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ABSTRACT With the continuing global pandemic of coronavirus (COVID-19) sickness, it is critical to
seek diagnostic approaches that are both effective and rapid to limit the number of people infected with the
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The results of recent research suggest that
radiological images include important information related to COVID-19 and other chest diseases. As a result,
the use of deep learning (DL) to assist in the automated diagnosis of chest diseases may prove useful as a
diagnostic tool in the future. In this study, we propose a novel fusion model of hand-crafted features with
deep convolutional neural networks (DCNNs) for classifying ten different chest diseases such as COVID-19,
lung cancer (LC), atelectasis (ATE), consolidation lung (COL), tuberculosis (TB), pneumothorax (PNET),
edema (EDE), pneumonia (PNEU), pleural thickening (PLT), and normal using chest X-rays (CXR). The
method that has been suggested is split down into three distinct parts. The first step involves utilizing the
Info-MGAN network to perform segmentation on the raw CXR data to construct lung images of ten different
chest diseases. In the second step, the segmented lung images are fed into a novel pipeline that extracts
discriminatory features by using hand-crafted techniques such as SURF and ORB, and then these extracted
features are fused to the trained DCNNs. At last, various machine learning (ML) models have been used as
the last layer of the DCNN models for the classification of chest diseases. Comparison is made between the
performance of various proposed architectures for classification, all of which integrate DCNNs, key point
extraction methods, and ML models. We were able to attain a classification accuracy of 98.20% for testing
by utilizing the VGG-19 model with a softmax layer in conjunction with the ORB technique. Screening
for COVID-19 and other lung ailments can be accomplished using the method that has been proposed. The
robustness of the model was further confirmed by statistical analyses of the datasets using McNemar’s and
ANOVA tests respectively.

INDEX TERMS COVID-19, deep learning, pneumonia, TB, X-rays, DCNN, feature extraction.
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I. INTRODUCTION
The sickness that is commonly referred to as coronavirus
(COVID-19) disease is brought on by the severe acute
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respiratory syndrome coronavirus 2 (SARS-CoV-2), which is
also the virus that is responsible for the ongoing pandemic.
A dry cough, myalgia, a sore throat, a headache, a fever, and
chest discomfort are just some of the typical symptoms that
are associated with COVID-19, which may be categorized
as a respiratory disease [1]. After around 14 days, infected
individuals often present their full complement of symptoms.
As of July 2021, more than 200 countries and territories
had reported a combined total of 190 million COVID-19
cases, which resulted in around 4 million fatalities [2]. As a
consequence of this, there is now a significant basis for
concern among members of the international community
regarding the current situation of public health. OnMarch 11,
2020, the disease, which began on January 30, 2020, was
recognized as a pandemic, and on the same day, the World
Health Organization (WHO) classified it as a public health
emergency of international concern (PHEIC) [3]. Even if
we have access to a wide range of vaccines at the moment,
it will take a considerable amount of time for these vaccines
to be distributed all over the world. As a result, the use of
visual signals as an alternate method for the rapid screening
of individuals who are infected with the virus is a realistic
option. It is generally accepted that chest radiographs (CXR)
and computed tomography (CT) scans include the most reli-
able visual indicator of a lung infection that is caused by
this virus [3]. Lung infection is the most common symptom
that patients experience as a result of exposure to this virus.
Radiologists must manually examine these images to search
for certain visual patterns that may indicate the existence
of the COVID-19 infection. Even while the accuracy of the
traditional way of diagnosis has increased over time, it is still
possible for it to put the lives of thosewhowork in themedical
field in jeopardy. In addition to this, there is an increase in
expenditures due to the requirement of diagnostic test kits for
each patient. Screening, on the other hand, can be performed
with medical imaging techniques such as CXR and CT scans,
which, in comparison to other methods, are significantly
more time efficient, substantially safer, and easily accessible.
CXR image screening is preferred to CT scan screening for
COVID-19 not only because it is more freely available, but
also because it requires less spending of financial resources
to acquire [4], [5].

A manual diagnosis of the virus using a CXR image may
take a long time. In addition to the mistakes that are caused
by people, there is likely a limited quantity of prior expe-
rience, which can result in a significant number of inaccu-
rate readings. Because of this, there is an immediate need
to automate such procedures on a massive scale, and this
automation needs to be available to all individuals to make
the process of diagnosis more efficient, accurate, and quick.
Computer vision (CV) and artificial intelligence (AI) technol-
ogy, especially deep learning (DL) models, has recently been
included in recent initiatives [6], [7]. In particular, the usage
of convolutional neural networks (CNN) is a helpful method
for carrying out medical image analysis. CNN has recently

been shown to be effective when applied to the process of
assisting in the diagnosis of pneumonia in the chest CXR
image of a patient [8], [9].

There has been a substantial amount of research done on
the COVID-19 diagnostic technique, the most bulk of which
has been on the application of DL models to CXR photos.
Using CXR images and a DL network that they named
DarkCovidNet, Ozturk et al. [10] developed an automated
technique for diagnosing COVID-19. An accuracy of 87.02%
was achieved by the model when it was used to categorize
the data into three distinct categories i.e., COVID-19, nor-
mal, and pneumonia. When classifying into only two groups
(COVID-19 and healthy images) it attained a classification
accuracy of 98.08%. Hemdan et al. [11] took advantage of
CXR and built a network that they later referred to as the
COVIDX-Net as part of their research. This network was
trained by making use of seven different CNN models, and
the validation dataset for the model is comprised of fifty CXR
pictures (25 normal and 25 COVID-19 cases). The quantity
of validation data that was used in the testing of the model
produced an accuracy of 90.00%, which is fairly effective
taking into consideration the quantity of data that was used
in the testing of the model. The advanced CNNmodel known
as COVID-Net was developed by Wang et al. [12]. They put
it through its paces and found that it had an accuracy rate of
93.3% after testing it out. In the study [13] they were success-
ful in accomplishing their objective of achieving an accuracy
of 95.38% by employing a combination of ResNet-50 and a
support vector machine (SVM) classifier on 50 different sam-
ples (25 normal and 25 COVID-19 cases). The researchers
Nayak et al. [15] devised a novel method that makes use
of DL to screen the COVID-19 chest CXR images. They
used a technique known as transfer learning in conjunction
with eight of the most successful pre-trained CNN mod-
els. These models are as follows: MobileNet-V2, AlexNet,
VGG-16, GoogleNet, ResNet-34, SqueezeNet, Inception-V3,
and ResNet-50. The ResNet-34 model ended up being the
most successful one.

Previous research on COVID-19 identification focused
mostly on algorithm-specific aspects and did not pay much
attention to the regions of interest (ROI) in CXR images.
These ROIs are what reveal the distinctive patterns that are
associated with the disease. As a result of this, there is an
opportunity for research in this area that centers on making
use of the CXR images that are supplied with simply the
ROI. Even if it is not accurate, it has the potential to lead to
a classification of images that is considerably more precise
because it is based on true medical terms. To the best of
our knowledge, this is the only work that uses ROI of the
CXR images to classify ten different chest diseases such as
COVID-19, lung cancer (LC), atelectasis (ATE), consolida-
tion lung (COL), tuberculosis (TB), pneumothorax (PNET),
edema (EDE), pneumonia (PNEU), pleural thickening (PLT),
and normal. This work is based on three steps: segmentation,
extracting features, and classification of the CXR into their
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respective classes. The preprocessed input CXR images are
used in the image segmentation process [16], and information
Maximizing GAN is put to good use to retrieve the lung
images from those preprocessed photos (Info-MGAN). The
feature extraction network uses a combination of deep neural
networks (DNNs) and key point extraction algorithms such as
Oriented FAST and Rotated BRIEF (ORB) [17] and speeded-
up robust features (SURF) [18] to compute the discriminatory
features of the several lung images. The DNNs that were
taken into consideration for feature extraction in this work
include a simple CNN model as well as a total of seven
distinct transfer learning (TL) models. These models are
as follows: ResNet-101 & ResNet-50 [12], DenseNet-169
[19], Inception-v3 [16], DenseNet-201 [19], VGG-16, and
VGG-19 [20]. At last, several distinct machine learning (ML)
methods were applied to categorize the retrieved features
into ten distinct types of lungs. Combinations of the chosen
models that have the highest levels of performance are inves-
tigated, assessed, and compared to determine which applica-
tion of the suggested method will yield the best results. The
contributions of the presents work are given below:

1. CXR images were segmented using the Info-MGAN
network.

2. The development of a method for the extraction of features
that integrates DCNN with ORB and SURF into a single
coherent architecture.

3. The TL andMLmodels were used for the classification of
ten different lung diseases using CXR images.

4. Various combinations of feature extraction techniques
and ML models were used for classification performance
evaluation.

This work has been divided into further sections: Section II
contains modern literature. The datasets and methods that
are utilized for image segmentation, feature extraction, and
classification are described in Section III. Section IV presents
the results of the experiments. This work is concluded in
section V.

II. RELATED WORKS
Using a variety ofmedical imagingmodalities, such as sonog-
raphy, CXR, MRI, and CT scans, one of the most significant
duties in DL [14] is the classification of respiratory system
disorders. It has been suggested in a few studies that CXR
pictures could be used to find COVID-19, which would save
time and effort for thoseworking in themedical field [5], [16],
[17], [18], [19], [20], [21], [22], [23]. In the trials that are
being done at the moment, locating COVID-19 at an early
stage of the illness is difficult. The following is a selection
of the most significant and pertinent studies about the appli-
cation of DL and ML models to the diagnosis of various
chest infections. The most recent studies on COVID-19 are
compared to those conducted on a variety of chest conditions
in Table 1.

The findings of this study [21] point to the utilization of a
one-of-a-kind CNN model as a potential automatic method

for detecting COVID-19 through the usage of chest X-ray
pictures. The proposed CNN model is meant to serve as a
reliable diagnostic instrument to classify the data into two
categories: COVID and Normal. The COVID-19 dataset,
which contains 13,824 X-ray pictures, is used to evaluate
several architectures, such as the pre-trained MobileNetv2
and ResNet-50 models. The accuracy of the suggested model
is compared to that of the existing COVID-19 detection tech-
niques. According to the findings of their experiments, the
proposed model can diagnose COVID-19 disease in patients
with an accuracy of 96.71 percent and an F1- score of
91.89 percent. Ieracitano et al. [22] offer a fuzzy logic-based
DL approach to differentiate between CXR images of patients
who have pneumonia caused by Covid19 and images of
patients who have interstitial pneumonia that is not related
to Covid-19. The model that was constructed for this purpose
and is referred to as CovNNet can be used to extract certain
relevant features from CXR images if it is paired with fuzzy
images that have been made using a fuzzy edge detection
technique. Experimental results show that using a combi-
nation of CXR and fuzzy features within a DL approach
by developing a deep network inputted to MLP results in a
higher classification performance (with an accuracy rate of
up to 81%).

To impose several distinct binary categories, Narin et al.
[23] made use of the methodology of five-fold cross-
validation in their research. Because it has an accuracy level
of 98%, a specificity value of 100%, and a recall level of
96%, the pre-trained ResNet-50 technique offers the maxi-
mum level of efficiency possible. Oh et al. [5] used a patch-
based technique in their work, which allowed them to develop
CNN models. Only a small number of data sets were used in
the application of the approach. The conclusion was reached
by the algorithm by first counting the votes cast by the
vast majority of patched classifiers and then utilizing those
combined votes. This experiment was conducted on a total
of 15,043 pictures, which comprised 8851 healthy individu-
als, 6012 patients who were diagnosed with pneumonia, and
180 patients who tested positive for COVID-19. By achieving
an accuracy of 88.9%, a precision of 83.4%, a recall of 85.9%,
an f1-score of 84.4%, and a specificity of 84.4%, CNN was
able to accomplish these astounding achievements. CNN has
an overall accuracy rate of 96.4% for its forecasts. The use
of an 18-layer residual CNN to CXR images was suggested
as a potential diagnostic tool by Zhang et al. [24]. The three
important contributions that they made to the field at the time
served as the foundation for the work that they did later on.
They began by obtaining features with the assistance of the
CNN module, after which they moved on to working on the
classification, and finally, for the very last phase, they uti-
lized the anomalous module to compute the detection score.
To accomplish the goals of this investigation, radiographs
from a total of 1531 patients were analyzed. The results of one
hundred of those radiographs came back positive for COVID,
whereas the results of the other 1431 radiographs showed
pneumonia infection. They were able to achieve a sensitivity
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of 96% when it came to the detection of COVID-19 while
still maintaining a specificity of 70.65%. Apostolopoulos
and Mpesiana [25] developed the CNN model and tested its
efficacy on a limited number of datasets before publishing
their findings. This allowed them to determine the extent
to which the model was successful. This experiment was
carried out in parallel on both of the databases that were being
used at the same time. The initial database had a total of
1427 images, and 224 of those photographs returned positive
results when tested for the presence of COVID-19. Although
there were also 700 images depicting bacterial diseases,
the remaining shots belonged to people who were in good
health. In the second set of data that was collected, there was
the same number of COVID-19 CXR images, pneumonia-
infected patients, and normal cases as there was in the first set
of data that was collected. On the second dataset, we utilized
the MobileNetV2 approach, which, out of all of the CNN
models, provided the best accuracy of 0.966, the highest
specificity of 0.964, and the highest sensitivity of 0.986%.

Tsiknakis et al. [26] presented an innovative automated
COVID-19 identification technique that was built on a DL
model and was given the moniker Inception-v3. This experi-
ment was conducted on a total of 572 patients, 122 of which
were found to have a positive COVID result, 150 of which
were found to be normal, and 150 were found to have bacte-
rial or viral diseases. Their classifications are correct 76% of
the time out of every 100 times they are used. To extract the
features from the dataset, which was comprised of 381 chests
of CXR pictures, Sethy et al. [27] used nine different TL algo-
rithms on the dataset. They used SVM to make a diagnosis
based on the features of COVID-19 that were received from
the virus. When it comes to the process of extracting features
from datasets, it has been demonstrated that the ResNet-50
approach is the one that has the highest rate of success.
Accuracy values of 95.33% and f1-score values of 95.34%,
respectively, are displayed by both a ResNet-50 model and
an SVM model. The novel methods of COVID-19 detection
based on CXR images have been designed by Saha et al. [28].
They came upwith the name EMCNet for their proposed sys-
tem, which was based on a simple CNN architecture and was
designed to extract features from images. After the features
had been obtained, theywere fed into an ensemble ofmachine
learning [29] classifiers to classify the COVID-19-infected
cases. The EMC Net was able to attain an impressive level
of accuracy, earning an accuracy of 98.91%. New auto-
matic COVID identification algorithms were developed by
Mahmud et al. [30] by making use of a DL model called as
CovXNet. To accomplish automatic identification, their DL
model made use of a phenomenon known as depth-wise con-
volution. Those who were diagnosed with pneumonia were
evaluated with CXR technology in addition to patients who
were found to have normal lung conditions. After this, they
evaluated their proposed model by classifying CXR images
of COVID-19 and pneumonia based on the results of the test.
A slack technique for automatic detection is integrated with

the model’s gradient-based discriminative localization. The
CovXNet model achieve an accuracy of 97.4% when it was
employed to analyze both regular occurrences andCOVID-19
situations. However, when it was used to analyze all other
cases, such as COVID-19 cases, viral infections, and bacterial
infections, it only attained an accuracy of 90.2%. To identify
COVID-19, Horry et al. [31] applied four well-established
TL classifiers to a total of 60,798 photographs taken from
different datasets. This number included 60,361 normal cases
in addition to 322 patients diagnosedwith pneumonia and 115
COVID-19-positive cases. The datasets contained a com-
bined total of 60,798 photos in their entirety. The VGG-16
and VGG-19 models produced solutions to classification
issues that were of the highest possible quality consistency
in each one of these four models. When it comes to correctly
diagnosing COVID-19-positive cases, the VGG-19 demon-
strated an accuracy rate of 81%.

In their study [32], they proposed a classification of
infected lungs as COVID-19 (+Ve) and non-infected lungs.
However, the COVID-19 classification, which is based on
CXR, must be performed by a radiology specialist because it
takes a considerable amount of time and requires their skill.
Because of this, the creation of an automated testing tech-
nique is something that ought to be investigated because it
will save a significant amount of time for medical profession-
als. Within the scope of this study, both the theoretical con-
struction and the actual use of a CNN method are dissected
and analyzed. In addition to this, the hyperparameters of CNN
are modified with the assistance of multi-objective adaptive
evolution of differences to produce superior results. Using
the ResNet-18 model as a feature vector allowed Zhang et al.
[33] to successfully extract acceptable feature representations
from the CXR image. This was accomplished by using the
ResNet-18 model. After that, those newly formed features
were used as input in research on multi-layer perception. This
came about as a result of the previous step. To achieve the
best possible degree of accuracy, which was 96%, a dataset
consisting of one hundred photographs taken by each of
seventy different patients was utilized.

Ahmed et al. [34] worked on the raw data, it was improved
by deleting several confusing components that had been intro-
duced into it. To prevent new source information from being
generalized, however, well-informed models can make use of
source-specific confuses to discriminate between COVID-19
and pneumonia. Our models have the potential to provide
an AUC of 0.38 in the worst-case scenario, while in the
best-case scenario, they have the potential to give an AUC
of 1.00 in the data sources. In light of this, it is abun-
dantly evident that additional testing and development are
necessary before the clinical deployment on any significant
scale. An innovative pipeline for the deep transfer study of
COVID diagnosis has been established for 19 patients, as the
data that were displayed in the report that was authored
by Michail et al. [35] demonstrated. Chest imaging with a
CXR and the diagnosis of pneumonia make up the bulk of
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the foundation for this pipeline. Both of the models that
come together to form our model were developed to add
a layer of neural blocks to their architecture. It is feasible
that the same technique will also prove effective in other
cases, such as those in which two competing networks are
complying with extra performance requirements. When ana-
lyzing our suggested network, we took into mind the dif-
ficulties that come when involving two classes (pneumonia
versus healthy), three classes (including COVID-19), and
four courses (tuberculosis included). Zhao et al. [36] CT
scans are now being developed as prospective testing and
screening processes that are not only quick but also cost-
effective. In this article, we generate a COVID-CT dataset that
contains 275 positive COVID-19 scans and make it available
to the public to encourage research and the development of
profound learning algorithms that can determine whether or
not an individual is involved in COVID-19. Examining a
person’s CT scans, which can either be positive or negative
for COVID-19, is the method that is utilized to determine
whether or not these methodologies should be used. They
design a CNN on this dataset, and it achieves an F1 of 0.85,
which is encouraging but still has to be improved upon.

Thakur and Kumar [37] build a method that, by utiliz-
ing extensive prior knowledge, will be able to automatically
detect and identify the COVID-19 disease. CNN is possible
to implement not just one but two different classification
systems, which are alternately referred to as binary andmulti-
class grades. The binary model was trained using a total
of 3877 x-ray and CT scans, with Covid-19 serving as a
source for 1917 of those photographs. In total, there were
3877 photos used for training the model. The instruction was
carried out utilizing a mix of both of the available imaging
modalities. There was a 99.64% overall accuracy for the
binary classification, a 99% recall, a 99.56% accuracy, a
99.59% F1 score, and a 100% ROC score. The research that
is currently being presented requires a substantial number of
CT scans to create accurate and demanding diagnosis models,
as indicated by the findings that were obtained by, He et al.
[38]. They produce a public data set that is made up of
hundreds of CT scans of COVID-19 and develops learning
algorithms that are both effective and profound in their scope.
Our efforts have led to the development of these algorithms,
which have the potential to achieve a high degree of diagnos-
tic accuracy for COVID-19 despite the limited quantity of CT
images available for analysis. We propose a method for self-
transitioning that combines contrastive auto-monitored learn-
ing with transfer education to acquire robust and impartial
representations to reduce the likelihood of overfitting.

A. LITERATURE GAP
According to several studies [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], the signs and symptoms
of COVID-19 are comparable to those of many different
conditions, including normal, LC, ATE, COL, TB, PNET,
EDE, PNEU, and PLT. When it came to COVID-19 and
other diseases, it was difficult for doctors and healthcare

professionals to correctly diagnose and identify them using
CXR. As a result, there was an obvious need to construct an
automated framework that was based on DCNN models and
capable of automatically diagnosing COVID-19 and several
other disorders as mentioned above using CXR. Previous
investigations [21], [27], [28], [34], [35], [36], [37], [38] had
the primary objective of attempting to differentiate between
COVID-19 and non-COVID-19 instances based on CXR
images. CXR images have been used in several research
studies [5], [22], [23], [24], [25], [26], [27], [28], [29], [30]
to identify COVID-19 from pneumonia illnesses including
viral and bacterial infections. Because of this, the purpose
of this research work is to design a DCNN framework that
would identify COVID-19 and differentiate the ten chest
diseases based on CXR. This will help researchers overcome
the obstacles that were discussed before.

III. MATERIALS AND METHODS
This section consists of an experimental procedure that was
conducted for the segmentation and classification of 10 dif-
ferent chest disease CXR images using DL models. For this
work, the Info-MGAN network was used for the segmenta-
tion. ORB and SURF methods were used to extract the fea-
ture. Then, these extracted features were used by DL models
for the classification of lung diseases into their respective
classes.

A. DATASETS DESCRIPTIONS
CXR images have been analyzed to identify between patients
who have been diagnosed with COVID-19, normal, LC, ATE,
COL, TB, PNET, EDE, PNEU, and PLT. The images were
collected from a variety of various websites that were pub-
lically accessible to the researchers. The datasets that were
utilized for segmentation and classification in this work are
discussed as follows:

1) SEGMENTATION DATASET
We used CXR images for the segmentation collected from the
chest radiographs dataset [39], which is obtained from [40],
to train the Info-MGAN. Another set of CXR was obtained
from [41], which has a total of 200 chest radiographs in its
database. From the two different datasets, a combined total
of 447 images showing the frontal aspect of the CXR were
obtained. The primary intention behind the creation of this
database is to simplify the process of dividing lung areas.
Because of this, we divided the dataset into three separate
subsets of the CXR images: one for training, one for validat-
ing, and one for testing. The primary dataset contained a total
of images that could be accessed, and the testing subset had
45 of those images. This represents approximately 10% of the
total number of images in the primary dataset. Following this
step, the remaining 403 CXR images are partitioned into 80%
for training and 10% for validation. Furthermore, the number
of images is relatively low, we made use of affine trans-
formation [42] methods to increase the number of images.
Finally, the segmentation network used to generate lung
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TABLE 1. Summary of modern related work for the classification of chest infections.

FIGURE 1. CXR images of ten chest infections; (a) COVID-19, (b) lung cancer, (c) atelectasis, (d) consolidation lung, (e)
tuberculosis, (f) pneumothorax, (g) edema, (h) pneumonia, (i) pleural thickening, and (j) normal.

masks from chest radiographs has been trained, validated, and
tested.

2) CHEST INFECTION CLASSIFICATION DATASETS
A total of ten publically available multiple chest disease
datasets were collected from a wide variety of different
sources to train and test the DL models. In the beginning,
we obtained 930 CXR infected with COVID-19 from a
GitHub repository that had been set up by Cohen et al. [43].

This archive contains images that were obtained from a wide
variety of hospitals and other public sources.

Although the complete set of metadata information is
not going to be presented in this discussion, the patients
who had the covid-19 infection were, on average, about
55 years old. From the SIRM database [44], TCIA [45],
radiopaedia.org [46], Mendeley [47], and GitHub source
[48], a total of 2371 covid-19 positive CXR were obtained.
The RSNA [49] was the source from which the dataset
of photographs of pneumonia was obtained. This data set
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FIGURE 2. Contrast enhancement using AHE; (a) Original CXR and (b) Enhanced.

TABLE 2. Summary of the chest diseases CXR images datasets.

includes a total of 5216 x-rays, 1349 of which are con-
sidered normal, and 3867 of which depict pneumonia. The
CXR and CT scan images that make up the lung can-
cer dataset were obtained from [39]. This dataset contains
around 20,000 chest X-rays and CT scans. From the dataset,
a total of 5000 CXR images of people with lung can-
cer were extracted; however, the remaining CT scans were
not taken into account for this investigation. The CXR of
healthy people was obtained from archives Kaggle [50].
A total of 22,060 CXR images were collected from NIH [51]
which included 5789 images of atelectasis, 6543 images of
consolidation lung, 2793 of pneumothorax infected CXR,
6331 images of edema, and 6046 images of pleural thick-
ening. At last, a total of 700 TB-infected CXR images were
collected [52]. The sample CXR images of all these chest
infections are presented in Figure 1.

3) IMAGE PRE-PROCESSING, ENHANCEMENT, AND
AUGMENTATION
From the above literature, it is observed that processes for
image preprocessing are helpful for improved training of
DNNs [47]. The CXR images of chest infections were col-
lected from multiple databases. The resolutions of CXR
images varied from 660 to 720 pixels in width and 500 to

672 pixels in height. Thus, we scaled the CXR to the fixed
resolutions of 224 × 224 to keep the coherence in this
study. Before the segmentation network is built for lung
masks, each image was manually reviewed to ensure that it
matched the required standards for perfection. After the CXR
images that were lacking, in contrast, were found, they were
preprocessed with the use of adaptive histogram equaliza-
tion (AHE) [53] and the thresholding operation is presented
in Figure 2.

Furthermore, it is observed that the images of all chest
infection classes are imbalanced. The Synthetic Minority
Oversampling Technique (SMOTE) was used to balance the
dataset and prevent the model from producing biased results.
A k-nearest neighbor (KNN) method is utilized in the genera-
tion of synthetic data by SMOTE. The first step of SMOTE is
to select data at random from the minority class (i.e., normal,
LC, ATE, COL, TB, PNET, EDE, PNEU, and PLT), and then
to determine the data that was selected. Now, the datasets
are ready to be fed into the DNN model for the training.
Therefore, 80% of the total CXR images are used to train
the DNN, 10% of the images are used for validation, and
the remaining 10% of the images are preserved for testing
purposes. Table 2 provides an all-encompassing summary of
the datasets that were utilized for this work.
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FIGURE 3. Info-MGAN uses CXR images to generate the synthesized segmented mask.

B. LUNG IMAGES SEGMENTATION USING INFO-MGAN
The GAN models that were suggested by [54] have been
widely utilized in the field of image processing to translate
an input image into its matching output image. The GAN
network is made up of two distinct networks: a generator
that can produce photorealistic images and a discriminator
that can determine whether an image is false or real based on
whether or not it was taken from the training dataset. The gen-
erator creates images that are incredibly correct to the source
material. The image is next analyzed by the discriminator,
which determines if it is fake or authentic. The purpose of
the generator is to produce photographs that are as lifelike as
they possibly may be. The generator Gen will use a min-max
strategy in conjunction with the discriminator to transform a
set of noise samples Z from distribution Pz into real-world
data from distribution Pdata. Following the completion of the
stage before this one, in which the noise samples were loaded
into the generator, this transformation will take place.

When the discriminator network is being trained, it makes
an effort to differentiate between converted data samples
Gen (Z) with distribution Pdata and actual data samples Y
with probability distribution PY. To achieve this objective,
it is necessary to conduct a comparison of the probability
distributions of the two different sets of samples that have
been collected. The following Equation (1) is a representation
of the mathematical formulation that will be used for the min-
max GAN goal function:

mingenmaxB LGAN (Gen,B) = mingenmaxB Ap∼py[logB(y)]

+ Az∼pz[log(1−B(Gen(z)))]

(1)

The word A used for expectation, while log stands for loga-
rithmic operations. The basic idea of GAN is elaborated upon
by Info-MGAN, which consists of a generator called Gen that

generates output data X based on actual data Y and a random
noise vector Z. The Info-MGAN is expressed in Equation (2):

z,Gen : {y, z} → x (2)

The Info-MGAN discriminator B, on the other hand, makes
an effort to differentiate between the synthesized data and the
actual data (X and Y), both of which it receives as inputs
in its operation. The objective function of the Info-MGAN
system can be expressed in several different ways, including
the following Equation (3):

LC−GAN (Gen,B) = Ax∼px,y∼py[logB(x, y)] + Ay∼py,z∼pz
× [log(1 − B(y,Gen(y, z)))] (3)

It is crucial to understand that the Gen serves more than
one purpose, and the primary one is not simply to mislead
the discriminator. The output of it should, at the same time,
correlate with the actual data in an F1 sense as shown in
Equations (4-5):

LF1(Gen) = Ax,y,z[||x − Gen(y, z)||F1] (4)

Gen∗
= argmingenmaxB LC−GAN (Gen,B)+λLF1(Gen)

(5)

where the F1 parameter was used for F1 regularization weight
while B represents the training discriminator B.

The segmentation of the ten chest diseases CXR images
was carried out with the assistance of Info-MGAN.
In exchange for the CXR that we send to the generator and
expect to receive a lungmask that is an exact fit for the patient.
The actual CXR images of ten multiple chest diseases and
their lung mask that corresponds to the ground truth make
up the authentic pair for the discriminator. As can be seen in
Figure 3, the Gen, and the D both go through training in an
adversarial fashion.
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FIGURE 4. Architecture of Info-MGAN used in this study.

FIGURE 5. Chest CXR image with ground truth and predicted mask.

To conduct the segmentation of different chest diseases
using CXR images, we make use of the info-MGAN model
that was presented by Chen et al. [55]. The generator (Gen)
in Info-MGAN stands in for the encoder-decoder network,
while the discriminator (D) is a Patch-GAN. Figure 4 also
includes an architecture design depicting the generator, dis-
criminators, encoder, and decoder blocks that are utilized
by Info-MGAN. Regardless the block is Gen and D, the
convolutional (Conv), batch normalization layer (BNL), and

ReLU make up each encoder block individually. Addition-
ally, each decoder block incorporates deconvolutional, BNL,
and ReLU into its architecture Encoder blocks are responsible
for producing condensed versions of the data, in contrast
to decoder blocks, which produce more detailed versions.
The initial three blocks of the decoder are designed to be
dropouts throughout both training and testing. This provides
the generator with the required amount of random noise so
that it can function correctly. In addition to this, the generator
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FIGURE 6. Info-MGAN is used for segmentation of CXR images of lungs; (a) COVID-19, (b) LC, (c) ATE, (d) COL, (e) TB, (f) PNET, (g) EDE, (h) PNEU, (i) PLT,
and (j) Normal. From top to bottom, the first row shows the CXR images of ten chest diseases, the second row represents the predicted mask, and the
last row shows the ROI obtained from the predicted mask using Info-MGAN.

FIGURE 7. Proposed block diagram for the classification of ten chest diseases using CXR images.

network includes skipping connections that run between the
encoder and the decoder to facilitate pattern reinforcement on
several levels. The output that is produced by the final block
of the discriminator is a shape or patch that has dimensions
of 29 × 29, and each of the patch’s pixels is responsible for
classifying a separate portion of the input image. Training an
Info-MGAN, which is effectively a U-net architecture [39]
on a more general level, is the method that is used to com-
plete the process of CXR image segmentation, as was cov-
ered in a previous section of this article. For the training of
the generator network, the pix-to-pix approach was applied,
and for the training of the discriminator network, the patch
GAN-like classifier was put to use. After the training has been
completed, the generator will be able to produce lung masks

that are suitable for the CXR pictures that have been loaded
into it. Figure 5 displays the input CXR together with the
ground truthmask and the lungmask that was produced by the
Info-MGAN.

Both the ground truth lung mask and the predicted lung
mask have amorphological form that is relatively comparable
to one another, as is evident from the comparison that can be
made between the two. The capture of images of the lungs is
made possible by applying masks that were produced based
on the CXR that were used as input. Figure 6 is an illustration
of the image masks that are used in Posterior Anterior (PA)
viewCXRs to separate the lungs into their respective sections.
Following this, the cleaned-up collection of lung images is put
to use in the training of the proposed classification process.
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FIGURE 8. Process of extracting features using segmented CXR images.

C. EXTRACTION OF HIDDEN PATTERNS AND
CLASSIFICATION OF CXR IMAGES OF CHEST DISEASES
In this section, we will investigate the process of automati-
cally extracting crucial features from segmented lung images
to arrive at an appropriate diagnosis of ten different chest
diseases. The technique of extracting features from an image
is one of the most critical processes in the image classifica-
tion process [56]. It has been observed from the literature
that conventional hand-crafted features can be useful for
image classification. DL techniques greatly improve classi-
fication accuracy in contrast to standard feature extraction
approaches. For the present study, a pipeline for in-hand
image classification utilizes both DL architectures and more
conventional feature extraction algorithms [57]. When deep
architectures are employed separately, their classification
performance is analyzed in detail. Figure 7 represents the
pipeline that is utilized for the classification process. It is
based on three blocks; the first block represents the feature
extraction layer, the second block contains the MLP layer,
and the last block is the final classification layer.

D. EXTRACTING FEATURES FOR TRAINING PURPOSES
Two key components are used for extracting features such as
deep CNN and handcrafted features. The process of extract-
ing features from the segmented lung images is shown in
Figure 8. For this study, a total of eight DL models includ-
ing simple CNN, ResNet-101, ResNet-50, DenseNet-169,
DenseNet-201, Inception-v3, VGG-16, and VGG-19. The
DenseNet models were chosen for this work because of
the advantages discussed below. All layers are directly con-
nected, the feature map’s size is preserved, identity mapping
attributes are integrated organically, it offers both shallow
and deep supervision, and it may recycle previously used
features. Conversely, VGG models with a depth of 16-19
weight layers and very small size (3 × 3) convolutional
kernel showed a significant improvement over the state-of-
the-art (SOTA)models in terms of classification accuracy and
validation error [58]. Table 3 presents a detailed summary
of the parameters used in implementing the DCNN models
and Figure 9 illustrates the architecture of these models.
In addition, we also designed a simple CNN model which
contains five 2D convolutional layers (ConvL), five 2D max-
pooling layers (MPL), and three flattened layers.

TABLE 3. Hyperparameters used for implementing DCNN models.

The purpose of this research is to evaluate the effectiveness
of simple CNN and TL models in the process of extract-
ing discriminatory characteristics from lung image segments.
The simple CNN, on the other hand, was trained from the
scratch, in contrast to the TL models. After the DL model
has been trained, the fully connected layer (FCL) is used to
compute the features that will be output by the model. Note
that the dimension of the computed feature vector expands
to 128 × 1 when all 128 units in the FCL are taken into
consideration. In the second stage of the feature extraction
process, which is depicted in Figure 8, computer vision meth-
ods are applied to separate the most significant aspects of the
image. These foci are often the elements of the image that
have a blobby local appearance. ORB [50] and SURF [52] are
two algorithms from the pipeline that we used individually to
identify these properties in the segmented lung CXR.

The ORB is a method that is utilized extensively in the
field of computer vision for key-point extraction and the
development of feature descriptors. To comprehend the ORB
algorithm [51], there are four phases involved. To begin,
a difference-of-Gaussian function is applied to the complete
CXR image to locate the areas of interest over the whole
of the image. The subsequent step is known as ‘‘key point
localization,’’ and it involves the application of a precise
model to determine the specific coordinates and size of each
prospective key point [56], [57], [58]. By examining the
stability metrics of the nodes, crucial nodes are identified.
In the final step, directions of local CXR image gradients
are employed to establish an orientation to each key point
position [58]. In the fourth stage, we compute the local image
gradients at the scale that you have selected at each critical
point. Figure 10 (a) is a representation of the ORB method
after it was applied to the masked lung CXR images as input.
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FIGURE 9. Architecture of eight DCNN models.
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TABLE 4. MLP model’s layers were used for this study.

SURF is a feature detector method [26] and is used to
determine not just the relevance of features on a geographical
scale but also on a pixel level. We can ascertain the dimen-
sions of the key points in the continuous domain and locate
them precisely due to the application of the quadratic function
fitting technique. A sample pattern is used to describe the
neighborhood surrounding each key point (points on scaled
concentric rings).

Figure 10 (b) displays an example of the output that the
SURF algorithm produces when it is given a masked lung
X-ray picture as input. The k-means clustering approach
is utilized to partition the important locations that were
extracted from the images of the lungs into 64 separate cat-
egories. After that, we obtain a feature vector with a size of
64 × 1 by averaging the values of the descriptors that are
contained within each class. After that, the feature vector
(128 × 1) that was obtained from the FCL is attached to
the feature vector that was previously described to raise its
dimension to the maximum that the DL model will allow for
it. The feature vector that is produced once the lungs have
been masked has a size of 192 × 1. The aforementioned
process is depicted as a block diagram in Figure 8. Next,
as a component of our primary pipeline, we make use of a
dense MLP model to feed the augmented feature vector (see
Figure 7).

E. MLP MODEL
An MLP model is the following constructing element in this
pipeline; it is the one that receives as input the combined
characteristics from the model that came before it. Follow-
ing this, the MLP model is trained to make predictions for
the unseen right labels by using the labels that have been
assigned to the input attributes as training data. The MLP
model accepts as input a 192-element vector that is comprised
of 128 features derived from the TL model’s most recent
iteration and 64 features derived from the mean points of the
clusters in which the features were extracted utilizing either
the ORB or SURF technique. The MLP model is comprised
of seven deep layers, and there is no need for any additional
hyper-parameters. In the first six layers of the network, ReLU
activation functions were utilized. In the seventh and final
layer, however, softmax activation functions were utilized.
The principles of the MLP network’s structure are discussed
in Table 4.

FIGURE 10. Key feature extraction; (a) ORB method, (b) SURF.

F. LAST LAYERS FOR PREDICTING THE OUTPUT
In this investigation, in addition to the softmax layer, we also
made use of the quadratic support vector machine (Q-SVM)
kernel [57], the AdaBoost [58], and the random forest (RF)
[59]. These ML classifiers were utilized in a broad variety of
investigations [55], [56], [57], [58], [59] as a result of their
efficiency, ease, and affluence of execution in terms of health
application. Therefore, it is believed that they are capable of
exploiting the features obtained from the Dense layer (see
Table 4) of the MLP network to classify lung images into the
ten different classes that have been established.

G. PERFORMANCE EVALUATION
Using segmented CXR images, determine the classifica-
tion performance of the deep features extraction (DFE)
approaches to identify the 10 different chest diseases.
Once all of the models have been trained, the confu-
sion matrix-based performance parameters are computed
using data from each stage of the proposed approach. The
methodology designed in this study effectively integrates
the handmade and DFE methods. On the testing dataset, the
identification performance of the DCNN models is evaluated
in terms of many parameters such as accuracy (ACU) [60],
recall (REC) [61], false positive rate (FPR), F1-measure,
specificity (SPF), precision (PRE), negative predicted value
(NPV) [62], and false negative rate (FNR) [63]. The following
equations (6-13) are used to measure these parameters.

ACU =
(TP + TN)

(TP + TN + FP + FN)
(6)

PRE =
TP

(TP + FP)
(7)

REC =
TP

(TP + FN)
(8)

SPF =
TN

(TN + FP)
(9)

F1 − Score =
2 × (PRE × REC)
PRE + REC

(10)

FPR =
FP

(FP + TN)
(11)

FNR =
FN

(TP + FN)
(12)
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NPV =
TN

(TN + FN)
(13)

IV. RESULTS AND DISCUSSIONS
In this section, we show that the proposed approaches for
extracting deep features efficaciously identified ten different
chest diseases segmented CXR images. After the training
of the model has been completed, the proposed method
successfully incorporates both the handcrafted and the DFE
methods by computing performance parameters based on the
confusion matrix.

A. EXPERIMENTAL SETUP
The proposed method was implemented with the assistance
of the Keras library [64]. Python [65] was used as the pro-
gramming language for the procedures that did not have a
direct connection to the CNN. The experiment was carried out
using a computer equippedwith aWindows operating system,
an NVIDIA GeForce GTX GPU with 11 GB of memory,
and 32 GB of total RAM.

B. TRAINING OF DCNN MODELS
To build the DCNN, we first trained a segmentation network
on previously acquired CXR images, then utilized the gen-
erator model [66], [67], [68], [69] to segment the new data.
Image augmentation was undertaken, which involved making
the affine transformation to the segmented CXR images (such
as rotations and shears), so that deep classification models
could be adequately trained to make use of a large train-
ing dataset. Eight different DCNN models were investigated
as DFE methods, and their performance was evaluated by
combining these models with ORB and SURF-based feature
extraction algorithms. The entire dataset was analyzed by
using these eight different DCNN models, and the process
used to do so was called 10-fold cross-validation. The last
layer of classifications was made using several different ML
methods, including Q-SVM, AdaBoost, and RF. Loss func-
tion [70], [71], [72] convergence for the DCNN models is
displayed in Figure 11. We observe from the plots (see
Figure 11) that the six DCNN models converge more quickly
than the simple CNNmodel trained from scratch. The present
work reports and analyses the training-phase execution times
of the DFE models (shown in Table 5) to evaluate their com-
putational complexity. The training of the ResNet-50 model
took a total of 1349 seconds (s), with an average training
time of 152.3 milliseconds (ms) per step. The DenseNet-169
model training was finished in a total of 2157s, with an
average training time per step of 199.5 ms. For inception-v3,
the overall training duration of 1239s and an average per-step
training time of 141.5 ms.

The longest amount of time spent training a model was
2399s for the DenseNet-201, with an average training time
per step of 201.7 ms. The average training time per step for
the VGG-16 model was 122.6 ms, and the total training time
was 811s. At last, the simple CNN model contains the lowest

TABLE 5. Amount of time required for training DCNN models.

training time of 405s, with an average training time per step
of 69.7 ms.

C. RESULTS ANALYSIS OF DFE BY DCNN WITH SEVERAL
ML MODELS
After extracting features, the last layers of eight DCNNmod-
els were replaced with softmax and several ML models such
as Q-SVM, AdaBoost, and RF. To measure the classification
evaluation of these models, several metrics such as ACU,
REC, NPV, F1-measure, SPF, and PRE were considered for
the diagnosis of ten chest diseases. The results of the DFE
from eight different DCNN models are presented in Table 6,
and the feature matrices generated by these models were cate-
gorized by several differentMLmodels. FromTable 6, we can
see that the six DCNNmodels outperformed the simple CNN
model in terms of ACU, REC, NPV, F1-measure, SPF, and
PRE. Further, while comparing the AdaBoost classifier to the
other ML classifiers, it is clear that it has the highest obtained
classification performance characteristics. The best classifi-
cation performance is seen when deep characteristics that are
taken from the VGG-19 model are fed to the softmax. In this
scenario, the values for ACU, REC, NPV, F1-measure, SPF,
and PRE are obtained as follows: 96.97%, 96.92%, 96.93%,
96.92%, 96.97%, and 96.97%, respectively. The simple CNN
model that used AdaBoost as the last layer had an ACU score
of 94.30%, a REC score of 94.42%, an NPV score of 94.26%,
an F1-measure score of 94.25%, an SPF score of 94.29%,
and a PRE score of 94.28%. It has been discovered that the
performance of some other DCNN models is on par with that
of the best-performing VGG-19 model.

D. RESULTS ANALYSIS OF DCNN MODELS WITH
FEATURES EXTRACTED BY ORB AND SURF
After fusing deep features with the hand-crafted fea-
tures produced by the ORB and SURF algorithms respec-
tively, the resulting performance parameters are given in
Tables 7 and 8. According to Table 7, the incorporated SURF
algorithm-based features did not result in a significant shift
in any of the acquired classification performance param-
eters. With Q-SVM as the classification layer, the ACU,
REC, NPV, F1-measure, SPF, and PRE scores were 97.11%,
96.81%, 96.48%, 96.23%, 96.51, and 96.25%, respectively,
when DFE from the DenseNet-201 model were fused with
SURF-based features. Furthermore, while utilizing softmax
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FIGURE 11. DCNN models loss function convergence plots; (a) DCNN models with several ML classifiers; (b) DCNN models using SURF-based
handcrafted features and several ML models; (c) DCNN models using ORB-based handcrafted features and several ML models.

as the classification layer, the ACU, REC, NPV, F1-measure,
SPF, and PRE scores obtained from combining DFE from
the VGG-19 model with SURF-based features were 96.90%,
96.54%, 96.42%, 96.51, 96.52, and 96.50%, respectively.

Table 8 indicates that classification performance was
significantly enhanced by combining deep features with
ORB-based key-point features and then feeding these features
to several ML algorithms. The VGG-19 model-based DFE

and the ORB-based features increased ACU, REC, NPV,
F1-measure, SPF, and PRE scores by 98.20%, 97.98%,
97.96%, 97.95%, 97.99, and 98.04%, respectively, using soft-
max as the final layer. These values are approximately 2%
higher than they were when a softmax layer was only used
to classify deep features that were based on VGG-19. The
ACU, REC, NPV, F1-measure, SPF, and PRE scores for the
DenseNet-169 model-based deep features, the ORB features,
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TABLE 6. Performance of the DFE from DCNN models and several ML models.

and the softmax classifier in the final layer were reported to
be 96.15%, 96.04%, 95.99%, 96.02%, 96.05, and 95.90%,
respectively.

ACU, REC, NPV, F1-measure, SPF, and PRE scores were
recorded at 94.27%, 94.49%, 94.51%, 94.63, and 94.52%,
respectively, while using the DenseNet-201 model’s deep
features, together with the ORB features and the softmax
classifier in the final layer. Out of all the models tested, it was
the ORBVGG-19model with softmax layer that achieved the
highest accuracy rates in classification. The detailed results
are presented in Table 8.

Figures 12-14 depict average FPR and FNR bar plots,
which allow for further investigation into the categorization
accuracy of the approach. To get higher classification perfor-
mance, it is necessary to significantly lower the FPR and FNR
values.

Figure 12 shows that the lowest FPR value (3.85%) was
achieved by VGG-16 when the Q-SVM layer was used as the
last one. The VGG-16 softmax function applied to the last
layer produces an FNR that is 6.35% lower than any other.
The FPR and FNR for VGG-19 with softmax are both signifi-
cantly lower than average, coming in at 1.81 and 4.33 percent,

respectively. According to Figure 13, the combination of
ResNet-101 and VGG-16 with SURF and Q-SVM in the
final layer achieved the lowest FPR and FNR of 4.85% and
5.71%, respectively. Figure 14 represents that VGG-19 with
ORB achieved the lowest FPR and FNR of 1.10% and 2.33%,
respectively, when using softmax as the final layer, making
it the best combination of the proposed feature extraction
models. To further illustrate the class-specific performance
of our proposed feature extraction models, we present the
confusion matrices for a total of 7000 test CXR images in
Figure 15.

E. STATISTICAL ANALYSIS
The feasibility of the suggested model was evaluated using
McNemar’s statistical test [67] and the analysis of vari-
ance (ANOVA) test [68]. This was done by comparing
the proposed model to the base classifiers, the probability
scores of which were utilized in the process of determining
the development of the suggested model. Table 9 presents
the findings of McNemar’s, and ANOVA tests carried out
on the multi-chest disease CXR dataset that was used in the
present analysis. To conclude that the alternative hypothesis is
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TABLE 7. Experimental outcomes of DCNN models using SURF-based handcrafted features and several ML models.

more likely to be true, McNemar’s test and the ANOVA need
to have P-Values that are less than 0.05. The results shown in
Table 9 show that the p values for all of the dataset samples
fall below the 0.05 threshold. The null hypothesis cannot be
maintained, according to the results of both of the statistical
tests. This demonstrates that the proposed model contains
more information from the base classifiers and that its predic-
tions are better, ensuring that it is statistically distinct from the
other contributing models. Additionally, this demonstrates
that the proposed model contains more information from the
base classifiers.

F. COMPARISON WITH MODERN EXISTING METHODS
As shown in Table 10, we compared our best-performing
model (ORB & VGG-19 with a softmax layer) to other exist-
ing state-of-the-art DCNN methods to classify 10 different
chest diseases using CXR images. ACU, REC, and SPF val-
ues of 95.11 percent, 93.15 percent, and 96.5 percent, respec-
tively, were obtained through the fusion of features derived
from local binary patterns (LBP) with the DFE by utilizing
the Inception V3 architecture [56]. These values were derived

from images that had been filtered with a Gaussian filter.
In terms of classification, features based on MobileNet-v2
have an ACU of 93.33 percent, a REC of 90.66 percent, and
an SPF of 95.22 percent. The study [57] introduced a novel
model for the classification of COVID-19 using CXR images
and they achieved the ACU, REC, and SPF of 95.72, 93.59,
and 96.78 percent, respectively. In contrast, our suggested
framework integrating the VGG-19 model, the ORB feature
extraction method, and the softmax classifier outperformed
the existing methods for classifying the 10 different chest
diseases including COVID-19, LC, ATE, COL, TB, PNET,
EDE, PNEU, PLT, and normal (see Table 10). In addition, it is
important to note that the proposed DFE framework classifies
ten distinct chest disorders using segmented lung pictures as
input. In contrast to the approaches already in use that are
summarized in Table 10 and compute features straight from
the CXR images, this approach does not work.

G. DISCUSSIONS
In this work, we investigated all three stages such as image
segmentation, feature extraction, and classification that are

VOLUME 11, 2023 39259



H. Malik et al.: Novel Fusion Model of Hand-Crafted Features With DCNNs

FIGURE 12. FNR and FPR results obtained after DFE from DCNN with different ML classifiers; a) VGG-16, b) ResNet-50,
c) ResNet-101, d) Inception-v3, e) DenseNet-169, f) DenseNet-201, g) Simple CNN, and h) VGG-19.
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FIGURE 13. FNR and FPR results obtained after DFE from DCNN and SURF feature with different ML; a) VGG-16, b) ResNet-50,
c) ResNet-101, d) Inception-v3, e) DenseNet-169, f) DenseNet-201, g) Simple CNN, and h) VGG-19.
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FIGURE 14. FNR and FPR results obtained after DFE from DCNN and ORB feature with different ML; a) VGG-16, b) ResNet-50,
c) ResNet-101, d) Inception-v3, e) DenseNet-169, f) DenseNet-201, g) Simple CNN, and h) VGG-19.
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TABLE 8. Results of experiments using DCNN models that combine ORB-based features with a variety of ML models.

TABLE 9. Results of McNemar’s and ANOVA test of the proposed model.

necessary for accurate image classification [5], [6], [7],
[8], [12], [16], [73], [74], [75], [76], [77]. The segmenta-
tion process began with the use of fundamental supervised
learning models, during which we investigated a variety of
U-net designs. Despite this, the Info-MGANmodel produced
the most significant outcomes when compared to the other
methods of supervised learning. A more extensive dataset
of TB and COVID-19 CXR images was not readily avail-
able, so the SMOTE technique was utilized to increase the
number of images belonging to the minority groups. The
development of a feature extraction pipeline (see Figure 8)
has been made by the integration of handcrafted feature [77]
extraction algorithms with DCNN models. It was shown that
key point descriptor techniques are effective at extracting
object intensities from a CXR image [64], [66], [71], [72],
[73], [74], [75]. To accomplish this goal, we make use of

the key point descriptors (namely SURF and ORB) to locate
candidate key intensity points that significantly contribute to
the classification of CXR segments. Every single one of these
models has demonstrated impressive accuracy, in addition
to a convergence of nature and noticeably deeper coverage.
DL function (such as softmax) and other ML techniques
(such as Q-SVM, AdaBoost, & RF are used to categorize
the computed features in the last layer. Both of the offered
ways of segmentation and classification have been fine-tuned
using data that is publically available [60], [61], [62], [63],
[64], [65], [66], [67], [68], [69], [70], [71], [72]. We have
offered a comprehensive evaluation of the usefulness of the
proposed structure, examining its performance both with and
without the concentration key point elements being taken into
consideration. The findings of the experiments reveal that the
DCNN models work more effectively than the simple CNN
model consistently [78]. The results of this study substantially
indicate the effectiveness of the suggested method (ORB &
VGG-19 with softmax) in classifying ten different chest dis-
eases using CXR images.

This technique can be utilized by radiologists as a sup-
plementary resource during the diagnostic process of patient
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FIGURE 15. Confusion matrix for the different proposed feature extraction networks: (a) ResNet-50 and ORB (the last layer is Q-SVM),
(b) ResNet-101 and SURF with final layer is softmax, (c) Simple CNN and ORB with the last layer are RF, (d) DenseNet-169 and last layer is
AdaBoost, (e) DenseNet-201 and SURF with final layer is RF, (f) Inception-v3 and ORB (the last layer is Q-SVM), (g) VGG-16 and SURF with the last
layer is softmax, and (h) VGG-19 and ORB with the last layer is softmax.
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FIGURE 15. (Continued.) Confusion matrix for the different proposed feature extraction networks: (a) ResNet-50 and ORB (the last layer is Q-SVM),
(b) ResNet-101 and SURF with final layer is softmax, (c) Simple CNN and ORB with the last layer are RF, (d) DenseNet-169 and last layer is AdaBoost,
(e) DenseNet-201 and SURF with final layer is RF, (f) Inception-v3 and ORB (the last layer is Q-SVM), (g) VGG-16 and SURF with the last layer is softmax,
and (h) VGG-19 and ORB with the last layer is softmax.

TABLE 10. Comparison of the proposed model with recent work.

cases. The fundamental purpose of this work is to establish a
diagnostic approach that is both efficient and cost-effective,
and which is capable of promptly identifying COVID-19 and
other chest disease patients based on their CXR images.

V. CONCLUSION
This study presents a proposed model (ORB & VGG-19 with
softmax) with the amalgamation of lung image segmenta-
tion and classification to accurately classify the ten chest
diseases i.e., COVID-19, LC, ATE, COL, TB, PNET, EDE,
PNEU, PLT, and normal using CXR images. With the use
of Info-MGAN, we were able to efficiently train the pix-to-
pix algorithm that was used in the segmentation of the lung
images. This was accomplished by making use of the CXR
images as well as the ground truth masks. To finish the task
of image segmentation, the trained segmentation network,
which is essentially the generator element of the Info-MGAN,
is utilized for the segmentation of the preprocessed images.
After the lung images had been segmented, they were loaded

into the feature extraction network, which is comprised of
DCNN models (such as ResNet-50, ResNet-101, VGG-19,
simple CNN, VGG-16, Inception-v3, DenseNet-169, and
DenseNet-201) as well as key point identification techniques
such as SURF and ORB. The extracted features obtained
from DCNN models were then categorized using multiple
ML approaches, including AdaBoost, Q-SVM, softmax, and
RF, to diagnose ten distinct chest diseases. This study indi-
cated that the classification accuracy was greatest when the
VGG-19 model was paired with the ORB key points extrac-
tion method, and softmax was applied to the final layer.
The model also yielded the lowest average FPR and FNR
of all the architectures that were suggested in this study,
with respective values of 1.10% and 2.33%. The performance
of the suggested method for diagnosing ten chest diseases
utilizing CXR images was superior to the state-of-the-art
models. In the future, the suggested approach will be trained
and tested on CT scan images for the identification of several
chest diseases.
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