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Abstract: This article deals with the problem of loose materials, i.e., wheat grain, when transported
by belt conveyors with cover belts. For the purpose of further research, experimental measurements
of the deflections of a conveyor belt with loose material were carried out on a self-built laboratory test
device. The mechanical contact between the wheat and the belt could be suitably approximated using
an elastic foundation. The measured data were evaluated and used to obtain functional relationships
for the compressibility moduli of the bilateral Winkler elastic foundation. The obtained relationships
were further stochastically processed using the Monte Carlo method.

Keywords: conveyor; conveyor belt; wheat grain; Triticum aestivum; loose material; experiment;
beam; elastic foundation; Winkler model; stiffness; statistics; probability; Newton–Raphson method;
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1. Introduction
1.1. Belt Conveyors

Material handling is defined in the Czech Republic (and similarly in other countries of
the world) within the standard ČSN 260002 [1] as the professional movement, loading and
directing of materials (objects) in production, circulation and storage. A handling system
is defined as a set of two or more handling devices and means of transport, forming an
interconnected whole of a particular area of transport, management and organisation.

According to ČSN ISO 7149 [2], a belt conveyor is defined as a conveyor (or feeder)
for free bulk materials (loose materials) or individual loads, with an endless conveyor belt
(made of rubber, textile, steel, plastic, wire, etc.) as a supporting element.

A belt conveyor is a mechanical conveyor with a pulling and carrying element in the
form of an endless belt guided and driven by drums [3]; the conveyor belt is supported
along the length of the conveying route by rollers or a flat surface on which the pulling
and carrying element (conveyor belt) is guided by friction. The belt conveyor is suitable
for conveying both loose and solid materials in horizontal, inclined [4] and, with special
modifications, steep and vertical directions.

Currently, the terminology and classification of conveyors transporting materials
at high angles of inclination is not precisely defined. Steep conveyors are considered
to be all conveyor designs intended for conveying loose and solid materials at angles
exceeding the maximum (critical) angle at which the conveyed material is distributed on
the conveyor belt surface and without initiating reciprocating motion relative to the belt
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due to gravitational forces. Steep and vertical conveyors are best classified according to the
structural and functional characteristics of the equipment which ensure that the conveyed
material remains on the conveyor belt.

In order to increase the permissible angle of inclination of the conveyor, it is necessary to:

- Increase the coefficient of friction between the conveyor belt and the conveyed material;
- Structurally modify the surface of the conveyor belt so that the relative movement

of the conveyed grains along the belt is prevented [5] (in the case of either inward
transport against the direction of belt movement, or downward transport in the
direction of conveyor belt movement); and

- Increase the pressure of the conveyed material on the conveyor belt [6].

Increasing the critical angle of inclination of a conveyor belt of conventional design
can be achieved by means of an additional, so-called “cover belt”, which is routed parallel
to the carrier belt [7], see Figure 1.
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The cover belt creates the necessary pressure on the material by its own weight,
increasing its adhesion and cohesion to the supporting conveyor belt. Depending on the
type of conveyor belt selected and the pressure devices used, these conveyors are capable of
conveying loose material at inclination angles significantly exceeding the critical inclination
angles of conveyor belts of conventional construction.

The advantages of belt conveyors with a cover belt are the possibility of transporting
loose material under inclination angles of up to 90◦ at high transport speeds reaching up to
6 m/s, independent of transport performance on the inclination angle of transport; and the
possibility of hermetic transport of loose materials [8], which is of specific importance in the
transport of dusty and toxic materials. The disadvantages of belt conveyors with a cover
belt are the often higher construction complexity, increased wear of conveyor belts, and
higher energy consumption compared with belt conveyors of conventional construction.

The necessary increase in the normal pressure of loose material against the supporting
branch of the conveyor belt is achieved by pressure elements, e.g., [6]. Special belts are
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used as pressure elements—which either consist of chains with circular or elliptical links,
or are conventional rubber conveyor belts—which are pressed by a series of movable
attached pressure rollers [7] placed at a given distance, and also by means of pneumatic
and magnetic devices.

The pressure devices of the conveyor belts of belt conveyors which use a cover belt
consisting of link chains are suitable for the transport of loose materials of larger grain
size. Pressing devices consisting of conventional rubber conveyor belts are suitable for
homogeneous, fine-grained loose materials which are usually loaded onto the conveyor
belt in a uniform layer.

The design of belt conveyors with cover belts is based on different ways of increasing
the normal friction of the conveyed loose material against the supporting conveyor belt.
The principles of increasing friction are achieved by using:

- The weight of the conveyor belt;
- Exertion of external pressure forces by means of spring-loaded rollers;
- Elasticated air-filled bags, and
- Magnetic forces in the transport of ferromagnetic as well as non-magnetic materials.

The transport of loose materials by vertical belt conveyors with cover belts is realised
in a slot formed by the carrier and cover belt [7], which in parallel lead (at a given distance)
in the direction of their longitudinal axis at the same speed along the vertical part of the
transport route. Depending on the geometric dimensions of the slot, the height of the
column of the conveyed loose material, the mechanical–physical properties of the conveyed
material, and the strength properties and pre-stressing of the conveyor belt, deflections of
the conveyor belt can occur during the conveying of the loose material through the vertical
conveying shaft. The amount of deflection of the conveyor belt depends, in addition to the
above parameters, on the spacing and arrangement (opposing or staggered) of the pressure
rollers. Belt conveyors with cover belts adapted for steep conveying of bulk materials (up
to conveyor inclination angle max. 60◦), use a cover (pressure) conveyor belt, which is
laid on a layer of loose material, to transport materials at inclination angles exceeding the
limiting inclination angles of belt conveyors of standard construction. As a result of the
pressure exerted by the weight of the cover conveyor belt, the pressure of the conveyed
material against the carrier belt increases, thus increasing the frictional force in the contact
area of the carrier conveyor belt (the size of the frictional force is a function of the normal
force) and the limiting angle of inclination of the conveyor.

1.2. Loose Materials

Based on their origin, loose materials are divided into natural (inorganic and organic)
and artificial (based on inorganic, organic or combined raw materials).

Loose materials [9] are also classified according to their physical and chemical prop-
erties. Among the basic physical properties are those sufficient to determine the weight
and dimensions or volume of the material sample under test. These material proper-
ties are in particular: specific weight, density, porosity, moisture content and grain size.
The chemical properties of substances are defined by the ability of substances to react in
chemical reactions.

A classification of loose materials has been developed by the international organi-
sation “Fédération Européenne de la Manutention”, according to which loose materials
are characterised by grain size, cohesion, behaviour during transport, volumetric mass
and temperature.

The mechanical behaviour of a loose material is a complex reflection of its structure,
i.e., the essentially random nature of the motion of each particle. The mobility of the parti-
cles of a loose material is the reason why, unlike solid, continuous substances (a continuum
consisting of solid particles), the state of a loose material changes, even within relatively
narrow limits. The following mechanical properties of loose material are important pa-
rameters: grain size; moisture content; loose grain weight; loose grain angle; internal
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and external friction angle; cohesive stress and stress state. More information about the
properties of loose materials can be found in [9,10].

1.3. Solved Problem

The compression of the belts between which the loose material is placed is a key
parameter when transporting material at high inclination angles. For this reason, the paper
focuses on the interaction of the carrier and cover belt with the loose material, which are
wheat caryopses. For the purpose of research and development of sandwich belt conveyors,
a laboratory device for measuring the belt deflection of a belt conveyor with loose material
was created.

The obtained results of the measured deflections were used for a simple analytical
model of the elastic foundation according to Winkler. For further practical use, the results
were also processed stochastically, i.e., probabilistically, using the Monte Carlo method.
The obtained stiffness values of the elastic foundation, which are random in nature, could
be applied in engineering practice, e.g., engineering design and material transport.

The application of an elastic foundation in connection with loose materials, a stochastic
approach and belt conveyors, is a novel methodology.

Our article is focused on the interaction between conveyor belt and grain wheat free
of bran. However, the presented methodology (derived equations, measurements and
their evaluation) can be used even for different types of loose materials, e.g., sand, gravel,
soil, flour, etc.

2. Materials and Methods
2.1. Experimental Equipment

The basic parts of the laboratory equipment designed for experimental measurement
of the deflection (i.e., change in height) of the loose material layer or conveyor belt from
the applied pressure force of the conveyor roller on the pressure belt, were the support
structure, conveyor belt, pressure rollers and optional weights, see Figure 2.

Both ends of the conveyor belt were clamped and fixed in the fasteners. The right belt
fastening was equipped with a strain gauge axial force sensor RSC-1 T [11]. By turning
the screw connection, the force in the belt could be controlled and the force record was
processed by computer.

The guide rods were attached to the support frame for mounting the rollers and
installing the deflection-measuring fixture at the mid-length of the belt. Deflection was also
measured under loaded rollers. The roller spacing was the selected length L.

A wooden prism was placed on top of 2 rollers, on which weights were layered. A 3D
model of the design solution “laboratory device for measuring the transformation of a layer
of loose material from the applied pressure force of a conveyor roller on a pressure belt”
was created and subsequently manufactured. The implemented laboratory equipment
was legally protected, see [6]; it was physically built and located in the laboratory at the
Department of Design, Faculty of Mechanical Engineering, VŠB—Technical University of
Ostrava, see Figure 3.

The wooden board formed the plane of symmetry of the task, which is explained in
more detail below. Wooden battens were fixed on both longitudinal sides of the board to
prevent the material grains from spilling over the edges. The loose material was spread
over the top surface of the board, i.e., the loose material was between the wooden board,
the battens and the belt, to a pre-set thickness of h/2 /mm/.

In order to obtain the modulus of the foundation, the deflection of the conveyor
belt as a function of the longitudinal and transverse forces needed to be experimentally
determined on a test device.
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2.2. Wheat as Loose Material

The specific weight of cereals is defined as the ratio of the weight of cereals expressed
in kilograms to the volume expressed in hectolitres or m3. It is fixed for each type of grain
in kilograms per hectolitre to two decimal places. The specific weight of cereals is an
important parameter in cereal trading and processing, and is used worldwide.

For the Czech Republic, the standard [12] has been stored in the Czech Metrology
Institute, Regional Inspectorate Pardubice since 1998. Since 1971, when the standard was
produced, the guarantee of the standard has been provided by the staff of the primary
metrology laboratories in Prague. The construction of the state standard of the specific
weight of cereals is described and corresponds to the 1974 OIML IR 15 National standard
for the specific gravity of cereals of 20 litres; and is contained in the Decree of MIT 29/2002
Coll., which establishes the requirements for measuring instruments for measuring the
specific weight of cereals designated with the EEC mark; and in both ČSN EN ISO 7971-
1 [13], which specifies the method of measurement and evaluation of the results, and ČSN
EN ISO 7971-2 [14]. The range of specific weight of wheat is 61.5 kg/hL to 88.0 kg/hL.

Loose material, i.e., grains of wheat (Triticum aestivum) free of bran (see Figure 4) were
used for laboratory tests carried out on the test equipment (see Figures 2 and 3) and had a
loose weight ρs = 767 kg/m3, i.e., 76.7 kg/hL, a loose grain angle ψd = 10◦ and an angle of
repose of 26◦. Granularity of wheat can be defined by the largest grain length, which in our
case was amax = 6.9± 0.4 mm (see Figure 4).
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2.3. Experimental Measurements

In order to determine the stiffness of the transferred loose material, an experiment
was carried out on the aforementioned test device (see Figures 2 and 3), i.e., a conveyor
with an EP500 cover belt (belt thickness t = 9 mm, belt width B = 0.4 m) transporting loose
material, wheat (see Figure 5).
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It was advisable to address the simpler static task first, and deal with the dynamic
problem of belt movement and transport of loose material later. The cover belt was pressed
against the wheat by means of pressure rollers, to which weights were gradually added,
i.e., the force was increased F /N/, and in addition the belt was stretched by the tensile force
N /N/. The wheat was placed on a sufficiently thick wooden board, which conveniently
served to simulate the plane of symmetry. The magnitude of the transverse load by the
rollers was known and the tensile force was measured by a strain gauge.

After loading with forces, the deflection of the belt was measured at the locations of
the pressure rollers and in the middle between the rollers v /m/ using a digital caliper
with an accuracy of 0.01 mm. A schematic diagram of the bulk compression with marked
symmetry planes, from which the computational model for solving the problem was based,
is shown in Figure 6.

In the basic experiment (see Figure 5), only 2 pressure rollers at a distance of L = 0.5 m
were considered. More pressure rollers would not have brought about any significant
refinement of the experiment or further analytical solutions. The reason for this was that
the distance between the rollers was sufficiently large and therefore there was very little
influence of one roller on the other. This was also consistent with the theory and practice of
infinitely long beams on an elastic foundation, see e.g., [15–21], and the experiment further
satisfies the symmetry conditions of the problem, which are addressed in the following text.

The grains were aligned to a constant height h/2 /mm/ and the grains were randomly
arranged in a natural way.

2.4. Analytical Calculation of the Stiffness of an Elastic Foundation

In mechanical engineering calculations, a real situation is always simplified using a
computational model that should be sufficiently accurate and reliable for the design of
technical units. This is a common practice and therefore our computational model is based
on the theory of beams on an elastic foundation.

An elastic foundation is very often used in engineering practice and historically
verified as a suitable description of the generally very complex interaction of mechanical
contact between beam and foundation. More information on the theory and practice of
beams on an elastic foundation can be found, for example, in [15–21].
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2.4.1. The Winkler Model of Elastic Foundation

The Winkler bilateral elastic foundation model is one of the first, simplest and most
widely used elastic foundation models (1867), see e.g., [15–21]. The Winkler model is based
on the assumption that the continuous reaction of the foundation is directly proportional to
the deflection v at the site under investigation. This basic model does not consider plastic
and non-linear deformations of the foundation, which is consistent with reality, as realistic
loading on the conveyor will not result in plastic damage to the belt or loose material.

The situation of mechanical interaction between the conveyor belt and the loose
material (transported material) can therefore be suitably replaced by a beam (conveyor
belt) on an elastic foundation (loose material). For simplicity and with negligible error,
the belt was considered to be an infinitely long beam. Conveyor belts are also commonly
considered endless in conveyor belt transport.

Alternatively, the problem can be solved using a more complex computational model
of a plate on an elastic foundation, see e.g., [22], or the problem can be solved numerically,
e.g., using FEM, see e.g., [23], but the attraction of the simplicity of the analytical solution
would be lost.

Since the problem is symmetric and can be replaced by a beam, only a quarter of
the compressed section of loose material can be addressed under these assumptions. In
Figure 6, this part of the section is marked with a thick line and the rest of the compressed
section of the loose material is replaced by symmetry planes. These are the XZ plane,
i.e., the horizontal plane of symmetry (in the experiment this plane of symmetry is repre-
sented by a sufficiently rigid wooden board on which the wheat was evenly spread), and
the YZ plane, i.e., the vertical plane of symmetry, which is not considered in the experiment
because it would not bring about any simplification in the measurement, see Figure 6. A
diagram of the computational model is shown in Figure 7.
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Since the conveyor belt was subjected to tensile and bending stresses during operation,
it was desirable to apply the second-order theory for beams on an elastic foundation.
Homogeneous differential equations of a beam on a Winkler elastic foundation and their
general solution for the interval x ∈ 〈0; ∞) , are given in Table 1 or [14].

Table 1. General solution of an infinite beam on an elastic foundation for x ∈ 〈0; ∞ ).

Differential
equations EJzt

d4v
dx4 − N d2v

dx2 + KBv = 0

Deflection
v /m/ e−ωR x[A3 cos(ωI x) + A4 sin(ωI x)]

Slope
dv
dx /rad/

e−ωR x[A4(ωI cos(ωI x)−ωR sin(ωI x))− A3(ωR cos(ωI x) + ωI sin(ωI x))]

Bending moment
Mo /Nm/ −EJzte−ωR x(A3

[(
ω2

R −ω2
I
)

cos(ωI x) + 2ωRωI sin(ωI x)
]
+ A4

[(
ω2

R −ω2
I
)

sin(ωI x)− 2ωRωI cos(ωI x)
])

Shearing force
T /N/

N(ω2
I +ω2

R)e−ωR x

2(ω2
I−ω2

R)
[A3(ωR cos(ωI x)−ωI sin(ωI x)) + A4(ωI cos(ωI x) + ωR sin(ωI x))]

Where E /Pa/ is Young’s Modulus of the belt (designated as E = 2.6× 108 Pa); Jzt /m4/ is the principal second
moment of cross-section of the belt; N /N/ is normal force; K /Nm−3/ is Winkler modulus of foundation; B /m/
is belt width; A3, A4 /m/ are integral constants and parameters; and ω, ωR, ωI /m−1/ are defined by following

relationships ω = 4
√

KB
4EJzt

, ωR =
√

ω2 + N
4EJzt

, ωI =
√

ω2 − N
4EJzt

, where Jzt =
Bt3

12 .

2.4.2. Boundary Conditions of the Analytical Solution

The belt (beam) is symmetrical, the plane of symmetry YZ is at the point x = 0 m. The
beam is also loaded by a transverse point force F at a distance of L/2 and an axial tensile
force N. The boundary conditions of vertical symmetry are

dv
dx

∣∣∣∣
x=0

= 0, T|x=0 = 0 (1)

The beam must also satisfy the conditions of continuity of the equations of deflection,
rotation and bending moments over the distance x = L

2 . A continuity of the given quantities
must be valid at all points of the interval x ∈ 〈0; ∞ ). In the distance x = L

2 the condition
of a step change in the shearing force must also be satisfied. The mentioned boundary
conditions are given in Equations (2)–(5).

v|x−= L
2
= v|x+= L

2
, (2)

dv
dx

∣∣∣∣
x−= L

2

=
dv
dx

∣∣∣∣
x+= L

2

, (3)
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Mo|x−= L
2
= Mo|x+= L

2
, (4)

T|x−= L
2
− T|x+= L

2
= F. (5)

An infinite beam also satisfies the boundary conditions of zero response to load at
infinity, e.g., v|x→∞ = 0 and dv

dx

∣∣∣
x→∞

= 0, which is already taken into account in Table 1.
Based on the boundary conditions mentioned here, the following “simple” analyt-

ical solution of the beam can be derived, which can be conveniently used to solve the
required compression of the loose material by the conveyor belt. The particular/applicable
solution/integral is therefore given by the relationships in Table 2.

Table 2. Particular solution of a beam on an elastic foundation loaded by two point forces, F and a
tensile force N, for x ∈ 〈0; ∞ ) and Figure 7.

Deflection v /m/ ω2

2KBωRωI

2
∑

i=1

[
Fe−ωR |x−Li|(ωI cos(ωI(x− Li)) + ωR sin(ωI |x− Li|))

]
Slope dv

dx /rad/ −ω4

KBωRωI

2
∑

i=1

[
Fe−ωR |x−Li| sin(ωI(x− Li))

]
Bending moment Mo /Nm/ 1

4ωRωI

2
∑

i=1

[
Fe−ωR |x−Li|(ωI cos(ωI(x− Li))−ωR sin(ωI |x− Li|))

]
Shearing force T /N/ − 1

2

2
∑

i=1

[
Fe−ωR |x−Li|

(
Nω4

KBωRωI

)
sin[ωI(x− Li)] +

|x−Li|
x−Li

cos[ωI(x− Li)]
]

Where straight brackets “|

1 
 

 |” denote the absolute value.

2.4.3. Relationships for the Calculation of Quantities Below the Measured Points

Relationships for the calculation of deflection v, rotation dv
dx , bending moment Mo and

shearing force T under force F and midway between the forces F, according to Table 1 and
Figure 7, are summarised in Table 3.

Table 3. Calculation of quantities at the measuring points, i.e., under the force F and midway between
the forces F according to Figure 7.

Deflection under force F
vF = v|x= L

2
/m/

Fω2

2KBωRωI

[
ωI + e−ωRL[ωI cos(ωIL) + ωR sin(ωIL)]

]
Deflection midway between the forces F

v0 = v|x=0 /m/
Fω2e−ωR

L
2

KBωRωI

[
ωI cos

(
ωI

L
2

)
+ ωR sin

(
ωI

L
2

)]
Slope under force F

dv
dx

∣∣∣
x= L

2

/rad/
Fω4e−ωRL

KBωRωI
sin(ωIL)

Slope midway between the forces F
dv
dx

∣∣∣
x=0

/rad/
0

Bending moment under force F
Mo|x= L

2
/Nm/

F
4ωRωI

[
ωI + e−ωRL[ωI cos(ωIL)−ωR sin(ωIL)]

]
Bending moment midway between the forces F

Mo|x=0 /Nm/
Fe−ωR

L
2

2ωRωI

[
ωI cos

(
ωI

L
2

)
−ωR sin

(
ωI

L
2

)]
Shearing force under force F

T|x= L
2

/N/ − FeωRL

2

[
Nω4

KBωRωI
sin(ωIL) + cos(ωIL)

]
Shearing force midway between the forces F

T|x=0 /N/ 0
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2.5. Probabilistic Approaches in Mechanics

Probabilistic approaches in mechanics or engineering problems are among the modern
trends in science associated with the development of computer technology [24].

The natural world around us behaves in accordance with random events or simula-
tions. For these reasons, the application of stochastic modelling (statistics and probability)
is desirable and practical. Modern trends are very often based on direct or modified Monte
Carlo methods, see e.g., [25,26], which was confirmed by our practical experience, see
e.g., [27–29], and the experience of other authors, see e.g., [30–32].

In practical applications, see text below, Anthill software is used, which also includes
a pseudo-random number generator. In Anthill software, the period of the pseudo-random
number generator is 232. Anthill software uses bounded (truncated) histograms as inputs
and outputs. A histogram is an approximate representation of the distribution of numerical
data. The Anthill program allows evaluation and display of multi-dimensional (multi-
component) random variables [27,30,33].

The SBRA (Simulation-Based Reliability Assessment) method, which is used for prob-
abilistic assessment of phenomena and structures, is also associated with the application of
Anthill software [30,33].

3. Results

Initial experimental measurements were carried out for two different thicknesses of
the loose material layer, namely for h = 36 mm and h = 72 mm. All measurements were
performed at constant force magnitudes F of 160.1, 282.7, 405.3, 527.9 and 594.9 N (the
initial measurement at h = 72 mm also used the forces F of 99.5, 222.1, 344.7, and 477 N,
which were further dropped).

All measurements always started at a certain tensile force N in the unloaded state,
i.e., F = 0 N, before adding weights (increasing the transverse force F), thus increasing the
force N which was measured by a strain gauge.

After each increment of force F (e.g., from 160.1 to 282.7), the deflection under the forces
vF = v|x= L

2
and midway between the forces v0 = v|x=0 were measured. The relationships

for these deflections from Table 3, here rewritten into Equations (6) and (7), were used with
the measured deflection values to calculate the Winkler modulus of foundation K for the
individual measurements.

vF =
Fω2

2KBωRωI

[
ωI + e−ωRL[ωI cos(ωIL) + ωR sin(ωIL)]

]
, (6)

v0 =
Fω2e−ωR

L
2

KBωRωI

[
ωI cos

(
ωI

L
2

)
+ ωR sin

(
ωI

L
2

)]
. (7)

where ωR, ωI are the non-linear relations from Table 1.
Equations (6) and (7) are non-linear equations, where the unknown is the Winkler

modulus of foundation K. This modulus K is calculated using Equation (6) for the deflection
vF and is denoted as KF; similarly, Equation (7) is used to calculate the deflection v0 to obtain
the modulus K0. There are therefore two independent non-linear equations f(KF, vF) = 0
and g(K0, v0) = 0 which can be solved by the Newton–Raphson method, e.g., in the
MATLAB program [34].

The Newton–Raphson method for solving non-linear equation f(KF, vF) = 0 consists
of successive calculations of iterations KFn+1 = KFn − f(KF, vF)/ f′(KF, vF), n = 0, 1, 2, 3 . . .
where f ′(KF, vF) is the first derivative of the function f(KF, vF) and KF0 is the initial
iteration, which must be chosen close enough to the sought solution for the method to
converge. The equation g(K0, v0) = 0 is solved in a similar way. For more information on
the Newton–Raphson method, see e.g., [35].

An example of a solution for a layer thickness h = 72 mm is given in tabular and
graphical form, see Table 4 and Figure 8. The graphical representation was created in the
format KF, K0 = function(F, N).



Machines 2023, 11, 327 12 of 22

Table 4. Winkler moduli of foundation K /Nm−3/ for individual measurements for the thickness of
the wheat layer h = 72 mm according to Figure 7.

Inputs from Experiment Outputs

Tensile Force
N /N/

Loading Force
F /N/

Deflection
v /mm/

Winkler Modulus of Elasticity
K /Nm−3/

Under Force F
vF

Between Forces F
v0

Under Force F
KF

Between Forces F
K0

825 99.5 2.37

Not measured

388552

Not calculated

883 222.1 3.93 593598

974 344.7 4.88 807735

1100 472.3 5.76 983020

1176 594.9 6.72 1085698

250 160.1 2.04 1085077

269 282.7 3.38 1177415

303 405.3 4.26 1394325

356 527.9 5.52 1392673

386 594.9 6.32 1355528

603 160.1 1.87 1144399

619 282.7 2.58 1616621

646 405.3 4.27 1310841

698 527.9 5.30 1393375

712 594.9 5.82 1440310

154 160.1 1.20 2267645

178 282.7 2.73 1598355

206 405.3 3.24 2055253

252 527.9 5.25 1518707

280 594.9 6.13 1440006

682 160.1 1.76 1230281

691 282.7 2.88 1363932

718 405.3 3.74 1563796

747 527.9 4.62 1679055

761 594.9 5.32 1626241

264 160.1 2.57 782445

296 282.7 4.55 774149

347 405.3 6.10 840786

401 527.9 7.05 982880

448 594.9 7.80 1000092

350 160.1 2.00 1088641

371 282.7 3.07 1318829

410 405.3 4.65 1211655

462 527.9 5.62 1333423
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Table 4. Cont.

Inputs from Experiment Outputs

Tensile Force
N /N/

Loading Force
F /N/

Deflection
v /mm/

Winkler Modulus of Elasticity
K /Nm−3/

Under Force F
vF

Between Forces F
v0

Under Force F
KF

Between Forces F
K0

488 594.9 6.53 1272758

520 160.1 2.14 960093

542 282.7 3.37 1124544

573 405.3 4.24 1341238

613 527.9 5.43 1366172

635 594.9 5.69 1506847

771 160.1 2.06 0.48 966801 479722

781 282.7 2.63 0.32 1533641 676775

804 405.3 3.77 0.30 1527840 765347

831 527.9 4.29 0.46 1837813 747131

849 594.9 4.53 0.45 2014491 781151

605 160.1 1.85 0.56 1157734 419956

619 282.7 3.43 0.50 1080675 544063

644 405.3 4.37 0.53 1271449 605248

682 527.9 5.19 0.44 1436339 695856

702 594.9 5.73 0.35 1475859 759345

479 160.1 2.32 0.57 863950 392665

499 282.7 3.39 0.62 1121037 476158

534 405.3 4.29 0.52 1327431 572800

578 527.9 5.49 0.32 1350807 699560

598 594.9 6.24 0.22 1330286 768184

354 160.1 1.94 0.42 1135778 413737

382 282.7 3.34 0.52 1172888 473918

427 405.3 4.63 0.50 1217474 543318

486 527.9 5.97 0.77 1220123 539226

521 594.9 6.61 0.48 1243692 638687

276 160.1 2.06 0.94 1065360 288915

307 282.7 3.86 0.99 970943 363472

353 405.3 5.19 0.77 1054064 461229

409 527.9 6.48 0.60 1104481 549785

437 594.9 6.68 0.35 1244116 640029

177 160.1 2.68 0.72 754264 306346

201 282.7 4.58 0.78 784705 372466

239 405.3 5.96 0.79 890653 424760

285 527.9 7.61 0.26 905809 586426

311 594.9 8.42 0.00 924039 43204480
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pendent function of the form 𝐾௛ =  𝑎𝐹 + 𝑏𝑁 + 𝑐, where 𝑎, 𝑏 /m−3/ and 𝑐 /Nm−3/ are the 
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Figure 8. Relationship KF, K0 = function(F, N) /Nm−3/ for wheat layer thickness h = 72 mm.

Table 4 contains both measured and calculated values. In the first measurement, the
deflections were measured only under the forces vF and the deflection midway between
the forces v0 was not measured. Later, however, it was considered useful to start measuring
the deflection midway between the forces v0 to provide more data for better model fitting
and stochastic processing.

The solution for a wheat layer thickness of h = 36 mm is similar and is shown here
only graphically, see Figure 9.
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3.1. Basic Processing of Results

From Figures 8 and 9a large characteristic spread of values K can be seen, which is
consistent with the reality of loose materials. Due to the above-mentioned variability, it
is advisable to statistically process and evaluate the results. For simplicity, and for the
efficiency of the solution and experiment, the results for a given wheat layer thickness h
were approximated with the following function Kh = function(F, N), which adequately
describes reality and thus gives the expected value (mean). To preserve the linearity of
the problem (linear differential equations, see Table 1) it is advisable to use a deflection-
independent function of the form Kh = aF + bN + c, where a, b /m−3/ and c /Nm−3/
are the regression constants, and the forces F and N are independent variables that do
not compromise the linearity of the function. It is not advisable to look for a dependency
e.g., Kh = function(v) that is no longer linear.
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Statistical processing was performed in MATLAB2021b [34] using the “Curve Fitting
Toolbox”. The data (see Figures 8 and 9) were interleaved with the aforementioned linear
function (see Figures 10 and 11) where the boundary edges of the planes Kh are marked
“Line A” to “Line H” for better orientation in the following figures. Kh72 is the regression
for h = 72 mm and Kh36 is the regression for h = 36 mm.
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Approximating the measured and calculated data with a linear function gives the
following: the relationship for the Winkler modulus of foundation Kh72 /Nm−3/ for a
wheat layer thickness h = 72 mm has the form (8), and Kh36 /Nm−3/ for a wheat layer
thickness h = 36 mm has the form (9).

Kh72 = 664.6F + 413.4N + 649600, (8)

Kh36 = 1851F + 990.6N + 1285000 (9)

Both the measured data and the processed results, i.e., Equations (8) and (9), show that
the magnitude of the pressing force F and tensile force N has an effect on the magnitude of
the Winkler modulus of foundation, and the thickness of the loose material layer plays a
role as well.

From Figures 9 and 10 it can be seen that the obtained Equations (8) and (9) have
a large variance, so it is appropriate to combine them with the probabilistic approach
presented in the following subsection.

3.2. Stochastic Processing of Results

Anthill software [33] was used for stochastic processing of the results.
An error was identified Errh /1/, see (10), between the analytical values of the Winkler

moduli of foundation (see Figures 7 and 8 and Table 4) and the calculated functional values,
see Equations (8) and (9).

Errh =
Kan − Kh

Kan
/1/, (10)

where Kan /Nm−3/ is the analytical Winkler modulus of foundation (i.e., KF a K0, see
Figures 8 and 9 and Table 4) and Kh /Nm−3/ is the function value of the Winkler modulus
of foundation, see Equations (8) and (9).

The standard deviation of the error was then calculated from these error values
σh72 = 0.2759 for a wheat layer thickness of h = 72 mm and σh36 = 0.5147 for h = 36 mm. The
standard deviations were used to produce normalised histograms with normal distributions
that range in intervals 〈1− σh72; 1 + σh72〉 and 〈1− σh36; 1 + σh36〉. Equations (8) and (9)
were stochastically multiplied by the given histograms to produce the relationships

Kh72stoch = Kh72histσh72 /Nm−3/, (11)

Kh36stoch = Kh36histσh36 /Nm−3/. (12)

In accordance with the programming in the Anthill software environment, truncated
normal histograms were used, see Figure 12 and [29], which in random simulation gave
random values from the corresponding intervals 〈1− σh72; 1+ σh72〉 and 〈1− σh36; 1+ σh36〉.
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A uniform distribution of forces F and N was assumed for the simulations, which
both ranged from 0 to 1000 N, and a total of 106 pseudo-random simulations were run.

In Figure 13, 2D histograms are shown, in which it can be seen that the green lines
delimit the area with the most frequent occurrence of values, i.e., these are functions Kh72
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and Kh36; these lines are labelled according to Figures 10 and 11. Values outside this region
are the result of multiplying functions by histograms and do not contradict reality.
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4. Discussion

Experimental measurements were carried out on laboratory test equipment of our own
design, i.e., a conveyor with a cover belt and pressure rollers. As a first step, the purpose of
the measurements was to determine the stiffness of the loose material of wheat (Triticum
aestivum) grains free of bran (see Figure 5). The original measurements were performed for
two different thicknesses of loose material, namely for h = 72 mm and h = 36 mm using
the symmetry boundary conditions. In the experiment, the displacement of the rollers vF
and the displacement midway between the rollers v0 were measured using calipers when a
force F was applied, which was induced by increasing the weights, and the axial tensile
force N was measured by using a strain gauge. The measured values were used to calculate
the stiffness at the belt–wheat interface according to Winkler.

To enable the calculation of the stiffness of the wheat, the conveyor was suitably and
practically simplified to a beam on an elastic foundation. The cover belt was treated as
a beam, the pressure rollers were replaced by point forces and the interaction with the
wheat was a bilateral Winkler elastic foundation. A relatively “simple” linear mechanics
problem was then solved analytically (see Figures 6 and 7). Winkler moduli of foundation
were numerically calculated using non-linear Equations (6) and (7), see also Table 3. From
the calculated values, a relatively large but natural degree of variability was found, which
was mainly due to the difference in the values of KF and K0 when measured under the
same conditions at two different locations, i.e., under the force F and midway between
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the forces F and with random arrangement of the wheat. For this reason, such a function
was sought that would provide a dependence between the Winkler modulus of founda-
tion and the forces F and N. It was found that one of the simplest functions, namely a
linear function (plane) of the form K = aF + bN + c gave great results. From the result-
ing functional relationships for the mean values Kh72 = 664.6F + 413.4N + 649, 600 and
Kh36 = 1851F + 990.6N + 1285, 000 it could be seen that the transverse force F had a greater
effect on stiffness than the longitudinal force N, but the thickness of the loose material
also had a contribution to the stiffness (in the functional relationships, this is reflected
by a constant—i.e., the last member of relationships Kh72 and Kh36—which represents the
stiffness at zero force loading F and N).

The experiment and its evaluation showed that the Winkler modulus of elasticity was
not constant and that it was influenced by several factors mentioned above, but the values
were in the same range as those commonly reported in the literature for loose materials or
elastic foundations, see e.g., [14,15].

Due to the relatively large variability, a stochastic approach was used, where the func-
tions Kh72 and Kh36 were multiplied by normalised histograms with normal distributions,
which were generated using the standard deviation calculated from the errors between the
analytical and approximated solutions, see Equations (11) and (12). In this way, a larger
range of values could be obtained and the natural randomness could be preserved, which
better described the results obtained from the experiment and the real situation.

In the future, other aspects could be added to the measurements, such as non-uniform
material distribution, or another, more complicated model of the elastic foundation could
be considered for the evaluation, e.g., the Hetényi model, which was marginally used and
presented e.g., in [21], see also [36,37]. The differential equation for the Winkler model is
EJzt

d4v
dx4 − N d2v

dx2 + KBv = 0, see Table 1, and the differential equation for the Hetényi model

is (EJzt + BK4)
d4v
dx4 − N d2v

dx2 + K1Bv = 0, where K1 /Nm−3/ and K4 /Nm/ are the moduli
of Hetényi foundation.

The beam model can be changed to a shell model or a plane strain model and other
stochastic approaches or dynamic solutions can also be used, see e.g., [22–32,38–46]. FEM
could also be used, but this would lose the elegantly simple and uncomplicated analytical
solution and would also make the use of stochastic methods more complex and difficult.
FEM can also be used to solve dynamic tasks, e.g., the start-up, steady-state, run-out and
hard stop of the conveyor; modal analysis; vibration diagnostics, etc. [47].

The presented and used methodology and experimental equipment can also be used
for other types of loose materials, e.g., sand, sawdust, gravel, etc., in the branch of engi-
neering design of belt conveyors and material transport.

5. Conclusions

A simple, original test device for static compression of loose materials by a sandwich
belt conveyor was developed and applied.

A series of measurements were carried out on the transport of wheat grains. The basic
properties of wheat as a loose material were evaluated.

The analytical model of the Winkler elastic foundation was simply and appropri-
ately used as a simple and reliable alternative to the more demanding numerical solution
using FEM.

From the experimental results, i.e., the deflections under the rollers and the deflections
midway between the rollers, non-linear analytical relations for the Winkler elastic moduli
of foundation KF and K0 were determined using the iterative Newton–Raphson method.
Subsequently, these values were statistically and stochastically processed. Regression
dependencies Kh on the thickness of the wheat layer h = 36 and h = 72 mm and the
transverse load forces F and the axial forces N in the belt have emerged.

In the stochastic evaluation, the given regression dependencies were stochastically
multiplied by normalised histograms with normal distribution, and the Monte Carlo
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method (probabilistic approach) was used to obtain relationships that better described the
naturally occurring randomness of the real situation.

The results are considered primary and new. The new methodology was demon-
strated and explained and other possible approaches and applications of the solution are
also mentioned.

In this paper, only wheat uniformly distributed between the belts of a sandwich
belt conveyor was practically solved. Future work is planned to research the uneven
(random) distribution of wheat and other loose materials between the belts, which is a
typical non-uniformity in belt conveying.

The obtained results, or more generally the whole presented methodology, can be used
for practical tasks of engineering research and development of belt conveyors and their
design. The solution of the problem as an application of elastic foundation and stochastic
approaches is a novelty in this field of belt conveyor design.
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Nomenclature

A3, A4 /m/ Integral constants for the solution of a differential equation, see Table 1
amax /mm/ Largest grain length
a /m−3/ Regression constant
B /m/ Belt width
b /m−3/ Regression constant
c /Nm−3/ Regression constant
dv
dx /rad/ Slope (first derivative of deflection)
d2v
dx2 /m−1/ Second derivative of deflection
d4v
dx4 /m−3/ Fourth derivative of deflection
E /Pa/ Young’s Modulus of a Belt
Errh /1/ Error between analytical and approximated values of Winkler moduli

of elastic foundation
e /1/ Euler’s number
F /N/ Loading force
f(KF, vF) Function of KF and vF
f ′(KF, vF) First derivative of function f(KF, vF)
FEM Finite Element Method
g /ms−2/ Gravity acceleration
g(K0, v0) Function of K0 and v0
h /mm/ Loose material layer thickness
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histσh36 /1/ Truncated normal histogram created from σh36
histσh72 /1/ Truncated normal histogram created from σh72
i /1/ Index
Jzt /m4/ Principal second moment of cross-sectional area of a belt
K /Nm−3/ Winkler modulus of elastic foundation
K0 /Nm−3/ Winkler modulus of foundation calculated from deflections v0
K1 /Nm−3/ Hetényi modulus of foundation
K4 /Nm/ Hetényi modulus of foundation
Kan /Nm−3/ Analytical Winkler modulus of foundation (i.e., KF and K0)
KF /Nm−3/ Winkler modulus of foundation calculated from deflections vF
KF0 /Nm−3/ Winkler modulus of foundation in initial iteration
KFn /Nm−3/ Winkler modulus of foundation in nth iteration
KFn+1 /Nm−3/ Winkler modulus of foundation in nth + 1 iteration
Kh /Nm−3/ Approximation function of Winkler modulus of foundation
Kh36 /Nm−3/ Approximation function of Winkler modulus of foundation

for h = 36 mm
Kh36stoch /Nm−3/ Stochastic function of Winkler modulus of foundation for h = 36 mm
Kh36stoch /Nm−3/ Stochastic function Kh36stoch displayed by Anthill software
Kh72 /Nm−3/ Approximation function of Winkler modulus of foundation

for h = 72 mm
Kh72stoch /Nm−3/ Stochastic function of Winkler modulus of foundation for h = 72 mm
Kh72stoch /Nm−3/ Stochastic function Kh72stoch displayed by Anthill software
L /m/ Span between pressure rollers
Mo /Nm/ Bending moment in the belt
m /kg/ Weight of loading
N /N/ Tensile force in the belt
n /1/ Index
Steps /1/ Number of Monte Carlo random simulations
T /N/ Shearing force in the belt
t /m/ Thickness of the belt
v /m/ Deflection of belt
v0 /m/ Deflection of belt midway between the forces F
vF /m/ Deflection of belt under the force F
x Axis X of coordinate system
x /m/ General distance from the origin of coordinate system
y Axis Y of coordinate system
z Axis Z of coordinate system
ψd Loose grain angle
ω /m−1/ Parameter of solution of differential equation
ωI /m−1/ Parameter of solution of differential equation
ωR /m−1/ Parameter of solution of differential equation
ρs /kgm−3/ Loose weight
σh36 /1/ Standard deviation of error for a wheat layer thickness h = 36 mm
σh72 /1/ Standard deviation of error for a wheat layer thickness h = 72 mm
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39. Murčinková, Z.; Šmeringaiová, A.; Halapi, M. Damping properties of composites with short and long fibres by impact testing.
AIP Conf. Proc. 2019, 2077, 020042.
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