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Complemental fuzzy sets: A semantic justification
of q-rung orthopair fuzzy sets

José Carlos R. Alcantud

Abstract—This paper introduces complemental fuzzy sets,
explains their semantics, and presents a subclass of this model
that generalizes intuitionistic fuzzy sets in a novel manner. It also
provides practical results that will facilitate their implementation
in real situations. At the theoretical level, we define a family
of c-complemental fuzzy sets from each fuzzy negation c. We
argue that this construction provides semantic justification for
all subfamilies of complemental fuzzy sets, which include q-rung
orthopair fuzzy sets (when c is a Yager’s fuzzy complement)
and the new family of Sugeno intuitionistic fuzzy sets (when
c belongs to the class of Sugeno’s fuzzy complements). We
study fundamental operations and a general methodology for
the aggregation of complemental fuzzy sets. Then we give some
specific examples of aggregation operators to illustrate their
applicability. On a more practical level, constructive proofs
demonstrate that all orthopair fuzzy sets on finite sets that satisfy
a mild restriction are Sugeno intuitionistic fuzzy sets, and they are
q-rung orthopair fuzzy sets for some q too. These contributions
produce a new operational model that semantically justifies, and
mathematically contains, “almost all” orthopair fuzzy sets on
finite sets.

Index Terms—Yager’s fuzzy complement; Sugeno’s fuzzy com-
plement; intuitionistic fuzzy set; q-rung orthopair fuzzy set;
aggregation.

I. INTRODUCTION

THE core principle of intuitionistic fuzziness is entrenched
in many subsequent models. Its assumption that non-

membership should be evaluated separately from membership
has evolved to very general models (like q-rung orthopair
fuzzy sets), where the original restriction that membership
and non-membership should sum up to at most 1 has been
weakened.

In this paper we shall lay out a very general construction
(providing what we shall call “complemental fuzzy sets”)
which at the same time subsumes these models, and supplies
a sound semantic justification for them.

Before we concentrate on the theoretical and practical
aspects of this work, a few preliminary considerations are in
order.

A. Intuitionistic fuzzy sets and their extensions

Atanassov [1] pioneered the utilization of “orthopairs”,
whereby a pair of values in the unit interval give the support
for and against membership of an element to the “orthopair
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fuzzy set”. He called his extension “intuitionistic fuzzy set”
(abbreviated IFS). In an intuitionistic fuzzy set, at each or-
thopair one must observe that the sum of both values is
bounded by 1. Without this restriction, one has an orthopair
fuzzy set [2].

The q-rung orthopair fuzzy sets (Yager [2], [3]) are a
subfamily of orthopair fuzzy sets that mitigate the constraint
required by [1]. The condition imposed by q-rung orthopair
fuzzy sets is that at each orthopair, the sum of the q power
of both membership and non-membership values must be
bounded by 1. Atanassov’s intuitionistic fuzzy sets form the
family of 1-rung orthopair fuzzy sets. The 2-rung orthopair
fuzzy sets are the intuitionistic fuzzy sets of second type
(Atanassov [4], reprinted in [5]), popularized as Pythagorean
fuzzy sets [6]. To put some examples of the types of applica-
tions to decision making that have been presented, q-rung or-
thopair fuzzy sets have been used to evaluate strategies against
COVID-19 [7] and in green supplier selection problems [8]
with the help of the TOPSIS (for Technique for Order of
Preference by Similarity to Ideal Solution) methodology.

Once the utilization of more than one evaluation went
into the mainstream, we have witnessed the progress of
many other types of extensions of the idea of a fuzzy set.
Interval valued q-rung orthopair fuzzy sets [9] have allowed
the experts to provide interval valuations to the support for
and against membership of the elements. The addition of a
third evaluation capturing indeterminacy to orthopair fuzzy
sets produced further models like picture fuzzy sets [10] and
spherical fuzzy sets [11]. Multi-fuzzy sets [12] are a more
general framework: they simply gather several fuzzy sets in
a non-structured manner. Recently, constrained Pythagorean
fuzzy sets [13] have given a unified description of probabilistic
and Pythagorean fuzzy information. We shall not be concerned
here with these models.

B. Motivation and research goals

Atanassov made a convincing case that two figures are a
better reflection of partial knowledge than simply one. Then
the problem that arises is, what semantic interpretation justifies
the acceptance of membership and non-membership degrees
summing up to more than 1? This is the first challenge we set
ourselves.

For inspiration, remember that a classical semantic interpre-
tation of fuzzy sets explains that they provide a truth value for
each clause of the type an element belongs to the ‘set’ [14].
This is the presentation that underpins fuzzy logic. One can
imagine a model where a second figure yields the truth value
for the associated clause an element does not belong to the
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‘set’. Both truth values are related by a natural link from
fuzzy logic: a fuzzy complement (also called fuzzy negation).
When the second figure is the result of the application of
the standard fuzzy negation to the first one, the model is
tantamount to a fuzzy set. Put shortly, fuzzy sets ‘are’ orthopair
fuzzy sets for which the standard fuzzy complement yields
logical negation. If we still use the standard fuzzy complement
but the second figure is just bounded by the first one, then
we have an intuitionistic fuzzy set. When the second figure
is bounded by the first one but we use a member of the
Yager’s family of fuzzy complements, then we obtain a q-
rung orthopair fuzzy set [2, Section IV]. However when the
second figure is bounded by the first one and we are allowed
to use any fuzzy complement, then we obtain a new general
model consisting of what we will call complemental fuzzy sets.

Motivated by these considerations, this paper formalises the
aforementioned novel perspective of intuitionistic-type fuzzy
models and explains the semantic interpretation associated
with complemental fuzzy sets. Then we investigate their fun-
damental properties, inclusive of the set-theoretic operations
that are the basis of their algebra. We design a general method-
ology that produces aggregation operators for complemental
fuzzy sets. Some specific operators are defined and illustrated
with synthetic examples to guarantee the applicability of this
generic technique.

We also explore the relationship of our general model
with the literature. We explain how complemental fuzzy sets
feed into a narrative that showcases many popular models
in a different perspective. In this respect, we recall that the
complemental fuzzy set model encompasses many popular
extensions of intuitionistic fuzzy sets, remarkably, the q-rung
orthopair fuzzy sets. And we show that it allows us to define
new parametric models, especially what we will call “Sugeno
intuitionistic fuzzy sets”. Thus one theoretical consequence of
these achievements is that complemental fuzzy sets offer a
unified semantic justification of q-rung orthopair fuzzy sets
and other extensions of intuitionistic fuzzy sets (like the new
Sugeno intuitionistic fuzzy sets).

Yet another applicable contribution of this paper concerns
the clarification of certain relationships between orthopair
fuzzy sets and q-rung orthopair fuzzy sets. Not only is (ob-
viously) true that q-rung orthopair fuzzy sets are orthopair
fuzzy sets. Here we prove that the parametric family of q-rung
orthopair fuzzy sets has enough explanatory ability to encom-
pass all orthopair fuzzy sets on a finite set of alternatives,
as long as they satisfy a very mild structural property. Then
we replicate this pioneering “goodness-of-fit” exercise with
respect to the newly defined Sugeno intuitionistic fuzzy sets.
These findings have practical consequences. In the presence of
a series of data which are orthopairs, we shall be able to find an
“optimal” representation by either q-rung orthopair fuzzy sets,
or by Sugeno intuitionistic fuzzy sets, provided that the data
do not contradict a very simple restriction. It is worth noting
that our proofs are constructive. Examples will be given to
show how this fitting can be made effectively.

C. Outline of this paper
We organize the rest of this paper as follows.

Section II recalls known concepts, defines new auxiliary
ideas, and proves fundamental facts about the interaction of
fuzzy complements and aggregation operators. Section III
introduces the new framework called complemental fuzzy sets.
We discuss their semantics in Section III-A. To prove the
novelty of complemental fuzzy sets, a new model (the Sugeno
intuitionistic fuzzy sets) is described in Section III-B that is a
particular type of this concept. Section III-C defines algebraic
operations for complemental fuzzy sets. Section III-D per-
forms an original “goodness-of-fit” exercise proving that both
q-rung orthopair fuzzy sets and Sugeno intuitionistic fuzzy
sets (hence complemental fuzzy sets) encompass all orthopair
fuzzy sets on finite sets that satisfy a very mild structural
property. The main results are constructive, and respective
examples clarify their practical implementation. Section IV is
concerned with a general theory of aggregation in the setting of
complemental fuzzy sets. Examples are provided that illustrate
noteworthy cases of aggregation operators constructed from
arithmetic and geometric averages, and from an OWA operator.
Section V concludes this paper with a graphical summary of
relationships.

II. BASIC CONCEPTS AND RESULTS

This section contains both known and new concepts. The
later are defined in Section II-B. A fundamental result con-
cerning these new ideas is proven in Section II-C.

For convenience, we shall write the unit interval [0, 1] as I .
Suppose (a1, . . ., am), (b1, . . ., bm) ∈ I× m. . . ×I . The

vector inequality (a1, . . ., am) > (b1, . . ., bm) is a shorthand
for ai > bi for each i = 1, . . . ,m.

In this paper X denotes a set of alternatives.

A. Review of concepts

This section recalls standard notions from the literature.
We shall often refer to the following general model and

various of its particular cases:

Definition II.1 (Yager [2]). A q-rung orthopair fuzzy set
(qROFS) A over X is

A = {〈x, (µA(x), νA(x))〉|x ∈ X}

where the mappings µA, νA : X → [0, 1] respectively encode
the degrees of membership and non-membership of x ∈ X to
the q-rung orthopair fuzzy set A, and they satisfy

(µA(x))q + (νA(x))q ≤ 1 for all x ∈ X.

Alternatively, we identify A with the triple (X,µA, νA). We
also write A(x) = (µA(x), νA(x)) for each x ∈ X .

When q = 1, Definition II.1 produces an Atanassov’s [1]
intuitionistic fuzzy set (IFS). The case q = 2 produces a
Pythagorean fuzzy set (PyFS), a concept had been presented
earlier by Atanassov [4], [5] under the name Intuitionistic
Fuzzy Set of Second Type (see also [15]). The case q = 3
has been labelled as Fermatean fuzzy set.

A multi-fuzzy set M over X of dimension k is M =
{〈x, (µ1(x), . . . , µk(x))〉|x ∈ X} such that the mappings
µ1(x), . . . , µk(x) : X → [0, 1] are otherwise unrestricted [12].
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A multi-fuzzy set of dimension 2 is an orthopair fuzzy set [2,
Section I]. Definition II.1 is a structured orthopair fuzzy set.

For further use, we say that the orthopair fuzzy set M =
{〈x, (µ1(x), µ2(x))〉|x ∈ X} is never-full when µ1(x) 6= 0
implies µ2(x) 6= 1, and µ2(x) 6= 0 implies µ1(x) 6= 1, for
each x ∈ X . Equivalently: µ2(x) = 1 implies µ1(x) = 0, and
µ1(x) = 1 implies µ2(x) = 0, for each x ∈ X .

An orthopair is (µ, ν) where 0 ≤ µ, ν ≤ 1. The orthopair
is called a q-rung orthopair (qRO) when 0 ≤ µq + νq ≤ 1.

Definition II.2. A mapping c : I → I is called a fuzzy
complement when it satisfies:
• Boundary condition: c(0) = 1, c(1) = 0.
• Monotonicity: c(a) > c(b) if a, b ∈ [0, 1] and a 6 b.
• c is involutive: c(c(a)) = a for all a ∈ [0, 1].

It is customary to add the continuity axiom to a fuzzy
complement. We shall not make use of this property, hence
we avoid it in the axiomatics.

Remark II.3. Sometimes we shall use the notation ac as a
replacement for c(a). Besides, observe that ‘monotonicity’ is
also referred to as ‘inverse monotonicity’ by many authors.

Definition II.4. A mapping A : I× m. . . ×I → I is called an
aggregation operator when it satisfies:
• Boundary condition: A(0, m. . ., 0) = 0, A(1, m. . ., 1) = 1.
• Monotonicity: A(a1, . . ., am) > A(b1, . . ., bm) if ai, bi ∈

[0, 1] for each i = 1, . . . ,m and (a1, . . ., am) >
(b1, . . ., bm).

The next aggregation operator will be used in subsequent
sections:

Definition II.5 (Yager [16]). Let w = (w1, . . . , wm) ∈
[0, 1]m be a weighting vector such that

∑m
i=1 wi = 1. The or-

dered weighted averaging (OWA) operator associated with w
is the function Aw : Im −→ I defined by Aw(a1, . . . , am) =∑m
i=1 wi bi for each (a1, . . . , am) ∈ Im, where bi is the i-th

largest element in the collection of (possibly repeated) values
{a1, . . . , am}.

B. New concepts

We proceed to present some auxiliary concepts that will be
useful later on in this paper.

Definition II.6. Let us fix c, a fuzzy complement.
We say that (a, b) ∈ I × I is a c-pair when b 6 c(a).
The set of all c-pairs is denoted by Sc. It is a subset of the

unit square I × I .
When (a, b), (a′, b′) ∈ Sc, we let (a, b) < (a′, b′) stand for

the property: a > a′ and b′ > b.

Remark II.7. Notice (1, 0), (0, 1) ∈ Sc independently of c,
because both 0 6 c(1) = 0 and 1 6 c(0) = 1 hold true due
to the boundary condition of a fuzzy complement.

Besides, if (a, b) ∈ I×I is a c-pair then c(b) > c(c(a)) = a
using the fact that c is (inverse) monotonic and involutive. Thus
we could use this inequality to define a c-pair as a replacement
for the condition b 6 c(a) throughout.

Example II.8. Let us consider the fuzzy complement c(a) =
(1−aq)1/q with q > 0 introduced by Yager in [17], [18]. When
q > 1, the c-pairs defined here are the q-rung orthopairs that
take part in the definition of qROFSs [2, Section V].

Yager [2, Section IV] recalls that IFSs ‘use’ c(a) = (1 −
aq)1/q with q = 1, which is the classic complement c(a) =
1 − a, whereas PyFSs ‘use’ the Pythagorean complement
c(a) = (1−aq)1/q with q = 2, i.e., c(a) =

√
1− a2. Formally

speaking: an IFS on X is A = {〈x, (µA(x), νA(x))〉|x ∈
X} with (µA(x), νA(x)) ∈ Sc for all x ∈ X when c is
the classic complement, whereas a PyFS on X is P =
{〈x, (µP (x), νP (x))〉|x ∈ X} with (µP (x), νP (x)) ∈ Sc for
all x ∈ X when c is the Pythagorean complement. The case
q = 3 produces Fermatean fuzzy sets.

Definition II.9. Let us fix c, a fuzzy complement.
A mapping A : Sc× m. . . ×Sc → Sc is called a c-aggregation

operator when it satisfies:
• Boundary condition: A((1, 0), m. . ., (1, 0)) = (1, 0), and
A((0, 1), m. . ., (0, 1)) = (0, 1).

• Monotonicity: if for every i = 1, . . . ,m,
(ai, bi), (ci, di) ∈ Sc satisfy (ai, bi) < (ci, di), then
A((a1, b1), . . ., (am, bm)) < A((c1, d1), . . ., (cm, dm)).

C. A fundamental result about c-aggregation operators

The next general construction produces c-aggregation oper-
ators with the help of standard aggregation operators:

Proposition II.10. Let us fix c, a fuzzy complement, and let
A : I× m. . . ×I → I be an aggregation operator.

The mapping Ac : Sc× m. . . ×Sc → Sc defined by

Ac((a1, b1), . . ., (am, bm)) = (A(a1, . . ., am), c(A(bc1, . . ., b
c
m)))

when (ai, bi) ∈ Sc (i = 1, . . . ,m), is a c-aggregation operator.

Proof. First we need to confirm that Ac is well-defined,
i.e., that (ai, bi) ∈ Sc for all i = 1, . . . ,m implies
Ac((a1, b1), . . ., (am, bm)) ∈ Sc. To prove it, observe that
(bc1, . . ., b

c
m) > (a1, . . ., am) by definition of Sc and Re-

mark II.7. SinceA is an aggregation operator,A(bc1, . . ., b
c
m) >

A(a1, . . ., am). Using (inverse) monotonicity of c, we obtain
c(A(bc1, . . ., b

c
m)) 6 c(A(a1, . . ., am)). Therefore we have

proven that (A(a1, . . ., am), c(A(bc1, . . ., b
c
m))) is a c-pair,

which is equivalent to Ac((a1, b1), . . ., (am, bm)) ∈ Sc.
Let us now check that Ac satisfies both the boundary

condition and monotonicity:
• Boundary condition. First we observe the equalities

Ac((0, 1), m. . ., (0, 1)) =(A(0, . . ., 0), c(A(1c, . . ., 1c))) =

(0, c(A(0, . . ., 0))) =(0, c(0)) = (0, 1).

In conclusion, we have shown Ac((0, 1), m. . ., (0, 1)) =
(0, 1).
The proof that Ac((1, 0), m. . ., (1, 0)) = (1, 0) holds true
is analogous.

• Monotonicity. Let us fix (ai, bi), (ci, di) ∈ Sc with
(ai, bi) < (ci, di) for i = 1, . . . ,m. Hence ai > ci and
di > bi for i = 1, . . . ,m. In order to prove

Ac((a1, b1), . . . (am, bm)) < Ac((c1, d1), . . . (cm, dm)),
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or equivalently,

(A(a1, . . . am), c(A(bc1, . . . b
c
m))) <

(A(c1, . . . cm), c(A(dc1, . . . d
c
m))),

two things need to be checked (cf., Definition II.6).
A(a1, . . . am) > A(c1, . . . cm) follows from the assump-
tion (a1, . . . am) > (c1, . . . cm) and the monotonicity of
A.
Likewise, (d1, . . . dm) > (b1, . . . bm) and the (inverse)
monotonicity of c imply (dc1, . . . d

c
m) 6 (bc1, . . . b

c
m). By

the monotonicity of A, A(dc1, . . . d
c
m) 6 A(bc1, . . . b

c
m).

Using again the (inverse) monotonicity of c, we conclude
c(A(dc1, . . . d

c
m)) > c(A(bc1, . . . b

c
m)).

Both inequalities amount to
Ac((a1, b1), . . ., (am, bm)) < Ac((c1, d1), . . ., (cm, dm)).

The first theorem stated in Yager [2, Section VII] is a
simple Corollary to Proposition II.10. That theorem states that
when c(a) = (1 − aq)1/q for a fixed q > 1, Ac defined as
above is “closed”. In other words, when Ac aggregates q-
rung orthopairs (the c-pairs defined in this framework: see
Example II.8) its output is a q-rung orthopair. This fact
is the particular case of the first claim proven in Proposi-
tion II.10, when it applies to the complement defined by
c(a) = (1 − aq)1/q . Our Proposition II.10 not only gives a
more general framework derived from any fuzzy complement
and aggregation operator, but it also proves additional features
of this construction.

Example II.11. Yager [2, Section VIII] explores the OWA
operator (Definition II.5) for q-rung orthopair fuzzy sets.
His construction refers to an aggregation operator of q-rung
orthopairs that coincides with Ac in Proposition II.10, when
A is an OWA operator and c is Yager’s fuzzy complement.

To finalize this section, we observe that the construction in
Proposition II.10 is monotonic with respect to the aggregation
operator. The reader can easily check that the following
property holds true:

Lemma II.12. If A,A′ are aggregation operators such that
A > A′, then Ac < A′c for each fuzzy complement c.

Here A > A′ stands for A(a1, . . . am) > A′(a1, . . . am)
for each (a1, . . . am) ∈ I× m. . . ×I , whereas Ac < A′c stands
for Ac((a1, b1), . . . (am, bm)) < A′c((a1, b1), . . . (am, bm)) for
each ((a1, b1), . . . (am, bm)) ∈ Sc× m. . . ×Sc.

III. THE MODEL: COMPLEMENTAL FUZZY SETS

This section introduces complemental fuzzy sets and dwells
on its implications. The model is defined in section III-A,
and here its semantics is discussed in detail. This section
also shows that well-known models are embedded into this
framework. Then in section III-B we explain that an original
model stems from our construction too. Section III-C presents
some fundamental operations on complemental fuzzy sets. Im-
portantly, Section III-D proves that (families of) complemental
fuzzy sets justify all never-full orthopair fuzzy sets over a finite
set.

A. Complemental fuzzy sets

The main contribution of this paper is the next concept:

Definition III.1. Every fuzzy complement c defines a family of
complemental fuzzy sets over X . A member of the collection
of c-complemental fuzzy sets over X has the form

F = {〈x, (µF (x), νF (x))〉|x ∈ X}

with F (x) =(µF (x), νF (x)) ∈ Sc for all x ∈ X .

So any fuzzy complement c defines the collection of c-
complemental fuzzy sets over X , that we shall denote by
cCFS(X). Complemental fuzzy sets are the family of all c-
complemental fuzzy sets over a common X , when c varies
across all fuzzy complements.

Semantics. The interpretation of a complemental fuzzy set
goes as follows. For each element x of X , F captures two
truth values in the range [0, 1]. The first, µF (x), gauges the
truth value of the clause “x belongs to F ”. If our fuzzy logic
negation is fixed to be c, the truth value of the negation of
that clause (“x does not belong to F ”) must be bounded by
c(µF (x)). This logical constraint is equivalent to the restriction
(µF (x), νF (x)) ∈ Sc, and at the same time, provides a
semantic justification for it.

It should now be obvious that a semantic justification
has been proposed that concerns all particular cases defined
by specific fuzzy negations. In the next example we take
advantage of this fact to show that our construction provides
a rationale for some popular models:

Example III.2. Let us examine the versions of complemental
fuzzy sets that stem from some benchmark fuzzy complements.
Section III-B is in continuation of this analysis.

1) When c is the standard or classic complement, the re-
striction νF (x) 6 c(µF (x)) is equivalent to νF (x) 6
1 − µF (x). Therefore we obtain an intuitionistic fuzzy
set.

2) If in addition to this, the restriction νF (x) = c(µF (x))
applies for all x ∈ X , then we obtain a complemental
fuzzy set that can be identified with a fuzzy set.

3) Example II.8 has shown that when we use the parametric
family of Yager’s fuzzy complements, c-complemental
fuzzy sets boil down to q-rung orthopair fuzzy sets. In
particular, it has been established that Yager’s fuzzy
complements with q = 1, respectively, q = 2, q = 3,
produce intuitionistic fuzzy sets, Pythagorean fuzzy sets,
and Fermatean fuzzy sets.

Example III.2 does not exhaust all possible types of com-
plemental fuzzy sets. As a matter of fact, we proceed to define
a model that is both new and embedded into the new family
introduced in section III-A.

B. A new model: the Sugeno intuitionistic fuzzy sets

The Sugeno family of fuzzy complements (cf., Defini-
tion II.2) is quite popular. It is dependent on a parameter
λ > −1. Then for any λ > −1, cλ : I → I is defined by
cλ(x) = 1−x

1+λx for each x ∈ I . The case λ = 0 produces the
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standard or classic complement, which therefore becomes a
particular case of the Sugeno family of fuzzy complements.
The application of Definition III.1 to this family produces the
next novel model:

Definition III.3. Let us fix λ > −1. The Sugeno fuzzy
complement cλ defines the cλ-complemental fuzzy sets, which
therefore have the form

G = {〈x, (µG(x), νG(x))〉|x ∈ X}

with G(x) =(µG(x), νG(x)) ∈ Scλ for all x ∈ X . The
mappings µG, νG : X → [0, 1] are such that

νG(x) 6
1− µG(x)

1 + λ · µG(x)
for each x ∈ X. (1)

We call this family the λ-Sugeno intuitionistic fuzzy sets
over X .

The collection of all λ-Sugeno intuitionistic fuzzy sets with
λ > −1 defines the Sugeno intuitionistic fuzzy sets over X .

It is easy to check that when λ > 0, λ-Sugeno intuitionistic
fuzzy sets are intuitionistic fuzzy sets. We just need to observe
that in this case, Eq. (1) guarantees

νG(x) 6
1− µG(x)

1 + λ · µG(x)
6 1− µG(x) for each x ∈ X.

because 1 6 1+λ ·µG(x) when x ∈ X . Hence the novelty of
Definition III.3 reduces to the cases produced by −1 < λ < 0.

Observe that Definition III.3 provides a swift transition from
novel models (λ-Sugeno IFSs with −1 < λ < 0) to fuzzy
sets (0-Sugeno IFSs) and specific types of intuitionistic fuzzy
sets (λ-Sugeno IFSs with λ > 0). Figure 1 illustrates the
boundaries of the acceptable evaluations in an intuitionistic
fuzzy set, a Pythagorean fuzzy set, a Fermatean fuzzy set,
and the λ-Sugeno intuitionistic fuzzy sets with λ = −0.9
and λ = −0.95. This figure shows that the new class λ-
Sugeno intuitionistic fuzzy sets contains cases not covered by
the existing q-rung orthopair fuzzy model.

C. Algebraic operations on complemental fuzzy sets

This section contributes to enhance the theoretical perfor-
mance of the model described in section III-A with some
fundamental operations that lay the foundations of its algebra.

Definition III.4. Let us fix a fuzzy complement c. Consider
the c-complemental fuzzy sets

F = { 〈x, (µF (x), νF (x))〉 | x ∈ X } and

G = { 〈x, (µG(x), νG(x))〉 | x ∈ X }.

Their intersection is the c-complemental fuzzy set F ∩G =

{〈x, (min(µF (x), µG(x)),max(νF (x), νG(x)))〉|x ∈ X}.

Their union is the c-complemental fuzzy set F ∪G =

{〈x, (max(µF (x), µG(x)),min(νF (x), νG(x)))〉|x ∈ X}.

The complement of F is the c-complemental fuzzy set

F c = {〈x, (νF (x), µF (x))〉|x ∈ X}.

Figure 1. A graphical comparison of five models, inclusive of the λ-Sugeno
IFSs with λ = −0.9 and λ = −0.95 (cf., Definitions III.3).

Proposition III.5. The operations in Definition III.4 are well
defined, i.e., they always produce a c-complemental fuzzy set.

Proof. Consider intersection. By assumption,
(µF (x), νF (x)) ∈ Sc and (µG(x), νG(x)) ∈ Sc, i.e.,
νF (x) 6 c(µF (x)) and νG(x) 6 c(µG(x)), for all x ∈ X .
Let us fix an arbitrary x ∈ X . We do not lose generality if we
assume µF (x) 6 µG(x). Then c(µG(x)) 6 c(µF (x)), hence
νG(x) 6 c(µF (x)). In conclusion, max(νF (x), νG(x)) 6
c(µF (x)) = c(min(µF (x), µG(x))).

A symmetrical argument proves that union is well defined.
Let us show that the complement of the c-complemental

fuzzy set F is also a c-complemental fuzzy set. Fix x ∈ X .
From νF (x) 6 c(µF (x)) we get c(νF (x)) > c(c(νF (x))) =
νF (x) since c is (inverse) monotonic and involutive. This ends
the proof.

A direct consequence of these algebraic constructions is
their application to particular cases. Two instances are worth
emphasizing: q-rung orthopair fuzzy sets (when c is Yager’s
fuzzy complement, cf., Example III.2) and Sugeno intuition-
istic fuzzy sets (cf., section III-B). Admittedly, the first case
is well known:

Corollary III.6. [2, Section VI] The standard default op-
erations for intersection, union, and complement of q-rung
orthopair fuzzy sets are well defined. Hence the same holds
true for Fermatean, Pythagorean, and intuitionistic fuzzy sets.

We can also extend the concept of inclusion or containment
defined in [2, Section VI] for q-rung orthopair fuzzy sets, to
the more general case of complemental fuzzy sets:

Definition III.7. Let us fix a fuzzy complement c. Consider
the c-complemental fuzzy sets

F = { 〈x, (µF (x), νF (x))〉 | x ∈ X } and

G = { 〈x, (µG(x), νG(x))〉 | x ∈ X }.
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We say that F is contained in G, F ⊆ G, when
(µG(x), νG(x)) < (µF (x), νF (x)) for all x ∈ X .

D. Complemental fuzzy sets as a semantic justification of
never-full orthopair fuzzy sets

Now we shall prove a remarkable property of complemental
fuzzy sets with a consequence in terms of the interpretation
of orthopair fuzzy sets. We proceed to prove a mathematical
claim: selected families of c-complemental fuzzy sets (i.e.,
with c adhering to a certain parametric form) constitute a uni-
versal explanation of the whole family of never-full orthopair
fuzzy sets over a fixed finite set X . Thus as a consequence,
this achievement demonstrates that in the case of finite sets of
alternatives, complemental fuzzy sets are a common semantic
justification of never-full orthopair fuzzy sets. First we shall
prove the mathematical claim for λ-Sugeno IFSs. Then a
similar argument will show that the same is true for qROFSs.

Both analyses are reminiscent of a “goodness-of-fit” ex-
ercise whereby we find the thresholds below/above which a
given orthopair fuzzy sets belongs to the parametric family
under inspection.

Theorem III.8. Let M = {〈xi, (µi1, µi2)〉 | i = 1, . . . , n} be
a never-full orthopair fuzzy set over X = {x1, . . . , xn}.

Then there is λ0 > −1, the largest number such that M is
a λ-Sugeno IFS for each λ0 > λ > −1.

Proof. Consider the family of indices J formed by all i ∈
{1, . . . , n} for which both µi1 6= 0 and µi2 6= 0 are true.
Observe that µi1 6= 1 and µi2 6= 1 when i ∈ J , because M is
never-full. Then we claim that λ0 = min{ 1−(µ

i
1+µ

i
2)

µi1·µi2
| i ∈ J}

fulfils the thesis.
Observe that the fact that X is finite guarantees that the

minimum is attained at some i ∈ J . Besides, we claim that
1−(µi1+µ

i
2)

µi1·µi2
> −1. Notice that

1− (µi1 + µi2)

µi1 · µi2
> −1⇔ (1− µi2) + µi1(µi2 − 1) > 0.

To see why this inequality holds true, observe that f(µi1) =
1 + µi1(µi2 − 1) is an affine function of µi1 with a negative
slope µi2 − 1 (because i ∈ J implies µi2 < 1). When µi1 = 0,
f(µi1) = 1 − µi2 > 0. When µi1 = 1, one has f(µi1) = 0. In
our situation we know µi1 ∈ (0, 1), therefore both evaluations
prove our claim, i.e., f(µi1) > 0 when µi1 ∈ (0, 1).

Thus the parameter λ0 is well defined.
Consider a parameter λ such that λ0 > λ > −1. To prove

that M is a λ-Sugeno IFS, we need to show µi2 6 cλ(µi1)
for i = 1, . . . , n. The inequality is trivially true when either
µi1 = 0 or µi2 = 0 by the definition of complement. Now
suppose i is such that µi1 6= 0 and µi2 6= 0. This means i ∈ J .
Observe that

µi2 6 cλ(µi1) =
1− µi1

1 + λ · µi1
⇔ λ 6

1− (µi1 + µi2)

µi1 · µi2
. (2)

The latter inequality holds true by the requirement λ 6 λ0
and the definition of λ0, which entails λ0 6 1−(µi1+µ

i
2)

µi1·µi2
.

Finally, the definition of λ0 = min{ 1−(µ
i
1+µ

i
2)

µi1·µi2
| i ∈ J}

assures that λ0 is the largest number with the property de-
scribed in the statement. When λ0 < λ, there must be i ∈ J
with 1−(µi1+µ

i
2)

µi1·µi2
< λ, thus µi2 6 cλ(µi1) is false by Eq. (2),

and M is not a λ-Sugeno IFS.

Theorem III.9. In the conditions of Theorem III.8: there is
q0 > 1, the smallest index such that M is a qROFS for each
q > q0.

Proof. We can assume µi1 6= 1 for each i = 1, . . . , n without
loss of generality, because µi1 = 1 means that xi is evaluated
by the orthopair (1, 0) due to the fact that M is never-full.
The orthopair (1, 0) is a valid evaluation in all qROFSs with
q = 1, 2, . . ..

The key fact is that for each i = 1, . . . , n,

lim
q→∞

q

√
1− (µi1)q = 1

(due to the restriction µi1 6= 1 which derives from our assump-
tion), hence there is a smallest index qi with µi2 6 q

√
1− (µi1)q

(because µi2 < 1) when q > qi. Here we are using the fact
that the sequence { q

√
1− (µi1)q}∞q=1 is increasing.

Then we can check that q0 = max{q1, . . . , qn} is the
desired index directly.

Let us fix q > q0. To prove that M is a qROFS, we need
to show µi2 6 q

√
1− (µi1)q for i = 1, . . . , n. As q > q0 > qi,

this inequality is guaranteed by the choice of qi.
To finalize the argument, we need to show that if q < q0,

then M is not a qROFS, There must be i ∈ {1, . . . , n}
with q < qi. Using the fact that qi is the smallest index
with the property µi2 6 qi

√
1− (µi1)qi , it is compulsory that

µi2 >
q
√

1− (µi1)q . This proves the claim.

Both Theorems III.8 and III.9 are constructive, i.e., they
give the corresponding explicit solution to our fitting problems.
This is a very important and practical feature to have. The next
examples demonstrate how we can use both constructions to
produce the ‘optimal’ models that embed a given orthopair
satisfying the mild restrictions of the theorems:

Example III.10. Consider the following never-full orthopair
fuzzy set on X = {x1, . . . , x7}:

M ={< x1, (0.1, 0.91) >,< x2, (0.3, 0.97) >,

< x3, (0.5, 0.91) >,< x4, (0.6, 0.86) >,

< x5, (0.7, 0.89) >,< x6, (0.8, 0.82) >,

< x7, (0.9, 0.71) >}.

To find the smallest λ-Sugeno IFS such that M is a λ-
Sugeno IFS, we follow the steps in the proof of Theorem III.8.
Here J = {1, . . . , 7} and

λ0 = min{ − 0.10989,−0.927835,−0.901099,−0.891473,

− 0.94703,−0.945122,−0.954617}

hence λ0 = −0.954617. For illustration, the first of these
seven figures is associated with the evaluation provided for
x1, which is 1−(0.1+0.91)

0.1·0.91 ≈ −0.10989. The other figures
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are calculated similarly with the evaluations given for the
remaining elements of X .

Figure 2 illustrates the conclusions of this example.

Figure 2. A graphical presentation of the smallest λ-Sugeno IFS that fits the
orthopair fuzzy set M in Example III.10 (cf., Theorem III.8).

Example III.11. We consider the orthopair fuzzy set M
defined in Example III.10. In order to find the smallest qROFS
such that M is a qROFS, we follow the steps in the proof of
Theorem III.9. Now

q0 = max{q1, . . . , q7} = max{2, 3, 3, 3, 4, 4, 4} = 4.

For illustration, we compute q7 = 4 because 0.71 >
3
√

1− 0.93 = 0.647127 but 0.71 6 4
√

1− 0.94 = 0.765787.
Figure 3 illustrates the conclusions of this example. It shows

how the orthopair fuzzy set M is a 4ROFS, but it is not a
3ROFS. Each point for which its qi figure in the constructive
proof is strictly smaller than 4 does not satisfy the condition
determining a 3ROFSs on X .

Figure 4 summarizes the relationships among models that
have been presented in this paper.

IV. AGGREGATION OF c-COMPLEMENTAL FUZZY SETS

Section II has prepared the ground for a general theory of
aggregation of c-complemental fuzzy sets. Proposition II.10
is the touchstone result. The general construction that it has
presented produces remarkable aggregation operators on c-
pairs, like the OWA case (cf., Example II.11). Now we take
advantage of both the general construction and the specific
example provided by OWA operations in order to implement
a general aggregation methodology for c-complemental fuzzy
sets. An example will illustrate its application.

Definition IV.1. Let us fix c, a fuzzy complement.
A mapping A : cCFS(X)× m. . . ×cCFS(X) → cCFS(X)

is called a cCFS(X)-aggregation operator when it satisfies:
for each (F1, . . . , Fm) ∈ cCFS(X)× m. . . ×cCFS(X), if
A(F1, . . . , Fm) = {〈x, (µF (x), νF (x))〉|x ∈ X} then

Figure 3. A representation of the smallest qROFS that fits the orthopair
fuzzy set in Example III.10: v., Example III.11.

Figure 4. A graphical summary of relationships among models. The dashed
blue arrows and models represent original results.

• Boundary condition: (µF (x), νF (x)) = (1, 0) when
Fi(x) = (1, 0) for all i; and (µF (x), νF (x)) = (0, 1)
when Fi(x) = (0, 1) for all i.

• Monotonicity: if Fi ⊆ Gi for every i = 1, . . . ,m
with (G1, . . . , Gm) ∈ cCFS(X)× m. . . ×cCFS(X), then
A(G1, . . . , Gm) < A(F1, . . . , Fm).

Theorem IV.2. Let us fix c, a fuzzy complement, and an
aggregation operator A : I× m. . . ×I → I .

Define a mapping Ā as follows: if for each i = 1, . . . ,m,
Fi = {〈x, (µFi(x), νFi(x))〉|x ∈ X} is a c-complemental
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fuzzy set, we let

Ā(F1, . . . , Fm) = F = {〈x, (µF (x), νF (x))〉|x ∈ X}

where for each x ∈ X ,

(µF (x), νF (x)) = Ac ((µF1
(x), νF1

(x)), . . ., (µFm(x), νFm(x)))

= (A(µF1(x), . . ., µFm(x)), c(A((νF1(x))c, . . ., (νFm(x))c))) .

Then Ā : cCFS(X)× m. . . ×cCFS(X) → cCFS(X) is a
cCFS(X)-aggregation operator.

Proof. We prove that Ā satisfies Definition IV.1 with the help
of Proposition II.10.
• Boundary condition. Suppose first that x ∈ X is such that
(µFi(x), νFi(x)) = (1, 0) for all i. Then Ā(F1, . . . , Fm)(x) =
Ac((µF1

(x), νF1
(x)), . . ., (µFm(x), νFm(x))) = (1, 0),

because Ac is a c-aggregation operator by Proposition II.10.
We obtain Ā(F1, . . . , Fm)(x) = (0, 1) when Fi(x) = (0, 1)
for all i using an analogous argument.
• Monotonicity. Suppose Fi ⊆ Gi for every i = 1, . . . ,m,
(F1, . . . , Fm), (G1, . . . , Gm) ∈ cCFS(X)× m. . . ×cCFS(X).
Let us write Fi = {〈x, (µFi(x), νFi(x))〉|x ∈ X} and
Gi = {〈x, (µGi(x), νGi(x))〉|x ∈ X} for all i = 1, . . .,m.
The assumption means that for each x ∈ X and i = 1, . . .,m,
(µGi(x), νGi(x)) < (µFi(x), νFi(x)), cf. Definition III.7.
Using the definition for a fixed x ∈ X:
Ā(G1, . . . , Gm)(x) = Ac((µG1

(x), νG1
(x)), . . ., (µGm(x), νGm(x)))

and
Ā(F1, . . . , Fm)(x) = Ac((µF1

(x), νF1
(x)), . . ., (µFm(x), νFm(x))).

We conclude Ā(G1, . . . , Gm)(x) < Ā(F1, . . . , Fm)(x)
because Ac is a c-aggregation operator. Since this
property holds true for all x ∈ X , we deduce
Ā(G1, . . . , Gm) < Ā(F1, . . . , Fm).

Theorem IV.2 can be used to produce specific formulas for
IFSs when c is the classic complement c(a) = 1− a, and also
for qROFSs when c is Yager’s fuzzy complement. Then any
choice of A yields a particular case of aggregation operator.
Thus for example, when we let c be the classic complement,
we can use weighted geometric or OWA operators to obtain
the IFWG and IFOWG operators defined (on intuitionistic
fuzzy values only) in [19]. Or we can use the Bonferroni
mean to develop the IFBM operator (also on intuitionistic
fuzzy values or numbers) presented in [20]. Einstein operators
can be utilized like in [21]. In the case where c is Yager’s
fuzzy complement, fixing A as an OWA operator produces
the aggregation operator on qROFSs studied by Yager in [2,
Section VIII] (cf., Example II.11).

Needless to say, aggregation operators for the λ-Sugeno
intuitionistic fuzzy sets will be defined if we let c belong
to the Sugeno family of fuzzy complements, when A is an
aggregation operator like those mentioned above (weighted
arithmetic/geometric, OWA, Bonferroni, or others). The next
example shows this practical application in a concrete situa-
tion.

Example IV.3. For illustration, let us examine the cCFS(X)-
aggregation operators that stem from some particular cases of
aggregation operators when the fuzzy complement is c− 1

2
=

2−2x
2−x . To avoid making the notation too cumbersome, in this

example we shall simply denote c− 1
2

as c. It will suffice to
resort to X = {x1, x2} for our purposes. We shall aggregate
the following three (− 1

2 )-Sugeno IFSs on X:

F1 ={〈x1, (0.1, 0.94)〉, 〈x2, (0.2, 0.85)〉},
F2 ={〈x1, (0.4, 0.75)〉, 〈x2, (0.2, 0.1)〉}, and

F3 ={〈x1, (0.7, 0.4)〉, 〈x2, (0.8, 0.3)〉}

with the help of the construction in Theorem IV.2. The output
depends upon the choice of the aggregation operator A.

(1) Suppose that A is the arithmetic average. Then

Ā(F1, F2, F3) = {〈x1, (0.4, 0.73332)〉, 〈x2, (0.4, 0.487992)〉}

because A(0.1, 0.4, 0.7) = 0.1+0.4+0.7
3 = 0.4, and

c(A(0.94c, 0.75c, 0.4c)) = c( c(0.94)+c(0.75)+c(0.4)
3 ) =

0.73332. Also, A(0.2, 0.2, 0.8) = 0.2+0.2+0.8
3 = 0.4, and

c(A(0.85c, 0.1c, 0.3c)) = c( c(0.85)+c(0.1)+c(0.3)
3 ) = 0.487992.

(2) Suppose that A is the geometric average. Then

Ā(F1, F2, F3) ={〈x1, (0.303659, 0.806796)〉,
〈x2, (0.31748, 0.583348)〉}

because A(0.1, 0.4, 0.7) = 3
√

0.1 · 0.4 · 0.7 = 0.303659, and
c(A(0.94c, 0.75c, 0.4c)) = c( 3

√
c(0.94) · c(0.75) · c(0.4)) =

0.806796. Also,A(0.2, 0.2, 0.8) = 3
√

0.2 · 0.2 · 0.8 = 0.31748,
and c(A(0.85c, 0.1c, 0.3c)) = c( 3

√
c(0.85) · c(0.1) · c(0.3)) =

0.583348.
(3) Suppose that A is an OWA operator (cf., Definition II.5).

Example II.11 has referred to this case in the framework of
qROFSs. Here we shall use the operator with weights w =
(0.5, 0.3, 0.2). Then

Ā(F1, F2, F3) = {〈x1, (0.49, 0.653199)〉, 〈x2, (0.5, 0.597786)〉}

because A(0.1, 0.4, 0.7) = 0.5·0.7+0.3·0.4+0.2·0.1 = 0.49,
A(0.94c, 0.75c, 0.4c) = A(0.113208, 0.4, 0.75) = 0.515,
and c(A(0.94c, 0.75c, 0.4c)) = c(0.515) = 0.653199. Also,
A(0.2, 0.2, 0.8) = 0.5 · 0.8 + 0.3 · 0.2 + 0.2 · 0.2 = 0.5,
A(0.85c, 0.1c, 0.3c) = A(0.26087, 0.947368, 0.823529) =
0.573684, and c(A(0.85c, 0.1c, 0.3c)) = c(0.573684) =
0.597786.

V. CONCLUDING REMARKS

Intense research was set in motion after Atanassov’s intu-
itionistic fuzzy sets were launched. This paper presents com-
plemental fuzzy sets as a unified framework for the advance-
ment of the research about various theories studying orthopair
fuzzy sets. An immediate benefit of this novel presentation
is that it provides a common semantic justification for the
theories embedded into complemental fuzzy sets. Remarkable
examples include q-rung orthopair fuzzy sets, a generalization
of Atanassov’s intuitionistic fuzzy sets.

In passing, we have inaugurated the analysis of λ-Sugeno
intuitionistic fuzzy sets. But new practical avenues of research
have also been explored. Particularly, respective “goodness-of-
fit” exercises have found the largest λ for which a never-full
orthopair fuzzy set is a λ-Sugeno intuitionistic fuzzy set, and
the smallest q for which a never-full orthopair fuzzy set is
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a q-rung orthopair fuzzy set. These are novel exercises that
should help to put both λ-Sugeno intuitionistic fuzzy sets and
q-rung orthopair fuzzy sets to good use in practice.

Other future lines of research come to mind easily. A
similarity measure for constrained Pythagorean fuzzy sets
has been applied to medical diagnosis [13, Section VI]. The
hybridization between probabilistic and fuzzy information that
produced that model can be extended to complemental fuzzy
sets in the future. And then on a practical level, analogous
applications should follow. It is worthy of note that similarity
measures (of IFSs, and more general models) have applica-
tions to pattern recognition too [22, Section V]. Aggregation
operators that incorporate the familiarity degree of the experts
with the objects can be studied by inspiration of e.g., [23].
Additionally, the integration of the new Sugeno intuitionistic
fuzzy sets with multi-criteria decision making methodologies
is worth investigating. These methodologies include TOPSIS,
CODAS (for Combinative Distance based ASsesment), ARAS
(for Additive Ratio ASsessment), and many others. In point of
fact, applications that use these methodologies in the qROFS
setting abound in recent times, e.g., [7], [8], [24], [25].
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