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Abstract: One of the crucial tasks for the planning of surgery of the iliosacral joint is placing an
iliosacral screw with the goal of fixing broken parts of the pelvis. Tracking of proper screw trajectory
is usually done in the preoperative phase by the acquisition of X-ray images under different angles,
which guide the surgeons to perform surgery. This approach is standardly complicated due to the
investigation of 2D X-ray images not showing spatial perspective. Therefore, in this pilot study, we
propose complex software tools which are aimed at making a simulation model of reconstructed CT
(DDR) images with a virtual iliosacral screw to guide the surgery process. This pilot study presents
the testing for two clinical cases to reveal the initial performance and usability of this software in
clinical conditions. This model is consequently used for a multiregional registration with reference
intraoperative X-ray images to select the slide from the 3D dataset which best fits with reference X-ray.
The proposed software solution utilizes input CT slices of the pelvis area to create a segmentation
model of individual bone components. Consequently, a model of an iliosacral screw is inserted
into this model. In the next step, we propose the software CT2DDR which makes DDR projections
with the iliosacral screw. In the last step, we propose a multimodal registration procedure, which
performs registration of a selected number of slices with reference X-ray, and based on the Structural
Similarity Index (SSIM) and index of correlation, the procedure finds the best match of DDR with
X-ray images. In this pilot study, we also provide a comparative analysis of the computational costs
of the multimodal registration upon various numbers of DDR slices to show the complex software
performance. The proposed complex model has versatile usage for modeling and surgery planning
of the pelvis area in fractures of iliosacral joints.

Keywords: iliosacral screw; multimodal image registration; multiregional image segmentation; DDR
projection; software materialize mimics

1. Introduction

Preoperative consideration and planning are necessary before applying any osteosyn-
thesis. It is advisable to determine the optimal method of fracture repositioning, to de-
termine the type of osteosynthesis and also to select the optimal osteosynthetic material
for the specific case of injury. Nowadays, there are several computer software tools that
allow for virtual fracture repositioning and also virtual osteosynthesis [1,2]. These software
tools usually operate with CT data of the affected skeletal area. Once the CT data is loaded
into the preoperative planning software, it is possible to separate the individual fracture
fragments. Some software tools can separate larger fragments automatically; correction
by the program user is necessary to refine the boundaries of the fragments. In most cases,
point marking of the fragment margins is necessary, and the software then allows for the
margins to be drawn more accurately than with automatic separation. After the separation
of individual fragments, which are distinguished by color, their repositioning is possible.
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Repositioning can be done manually again (using the mouse), where most of the software
allows for moving the fragments in different axes and planes. Some software allows for
automatic repositioning using mirroring. These alternatives require a CT scan of the healthy
part of the skeleton—the other side of the pelvis, the other limb. After repositioning, it is
possible to insert virtual osteosynthetic material plates, screws, nails, etc. However, most of
the software is tied to a specific manufacturer of osteosynthetic material, which will supply
the software with the necessary shape and dimensions of the individual components. The
software also allows for the optimal shaping of osteosynthetic material-especially plates.
The virtual plate thus shaped can be removed from the software and sent to the manufac-
turer to produce an individually shaped implant. The optimal dimensions of individual
plates, screws or nails can be determined in the software. The planning of the implant
placement is also possible in the computer navigation software preoperatively, but the time
for this task is limited as it may increase the total operating time.

In cooperation with the Technical University in Ostrava, Czech Republic and Trauma
Center at the University Hospital in Ostrava, software tools were developed that would
link preoperatively planned implant placement based on CT data with preoperative fluoro-
scopic X-ray projections. After fracture repositioning and implant planning, this proposed
software would be used to fit the X-ray fluoroscopic projections to the prepared preoper-
ative model. The proposed software tools would then allow the planned implant to be
implanted into the fluoroscopic projections. During surgery, it would be possible to select
the optimal skeletal entry for the insertion of guide wires or canal drilling and also to
compare the direction of drilling with the optimal direction determined by the position of
the planned implant. At present, these tasks are performed on the basis of the operator’s
preoperative reasoning as well as his anatomical knowledge and imagination during the
surgical procedure. The main contributions of this study include the following:

• Multiregional 3D segmentation model of pelvis area from CT images
• Reconstructed DDR projections with virtual iliosacral screw
• Multimodal (X-ray/CT) image registration for optimal CT slice selection according to

the reference X-ray image.

The rest of the paper is organized as follows. In Section 2, we describe a recent state-
of-the-art CAOS system in orthopedic surgery. Section 3 is focused on the description of
the proposed system, and Section 4 aims to present the achieved results of the proposed
system on two cases of iliosacral joint injury. Section 5 presents a discussion and future
perspectives in this research.

2. Recent Work

Over the last decade, computer-assisted orthopedic surgery (CAOS) has become a
part of orthopedic surgery, allowing surgeons to perform surgical operations with better
accuracy and results, thus improving the patient’s well-being [3]. Finding its application
first in orthopedic spinal surgery [4,5], CAOS has progressed into other procedures in-
volving the musculoskeletal system, ranging from total hip or knee arthroplasty (THA
and TKA, respectively) to bone tumor surgery [3,6,7]. CAOS navigation and planning are
implemented using various methods and their combination, of which the major ones are
CT-based imaging, intraoperative fluoroscopy-based imaging, and imageless navigation
systems [3,7–9].

Sacroiliac joint dislocations and sacral fractures present a challenging treatment due to
the proximity of neurovascular structures. The optimal treatment is done with percutaneous
iliosacral screw (ISS) insertions. Computer-assisted navigation has the potential to not only
reduce malposition rate and nerve and vessel injuries but also decrease operation time
and radiation exposure [10]. As such, precise anatomical data of the patient’s pelvis and
sacral bone are required. Virtual planning of pelvic and sacral bone operations on a patient-
specific 3D model of the hip allows surgeons to compare different operation strategies.
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CT-guided iliosacral fixation offers direct visualization of the screws, thus reducing the
malposition of the screws and radiation dose. This procedure provides a precise geometry
of fracture fragments and anatomical structures, allowing an accurate insertion [11–14].

A combination of 3D fluoroscopic navigation and computed tomography (CT-3D-
fluoroscopy) was applied by inserting an iliosacral screw on three types of simulated
posterior pelvic ring disruptions. Despite the small patient sample size, CT-3D-fluoroscopy
proved to be successful in assisting iliosacral joint surgery with no or little damage to
surrounding soft tissue [13–15].

CAOS procedures combined with 3D printing [16] of patient-specific pelvic bone
present a potential guide template to treat iliosacral joint dislocation. The model is first
reconstructed from CT images in an appropriate software (Mimics and similar), and then
3D printed with photosensitive resin. The guide template had a reduction in fluoroscopy
time and screw insertion time with low blood loss and postoperative recovery [17].

CAOS has also undertaken a small part in virtual reality (VR) training simulations
providing the ability to train on anatomically accurate 3D hip models for orthopedic
surgeries, particularly aimed at medical residents. Compared to conventional training,
simulations have the potential to create a risk-free environment to improve the personnel’s
skills without any harm to patients. The main limitations of training simulators are feedback
to the trainee, availability, and financial cost of such simulators [18,19].

A notable proposal is to use an arc screw for the internal fixation of a pelvic fracture
through an internal arc fixation channel (IAFC) located inside the pelvis [20–22]. An
automatic planning algorithm for pelvic fractures is introduced to determine an optimal
channel for the arc screw. Utilizing a finite element analysis (FEA) on pelvic 3D models,
a precise stress simulation determined the force applied to the pelvis in three types of
postures. Based on the FEA results, the planning algorithm then locates the position,
length and curvature of the arc screw for pelvic ring fracture fixation, which is patient-
dependent. The current implementation uses a robot-navigated drilling system capable of
drilling constant curvature in a Sawbone model of the pelvis. Due to the complexity of the
pelvic structure and the surrounding soft tissue, the feasibility of IAFC is still subject to
change [20–22].

3. Materials and Methods

In this section, we present the realization and workflow of positioning the guide
for an iliosacral screw. The proposed scheme from this study is aimed at the generation
of a segmentation model in the system Mimics, reflecting individual bones in the pelvis
area. Consequently, the proposed methodology generates reconstructed radiograph DDR
projections from the system Mimics with Iliosacral Screw. Lastly, we propose a multimodal
registration scheme, which is aimed at finding the CT slice which is the best fit for a given
X-ray image for orientation in the 3D CT plane. The general workflow consists of the three
mentioned phases, as shown in Figure 1:

• Generation of 3D models of the pelvis
• Generation of digitally reconstructed radiograph (DRR) projections
• Multimodal image registration of DRR projections to a reference X-ray image
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3.1. Generation of 3D Models of the Pelvis

An image processing software Materialise Mimics generates 3D models from com-
puted tomography (CT) image data and positions the guide 3D data optimization software.
Materialise Mimics and Materialise 3-matic were used, both developed by a Belgium com-
pany Materialise NV. These software tools offer the user a wide range of tools to extract
from and edit anatomical structures in medical images, generate 3D mesh models and
compute various analyses and measurements. In order to create accurate 3D models and
place the guide, voxels representing the pelvis are first extracted using a thresholding-
based segmentation method, which compares each voxel’s Hounsfield unit (HU) value to
a certain range with minimum (T1) and maximum (T2) threshold values, as shown in (1).
The output is a 3D binary mask, represented as a 3D matrix, which is used with the original
CT images to compute a 3D mask composed of voxels that fall within the defined range of
Hounsfield units.

I2(x, y) =


0 I1(x, y) > T2
1 T1 > I1(x, y) ≤ T2
0 I1(x, y) ≤ T1

(1)

where I1 and I2 are the input and output 3D matrices consisting of CT slices. This method
extracts the desired bone tissues and removes surrounding soft tissue, like muscles and
skin. However, it will occasionally extract voxels that represent other anatomical structures,
medical objects or scattering artifacts caused by already present metal objects whose
Hounsfield unit is similar to those of bone tissues. The region-growing segmentation
method is then used on each CT slice to remove these undesirable artifacts and objects,
thus increasing the quality of the following 3D reconstruction. It is an iterative algorithm
that grows a region of voxels depending on their seed values Si(x,y):

|I(Si(x, y))− I(x, y)| ≤ T (2)

If the result of the absolute value is greater than a threshold value T, the voxel is added
to the output region. The growth is also dependent on the connectivity between voxels,
where a 6-connectivity option checks neighboring faces of the selected voxel and those
which are connected to it. The last operation consists of splitting the whole pelvis mask
into individual anatomical structures: lumbar vertebrae, sacral bone, left and right ilium
and femurs. The process of the segmentation and decomposition of the pelvis area from CT
slices is presented in Figure 2.
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Figure 2. Process of segmenting and separating pelvis from CT slices into individual anatomical
structures. Left to right: thresholding output (green color), region growing output (yellow color) and
mask splitting output (multiple colors). The top row is a representation of masks in 3D space, and the
bottom row is in 2D space.

The purpose of splitting the mask is to give the option of hiding individual bones to
accurately position the guide. From the resulting mask, we use Mimics’ marching cubes
algorithm to generate a 3D mesh object of the pelvic bones. The mesh object is then exported
into 3-matic (Figure 3), where the guide is positioned depending on the patient’s injured
iliosacral region. Once the guide’s 3D mesh model is placed, it is exported into Mimics in
an STL format, which retains information about its location and rotation in 3D world space.
A new mask of the guide is then generated and fused with CT slices. Lastly, new DICOM
files in the form of CT slices are generated, containing both anatomical structures and the
positioned guide (Figure 3).
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Figure 3. (a) placement of the guide in 3-matic, (b) maximum intensity projection (MIP) of 30 CT
slices displaying the location of the guide and its insertion depth.

3.2. DDR Projection Generation (CT2DDR)

Digitally reconstructed radiography (DRR) projections simulate a conventional 2D
X-ray image based on CT imaging data. The projections are generated with a maximum
intensity projection technique that selects the highest Hounsfield unit of each CT slice.
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The following section describes the process of generating DRR projections (Figure 4),
consisting of two steps: image rotation and maximum intensity projection. The resulting
DRR projections are then used to register a reference X-ray image. For the purpose of
acquisition of DDR projections, we have developed the SW CT2DDR, which calculates
individual DDR projections.
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An interactive application has been created to import DICOM files, which store CT
data in the form of transversal slices. First, a three-dimensional matrix consisting of
ordered CT slices as layers is rotated at a specific angle θ around the z-axis. The rotation is
performed using a rotation matrix Rz:

Rz(ϑ) =

cosϑ −sinϑ 0
sinϑ cosϑ 0

0 0 1

 (3)

which is a form of image transformation that changes the location of each pixel. Second,
maximum intensity projection locates the highest pixel intensity value, as described in (4),
and stores it in a two-dimensional matrix, where the output matrix’s number of rows and
columns correspond to the input matrix’s number of layers and columns, respectively.

Ix,y = max
(

Mx, y,z
)

(4)

where M is the input three-dimensional matrix, and I is the output two-dimensional matrix.
The generated DRR projections are then exported as graphics files, as shown in Figure 5.
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3.3. Image Histogram Pre-Processing

Image histogram matching is a low-level image processing transformation that
aims to normalize the histogram of an input image to that of a reference image, thus
changing the distribution of pixel intensities [23]. Histogram matching is used as a
potential pre-processing step to increase the precision and decrease the computation
time of image registration.

The algorithm is described as computing the histogram pr(r) of an input image and
using it to its pixel values to the values in the histogram equalized image in the range
k = [0, L − 1]:

sk = (L− 1)
k

∑
j=0

pr
(
rj
)

(5)

where L is the maximum pixel value in the input image based on its bit depth and then
computes all values of a transformation function G(zq) in the same range as k, so that
G(zq) = sk:

G
(
zq
)
= (L− 1)

q

∑
i=0

pz(zi) (6)

and obtain values zq from the inverse transformation of G:

zq = G−1(sk) (7)

The result is a histogram-matched image mapped from equalized pixel values sk to
the corresponding values zq.

3.4. Image Registration Model

Image registration is one of many tasks of medical image analysis, which deals with col-
lecting, processing, and evaluating medical images acquired from imaging techniques, most
prominently magnetic resonance imaging (MRI), computed tomography (CT), positron
emission tomography (PET), and single photon emission computed tomography (SPECT),
but also conventional radiography (CR) and medical ultrasonography (US). It is a process
of transforming images or 3D volumes from the same (monomodal) or multiple modalities
(multimodal) into a single coordinate space so that the data can be accurately compared
and studied. Its task is to reduce inevitable misalignment, which manifests in pre, intra and
postoperative image acquisition. Registration is realized by mapping the source images to
target images, also called sensed images and reference images, respectively. Monomodal
registration deals with images taken from the same modality by the same scanner: CT-CT
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or MRI-MRI. Multimodal registration, on the hand, deals with images taken from different
modalities and different scanners: CR-CT, CT-MRI, or CT-PET [24–26].

In this paper, we introduce the use of multimodal image registration to preoperatively
plan screw insertions in the iliosacral region. The first section describes the registration
algorithm used to register source CT image data to target CR images. The second section
describes similarity metrics used to assess the precision of registration.

3.4.1. Multimodal image registration algorithm

Image registration algorithms [26] can be defined by three components. First is a cost
function that describes the dissimilarity between two images and is formed by various
regularization terms, such as fluid, diffusion and elastic. Second is a space of geometric
transformations, which allows the images to deform. These are rigid for translation,
rotation and scaling and affine (non-rigid) for additional warping. The third component
is a strategy for minimizing the cost function. This paper focuses on the implementation
of Thirion’s [27–30] Demons algorithm of image matching as a diffusion process. It is an
optical flow-based affine registration method that computes the demon forces according
to the local characteristics of the images. Gaussian smoothing filter with a given σ is then
used as a regularization term for each iteration until convergence. The process is based on
the following optical flow equation, which describes the displacement

→
v :

→
v =

(m− s)·
→
∇s( →

∇s

)2
+ (m− s)2

(8)

where m and s are intensity functions of the source image M and the target image S,

respectively, at a certain point and
→
∇s is a gradient of the source image S.

Considering a source image M and a target image S, the algorithm aims to find a
final transform T that belongs to a set of allowed deformations T between the space M of
the source image M and the space S of the target image S. In each iteration, the deformed
Ti(M) of the source M becomes Ti+1(M), constrained internal forces fint and external forces
fext, created by the interactions between Ti(M) and S. This process is described in a block
diagram in Figure 6.
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Figure 6. Block diagram of the multimodal registration algorithm for matching X-ray and CT images.

The first step consists of precomputation of the set of demon forces Ds, which are
extracted from the target image S, where one pixel (voxel for 3D images) corresponds to
one demon force. The second step is an iterative estimation of the deformation of the source
image T, from the source space M to the target space S. The demon force can be described
by its spatial position P or intensity at that location s(P) or a direction from the inside to
the outside based on the gradient. Figure 7 presents the example of using the multimodal
registration between the target (X-ray) image and moving (DDR projections).
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3.4.2. Statistical Metrics for Registration Evaluation

Structural similarity index [31] or SSIM index is a metric for the objective evaluation
of two images containing the same overall structures, which are defined by their contrast,
shape and luminance. This metric is defined as:

SSIM(x, y) =

(
2µxµy + C1

)(
2σxy + C2

)(
µ2

x + µ2
y + C1

)(
σ2

x σ2
y C2

) (9)

where µ is the weighted average of images x and y, and σ is the covariance of x and y.
Parameter Ci = (Ki, L)2, where L is the dynamic range of pixel values (2n-bits/pixel – 1) and
K1� 1 and K2� 1 are scalar constants for C1 and C2. The resulting index value lies within
the range of [0, 1], where SSIM values at 0 indicate the lowest similarity and values at
1 indicate the highest similarity of input images x and y.

A correlation coefficient is a metric that computes the linear correlation between two
images, x and y, defined as the ratio of the sum of multiplied differences and squared root
of multiplied sums of squared differences:

CORR(x, y) = ∑(xi − x)·(yi − y)√
∑(xi − x)2·∑ yi − y2

(10)

where xi and yi are pixel intensity values, x and y are the arithmetic mean of each image.
The resulting value lies within the range of −1 and +1, where CORR below 0 indicates a
lower linear correlation and above 0 indicates a higher linear correlation between images x
and y.

The resulting registered DRR projections are evaluated in terms of similarity to their
respective reference X-ray image. The higher the evaluation indexes, the better the registra-
tion algorithm deformed DRR projections to their reference X-ray image.

4. Results

This section is focused on the results of image registration with the use of the Demons
algorithm to match input DRR projection images to reference X-ray images. Computed
tomography and X-ray datasets of two patients have been used in this pilot study. The
patient’s records were used in this study under the approval of the Ethics Committee of
the University Hospital in Ostrava, Czech Republic, with reference number: 1030/2022.
Tables 1 and 2 describe the technical parameters of each image dataset per patient.



J. Clin. Med. 2023, 12, 2138 10 of 17

Table 1. Technical and metadata information of X-ray image datasets per patient.

Imaging
Device Modality Bit-Depth

Image
Resolution

[Pixels]

Pixel
Spacing

[mm]

View
Position

Body Part
Examined

Patient 1 Kodak Elite
CR CR 16 2048 × 2500 0.17/0.17 AP Pelvis

Patient 2 Samsung
GC85 DX 16 2994 × 2990 0.13/0.13 AP Pelvis

Table 2. Technical and metadata information of computed tomography image datasets per patient.

Imaging Device Modality Bit-Depth Image Resolution
[Pixels]

Pixel Spacing
[mm]

Patient 1 Siemens Definition AS CT 16 512 × 512 0.81/0.81

Patient 2 Siemens Somatom
Force CT 16 512 × 512 0.94/0.94

Convolution kernel Pitch factor [mm] Number of slices Slice thickness [mm] Body part
examined

B20f 1.05 1561 0.6 Abdomen
Br40d/2 1.4 779 0.75 Abdomen

The registration process follows the steps described in Figure 1. A corresponding
range of DRR projections is chosen, depending on the position and rotation of the patient’s
pelvis on the X-ray image. This range of projections considers any deviations in the patient’s
position and rotation which are likely to occur during X-ray and CT scans. A smaller range
of projections, 10◦ for example, is preferred to reduce the computation time of registration.
The output registration images are then evaluated using similarity metrics described in
statistical evaluation metrics to obtain the projection with the highest similarity to its
reference image, as seen in Figures 8 and 9, where the registered and its input image have
the highest similarity.
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Figures 10 and 11 show the summary of similarity metrics per a normalized rotation
angle of a registered and an original DRR projection for two patients, where angle 0◦

signifies the base DRR projection, which corresponds to the general rotation of the patient’s
pelvis on the reference X-ray image, 345◦ is the lower limit, and 15◦ is the upper limit
of a 30◦ angle range. After normalization, the range spans from −15◦ to 15◦, with 0◦

being the base DRR projection. A full summary of the highest similarity results and their
projection angle per patient can be found in Table 3. Due to the difference in computing
the structural similarity index and correlation coefficient, during which the correlation
coefficient computes only the mutual relationship of pixel values of two images, the
resulting registered DRR projection with the highest similarity to the reference image may
differ. This can be observed in Figure 10 of the results for Patient 1, where the best-matched
projection angle based on structural similarity is 2◦, unlike the correlation coefficient, which
is 8◦. The structural similarity index and correlation coefficient in Figure 11 of patient
2 results correspond. The difference in the highest results is mainly dependent on pixel
intensity distributions of DRR projection images and X-ray images and differs across the
tested patient datasets. Therefore, we indicate the best-registered projection angle for both
metrics based on the highest value of the two metrics and the nearest projection angle to the
base projection angle, which must correspond to the rotation on the patient’s X-ray image.

Table 3. Summary of highest similarity results and their DRR projection per patient.

Patient 1 Patient 2

SSIM [-] 0.42 0.50
CORR [-] 0.26 0.36

DRR projection 2◦ 0◦
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Computation Time

Overall computation time is significantly dependent on the range of DRR projections
to be registered, the size and pixel intensity distribution of input and reference images
and the computer hardware used. We used two computer systems to compare this. The
first computer, designated as PC 1, consists of the following components: 6th generation
quad-core Intel Core i5-6400 processor with a frequency of 2.7 GHz, 16 GB of available
memory, Nvidia GTX 1060 6 GB graphics card and Windows 10 operating system. The
second system, PC 2, consists of a 10th generation 8-core Intel Core i5-10300H processor
with a frequency of 2.5 GHz, 16 GB of available memory, Intel UHD Integrated and Nvidia
RTX 2060 6 GB graphics cards and Windows 10 operating system.

On PC 1, the registration time lies in the range of 7.65 and 9.22 s, with a mean of 7.74 s
per DRR projection for Patient 1. On PC 2, the average time had been reduced to 6.36 s per
DRR projection in an overall range of 5.64 and 7.39 s. A summary of computation times for
both computer systems per patient is shown in Table 4.

Table 4. Summary of computation times in minutes of image registration per range of rotation angles
of DRR projections across all patient datasets.

Computation Times on PC 1 Computation Times on PC 2

DRR
Projections Patient 1 Patient 2 Patient 1 Patient 2

1◦ 0.13 0.15 0.11 0.13
10◦ 1.53 1.87 1.32 1.36
20◦ 3.02 3.40 2.23 2.64
30◦ 3.93 4.64 3.26 3.89

360◦ 46.45 55.39 38.24 45.15

Figure 12 shows the computation times of registration of 5 ranges of DRR projections,
1◦, 10◦, 20◦, 30◦, and 360◦, for two patients on PC 1. A full summary of computation times
per these ranges across all patients and both computer systems can be found in Table 5.
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Table 5. Summary of similarity metrics and mean computation times of two datasets in an angle
range of 30◦.

Without Histogram Matching With Histogram Matching

SSIM [-] CORR [-]
Mean
Time

[Seconds]

DRR
Projection SSIM [-] CORR [-]

Mean
Time

[Seconds]

DRR
Projection

Patient 1 0.42 0.26 7.87 2◦ 0.51 0.42 8.17 15◦

Patient 2 0.50 0.36 9.86 0◦ 0.40 0.42 9.68 345◦

As described in the pre-processing section, image histogram matching has been used
to potentially improve the overall registration in terms of precision and computation time.
This was tested on two datasets on PC 1. The summary of the results can be seen in Table 5.

Despite the input DRR projections having a more uniform pixel value distribution to its
reference X-ray image, we found minor improvements of similarities of Patient 1 at the cost
of a 0.3 s increase in mean computation time. For Patient 2, however, there was a decrease
in similarities with lower mean computation time, 0.18 s difference. On both occasions,
the best-registered projection resulted in the angle range limits, at 15◦ for Patient 2 and at
345◦ (normalized—15◦) for Patient 2, which greatly differ from those without histogram
matching. Figure 13 shows the difference in the pixel intensity distribution of both datasets.
Reference X-ray images are the same as in Figures 8 and 9, respectively.

J. Clin. Med. 2023, 12, x FOR PEER REVIEW 14 of 18 
 

 

Table 4. Summary of computation times in minutes of image registration per range of rotation an-
gles of DRR projections across all patient datasets. 

 Computation Times on PC 1 Computation Times on PC 2 
DRR Projections Patient 1 Patient 2 Patient 1 Patient 2 

1° 0.13 0.15 0.11 0.13 
10° 1.53 1.87 1.32 1.36 
20° 3.02 3.40 2.23 2.64 
30° 3.93 4.64 3.26 3.89 

360° 46.45 55.39 38.24 45.15 

As described in the pre-processing section, image histogram matching has been used 
to potentially improve the overall registration in terms of precision and computation time. 
This was tested on two datasets on PC 1. The summary of the results can be seen in Table 
5. 

Table 5. Summary of similarity metrics and mean computation times of two datasets in an angle 
range of 30°. 

 Without Histogram Matching With Histogram Matching 

 SSIM [-] CORR [-] Mean Time 
[seconds] 

DRR 
Projection 

SSIM [-] CORR 
[-] 

Mean Time 
[seconds] 

DRR 
Projection 

Patient 1 0.42 0.26 7.87 2° 0.51 0.42 8.17 15° 
Patient 2 0.50 0.36 9.86 0° 0.40 0.42 9.68 345° 

Despite the input DRR projections having a more uniform pixel value distribution to 
its reference X-ray image, we found minor improvements of similarities of Patient 1 at the 
cost of a 0.3 s increase in mean computation time. For Patient 2, however, there was a 
decrease in similarities with lower mean computation time, 0.18 s difference. On both oc-
casions, the best-registered projection resulted in the angle range limits, at 15° for Patient 
2 and at 345° (normalized—15°) for Patient 2, which greatly differ from those without 
histogram matching. Figure 13 Error! Reference source not found.shows the difference in 
the pixel intensity distribution of both datasets. Reference X-ray images are the same as in 
Figures 8 and 9, respectively. 

    

    

Figure 13. Best registered DRR projections with and without histogram matching. (Top Row) is 
Patient 1, (Bottom Row) is Patient 2. 

5. Discussion and Conclusions 
In this paper, we describe a novel technical solution for the simulation of planning of 

iliosacral screw placement for iliosacral joint injuries. This system is able to virtually sim-
ulate placing an iliosacral screw into preoperative CT 3D scans in the form of DDR 

Figure 13. Best registered DRR projections with and without histogram matching. (Top Row) is
Patient 1, (Bottom Row) is Patient 2.

5. Discussion and Conclusions

In this paper, we describe a novel technical solution for the simulation of planning
of iliosacral screw placement for iliosacral joint injuries. This system is able to virtually
simulate placing an iliosacral screw into preoperative CT 3D scans in the form of DDR
projections and classify respective CT scans with the screw according to the intraoperative
X-ray images. This complex procedure enables surgeons to investigate the operation area
with a virtual screw anytime during the surgery and guide them to optimal lead the
iliosacral screw to avoid other surrounding tissues.

The proposed complex software solution enables the modeling of the pelvis area as a
multiregional segmentation procedure (Figure 2) using the Region growing method. This
procedure consequently allows for the virtual placing of the iliosacral screw (Figure 3),
which is consequently used for the generation of DDR projections. These projections
represent a 3D model of the investigated pelvis area for spatial manipulation with the
screw in 3D space instead of 2D X-ray images. To find the most suitable 3D slice which best
corresponds with the reference X-ray image, we incorporated a multimodal registration
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procedure, which is aimed at finding the 3D DDR slice which best corresponds with a
reference X-ray image (Figure 7).

This is a versatile procedure, which enables surgeons to make a 3D model of the
pelvis area and virtually place an iliosacral screw in the 3D space, with the consequent
generation of DDR projections, for which we created in SW MATLAB the application
CT2DDR (Figure 4). This procedure can be versatile and applied for any X-ray image with
using of the proposed multimodal (X-ray/CT) registration, which is aimed at the selection
of the 3D slice which best corresponds with the reference X-ray image. This complex
procedure provides an effective transformation of 2D X-ray views, which are taken during
surgery, into 3D space for better spatial orientation and planning of surgery within the
preoperative phase. We built the proposed registration system based on the SSIM and
correlation index, where these parameters are capable of selecting the best 3D slices, which
are the most similar to a reference X-ray image (Figures 10 and 11).

In our study, we compared the native intraoperative X-ray images with selected
reconstructed DDR slices with the iliosacral screw, where we pointed out the differences,
which show the multimodal registration performance (Figures 8 and 9). On the other
hand, it is clinically important to have a comparison between the original CT slices and
reconstructed DDR projections with the iliosacral screw to investigate whether the screw is
safely led out of the surrounding critical tissues, as we report in Figure 14.
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An important aspect of the registration procedure is computing time. Here, we publish
the comparative analysis of computing costs for the various number of 3D projections
(Figure 12), which shows that the number of projections is crucial for speeding up the whole
registration process. This is one of the limitations of a multimodal registration procedure.
For this reason, it is beneficial to select a narrower range of 3D slices for the registration to
save computational costs.

The presented study represents a pilot study, which brings complex proposed software
tools for planning iliosacral screw placement for iliosacral joint injuries. This pilot study
serves for initial testing on two clinical cases, as we report in this paper, to justify the initial
performance and usability of this system in the clinical practice of traumatology. Despite
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the limitation of the number of patients in this study, we achieved favorable results, which
predetermine the potential of using this system in clinical conditions.

At the present time, the proposed software system is being used for the iliosacral joint
fracture reposition surgery at University Hospital in Ostrava. The system brings significant
benefits as the investigation of iliosacral screw in 3D space and automatic settings of a view
with the screw according to the reference X-ray image, which is standardly done by C-arm
during the surgery. On the other hand, we are aware of the limitations, which will be the
focus of the future improvement of this system. Despite having this planning system with
augmented reality in the form of an iliosacral screw, it will be beneficial to incorporate an
attention-based system, which will predict the potential damage of surrounding tissues
by leading the screw. Here, we plan to implement segmentation of surrounding tissues
and check whether the screw is intersected with any of these segmented tissues. As a
part of this procedure, we plan to implement the screw trajectory optimization technique,
which should be able to predict the best way to lead the screw with minimal damage to
surrounding tissues.
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