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Abstract

A new global sensitivity analysis has been conducted of fuel-type-dependent input variables of the simplified physical fire
spread model (PhyFire) to understand how the use of spatial averages, that is, fuel models, influences the results of PhyFire
with a view to enhancing its understanding and improving its design. The model’s simplicity, the numerical techniques used,
and a recent code optimisation, allow undertaking the analysis with very competitive computational times. The fuel data used
correspond to grasslands, shrublands and forest in the Spanish region of Galicia. The analysis results validate the flame length
sub-model proposed in the paper, which significantly improves the model’s efficiency.
c⃝ 2020 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

Wildland fires are a clearly growing problem throughout the world, and climate change, with higher temperatures
and drier terrains, increases the threat [13]. Broadly speaking, we can expect larger and more severe wildfires in
the future as fire regimes change in step with climate conditions (see [3] and its references), causing extensive
environmental, economic and social damage.

The scientific community has been combatting this hazard for decades, gradually making inroads in wildfire
modelling. The aim of a wildfire model is to use fuel, terrain, weather conditions, ignition and fire suppression
as input data to predict the spread of a fire in less than real-time, as a useful tool for firefighters. These models
can be an efficient aid not only in wildfire management, but also in risk mapping, reforestation policies, resource
optimisation, the issue of alerts, evacuation plans, etc.

Furthermore, improved spatial information technology (e.g., sensor monitoring, Geographic Information Systems
(GIS), and satellite imagery), increased computational capabilities (parallel computing), and the development of
communication technology allow the early detection of any fire, and also forecast its dynamics and spread.
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Thanks to these technological advances, recent years have witnessed an increasing development and use of
wildfire spread models [20,31–33], whose performance should seek to strike a balance between accuracy and fast
execution. Nevertheless, all computational models, even the more accurate ones, can capture only a select fraction
of the significant mechanisms in the wildfire process. However, the latest communication technology provides
actual real-time data, which when dynamically incorporated into the simulation process make the prediction more
accurate [16,17]. Furthermore, most of these models have been integrated into a GIS, providing complete tools for
the prediction of wildfire spread. Most of these GIS-integrated wildfire spread models are based upon BEHAVE [2],
relying on Rothermel’s model [24], such as FARSITE [11], Prometheus [35], FIREMAP [36], or the coupled
Weather Research and Forecasting model (WRF) and the fire-spread model, which combines the WRF atmosphere
model and the SFIRE fire spread model [15], among others. The simplicity of these models provides computational
efficiency, but their applicability is limited to the areas used in their calibration test. In contrast to these tools
based on quasi-empirical models, the complexity and high computational cost of physical or semi-physical models
have hampered the development of an efficient tool based upon them, although they do provide insight into the
mechanisms that drive wildfire spread. The rapid increase in computing power allows more complex models to be
a real option, so research is focusing on physical-based models.

These premises have led the authors to review their PhyFire simplified physical model (previously called PhFFS-
Physical Forest Fires Spread) [21] in order to include the necessary improvements that have emerged as new
real examples are simulated with the model. The PhyFire model is a simplified physical model based on the
fundamental physics of combustion and fire spread. The resulting Partial Differential Equations are solved using
efficient numerical and computational tools to obtain a software with efficient levels comparable to empirical models.
At present, the current PhyFire model is integrated into a GIS for use in Spain [22], and is available through the
url: http://sinumcc.usal.es.

The PhyFire model depends on several input variables and three model parameters. An initial model validation
was carried out in [21] through a global sensitivity analysis (GSA) of the input factors, including fuel-dependent
input variables and model parameters. This analysis has enabled us to determine which input factors and parameters
are the most influential on model outputs as a first step in the difficult process of model parameter adjustment. It
also supports the conclusion that the PhyFire model duly reflects the importance of radiation in windless conditions
and of convection under windy conditions.

Most of the PhyFire model’s input variables, as in other fire spread models, are spatial-dependent. As no
exhaustive spatial information on the model input variable is available, a simplified map-based approach is used.
The PhyFire uses three bespoke maps [22]: topographic, fuel-load, and fuel-type. Both these fuel maps inevitably
lack accuracy due to the scarcity of updated data and to the use of mean values (fuel models) that lead to biased
outputs, reducing the model’s reliability.

This paper proposes a new GSA for discovering which fuel-type-dependent input variables most influence the
model’s output, namely, the rate of spread, with a view to understanding how the use of spatial averages, that is,
fuel models, influence the results of PhyFire model simulations. The major influence of one of these input variables,
flame length F , has informed our flame length sub-model depending on wind speed and the slope of the terrain in
all the proposed scenarios (different wind conditions and slopes).

Any GSA involves repeatedly running the model (i.e., solving the model equations), and so an efficient numerical
solution is required. The numerical solution proposed [21] for the model equations seeks to reduce the computational
time by defining the active nodes and using parallel computation. In addition, the code has been optimised in this
new paper, and all the computer calculations have been performed on the hardware at Supercomputing Castilla and
León (SCAYLE), to take full advantage of its computing technologies.

The data and information used for the examples analysed in this study involve grasslands, shrublands and forest
in Galicia, Spain, based on an extensive survey [4].

The outline of the paper is as follows. In the first part of Section 2.1, we briefly summarise the PhyFire model
equations, focusing on the fuel-type-dependent input variables, which will be analysed; we then outline certain
general aspects about GSA, and we end this section with a detailed description of the experiments. Section 3,
presents the results of the experiments and the flame length sub-model derived. We add a real application of both
models, the original PhyFire, and the improved model with the flame length sub-model, to the same wildfire in an
area of Galicia. Finally, some conclusions are provided in Section 5.
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2. Methodology

2.1. A brief summary of the PhyFire model

This section describes the mathematical equations corresponding to the Physical Forest Fire Spread model
(PhyFire) developed by the authors. This description, focuses on the model’s fuel-type-dependent input variables
guided by the targets set out here. For a more detailed explanation of the model, its development, numerical solution
and applications, see [8,21,22] and its references.

The non-dimensional equations governing the current version of the PhyFire model are:

∂t e + βv · ∇e + αu = r in S t ∈ (0, tmax ), (1)
e ∈ G(u) in S t ∈ (0, tmax ), (2)

∂t c = −g(u)c in S t ∈ (0, tmax ). (3)

Surface S is large enough to ensure the fire does not reach the boundary during the time of study (0, tmax ), so
homogeneous Dirichlet boundary conditions can be considered. We complete the model with appropriate initial
conditions representing the location of the fire ignition point or intermediate fire perimeter, and the initial distribution
of fuel, including any possible firebreaks. Surface S is defined by a mapping (x, y) ↦−→ (x, y, h(x, y)) representing
the height of the surface S.

The unknowns are the following bidimensional variables defined in S × (0, tmax ): e =
E

MCT∞
, dimensionless

enthalpy, u =
T −T∞

T∞
, the dimensionless temperature of the solid fuel and c =

M
M0

, and the mass fraction of solid
fuel. See [21] for a detailed explanation of all the physical magnitudes and parameters of Eqs. (1)–(3).

PhyFire depends on three unknown parameters which must be adjusted in each case. First, the natural convection
coefficient H (J s−1 m−2 K−1), which appears in the zero-order term αu in the partial differential equation (1),
where α =

H [t]
MC . Second, the correction factor β of convective term βv · ∇e in Eq. (1). Third, the mean absorption

coefficient a that appears in the total radiation intensity differential equation to be solved in order to compute the
term r in Eq. (1) representing the radiation from the flames above the surface where the fire is burning (see [21]).

On the other hand, a fire’s evolution is strongly affected by some of the input variables, such as wind and
slope, the ambient temperature, and fuel load, which are represented, respectively, in the PhyFire through the non-
dimensional wind velocity v, the height h of the surface S, the fuel load M , and the reference temperature T∞. All
of them are relatively easy to measure and define different scenarios.

Finally, there are other input variables that depend on each type of fuel, some of which are not so easy to
measure: heat capacity C , pyrolysis temperature Tp, flame temperature T f , combustion half-life t1/2, maximum fuel
load M0, fuel moisture content Mv , and flame length F .

All the model parameters and input variables are listed in Table 1 and explained in detail in [21], including a
previous GSA of the PhyFire model’s input variables and model parameters. This initial analysis has enabled the
authors to conclude that the most relevant parameter in terms of the rate of spread and fire thickness in low wind
conditions is the mean absorption coefficient a of the radiation term, which is consistent with the importance of
radiation in low wind fires. This analysis has also reflected the major role of convection in fires driven by high
winds through the importance that the correction factor of convective term β has in the GSA of windy examples.
As mentioned earlier, the aim here is to focus the GSA on the fuel-type-dependent input variables for different
scenarios to analyse whether the use of mean values through wide areas with some internal variability (fuel models)
significantly affects the outputs. As will be seen in due course, the results of this new global sensitivity analysis
reveal a strong influence of one of these fuel-type-dependent input variables, flame length F , in all the proposed
scenarios (different wind conditions and slopes), whereby the PhyFire model can be improved through a flame
length sub-model depending on wind speed and the slope of the land. Flame length F appears in the radiation term
r in Eq. (1).

Any GSA involves a large number of simulations, with the resulting computational cost, so the efficiency of the
numerical and computational techniques used is crucial. We use a P1 finite element approximation on a regular mesh
for spatial discretisation and a Crank–Nicolson finite difference scheme time discretisation of the total derivative
for Eqs. (1)–(3). All the linear terms remain implicit, and a fixed-point iteration is proposed to solve the non-local
radiation term r that heavily depends on the temperature u and on fuel mass c. Details of this numerical scheme
can be found in [21]. The maximal monotone property of the multivalued operator in Eq. (2) allows using duality
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Table 1
PhFFS parameters and input variables.

Fuel-type-dependent input variables Symbol Units

Heat capacity C J K−1 kg−1

Pyrolysis temperature Tp K
Flame temperature T f K
Combustion half-life time t1/2 s
Maximum fuel load M0 (kg m−2)
Moisture content Mv kg of water/kg of dry fuel
Flame length F m

Input variables defining scenarios Symbol Units

Non-dimensional wind velocity v –
Height of the surface h m
Reference temperature T∞ K
Fuel load M kg/m2

Model parameters Symbol Units

Mean absorption coefficient a m−1

Natural convection coefficient H J s−1 m−2 K−1

Correction factor of convective term β –

methods for its numerical solution [6]. We consider an exact perturbation of the multivalued operator, and the
properties of this perturbed operator, with an appropriate choice of the parameters, allow defining the resolvent, as
well as its Yosida approximation, whereby the new nonlinear univalued operator equivalent to the multivalued one
can be solved by a fixed-point iteration. For further details of how to numerically treat this multivalued operator,
see [9]. We should describe certain aspects of the numerical computation of the radiation term. Because radiation
essentially comes from the flames, our PhyFire model considers that the gases produced by pyrolysis burn above
the fuel layer, producing a flame over that layer that emits radiation, reaching the points ahead of it, heating
the surrounding non-burned fuel, and thus allowing the fire to propagate. We reduce the computational cost by
computing the radiation matrix once out of the time loop, which represents the nodes of the finite element mesh
reached by the radiation emitted by each node. In practice, only the terms in the neighbourhood of the flame
are calculated, denoted as the set of active nodes for each time step [8], thus reducing the computational cost.
The PhyFire model was developed under C++, using Neptuno++, a finite element toolbox mainly developed by
L. Ferragut [7], and has the advantages of the parallel paradigm using OpenMP API. In addition, the code has
recently been optimised.

2.2. The global sensitivity analysis

A sensitivity analysis is required to reflect each input factor’s importance on the values of a mathematical model’s
output variable. This is crucial when the input factors are affected by uncertainties, and fire propagation models
are a good example of this situation. A GSA generally pursues one of these four objectives: screening or factor
fixing, ranking or factor prioritisation, variance cutting for risk assessment, and factor mapping to support robust
decision-making. The aim of the GSA developed here is the ranking or factor prioritisation typically used to enhance
model understanding [28]. There are many ways to conduct such analyses [12], but in this paper, as in [21], we
have opted for a GSA [25,26] based on the decomposition of the variance of the output in a unique additive series
of the variance of independent functions of increasing dimensionality. Variance-based methods are suitable for
application to a limited number of input variables, as in the case here [14]. All the input parameters in this analysis
are varied simultaneously over the entire parameter space, which allows evaluating each input factor’s contributions
and the interactions between factors in the model’s output variance.

This decomposition assigns each input factor’s effect on the model output uncertainty through the variances of
the main effects, and of any group of input factors through higher-order variances (interaction effects).

Variance-based methods calculate two indices, with the first-order index (Si ) measuring the average influence of
an input factor (X i ) to the total variance on the model output (V [Y ]), without the interaction effects for this factor.
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Total indices (STi ) calculate the sum of the factorial indices involving each factor,

Si =
V [E[Y |X i ]]

V [Y ]

STi =
E[V [Y |X∼i ]]

V [Y ]
where V [E[Y |X i ]] is the amount of expected variance due to the main effect that would be removed from the
total variance V [Y ] if the true value of factor X i could be determined, and E[V [Y |X∼i ]] is the contribution to the
variance conditioning regarding all the factors except X i .

The GSA studies the uncertainty of the output variable through the uncertainty of the input factor by estimating
the probability density functions (PDFs) for each input variable.

Two of the most widely used methods are the Extended Fourier Amplitude Sensitivity Test (FAST) [27] and the
Sobol method [30], which these authors have already used in a previous analysis of the PhyFire model in [21].
Both methods use variance decomposition techniques to provide a quantitative measure of the importance of the
input to the output variance. The main difference between FAST and the Sobol method is the underlying algorithm
in the multidimensional integration of the sensitivity indices (Monte Carlo integration method for Sobol).

Both methods are integrated in the SimLab program [29], and we have tested them with similar results. The
Sobol method (with respect to FAST) does not use the transformation function to generate the combinations of
factors, and requires each factor’s statistical distribution as input. For reasons of simplicity, this paper shows only
the results for the Sobol sensitivity analysis that determine each input parameter’s contribution and their interactions
with the overall model’s output variance. Extended FAST sensitivity analysis provides very similar results.

GSAs are generally sampling-based methods, so a critical step is the choice of sample size to run the simulations,
whereby samples that are too small may not provide robust results, and the computational cost for very large sample
sizes may become too high, especially for complex models, as in environmental applications. In [28], an attempt
is made to establish criteria to assess different types of convergences of GSA results, giving typical convergence
values involving the number of model evaluations (sample size N ) in terms of the number of input factors, the
GSA’s objective, and the GSA method. In this study, where a variance-based sensitivity analysis (Sobol and FAST)
is performed for ordering the input factors (ranking), with seven or nine input factors, a sample size N ≈ 104 ensures
robust results (see Fig. 1 in [28]). There are other methods that require fewer number of model evaluations, such as
the adaptative ANOVA decomposition [37], or the derivative-based GSA [14]. Following the methodology of the
previous work [21], we have opted for a variance-based method and a large sample, reducing the operational cost
by optimising the model code and using massive parallel architectures. A secondary outcome here, which exceeds
this paper’s aims, is the model code’s adaptation to parallel architectures to improve its efficiency for real-case
simulations, albeit with a higher computational cost.

2.3. Experimental

The data required for this study were taken from [4], which contains detailed measurements for the main forestry
fuels in Galicia, in northwest Spain. These data provide valuable information on these fuels’ main physical features
related to their fire behaviour. The data cover four types of grasslands, 56 types of shrublands, and 83 types of tree,
including pines, eucalyptus and other deciduous species, all of which are very common in Galicia and of major
importance from the perspective of forest fire protection. [4] includes forecasting data on flame length in several
wind and slope scenarios that are of particular interest to this study.

Estimates of the PDFs of the seven fuel-type-dependent input variables analysed were derived from data in [4]
and other scientific papers as necessary. All the relevant features of the fuel-type-dependent input variables and the
corresponding PDFs are summarised in Table 2. The PDFs have been fitted with the Kolmogorov–Smirnov tests.

The spatial domain for the experiments has a manageable but realistic scale, namely, 5000 m × 1000 m, which
ensures a low computational cost for each model evaluation. The fire front is located at a distance of 500 m from
the short side of less height. Three different slopes, 0◦, 20◦ and 40◦, have been used to fit the data included in [4],
together with three wind velocities: 10 km h−1, 20 km h−1 and 30 km h−1. Both factors are taken in the same
direction; that is, the fire front follows both the slope and the wind.

The analysis’s output variable, the rate of spread (RO S), is computed as the slope of the linear regression line
used to fit the position of the fire front at each moment of the simulation, measured from a point at a distance
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Table 2
Fuel-type-dependent input variables.

Variable PDF Source of information

C N(1700, 133) [23]
Tp N(575, 25) [19]
T f T(1000, 1400, 1175) [1]
t1/2 U(100, 400) [5]
Mv U(0, 30) [4]
M0 U(1.091, 5.339) [4]
F N(6.03, 2.297) [4]

of 1000 m from the fire ignition up to 300 m to the end of the domain, in the half lengthwise, in order to avoid
distortion due to initial and boundary conditions.

The GSA was conducted for the seven fuel-type-dependent input variables in Table 2, with a sample size of
N = 8, 192 for the Sobol to ensure a good estimation of the sensitivity indices [25,26], using SimLab software
(version 2.2) for sensitivity analysis, whose structured design is based on quasi-random sampling, [29,34]. The
analysis was conducted for each one of the nine scenarios described before, and for the following values of the
model parameters: natural convection coefficient H = 5, correction factor of convective term β = 0.01, and two
different values for the mean absorption coefficient: a = 0.5 and a = 0.25. Although a single value for the
mean absorption coefficient was selected initially, we repeated the analysis for a second lower value to confirm
the conclusions obtained. All the parameter values selected correspond to the orders of magnitude obtained in the
parameter adjustment of the PhyFire model developed in [21].

To obtain the experimental results within a reasonable time, the model was run at the Supercomputer Cluster
at the Supercomputing Center in the Spanish region of Castilla y Leon (managed by SCAYLE). This cluster was
built using 114 Supermicro nodes with Haswell architecture. Each node contains two processors: Intel Xeon E5-
2630 v3 (eight cores @ 2.40 GHz) and 32 GB RAM (ratio 2 GB/core), and the node interconnection involves
InfiniBand/Gigabit Ethernet. The theoretical peak performance of the fully operational system is ≈ 131.8 TFLOPS.

3. Results

Fuel length F is the most influential fuel-type input parameter for each one of the nine scenarios, thereby
revealing a clear weakness in the PhyFire model. Fig. 1 depicts the first-order sensitivity indices (black bars) and
the total ones (grey bars) computed with the Sobol method for ROS and all the scenarios. The graphics show that
flame length significantly controls the simulated front’s ROS, even unexpectedly so in high wind situations. The
results are similar for other values of the model parameters a, β and H , see Fig. 2, where the first-order sensitivity
indices (black bars) and the total ones (grey bars) are compared for two different values of the mean absorption
coefficient and an intermediate scenario (wind 20 km/h, slope 20%).

Data from [4] show that flame length clearly depends on wind strength and surface slope. This, together with
the results of the sensitivity analysis, leads us to propose the following flame length sub-model,

F = (FH + Fv|v|
1/2)(1 + Fss2) (4)

where, FH is a flame length independent parameter, Fv is a wind correction factor, Fs is a slope correction factor, |v|

is the wind strength, and s represents the slope at each point on the surface. The first factor in Eq. (4) corresponds
to the correction of flame length due to the wind. This expression is based on the observation of the experimental
curves for different fuels in [4], where the increase in the length of the flame due to the wind responds to such a
function. FH corresponds to zero wind, and the correction coefficient Fv has been added to experimentally adjust
the different behaviours for each type of fuel by a least-squares method. The second factor in Eq. (4) corresponds to
the correction of flame length according to surface slope. When there is no wind or slope, in other words, the flame
is vertical and its height is equal to its length, as deduced from [5], a relationship can be derived between flame
height and the vertical gas velocity inside it. When there is a slope, the following proportionality factor appears,

1
cos2 α

= 1 +

(∂h
∂x

)2
+

(∂h
∂y

)2
= 1 + s2
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Fig. 1. Sensitivity indices obtained with the Sobol method for ROS, all scenarios and a = 0.25.

Fig. 2. Sensitivity indices obtained with the Sobol method for ROS, wind 20 km/h, slope 20%, a = 0.5 (left) and a = 0.25 (right).

where α is the angle between the horizontal plane and the plane tangential to the surface S at each point, and
h = h(x, y) is the surface height, so s is the slope at each point on the surface S. Again, a correction factor has
been added to this expression to adjust data from [4] in the least-squares sense, the slope correction factor Fs .

The flame lengths of the fuels in [4] for different scenarios (wind and slope) have been measured and adjusted
by least squares to Eq. (4), and a sample of the three variables Fh , Fv and Fs , has been obtained. SPSS software
provides the Kolmogorov–Smirnov test, with Lilliefors correction for normality, under the null hypothesis that the
data come from a specific distribution. The tests had a p-value over 0.05, indicating that the data fit the distributions
shown in Table 3.
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Table 3
Fuel-type-dependent input variables.

Variable PDF Source of information

FH U(0.1262, 1.4518) [4]
Fv N(0.57, 0.27) [4]
Fs N(2.51, 1.21) [4]

Fig. 3. Sensitivity indices obtained for the new model with the Sobol method for the ROS, all scenarios and a = 0.25.

Another GSA has been performed for the new set of fuel-type-dependent input variables, C , Tp, T f , t1/2, Mv and
M0, with the PDFs described in Table 2, and FH , Fv , and Fs with the PDFs described in Table 3, with a sample
size of N = 10,240 for the Sobol method.

Fig. 3 shows the first-order sensitivity indices (black bars). The total ones (white bars) computed with the Sobol
method for the ROS are represented for all the scenarios and a = 0.25, except for the nine fuel-type-dependent
input variables analysed for the new model. The shortcomings and weaknesses detected in the previous model due
to the excessive weight of the flame length are no longer present.

4. Real case in Galicia

The PhyFire model improved with the flame length sub-model is tested by simulating a real fire that occurred
in Galicia (Spain), in an area covered with Pinus pinaster and different types of dormant brush, short grass and
timber grass, as described in [4]. This real fire occurred in an area near Osoño, Ourense, an inland province in
the south of Galicia. The fire ignited at 3.45 pm local time on 17 August 2009; and was brought under control at
11.00 pm on the same day. The fire burnt 224 ha: 185 ha of forest area and 39 ha of agricultural area. The fire’s spread
and its behaviour were reconstructed and documented by the coordinator of the fire-suppression operations [18],
and previously simulated with the former version of PhyFire in [22], which provides specific data on topography,
vegetation, weather conditions, and the fire’s real evolution.

This paper simulates the initial time of this real fire, specifically four and a half hours, updating wind data (wind
speed and direction) every half hour, and providing graphic results of the burnt area and fire front every 15 min. The
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Table 4
Fuel-type-dependent input variable values shared by both versions of the PhyFire model.

Fuel type (Behave) M0 Mv T f Tp t1/2 C

Short grass (1) 0.1 0% 1300 500 100 1800
Timber grass (2) 1.0 10% 1300 500 100 2000
Brush (5) 2.3 10% 1300 500 200 2300
Dormant brush (6) 2.2 10% 1300 500 200 2300
Inflammable brush (7) 2.4 15% 1300 500 300 2300

Table 5
Values of flame length input variables: F for the original PhyFire model, and
FH , Fv and Fs for the improved PhyFire model.

Fuel type [4] F FH Fv Fs

Short grass (Ac-01) 2.5 0.2606 0.6001 5.4330
Timber grass (Pa-06) 4.0 1.1100 0.4712 0.6759
Brush (Eu-06) 5.5 3.7780 0.5075 2.8280
Dormant brush (Cl-02) 7.0 3.3240 0.4888 2.6880
Inflammable brush (Ea-08) 8.0 3.9320 0.6752 3.0150

Table 6
Model comparison by similarity indices.

Similarity index Sørensen Jaccard Kappa

PhyFire model 0.74 0.59 0.67
Improved PhyFire model 0.87 0.77 0.84

simulation area is a rectangle measuring 3315 m × 2740 m. The computing time for the original PhyFire model on
a laptop equipped with an Intel Core i7-2410M processor (two cores, each one working at a frequency of 1.8 GHz)
and 4 GB RAM, was 20 min and 5 s, and for the improved PhyFire model it was 12 min and 32 s. We should
stress that the flame length sub-model is not the only improvement in the upgraded version of the PhyFire model,
as a code optimisation system has been developed to provide shorter calculation times.

The model parameter values for this simulation are as follows: mean absorption coefficient a = 0.095 m−1,
natural convection coefficient H = 15 J s−1 m−2 K−1, and the correction factor of convective term β = 0.015. The
values of the fuel-type-dependent input variables used for the simulation are summarised in Tables 4 and 5 for each
one of the five fuel types in the studied area, adapting the information from [4] to the BEHAVE classification [2].
Values of M0 and F are obtained from [4] corresponding to the fuel types according to the fuel mapping of the
area (see [22]) and data from [18]. Mv depends on the fuel type and ambient humidity reported in [18]. T f , Tp are
standard values. t1/2 and C vary slightly depending on fuel type, but have little influence on the ROS. Finally, Fh ,
Fv and Fs have been adjusted in the sense of least squares to the data from [4].

In addition, three of the firebreaks the firefighting team created by widening a number of roads on the southern
flank during the early hours of the fire have been added to the simulation by modifying the initial fuel data, being
identified in Figs. 4 and 5 by thick red lines.

Figs. 4 and 5 compare the output of the simulations after four hours and 15 min of real time, burnt area (grey)
and fire front (orange), with the real intermediate perimeter corresponding to the same period, that is, at 8.00 pm. In
order to measure the accuracy of the simulations, three similarity indices have been calculated: Sørensen similarity
index S, Jaccard similarity coefficient J , and Kappa coefficient K [10]. These similarity indices belong to the fields
of image analysis and geospatial statistics. Values of 1 mean perfect agreement between the simulated and observed
fire perimeter, while values of 0 mean no agreement. The values of these indices for both the original PhyFire and
the improved PhyFire models are listed in Table 6.

Fig. 4 corresponds to the original PhyFire model; the ROS is similar to the real one, and the similarity
indices in Table 6 record a substantial agreement. However, the enhanced PhyFire model, in addition to the lower
computational cost, provides more reliable and accurate results, as may be observed in Fig. 5 and Table 6, where
the similarity indices reveal an almost perfect agreement.
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Fig. 4. Osoño fire: Burnt surface (grey area) and active front (orange area) simulated using the PhyFire model, compared to the real partial
perimeter (blue line) at 8.00 pm. Thick red lines represent firebreaks, and the black square is the simulation domain. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Osoño fire: Burnt surface (grey area) and active front (orange area) simulated using the PhyFire model improved with the flame
length sub-model, compared to the real final perimeter (blue line) at 8.00 pm. Thick red lines represent firebreaks, and the black square is
the simulation domain. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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5. Conclusions

A new global sensitivity analysis of the physical forest fire spread model PhyFire, focused on fuel-type-dependent
input variables, has significantly improved its design. Experimental data show that flame length depends on wind
strength and surface slope, and the results of the sensitivity analysis performed in this study confirm that the
proposed flame length sub-model provides better results, overcoming the model’s shortcomings. The PhyFire
code has been finetuned to provide shorter calculation times, and redesigned for massively parallel architectures.
Furthermore, the results have been confirmed by the simulation of a real wildfire in an area with the same kind
of forestry fuel. The analysis involved forestry fuels in Galicia. The extensive review and adjustment of the flame
height data of [4] will be used in future research.
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