesitant fuzzy set on X can be uniquely identified
with ~R = {〈x, h~R(x)〉 | x ∈ X}, another ranked hesitant fuzzy set whose ORHFS
is the same and possesses the property that for each x ∈ X,

h~R(x) = (~R1(x), . . ., ~Ra(x)(x)) ⊆ El1(x)¬ × . . .×Ela(x)(x)
¬ (6)

with the condition that if ~Ri(x) = (R1
i (x), . . . , R

li(x)
i (x)) ∈ Eli(x)¬ for each i =

1, . . . , a(x), then Rji (x) 6= Rlk(x) when either i 6= k or j 6= l. This is the

canonical representation of ~R. Implicit in this construction is the notion of
canonical representation of ranked hesitant fuzzy elements.

In order to illustrate these natural concepts, the next situation may be useful515

(see also Example 9).

Example 7. Let X = {x, y} and

h′~R = {〈x, ({0.7, 0.3, 0.1})〉, 〈y, ({0.35, 0.4, 0.3})〉}

be a RHFS on X. Then the canonical form of h′~R is the RHFS defined in

Example 4, i.e., h~R = {〈x, (0.1, 0.3, 0.7)〉, 〈y, (0.3, 0.35, 0.4)〉}.
Analogously, both the RHFS defined in Example 2 and the next one

h ~R′ =
{
〈x, ({0.5, 0.2}, {0.35, 0.3, 0.25}, {0.8, 0.95, 0.9})〉,

〈y, ({0.8, 0.75, 0.7}, {0.15}, {0.25, 0.3}, {0.1, 0.05})〉
}
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have the same canonical representation, namely,{〈
x,
(

(0.2, 0.5), (0.25, 0.3, 0.35), (0.8, 0.9, 0.95)
)〉
,〈

y,
(

(0.7, 0.75, 0.8), (0.15), (0.25, 0.3), (0.05, 0.1)
)〉}

Hence some consequences can be drawn in terms of canonical representations of
ranked hesitant fuzzy elements. Indeed it is implicitly stated that520 (

(0.2, 0.5), (0.25, 0.3, 0.35), (0.8, 0.9, 0.95)
)

is the canonical representation of both

the RHFEs ({0.2, 0.5}, {0.25, 0.3, 0.35}, {0.8, 0.9, 0.95}) and
({0.5, 0.2}, {0.35, 0.3, 0.25}, {0.8, 0.95, 0.9}). And similarly, it is implicitly claimed

that
(

(0.7, 0.75, 0.8), (0.15), (0.25, 0.3), (0.05, 0.1)
)

canonically represents both the

RHFEs ({0.7, 0.75, 0.8}, {0.15}, {0.25, 0.3}, {0.05, 0.1}) and525

({0.8, 0.75, 0.7}, {0.15}, {0.25, 0.3}, {0.1, 0.05}).

3.5. A family of scores for ranked hesitant fuzzy elements

This section defines a family of scores that shall provide us with a uniform
yardstick for RHFE comparisons. The inspiration is the family of Farhadinia
scores (cf., Definition 4). As done in the presentation of the new model, the530

expression that defines our family on strictly ranked hesitant fuzzy elements
only is discussed first, in order to maintain accessibility. Once its design and
necessary computations have become known, the expression will be extended so
that it can be applied with ranked hesitant fuzzy elements as well.

Definition 12. Fix δ = {δn}∞n=1, a non-decreasing sequence of positive num-
bers. Let e~S = (R1, . . ., Ra) ∈ Ia¬ be a SRHFE. Then

s
δ
(e~S) =

∑a
i=1 δiRi∑a
i=1 δi

(7)

defines the δ-score of e~S .535

In particular, the S-score (for standard score) on SRHFEs is defined by the
sequence δ = {1, 2, 3, . . .}. And the A-score (for average score) on SRHFEs is
defined by the sequence δ = {1, 1, 1, . . .}.

Some numerical computations show that the S-score can be calculated by
the formula

s
S

(e~S) =
2

a(a+ 1)

a∑
i=1

(i ·Ri) (8)

It is apparent that the δ-score adapts the spirit of the Farhadinia score
associated with δ to SRHFEs. Farhadinia’s scores were designed to operate540

without regard of any ordinal information about which degrees were more likely
to appear. Hence they assign higher weights to higher degrees. The substance
of this idea is retained and adapted to the circumstances of SRHFEs: a non-
decreasing sequence of positive numbers captures the relative importances of
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the evaluations, but now more plausible degrees receive higher leverage. In this545

way an adjustable family of procedures is obtained for the comparison of strictly
ranked hesitant fuzzy elements.

Recall that a hesitant fuzzy element can be derived from any (strictly) ranked
hesitant fuzzy element, and that Example 6 illustrates this basic conversion.
Remarkably, the A-score of a SRHFE coincides with the Xia–Xu score of the550

hesitant fuzzy element associated with it. And if by any chance, the rank in
a SRHFE is given by the standard order of its evaluations, then its δ-score
coincides with the Farhadinia score associated with δ of its derived hesitant
fuzzy element.

The next example computes S-scores. But it also argues that the application555

of the formula in (7) is more appropriate than the utilization of scores of derived
HFEs as a first resort.

Example 8. Two SRHFEs are defined in Example 1, namely, (0.7, 0.1, 0.3) ∈
I3¬ and (0.6, 0.3, 0.35, 0.4) ∈ I4¬. Their respective S-scores are computed as fol-
lows:

1 · 0.7 + 2 · 0.1 + 3 · 0.3
1 + 2 + 3

= 0.3,

1 · 0.6 + 2 · 0.3 + 3 · 0.35 + 4 · 0.4
1 + 2 + 3 + 4

= 0.385.

Notice that if these SRHFEs are converted into ordinary HFEs (cf., Example 4)
and then Farhadinia’s score with the same sequence of numbers is applied to the
result, then one obtains the following figures:

1 · 0.1 + 2 · 0.3 + 3 · 0.7
1 + 2 + 3

= 0.4667,

1 · 0.3 + 2 · 0.35 + 3 · 0.4 + 4 · 0.6
1 + 2 + 3 + 4

= 0.46.

Observe that discarding the information about the priorities in the allocation of
membership degrees has reversed the comparison: the second SRHFE is deemed
higher than the first SRHFE, whereas the HFE associated with the first SRHFE560

is deemed higher that the HFE associated with the second.
The conclusion stems that dispensing with the ordinal information about

rankings in a SRHFE is not innocuous.

Definition 12 provides the groundwork for the construction of a score for
ranked hesitant fuzzy elements. This extension abides by two principles. First,565

if two evaluations are equally plausible, then they are weighted by the same
number. Second, this number is the average of the δi’s corresponding to their
positions in its canonical representation. The next example explains the details
of this reasonable extension. Then a compact expression for the S-score will be
explored, which of course is defined by the sequence δ = {1, 2, 3, . . .} as in the570

particular case of SRHFEs.
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Example 9. Let δ = {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .} be the Fibonacci
sequence.

Consider the RHFEs defined in Example 2 (see also Example 6), whose
canonical representations are(

(0.2, 0.5), (0.25, 0.3, 0.35), (0.8, 0.9, 0.95)
)

and(
(0.7, 0.75, 0.8), (0.15), (0.25, 0.3), (0.05, 0.1)

)
.

Placing the eight membership degrees submitted by the first RHFE in order
of non-decreasing plausibility, one has a list (0.2, 0.5, 0.25, 0.3, 0.35, 0.8, 0.9, 0.95)575

with the first two tied, the next three tied, and the last three tied. Take the first
eight components of δ, which are (1, 1, 2, 3, 5, 8, 13, 21). Then the averages of
the first two numbers, then the next three, and the last three shall be applied to
each of the elements of the three groups of evaluations.

After these considerations, the δ-score of the first RHFE is calculated as

1+1
2 (0.2 + 0.5) + 2+3+5

3 (0.25 + 0.3 + 0.35) + 8+13+21
3 (0.8 + 0.9 + 0.95)

1 + 1 + 2 + 3 + 5 + 8 + 13 + 21
= 0.7556,

Similar computations show that the second RHFE has the following δ-score:

1+1+2
3 (0.7 + 0.75 + 0.8) + 3 · 0.15 + 5+8

2 (0.25 + 0.3) + 13+21
2 (0.05 + 0.1)

1 + 1 + 2 + 3 + 5 + 8 + 13 + 21
= 0.177.

Two particular cases are worth discussing.580

As in the case of SRHFEs, the A-score of a RHFE arises from the sequence
δ = {1, 1, 1, . . .} by definition. Clearly, such an A-score coincides with the Xia–
Xu score of the hesitant fuzzy element associated with the RHFE.

The other particular case is the S-score that arises from the sequence δ =
{1, 2, 3, . . .}. The next Proposition produces an explicit formula for the S-score585

of a generic ranked hesitant fuzzy element (cf., Definitions 9 and 11):

Proposition 1. The S-score of e~R, a ranked hesitant fuzzy element whose canon-

ical form is e~R = (~R1, . . ., ~Ra) with ~Ri = (R1
i , . . . , R

li
i ) for each i = 1, . . . , a, can

be computed as

s
S
(e~R) =

(1 + l1)
∑l1
k=1R

k
1 +

∑a
j=2

(
(2(l1 + l2 + . . .+ lj−1) + lj + 1)

∑lj
k=1R

k
j

)
A(A+ 1)

(9)
where A = l1 + l2 + . . .+ la.

Proof. The formula derives from some arithmetic computations. By construc-
tion,

R1
1, . . . , R

l1
1 are averaged by

1 + . . .+ l1
l1

which is
1 + l1

2
.590

R1
2, . . . , R

l2
2 are averaged by

l1 + 1 + l2 + 1 + . . . + l1 + l2
l2

or
2l1 + l2 + 1

2
.
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R1
3, . . . , R

l3
3 are averaged by

l1 + l2 + 1 + . . . + l1 + l2 + l3
l3

or
2l1 + 2l2 + l3 + 1

2
.

By a sequential argument, we conclude that when i = 2, 3, . . . , a, all evalua-

tions R1
i , . . . , R

li
i are averaged by

2(l1 + . . .+ li−1) + li + 1

2
.

Hence because there are a total of A = l1 + l2 + . . . + la degrees, s
S
(e~R) is

calculated as

(R1
1 + . . .+ R

l1
1 )

1+l1
2 + (R1

2 + . . .+ R
l2
2 )

2l1+l2+1
2 + . . .+ (R1

a + . . .+ Rla
a )

2(l1+...+la−1)+la+1

2

1 + 2 + 3 + . . .+ (l1 + l2 + . . .+ la)

which can be simplified by the expression in (9). Observe that because the595

denominator is a sum of consecutive elements 1, 2, 3, . . . , l1 + l2 + . . . + la = A
of an arithmetic progression, it can be expressed as 1+A

2 A. �

To maintain accessibility and to ensure replicability, Listing 1 provides the
Mathematica code that produces the S-score of any ranked hesitant fuzzy ele-
ment. As it stands, it computes the S-score of the first RHFE in Example 9.600

However it is ready to operate on any other RHFE and to do that the reader
can simply replace the input in Line 1 with the desired RHFE.

1 ClearAll;

2 HFE = {{0.2, 0.5}, {0.25, 0.30, 0.35}, {0.8, 0.9, 0.95}}; (* Input the ranked605

hesitant fuzzy element *)

3 RHFE = Map[Sort, HFE]; (* Produce its canonical representation *)

4 a = Length[RHFE];

5 ls = Map[Length, RHFE];

6 A = Total[ls];610

7 sums = Total[RHFE, {-1}];

8 scoreHFE = ((1 + ls[[1]])*sums[[1]] + Sum[(2*(Sum[ls[[i]], {i, 1, j - 1}]) +

ls[[j]] + 1)*sums[[j]], {j, 2, a}])/(A*(1 + A))

Listing 1: Mathematica code for the computation of the S-score of any ranked hesitant fuzzy
element. For illustration, it produces the S-score of the first RHFE in Example 9.

Remark 3. Although the formula of the A-score is very simple, the reader may615

be interested in a Mathematica code that calculates it. To this purpose, we only
need to replace the last input line in Listing 1 by

Total[sums]/Total[ls]

3.6. A score-based comparative analysis

Recall that probabilistic hesitant fuzzy elements produce ranked hesitant620

fuzzy elements where only the ordinal information is kept. Besides, the A-
score of a ranked hesitant fuzzy element coincides with the Xia–Xu score of its
associated (original) hesitant fuzzy element.

The next Example will produce a comparison of the score of probabilistic
hesitant fuzzy elements, the S-score of the ranked hesitant fuzzy elements that625

are respectively associated with them, and the Xia–Xu score of the hesitant
fuzzy elements that are respectively associated with them.
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Example 10. This example revisits the case study in Zhang et al. (2017, Sec-
tion 4). It was concerned with three opinions on X = {A1, . . . , A5} (five car
brands) and assessments for {C1, . . . , C5} (elements of their safety systems).630

Example 5 has given a glimpse of its formulation: it has recalled the aggregate
PHFS that arises from the combination of opinions of three experts on C1. Now
one can compute the S-scores of the five ranked hesitant fuzzy elements gen-
erated from this PHFS in Example 5, with the assistance of the Mathematica
program presented above. One readily obtains635

s
S
(h1~R(A1)) = 0.665699,

sS(h1~R(A2)) = 0.574524,

s
S
(h1~R(A3)) = 0.669455,

sS(h1~R(A4)) = 0.769835, and

s
S
(h1~R(A5)) = 0.70.640

It is surely unnecessary to insist on the details that produce h2~R, h3~R, h4~R,

and h5~R, the RHFSs corresponding to the PHFSs that respectively capture the

membership degrees for C2, C3, C4, and C5 in Zhang et al. (2017, Section 4).
Suffice to say that the procedure is an exact replication of what has been done
in Example 5 for C1.645

Zhang et al. (2017, Table 4) show the scores of all the PHFEs involved in
this exercise (cf., Definition 6). Besides, Zhang et al. (2017, Table 5) show the
Xia–Xu scores of all the HFEs derived from the aforementioned PHFEs (cf.,
Definition 4).

Table 2 summarizes all these figures. In addition to the S-scores of the650

five ranked hesitant fuzzy elements computed above, this table also shows the
computation of the S-scores of the other twenty RHFEs considered in the case
study in Zhang et al. (2017, Section 4).

One can now visually compare the performance of these scores on three dif-
ferent modelizations with decreasing level of complexity. Remarkably, a compar-655

ison of the S-scores of all the RHFEs with the scores of the PHFEs that produced
them shows that only in two of the 25 comparisons, the difference appears to be
as high as 0.01. More accurate comparisons cannot be made since Zhang et al.
(2017) only kept two decimal places in their calculations. It is remarkable that
the results obtained here with a conceptually simpler model are so extraordinarily660

similar. By contrast, a comparison of the Xia–Xu scores of all the HFEs with
the scores of the PHFEs that produced them shows that the difference is 0.02 in
four cases, 0.03 in one case, and even 0.04 in another case (see boldfaced figures
in Table 2).

In conclusion, this analysis shows evidence that the ranked hesitant approach665

produces a conveniently simple hesitant model that does not require extra nu-
merical assessments, but is almost indistinguishable (in terms of evaluation by
scores) of its probabilistic enhancement. Put shortly: simplicity does not come
at the cost of less accurate evaluations by scores.
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In terms of sensitivity, this numerical experiment confirms the suitability of670

ranked hesitant fuzzy sets for robust score-based assessments. Scores of prob-
abilistic hesitant fuzzy sets were robust to small changes in the probabilities
associated with the membership degrees. Notice that sufficiently small changes
do not affect the underlying ranked hesitant fuzzy set, as their relative impor-
tances do not change. Hence the scores of ranked hesitant fuzzy sets derived675

from a probabilistic hesitant fuzzy set remain unaffected by sufficiently small
perturbations of the probabilities.

To conclude this section, particular forms of the S-score that appeal to two
notable cases will be investigated. The second will yield a direct comparison
with a popular score for HFEs.680

Notice first that when a ranked hesitant fuzzy element is in fact stricly
ranked, then Equation (9) reduces to Equation (8). In this case A = a since
li = 1 for i = 1, . . . a, and (9) becomes

(1 + 1)
∑1
k=1R

k
1 +

∑a
j=2

(
(2(1 + 1+ j−1. . . +1) + 1 + 1)

∑1
k=1R

k
j

)
a(a+ 1)

=

2
R1

1 +
∑a
j=2

(
jR1

j

)
a(a+ 1)

=
2

a(a+ 1)

a∑
j=1

(
jR1

j

)
which is (8).

Besides, it has been explained that hesitant fuzzy elements are ranked hesi-
tant fuzzy elements of amplitude 1 (v., section 3.3). Notice that in fact, when
one plugs a = 1 in Equation (9) and denoting l1 = l for simplicity, the expression
reduces to

s
S
(e~R) =

(1 + l)
∑l
k=1R

k
1

l(l + 1)
=

∑l
k=1R

k
1

l

This is the standard form of the Xia–Xu score of e~R (with a = 1). Hence the
next property has been proven:

Lemma 1. The S-score of a hesitant fuzzy element coincides with its Xia–Xu
score.685

In conclusion, the S-score constitutes a rightful extension of the Xia–Xu
score when a prioritization of membership degrees is added.

4. Aggregation of ranked hesitant fuzzy sets

In this section social choice meets ranked hesitant fuzzy sets. Techniques
imported from social choice will be employed for the aggregation of ranked690

hesitant fuzzy sets. Then a Mathematica code will be provided to implement
the procedure that stems from this interaction.

Aggregation of hesitant fuzzy elements typically resorted to operators orig-
inating with algebraic manipulations. For example, (weighted) arithmetic and

28



geometric means, and quasi-arithmetic means, produce the corresponding ag-695

gregation operators for HFEs (Xia & Xu, 2011). The Einstein sum and product
are the germ of hesitant fuzzy Einstein aggregation operators, and the Frank
sum and product give raise to hesitant fuzzy Frank (arithmetic, geometric) ag-
gregation operators of various types. Other sources of inspiration include the
Maclaurin symmetric mean, or the Bonferroni, Hamacher, and Choquet aggre-700

gators. This generic technique can be exported to numerical enhancements like
probabilistic hesitant fuzzy elements (Zhang et al., 2017, Definitions 10 and 11).

However this paper operates in a different framework which resembles more
of a ranking aggregation method (Ding et al., 2018). In this case a list of ele-
ments (like the membership degrees associated with an alternative) are ranked705

and then an aggregate rank on these elements is derived. In particular, the
Borda method is particularly attractive because it has already been used with
intuitionistic fuzzy sets (Cheng et al., 2020) and probabilistic linguistic term
sets (Liao et al., 2019; Wu et al., 2018). As a proxy for a consensus measure,
(weighted) Borda counts have been applied in a context of hesitant fuzzy lin-710

guistic information (Liao et al., 2020).
For the purposes of this research the key concept that must be known be-

forehand is the Borda indices of a completely ordered list of alternatives. A
complete preorder is a complete and transitive binary relation. Informally, it is
an extension of a linear order for which ties are allowed. Then the Borda index715

of a fixed alternative is the difference between the number of options that are
worse than it, and the number of options that are better than it (Gärdenfors,
1973). Example 12 below illustrates this construction in the context of ranked
hesitant fuzzy elements: notice that according to its semantics, a ranked hes-
itant fuzzy element produces a complete preorder on the membership degrees720

belonging to its original hesitant fuzzy element.
In order to give a formal definition of our aggregation procedure, the follow-

ing auxiliary concept will be needed. It is a normalization process whose verbal
explanation comes right afterwards and is much simpler to understand:

Definition 13. Let E = {e1~R, . . . , e
p
~R
} be a list of ranked hesitant fuzzy ele-725

ments whose respective OHFEs are h1, . . . , hp. Denote by h the union of these
OHFEs, h = h1 ∪ . . . ∪ hp, which is another HFE. The normalized list of E is
N(E) = {n1~R, . . . , n

p
~R
}, a list of ranked hesitant fuzzy elements such that:

1. When hj = h, nj~R = ej~R.

2. When hj ( h, if the canonical form of ej~R is (~Rj1, . . .,
~Rja(j)) with ~Rji =730

(Rj,1i , . . . , Rj,lii ) for each i = 1, . . . , a(j), then the canonical form of nj~R is

(~Rj0,
~Rj1, . . .,

~Rja) with ~Rj0 containing the elements in h− hj .

Intuitively, the normalization of a list of p RHFEs produces another list of p
RHFEs with the following characteristics. First, the OHFEs associated with the
RHFEs in the normalized list are always h. This means that after normalization,735

all the ranked hesitant evaluations consist of exactly the same degrees, which
are all the membership degrees pertaining to some of the p evaluations given in
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E. Secondly, when an RHFE in E lacks some degrees that pertain to some of
the evaluations given in E, all these missing elements are added at the bottom
rank of its corresponding RHFE in the normalized list. An example clarifies740

this simple procedure:

Example 11. Consider E = {e1~R, e
2
~R
, e3~R}, the ranked hesitant fuzzy elements

whose respective canonical forms are(
(0.1, 0.2), (0.7), (0.5, 0.6)

)
(

(0.7), (0.2, 0.3), (0.4, 0.5), (0.6)
)

(
(0.1, 0.2, 0.7), (0.3), (0.4, 0.5, 0.6)

)
.

Then h1 = {0.1, 0.2, 0.5, 0.6, 0.7}, h2 = {0.2, 0.3, 0.4, 0.5, 0.6, 0.7}, and h3 =
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}. Therefore h = h3.

The normalized list of E is N(E) = {n1~R, n
2
~R
, n3~R} whose respective canonical

forms are (
(0.3, 0.4), (0.1, 0.2), (0.7), (0.5, 0.6)

)
(

(0.1), (0.7), (0.2, 0.3), (0.4, 0.5), (0.6)
)

(
(0.1, 0.2, 0.7), (0.3), (0.4, 0.5, 0.6)

)
.

The aggregation of ranked hesitant fuzzy elements proceeds in the following
four steps:745

Step 1. Normalize the list of ranked hesitant fuzzy elements (cf., Defini-
tion 13).

Step 2. Compute the Borda index of each membership degree in each
normalized ranked hesitant fuzzy element.

Step 3. For each membership degree in each normalized ranked hesitant750

fuzzy element, Compute the sum of its Borda indices.
Step 4. Rank the membership degrees by their increasing aggregate Borda

indices.

Now the application of these steps will be illustrated with a synthetic exam-
ple:755

Example 12. In order to compute the aggregation of the three ranked hesitant
fuzzy elements in Example 11, the following steps should be taken.

Step 1 was achieved in Example 11.

Step 2 computes three Borda indices (one associated with each ni~R) for each

alternative in h = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}.760

The Borda indices associated with n1~R are:
0− 5 = −5 for the membership degrees 0.3 and 0.4
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2− 3 = −1 for the membership degrees 0.1 and 0.2
4− 2 = 2 for the membership degree 0.7
5− 0 = 5 for the membership degrees 0.5 and 0.6765

The Borda indices associated with n2~R are:
0− 6 = −6 for the membership degree 0.1
1− 5 = −4 for the membership degree 0.7
2− 3 = −1 for the membership degrees 0.2 and 0.3
4− 1 = 3 for the membership degrees 0.4 and 0.5770

6− 0 = 6 for the membership degree 0.6

The Borda indices associated with n3~R are:
0− 4 = −4 for the membership degrees 0.1, 0.2 and 0.7
3− 3 = 0 for the membership degree 0.3
4− 0 = 4 for the membership degrees 0.4, 0.5 and 0.6775

Step 3 simply sums the three Borda indices computed, for each membership
degree. The result is:
−1− 6− 4 = −11 for the membership degree 0.1
−1− 1− 4 = −6 for the membership degree 0.2
−5− 1 + 0 = −6 for the membership degree 0.3780

−5 + 3 + 4 = 2 for the membership degree 0.4
5 + 3 + 4 = 12 for the membership degree 0.5
5 + 6 + 4 = 15 for the membership degree 0.6
2− 4− 4 = −6 for the membership degree 0.7

Step 4. Use these assessments to produce a ranked hesitant fuzzy element.785

In conclusion,
(

(0.1), (0.2, 0.3, 0.7), (0.4), (0.5), (0.6)
)

is the canonical form of

the aggregate RHFE of the three ranked hesitant fuzzy elements in Example 11.

In order to facilitate calculations, Listing 2 provides the Mathematica code
that produces the aggregation of any number of ranked hesitant fuzzy elements.
It computes the aggregate RHFE given in Example 12. This program is designed790

to print all intermediate computations, like the successive Borda indices of each
membership degree, their sums accross membership degrees, and the aggregate
ranked hesitant fuzzy element. For subsequent applications, the reader can
simply replace the input in Line 1 with the desired list of RHFEs.

795

1 ClearAll;

2 MRHFE = {{{0.1, 0.2}, {0.7}, {0.5, 0.6}},

3 {{0.7}, {0.2, 0.3}, {0.4, 0.5}, {0.6}},

4 {{0.1, 0.2, 0.7}, { 0.3}, {0.4, 0.5, 0.6}}

5 }; (* Input the ranked hesitant fuzzy elements *)800

6 p = Length[MRHFE];

7 MOHFE = Map[Flatten, MRHFE]; (* Produces their OHFEs *)

8 HFEValues = Sort[DeleteDuplicates[Catenate[MOHFE]]];

9 A = Length[HFEValues];

10 OHFEMissing = Range[p];805

11 Do[OHFEMissing[[i]] = Complement[HFEValues, MOHFE[[i]]], {i, 1, p}]

12 RHFETotal = Range[p];

13 Do[RHFETotal[[i]] = Join[{OHFEMissing[[i]]}, MRHFE[[i]]], {i, 1, p}];
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14 Mls = Table[Length[RHFETotal[[x, y]]], {x, 1, p}, {y, 1, Length[RHFETotal[[x

]]]}];810

15 Clear[i];

16 For[i = 1, i <= A, i++,

17 Print["Computations for value: ", HFEValues[[i]]]

18 For[j = 1, j <= p, j++,

19 Print["The degree ", HFEValues[[i]], " appears at rank position ",815

Position[RHFETotal, HFEValues[[i]]][[j, 2]], " of assessment ", j, ", hence

its Borda index is ", Apply[Plus,

20 Mls[[j, 1 ;; Position[ RHFETotal, HFEValues[[i]] ][[j, 2]] ]]]

21 -

22 Apply[Plus, Mls[[j, Position[ RHFETotal, HFEValues[[i]] ][[j, 2]] ;;820

23 Length[RHFETotal[[j]]]]] ] ]

24 ]

25 ]

26 MlsN = Table[

27 Apply[Plus, Mls[[j, 1 ;; Position[ RHFETotal, HFEValues[[i]] ][[j, 2]] ]]] -825

28 Apply[Plus, Mls[[j, Position[ RHFETotal, HFEValues[[i]] ][[j, 2]] ;;

29 Length[RHFETotal[[j]]]]] ], {i, 1, A}, {j, 1, p}

30 ];

31 Borda = Total[MlsN, {-1}];

32 Clear[i];830

33 For[i = 1, i <= A, i++,

34 Print["The degree ", HFEValues[[i]], " receives a total Borda index of ",

Borda[[i]]]

35 ]

36 BordaScores = Sort[DeleteDuplicates[Borda]];835

37 NBordaScores = Length[BordaScores];

38 Print["The aggregate ranking of the degrees (from worst to best) is: "]

39 For[i = 1, i <= NBordaScores, i++,

40 Print["Position ", NBordaScores - i + 1, " is occupied by ",

41 HFEValues[[#]] &[Flatten[Position[Borda, BordaScores[[i]]]]] ]840

42 ]

43 Print["Here are the top ranked membership degrees."]

Listing 2: Mathematica code for the computation of the the aggregation of any number of
ranked hesitant fuzzy elements. For illustration, it produces the solution given in Example 12.

Lastly in this section, a qualitative difference makes the aggregation of
ranked hesitant fuzzy elements more approachable than its counterparts for845

probabilistic strengthenings, like Zhang et al. (2017, Definitions 10 and 11). As
stated above, in the new aggregation mechanism all the membership degrees
associated with an alternative are prioritized by means of an aggregate rank.
Therefore it does not introduce new membership degrees that are supported
by no evidence. This is a marked contrast to algebraic approches, since they850

produce considerable expansions of the membership degrees involved in the cal-
culations. Both practical and methodological advantages are apparent. For
illustration, the next example is given:

Example 13. Example 5, revisited in Example 10, has reinterpreted some ele-
ments from the case study in Zhang et al. (2017, Section 4). As in those cases,855

attention is restricted to the evaluation of the safety element C1 (or brake sys-
tem). The exercise in this example consists of computing the aggregate ranked
hesitant fuzzy elements that stem from the aggregation of the ranked opinions of
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the three experts. This exercise is done for the five car brands. Table 3 displays
the elements that are needed for these calculations. The opinions by the three860

experts given in Zhang et al. (2017, Section 4) have been first converted into
their ranked versions (this simplification was utilized in Example 10 too), so
that ranked hesitant fuzzy elements make their opinions plainer. Their canoni-
cal expressions are shown in Table 3. Now the aggregation procedure described
in this section produces the respective five aggregate outputs.865

Table 3: Aggregation of the data in Example 13.

Opinions about C1

From expert 1 From expert 2 From expert 3 Aggregate RHFE

A1

(
(0.6, 0.8), (0.7)

) (
(0.5, 0.7)

) (
(0.8), (0.6), (0.7)

) (
(0.5), (0.8), (0.6), (0.7)

)
A2

(
(0.5, 0.6)

) (
(0.5), (0.6)

) (
(0.7), (0.6)

) (
(0.7), (0.5), (0.6)

)
A3

(
(0.8), (0.7)

) (
(0.5), (0.6), (0.7)

) (
(0.5), (0.6)

) (
(0.8), (0.5), (0.7), (0.6)

)
A4

(
(0.9), (0.85), (0.8)

) (
(0.7, 0.8)

) (
(0.5, 0.7), (0.6)

) (
(0.9), (0.5), (0.85), (0.6), (0.7), (0.8)

)
A5

(
(0.65, 0.75)

) (
(0.8), (0.7), (0.6)

) (
(0.7, 0.8)

) (
(0.65, 0.75), (0.6), (0.8), (0.7)

)

Now one can compare the last column of Table 3 with the five probabilistic
hesitant fuzzy elements hP (A1, C1), . . . , hP (A5, C1) that produced the aggrega-
tion of the respective three probabilistic hesitant fuzzy elements in Zhang et al.
(2017, Section 4). Example 5 has recalled hP (A1, C1), . . . , hP (A5, C1). Observe
that they are much longer than the corresponding RHFEs displayed in Table 3,870

hence they require more computational load. And they are formed by member-
ship degrees that have not been supported by the opinion of any of the experts,
which is not the case of the aggregate ranked hesitant fuzzy elements that we
have obtained.

Besides, the aggregate output of our calculations can be condensed into one
ranked hesitant fuzzy set, namely,

h~R = {〈A1, ({0.5}, {0.8}, {0.6}, {0.7})〉, 〈A2, ({0.7}, {0.5}, {0.6})〉,

〈A3, ({0.8}, {0.5}, {0.7}, {0.6})〉, 〈A4, ({0.9}, {0.5}, {0.85}, {0.6}, {0.7}, {0.8})〉,

〈A5, ({0.65, 0.75}, {0.6}, {0.8}, {0.7})〉}.

This expression can also be compared with h1~R, the aggregate output obtained875

from the simplification of the aggregate output given by Zhang et al. (2017) as
a probabilistic hesitant fuzzy element. The conclusions of this comparison are
similar to the comparison of their respective elements.

5. Making decisions with ranked hesitant fuzzy information: the
multi-criteria multi-agent case880

The fundamental theory of ranked hesitant fuzzy sets has been established
with the design of complements, scores and aggregation operators. It is now
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time to apply these ingredients to forge a multi-criteria group decision making
procedure. Section 5.1 will give a glimpse to the multi-criteria multi-agent case
study in Li et al. (2019) for both motivation and comparison. In fact these885

authors already compared the conclusions of their analysis with those of the
methodology presented by Xu & Zhou (2017). Then the algorithm for multi-
criteria multi-agent decisions with ranked hesitant fuzzy information will be
stated in section 5.2, and a comparison with the aforementioned methodologies
is performed in section 5.3.890

5.1. Statement of the problem

The structure of the new model will be apparent with the following practical
illustration.

Tables 4, 5 and 6 capture the ranked hesitant fuzzy information representing
the opinion of three overseas experts that estimate the potential for investment895

in four alternatives, namely, A1 (automobile sector), A2 (food industry), A3

(clothing industry), and A4 (computer industry). The experts were concerned
about three criteria, namely, c1 (profits), c2 (growth), and c3 (environmentally
friendly). These tables are directly derived from Li et al. (2019, Tables 3,4,5).
The later tables represent respective probabilistic hesitant fuzzy sets in Li et900

al.’s case study. To deduce Tables 4, 5 and 6 from them, the simplification
explained in Section 3.3 has been used (see Example 5 for illustration).

Table 4: Ranked information derived from data by Overseas Expert 1 (canonical
form).

A1 A2 A3 A4

c1
(

(0.6, 0.8), (0.7)
) (

(0.6), (0.5)
) (

(0.6, 0.7), (0.8)
) (

(0.3), (0.4)
)

c2
(

(0.5, 0.6)
) (

(0.4, 0.5), (0.6)
) (

(0.7, 0.8)
) (

(0.7), (0.6)
)

c3
(

(0.8), (0.7)
) (

(0.3), (0.4, 0.5)
) (

(0.6), (0.7)
) (

(0.5), (0.6)
)

Table 5: Ranked information derived from data by Overseas Expert 2 (canonical form).

A1 A2 A3 A4

c1
(

(0.5, 0.7)
) (

(0.9), (0.8), (0.7)
) (

(0.7), (0.8)
) (

(0.5, 0.7), (0.6)
)

c2
(

(0.5, 0.6)
) (

(0.7), (0.6)
) (

(0.8), (0.6), (0.5)
) (

(0.6, 0.7)
)

c3
(

(0.5, 0.7), (0.6)
) (

(0.8), (0.7)
) (

(0.5, 0.7)
) (

(0.7), (0.8), (0.6)
)

As in Li et al. (2019), and previously Xu & Zhou (2017), the current target
is to prioritize the alternatives. This will be done with the assistance of a new
multi-criteria multi-agent methodology. Its main novelty is that it is capable of905

integrating a multiplicity of sources, each providing a hierarchy of membership
degrees, and then it performs a score-based comparison of the aggregate results.
The algorithm is flexible at this penultimate step, and the solution will illus-
trate this property with the application of two different scores. The final step
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Table 6: Ranked information derived from data by Overseas Expert 3 (canonical
form).

A1 A2 A3 A4

c1
(

(0.8), (0.6), (0.7)
) (

(0.6, 0.7)
) (

(0.6), (0.7)
) (

(0.6), (0.7)
)

c2
(

(0.7), (0.6)
) (

(0.5, 0.7), (0.6)
) (

(0.6, 0.7), (0.5)
) (

(0.8), (0.6)
)

c3
(

(0.5), (0.6)
) (

(0.5, 0.7)
) (

(0.7), (0.8)
) (

(0.6), (0.7)
)

combines the scores by a weighted average, which allows to consider attributes910

with different importances.

5.2. Solution to the problem with ranked hesitant fuzzy information

It is time to establish the procedure for selecting a best decision investment
from the data provided. In fact a complete preorder on the four alternatives
X = {A1, A2, A3, A4} will be given. For that purpose Algorithm 1 is put915

forward. Of course, this Algorithm is not restricted to this specific situation. It
is capable of acting on any multiplicity of ranked hesitant fuzzy sets.

In relation with Algorithm 1, two comments are in order.
First, one can observe that the Algorithm is flexible as a score may be

selected that best suits the needs of the decision maker. This selection is used920

at Step 5. Such feature will be useful to test the sensitivity of the algorithm
to the choice of a score. The application to solve the problem stated in the
previous section will use S-scores and A-scores at Step 5.

Notice also that Li et al. (2019) computed the weights of the criteria from
their data. However a similar methodology cannot be used to derive weights925

endogenously, because the current formulation of the problem dispenses with the
numerical probabilities from which they stem. This accounts for the fact that
weights are inputted in Step 1. Relatedly, Li et al. (2019) produced two solutions
to their problem, depending on whether the dominance degree matrices were
additive or multiplicative consistent. Although these assumptions produced930

different weights, the two ranking solutions were ultimately identical: A1 �
A2 � A3 � A4.

The details of the application of this decision-making procedure to the case
at hand are as follows.

Step 1. In order to compare the results from our study with those of Li935

et al. (2019), select the weights that they had calculated in their two cases:
first proceed with w1 = 0.3627, w2 = 0.2696, w3 = 0.3662, and then with
w1 = 0.3845, w2 = 0.2434, w3 = 0.3721. Also, a solution with arithmetic
averages will be computed, i.e., with the simple case w1 = w2 = w3 = 1

3 . This
multiple choice will produce a more complete sensitivity analysis.940

Step 2 consists of Tables 4, 5 and 6. There are no cost attributes, thus Step
3 requires no further action.

Step 4 requires the aggregation of 12 separate lists of 3 ranked hesitant fuzzy
elements. The Mathematica code in Listing 2 can be used in order to produce
the aggregate data displayed in Table 7.945
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Algorithm 1. MCGDM procedure based on ranked hesitant fuzzy
information

Elements of the problem: alternatives X = {x1, x2, · · · , xp},
attributes C = {c1, c2, · · · , cq}, group of k experts.
Elective element of the solution: score for the evaluation of ranked
hesitant fuzzy elements.

1: Input weights of the attributes w1, w2, · · · , wq.

2: Input for each agent, a table of ranked hesitant fuzzy elements. Its cell
(i, j) contains the evaluation of alternative j with respect to attribute ci.

3: For cost attributes, replace the evaluations of all alternatives by their
complements (cf., Definition 10) throughout all tables.

4: For each alternative and attribute: aggregate the list of k ranked hesitant
fuzzy elements submitted by the experts by the procedure explained in
Section 4.
The result is a unique aggregate table whose cells are ranked hesitant
fuzzy elements.

5: Compute the scores s(eij) of these ranked hesitant fuzzy elements, for all
ci ∈ C, xj ∈ X.

6: Compute the weighted score sj of each alternative xj ∈ X, which is
sj = w1s(e1j) + w2s(e2j) + · · ·+ wqs(eqj).

Finally, rank the alternatives in X by their respective weighted scores.

Any of the alternatives for which si = maxj=1,2,··· ,p sj can be chosen.
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At Step 5, suppose first that the S-score is used to evaluate each ranked
hesitant fuzzy element in Table 7. In order to produce these evaluations, the
Mathematica code in Listing 1 can be utilized. The results are shown in Table
8. Its last three rows average these scores by the respective vectors of weights
selected at Step 1. Therefore this is the consequence of Step 6.950

Table 8: The S-scores and weighted scores of the ranked hesitant fuzzy
elements in Table 7.

A1 A2 A3 A4

c1 0.67 0.67 0.7333 0.5467
c2 0.5833 0.58 0.605 0.6667
c3 0.63 0.5667 0.68 0.66

Weighted score 1 0.630623 0.606555 0.677729 0.619322
Weighted score 2 0.634013 0.609656 0.682239 0.618067
Arithmetic score 0.627767 0.605567 0.672767 0.624467

Then the exercise is repeated with the A-score at Step 5. Remark 3 explains
that one can also use a Mathematica code that slightly modifies the code in
Listing 1. The results are shown in Table 9 and again, they are derived from
the weighted scores calculated at Step 6.

Table 9: The A-scores and weighted scores of the ranked hesitant fuzzy
elements in Table 7.

A1 A2 A3 A4

c1 0.65 0.7 0.7 0.5
c2 0.6 0.55 0.65 0.7
c3 0.65 0.54 0.65 0.65

Weighted score 1 0.635185 0.599588 0.66677 0.60768
Weighted score 2 0.63783 0.603954 0.669225 0.604495
Arithmetic score 0.633333 0.596667 0.666667 0.616667

In conclusion, the three selections of weights coincide to recommend the955

ranking A3 � A1 � A4 � A2, both when we use S-scores and A-scores. Hence
A3 is the unique alternative that is recommended.

5.3. Comparative analysis and sensitivity

Table 10 compares the result achieved in section 5.2 with the solutions pro-
vided by other four methodologies that acted on the original probabilistic hesi-960

tant fuzzy information (v., section 5.1). In this regard, note that Li et al. (2019)
already compared their conclusions for that problem with those of Xu & Zhou
(2017). The alternatives recommended by each study were different (A1 versus
A3), and the rankings produced by their methodologies are rather opposed to
each other. Here their discussion is complemented with the observation that965

Algorithm 1 produces always the same ranking, whose two top alternatives are
precisely A3 and A1. This holds true even when equal weights are used, which
further simplifies the computations, and the score is varied.

Thus Algorithm 1 has consistently detected the two preferred alternatives
that the other four methodologies had computed. Remarkably, an inspection of970
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Table 10: A comparison of results.

Methodology Source Variants Ranking Selection

Xu & Zhou (2017) Probabilistic HPFWA/HPFWG A3 � A4 � A1 � A2 A3
operator

Li et al. (2019) Probabilistic Additive/Multiplicative A1 � A2 � A3 � A4 A1
consistency

Algorithm 1 Ranked Weights from
Li et al. (2019) / A3 � A1 � A4 � A2 A3

equal weights. S-score
Algorithm 1 Ranked Weights from

Li et al. (2019) / A3 � A1 � A4 � A2 A3
equal weights. A-score

Table 10 shows that neither of the other procedures settled for these two options
at the top of their recommendation.

In relation with sensitivity, these conclusions show strong evidence of the
robustness of the methodology presented in this paper.

In addition, it has been highlighted that the model defined here is simpler975

and less demanding than the probabilistic hesitant fuzzy structure. This is
the model that both Li et al. (2019) and Xu & Zhou (2017) had used in their
analysis. The simplified requirement in the model by ranked hesitant fuzzy sets
has allowed to streamline the computations, which have been mostly referred to
Mathematica programs. Altogether this article has produced an user-friendly980

methodology with accurate recommendations from a new non-technical model.

6. Concluding remarks

The ultimate goal of hesitant fuzzy sets is the representation of hesitation
about the fuzzy degrees of membership of some alternatives. This should not
come at the cost of dispensing with supplementary features embodied in those985

evaluations. Researchers with different takes on this research question have
studied probabilistic, proportional, extended, or expanded versions of the model
famously shown by Torra (2010). But so far the literature has not dealt with
the case of a hierarchy of evaluations based on their plausibility. This paper has
provided a formal framework for encoding this situation. With this model as a990

starting point, new scores and aggregation procedures advance the mathemat-
ical background of ranked hesitant fuzzy sets. To facilitate reproducibility of
the results in this paper, Mathematica codes implementing these two auxiliary
tools that act on ranked hesitant fuzzy elements have been offered.3 They are
the fundamental constituents of a flexible Algorithm that gives a ranking of al-995

ternatives defined by multiple attributes (of possibly unequal importance) in a
multi-agent context. A case study has shown that its computational simplicity
is not at odds with accuracy.

3 The corresponding Mathematica notebooks can be downloaded from
https://github.com/jcralcantud/RHFS.
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As a consequence of this contribution, hesitant fuzzy sets have become a sim-
plified ranked hesitant fuzzy structure. In the opposite direction, the ranked ver-1000

sion of hesitant fuzzy sets has been contrasted with other extensions of Torra’s
original model. In particular, ranked hesitant fuzzy sets become a simplified ver-
sion of probabilistic and proportional hesitant fuzzy sets that retain their most
important trait, namely, the prioritization of some evaluations over others. In
relation with the practical implications of the present study, it is remarkable1005

that ranked hesitant fuzzy sets have proved exceptionally adept in terms of
evaluative ability: scores of probabilistic hesitant fuzzy elements remain largely
unaffected by their reduction to a ranked version. Thus in practice, less infor-
mation is needed to produce very similar score-based comparisons. Advantages
in terms of aggregation have been found too, as this process has proven to be1010

more accessible in RHFEs than in PHFEs. And a sensitivity analysis has shown
the robustness of the decision-making methodology proposed in this paper.

Concerning limitations, our study has not yet considered other technical
elements that might help understand and apply ranked hesitant fuzzy sets in the
future. Entropy, deviation degrees, and correlation coefficients can be defined,1015

discussed and applied. Inspirational studies exist in related settings (Su et al.,
2019; Wang et al., 2019).

Lastly, it is likely that novel procedures for the aggregation of ranked hesitant
fuzzy elements may be defined by resort to the Sugeno integral, precisely because
this is an ordinal aggregator (Beliakov et al., 2019).1020

Also the managerial and industrial applications of ranked hesitant fuzzy sets
still remain to be explored. Expectations are bolstered by successful approaches
like Deveci et al. (2018) or Deveci et al. (2022) (management) and Dinçer et al.
(2019a) or Narayanamoorthy et al. (2019) (industry).

In a different vein, ranked hesitant fuzzy sets can be made compatible with1025

more structured information in the future. For example, it has been mentioned
that probabilistic dual hesitant fuzzy sets exist since Hao et al. (2017), see
also Garg & Kaur (2020) for a recent update. It is therefore feasible that ranked
dual hesitant fuzzy sets can be similarly motivated and that new applications
can be found. Another possible line for future inspection is the case of missing1030

information, for which antecedents in the probabilistic hesitant fuzzy case exist
(Zhang et al., 2017, Example 8).

Declaration of competing interest

The author declares no conflict of interest.

Ethical approval1035

This article does not contain any studies with human participants or animals
performed by the author.

40



Acknowledgment

The author is grateful to the Junta de Castilla y León and the European
Regional Development Fund (Grant CLU-2019-03) for the financial support to1040

the Research Unit of Excellence “Economic Management for Sustainability”
(GECOS). The insightful comments from the Editor, Associate Editor, and
three anonymous referees are greatly appreciated.

Akram, M., Luqman, A., & Alcantud, J. C. R. (2022). An integrated
ELECTRE-I approach for risk evaluation with hesitant Pythagorean fuzzy1045

information. Expert Systems with Applications, (p. 116945).

Alcantud, J. C. R. (2016). Some formal relationships among soft sets, fuzzy
sets, and their extensions. International Journal of Approximate Reasoning ,
68 , 45–53.

Alcantud, J. C. R., & Giarlotta, A. (2019). Necessary and possible hesitant1050

fuzzy sets: A novel model for group decision making. Information Fusion,
46 , 63–76.
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