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W N e

Abstract: Smart agriculture is a concept that refers to a revolution in the agriculture industry that
promotes the monitoring of activities necessary to transform agricultural methods to ensure food
security in an ever-changing environment. These days, the role of technology is increasing rapidly
in every sector. Smart agriculture is one of these sectors, where technology is playing a significant
role. The key aim of smart farming is to use the technologies to increase the quality and quantity of
agricultural products. IOT and digital image processing are two commonly utilized technologies,
which have a wide range of applications in agriculture. IOT is an abbreviation for the Internet of
things, i.e., devices to execute different functions. Image processing offers various types of imaging
sensors and processing that could lead to numerous kinds of IOT-ready applications. In this work, an
integrated application of IOT and digital image processing for weed plant detection is explored using
the Weed-ConvNet model to provide a detailed architecture of these technologies in the agriculture
domain. Additionally, the regularized Weed-ConvNet is designed for classification with grayscale and
color segmented weed images. The accuracy of the Weed-ConvNet model with color segmented weed
images is 0.978, which is better than 0.942 of the Weed-ConvNet model with grayscale segmented
weed images.

Keywords: leaf disease detection; ensemble deep learning; convolutional neural network; classification;
image processing

1. Introduction

These days, the world has more IOT-connected devices than humans. The Internet of
things (IOT) is a theory which defines the notion of interrelated computing nodes, devices,
or things being linked to the Internet and being able to link themselves to other computing
devices [1]. It mainly comprises networks, sensor equipment, and wireless communications.
The Internet of things includes electronic appliances, linked security systems, vehicles,
thermostats, vending machines, ATMs, speaker systems, buildings, alarm clocks, and a
wide range of other applications. The Internet of things is used to advance intelligence
by offering a high level of interaction between the environment and humans. It improves
reliability, flexibility, and proficiency by focusing on time saving, cost reduction, and
resource usage [2]

Visual information is the most significant sort of information that can be observed,
extracted, and understood by humans. Visual information processing consists of almost
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one third of the cortical area of the human brain. Image processing is an area that performs
some processes on an acquired image generally to enhance the quality of the image or
to analyze it to obtain some information [3]. Currently, image processing and analysis
is among the speedily rising applied technologies. It has diverse uses such as medical
image processing, remote sensing, machine vision, robotics, video processing, surveillances,
self-driving cars, gesture recognitions, and many more [4].

Smart agriculture is a mechanism for agriculture farm supervision that practices
information technology to ensure that the crops and soil obtain precisely what is essential for
the finest productivity. The aim of smart agriculture is to ensure productivity, sustainability,
and safety [5]. Smart agriculture heavily depends on specific equipment and information
technology. The smart agriculture methods include real-time monitoring of crops, soil, and
environment. During the last decades, smart agriculture was restricted to operations that
could assist in information technology infrastructure. Additionally, related computational
resources needed to be fully implemented and benefited from the profits of precision
agriculture. Nowadays, mobile computing applications, smart sensors, cloud computing,
and drones promote smart agriculture as feasible for farming at any scale [6,7].

The numerous roles of Internet of things technologies in smart agriculture are crop
observation, water management, soil management, and pesticide control. The enhanced
responsiveness of operations is one of the advantages of employing IOT in agriculture.
Farmers can swiftly react to any substantial change in air, weather, humidity, quality, or the
condition of each crop or soil in the field using real-time surveillance and forecast systems.
Moreover, the Internet of things, with its real-time, precise, and joint characteristics can
offer great modifications to the agricultural supply chain management and deliver a critical
technology for forming an even flow of agricultural logistics [8,9]. Systems, drones, remotes,
remote sensors, and computer imaging, combined with IOT are utilized in smart agriculture
to supervise surveys, crops, and map fields, as well as deliver data to farmers for rational
farm management plans to save both money and time.

There are several uses of digital image processing in smart farming. Digital Image
processing has been demonstrated to be an effective mechanism for processing analysis
in multiple applications of smart agriculture and farming [10]. Various kinds of imaging
methods such as photometric feature-based imaging, fluorescence imaging, thermal imag-
ing, and hyper-spectral imaging have considerably contributed to the last decades [11]. The
accessibility of wireless communication networks along with image processing methods
can transform the condition of receiving effective expert guidance within a short period
and at reasonable price. It has an extensive range of uses such as crop management, fruit
grading, plant health monitoring, nutrient deficiency recognition, weed recognition and
plant height/size analysis. The image processing-based analysis of the parameters has
been demonstrated to be precise and less time consuming compared with conventional
approaches [12].

Image processing and Internet of things have so far been used for several applications
individually. Various separate applications of these tools are available in agriculture and
have attained degrees of success; however, very few applications are offered with the
integration of both these technologies. By integration of digital image processing and
IOT, better results can be obtained in the smart agriculture domain [13,14]. Some studies
such as “Implementation of IoT and Image processing in smart agriculture” have offered
the integration of these technologies. This work has offered a method to integrate IOT
and digital image processing to determine environmental factors or man-made factors
such as pesticides and fertilizers that are explicitly obstructing the progress of a plant [15].
The rest of the work is distributed into Sections 2—4. Section 2 provides the details of the
proposed framework for an IOT-enabled framework for smart agriculture, which includes
an example of weed seedling classification. Section 3 discusses the experiment and results
and Section 4 presents the conclusions. This work offers the following contributions:

e  An]OT-enabled framework for smart agriculture;
e  Design of a well regularized CNN framework for weed seedling classification;
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e  Analysis of the performance of weed seedling classification based on grayscale and
color channel information.

2. Methods

A weed plant is undesirable and in most situations it is “a plant in the wrong place”.
Weed control is important in smart agriculture. Weed plant control is the botanical section
of pest control that aims to end weeds, particularly harmful weeds, from contending with
wanted flora and fauna comprising domesticated plants and livestock, and in natural
situations stopping non-native species that compete with native species. Approaches
for weed control comprise chemical attack with herbicides, hand cultivation with hoes,
powered cultivation with cultivators, stifling with mulch or soil solarization, lethal wilting
with extraordinary heat, or burning [16]. However, detection of the weed plant is necessary
for weed control by herbicides [17]. This section gives an overall design for an example
of a setup for weed plant classification application in the smart agriculture domain. The
IOT and image analytics on the cloud model for weed plant seedling detection is presented
in Figure 1. In this model, the IOT device is used to capture and transfer the image of the
weed plant to the cloud using a wireless network. The image analytics is performed on the
cloud and the message is communicated to the farmer.

.

Wead Plant
Information

Figure 1. (a): A typical model of IOT-based image analytics for smart agriculture [13]. (b): Layered
architecture for IOT-enabled smart agriculture consisting of a crop collection layer, sensory layer,
analytical/cloud layer, and a prediction layer.

Figure 1 shows the assembly for an IOT-enabled smart capturing system and the crop
sensory system. The diagram is showing the framework for the proposed approach. The
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layered architecture is also shown in the figure where the analytics part ran onto the cloud
environment. The actual flow sequences for the IOT-enabled framework is provided below.

Al is a subdivision of computer science that deals with how to make a computer or
machine behave like a human. In Figure 2 flow graph is shown. Intelligence is an intangible
concept that is composed of learning, reasoning, problem solving, perception and linguistic
intelligence [18,19]. Learning is the ability to improve behavior with experience. In machine
learning, we explore different algorithms to build models from the available set of data.
Deep learning is a significant domain behind automated vehicles, self-navigating drones
and self-driving cars, permitting them to recognize a stop sign or discriminate between
a lamppost, a vehicle, and a pedestrian. DL is based on unsupervised and supervised
learning methods that use artificial neural networks [20-29]. DL is a subgroup of ML that
has networks proficient in learning from data that are unlabeled or unstructured. The
term deep, indicates the extent of hidden layers in the neural network (NN). A normal
NN has 2-3 hidden layers whereas, in a deep neural network (DNN), it can have more. To
train a deep learning model, it uses a large quantity of labelled data and a neural network
design. Based on the connectivity of neurons in the neural network, we can have many
types of DNN, e.g., multi-layer perceptron (MLP), convolutional neural network (CNN),
generative adversarial networks (GAN), recurrent neural network (RNN); these and others
are changing the way we interact with the world [30,31].
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Cloud analytics

Acquired images
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Figure 2. Cont.
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Figure 2. Flow graph of the entire system.

2.1. Regularized Convolution Neural Network

CNN is a supervised learning-based model that is useful in the vision domain. The
input layer and the intermediate hidden layer are convolution layers whereas the output
layer is a fully connected network. Convolution layers consist of different filters to learn the
different features. Convolution kernels perform the convolution operation. A convolution
is the basic process of applying a filter to an input to produce an activation. The convolution
of continuous functions f and h is given below [21].

(Fe)0) = [ f)gt—miar = [ fle-m)g(nyie 0

The corresponding convolution operation for discrete functions F and G is defined
as below.

(FxG)(n) = Z::_oo F(m)G(n —m) = Z::_Oo F(n—m)G(m) )

Equivalently, the above 1-D convolution operation for the 2-D convolution case is
performed as below.

(F*G)(r,c) = Zn]\fsz ZnszN F(r—n,c—m)G(n,m) 3)

The function H is referred to as a filter since it is utilized to convolve over the image
function F. There are pooling layers between two consecutive convolutions layers, which is
used to reduce the likelihood of overfitting. The activation function ReLU became a popular
choice in deep learning and continues to produce excellent results today. It was created
to overcome the previously described vanishing gradient problem. A neuron’s activation
function determines whether it should be activated. It indicates that throughout the
prediction step, it will employ simplified mathematical procedures to decide whether the
neuron’s input to the network is essential or not. This function is defined as below [12,22].

PR
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It has the gradient as provided below.
d _[0ifx<0

Figure 3 displays the architecture of Weed-ConvNet model. The ConvNet algorithm 1
used in this work is presented below.

Algorithm 1. Regularized Deep Weed-ConvNet Model.

Input: A total of 12 weed plant species are represented by an image dataset of distinct plants.
Output: The plant species class represents one of the 12 possible categories for the input weed
images.
1. Transform image I(x, y) to HSV (hue, saturation, and value) color space.
2. Resize the images 128 x 128 size for dimension reduction.
3. Perform data augmentations rotation, scaling, and flipping.
4. Learning-Forward Pass:
For each convolution filter apply convolution on the image matrix.
Generate feature map:

feature_map = Z;”l:”’a‘”s (Lows filter (x —a, y — b), I(x,y))
Univariate vector = max (feature_map(0,y))

end for
5. To build a single feature vector, combine all univariate features.
6. Apply the SoftMax operation to the feature vector attained in step 5 as follows:
fi(2) = s%=
7. Argmax (softmax_outputs)
Learning-Back Propagation:
8. Loss function (categorical cross-entropy):

N
Leg=-% L log
i=1 E}’-’Zle

Vi by
M/']Txi+b]»
9. Weight update:

w; = w; — D‘% + Bw; — yaw;
where « is learning rate, § is momentum, and is y weight decay.

Conv4+RelLU
+Maxpool
+Dropout
Conv3+RelLU+Maxpool
+Dropout Fully Qutput
Connected Class
Conv2+RelLU+Maxpool Layers

+Dropout

Conv1+RelU+ Maxpool

Input Image
P 9 + Dropout

Figure 3. Architecture of the Weed-ConvNet model.

During model learning, overfitting is the most common problem. Data generalization
would be weak if a simple model is used. On training data, a complex model can perform
well, but on test data, it may perform poorly. The model’s efficiency would be greatly
improved if overfitting is minimized. The concept of regularization is used to eliminate
overfitting and the selection of a suitable complexity model issue. Under regularization,
we do certain adjustments/changes in the model so that it performs well on training as
well as test data. We tune the function by incorporating the penalty term with the error
function. There are multiple regularization methods. The following are some of the most
used regularization methods [23,24]:
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L1 Regularization (Lasso penalization): The absolute value of the coefficients is
added in this approach, and the sum is applied as a penalty to the error function. As a
result, some parameters are reduced to zero. For obvious reasons, L1 regularization is more
robust than L2 regularization. Because L2 regularization requires the square of the weights,
the cost of outliers in the data grows exponentially. Because L1 regularization uses the
absolute values of the weights, the cost only grows linearly.

L2 Regularization (Ridge penalization): The most common type of regularization
technique is L2 regularization, which is also known as weight decay or ridge regression.
Ridge regression adds a penalty term to the loss function that is the “squared magnitude”
of the coefficient. L2 regularization reduces all weights to small values, preventing the
model from learning any complex concept in relation to any specific node/feature and thus
avoiding overfitting.

Elastic Net: It is a mixture of L1 and L2 regularization. The sum of the square of
coefficients and the sum of the absolute value of coefficients is added as a penalty to the
error function.

Dropout: Dropout is a learning process in which neurons are overlooked at random.
They “disappear” at random intervals. It means that during the forward pass, their support
for downstream neuron activation is temporarily halted, and any weight changes are
unsuccessful for the neuron during the backward pass.

Data Augmentation: Data augmentation is the simplest way to reduce overfitting. Its
aim is to expand the size of the training data. In this case, you can enlarge the training
image data by rotating it at a certain angle, vertically or horizontally flipping it, shrinking,
scaling, moving it, and so on.

Early stopping: This is a type of cross-validation scheme where the dataset is sepa-
rated into the training set, testing set, and validation set. When the performance on the
validation set is found poorer, the training of the model is immediately discontinued.

Add Random Noise: Adding Gaussian (random) noise with a zero mean and defined
standard deviation improves the generalization error and the structure of the mapping
problem in this form.

Batch Normalization: Batch normalization normalizes the yield of a preceding activa-
tion layer by deducting the batch mean and dividing by the batch standard deviation. It is
a method of increasing the speed and stability of neural networks by adding extra layers to
a DNN. The new layer performs standardizing and normalizing operations on the input of
a previous layer.

The convolution neural network-based classification model is an effective tool for
weed plant classification [25]. The Weed-ConvNet model used in weed plant classification
work employs data augmentation, batch normalization, and Gaussian dropout to develop
a robust regularized weed plant classification model.

2.2. Image Data Set

A public image dataset of weed images of approximately 4234 distinct plants rep-
resenting 12 weed plant species [26] is used in this work. The Aarhus University Signal
Processing group collected these 12 weed plant seedling species. The sample weed images
from each class of species are shown in Figure 4.

All the weed images are segmented using color image processing in the HSV space
followed by morphological operations. The sample segmented weed images are shown in
Figure 5.
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Black-grass Charlock Cleavers Common Chickweed
Common wheat Fat Hen Loose Silky-bent Maize
Scentless Shepherd’s Purse Small-flowered Sugar Beet
Mayweed Cranesbill

Figure 4. Weed plant image dataset samples.
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Black-grass Charlock Cleavers Common Chickweed
Commeon wheat Fat Hen Loose Silky-bent Maize
Scentless Mayweed Shepherd’s Purse Small-flowered Sugar beet
Cranesbill

Figure 5. Segmented weed plant image dataset samples.

3. Experiments and Results Discussion

To implement Weed-ConvINet, the most effective architecture applies one or more
stacks of convolution + pooling layers with suitable activation function, followed by a
flatten layer and then finally one or two dense layers. The convolution neural network
model with five convolution layers is designed for this weed plant classification problem.
All these layers are followed by activation layers.

Batch normalization layers are used after activation layers. These normalization layers
at each batch normalize the activations of the previous layer, i.e., converts the mean activa-
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tion close to 0 and the activation standard deviation close to 1. Gaussian dropout layers
are also applied after the max pooling layers. These dropout layers apply multiplicative
1-centered Gaussian noise. As it is a regularization layer, it remains active only at training
time. The last layer is the dense layer with the SoftMax activation function. Table 1 gives the
details of each layer of the Weed-ConvNet model including output shape and parameters.
Total trainable and non-trainable parameters are 17,329,804 and 3264, respectively.

Table 1. Layers of regularized Weed-ConvNet model.

Layer (Type) Output Shape Parameters
conv2d_1 (Conv2D) (None, 64, 64, 32) 896
activation_1 (ReLU) (Nomne, 64, 64, 32) 0

batch_normalization _1 (None, 64, 64, 32) 128
max_pooling2d _1 (None, 32, 32, 32) 0
gaussian_dropout _1 (None, 32, 32, 32) 0
conv2d_2 (Conv2D) (None, 32, 32, 64) 18496
activation_2 (ReLU) (None, 32, 32, 64) 0
batch_normalization_2 (Nomne, 32, 32, 64) 256
max_pooling2d 2 (Nomne, 16, 16, 64) 0
gaussian_dropout _2 (None, 16, 16, 64) 0
conv2d_3 (Conv2D) (Nomne, 16, 16, 128) 73856
activation_3 (ReLU) (None, 16, 16, 128) 0
batch_normalization_3 (None, 16, 16, 128) 512

max_pooling2d _3 (Nomne, 8, 8, 128) 0
gaussian_dropout _3 (None, 8, 8, 128) 0
conv2d_4 (Conv2D) (None, 8, 8, 128) 147584
activation_4 (ReLU) (Nomne, 8, 8, 128) 0

batch_normalization _4 (None, 8, 8, 128) 512
conv2d_5 (Conv2D) (None, 8, 8, 256) 295168
batch_normalization_5 (Nomne, 8, 8, 256) 1024
gaussian_dropout _4 (None, 8, 8, 256) 0
flatten_1 (Flatten) (None, 16384) 0
dense_1 (Dense) (None, 1024) 16778240
batch_normalization _6 (Nomne, 1024) 4096
dense_2 (Dense) (None, 12) 12300
activation_5 (Softmax) (Nomne, 12) 0

Trainable parameters : 17,329,804
Non — trainable parameters : 3,264

To reduce the computation cost, the segmented images are cropped to size 64 x 64
from center. Data augmentation was performed over the cropped images. Over the cropped
weed images, five main types of data augmentation techniques are used: image shifts with
1-pixel width and height shift range parameters, image flips with horizontal and vertical
flip cases, image rotations with a 10-degree rotation range parameter, image brightness,
and image zoom. The image dataset consists of total 5659 weed images. The dataset is
divided into a 70% training dataset and a 30% testing dataset, i.e., 3961 and 1698 weed
images in each category, respectively.

The learning parameters as provided in Table 2 are applied to compile the model. The
word metric in this table refers to how the model’s efficiency is calculated by classification
accuracy. A loss function is a function that is used to calculate a loss value that the training
method then attempts to reduce by adjusting the weights. The word optimizer refers to
a method for determining how the network weights will be updated based on the loss
function’s performance. The Adam optimization algorithm is one of the best optimization
procedures available, and it works well with a variety of deep learning models.
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Table 2. Learning parameters of Weed-ConvNet model.

Learning Parameter Metric
Metric accuracy
Loss function categorical cross entropy
Optimizer adam

The first step in the actual learning of the designed model is the fitting of the training
data. Depending on the scale of the dataset, preparation takes up most of the time. An
epoch is a complete transit of the training weed data through the learning algorithm. The
algorithm’s epoch number is a significant hyperparameter. It defines the number of epochs
or full passes through the algorithm’s learning phase for the training set. We partition
the epoch into numerous smaller batches since one epoch is too large to provide to the
computer all at once. The number of samples from the training set considered during each
training iteration is referred to as the batch size. The weights are adjusted and the loss is
calculated based on the batch size. The training process is completed with the total number
of instances once after one epoch is finished. The validation dataset is used to evaluate the
model’s learning performance. The training is repeated for the specified number of epochs.
Stopping early and establishing the validation accuracy stabilization between consecutive
epochs can improve this iteration. The learning hyperparameters that are used in this study
are listed in Table 3.

Table 3. Training hyperparameter optimization for Weed-ConvNet model.

Training Hyperparameter Search Space Selected Value
Learning rate [0-1, 0001'0%8811]' 0.0001, 0.001
Epochs [10, 20, 30, 40, 50, 60, 80, 100] 50
Batch size [8, 16, 32, 64] 32
Early stopping parameter : valj,ss, patience [1,2.3.4.5] patience : 1
Conv2D layer 1 channels [8, 16, 32, 48] [16]
Conv2D layer 2 channels [8, 16, 32, 48] [16]
Conv2D layer 3 channels [16, 32, 48, 64, 128] [32]
Conv2D layer 4 channels [16, 32, 48, 64, 128] [64]
Conv2D layer 5 channels [16, 32,48, 64, 128, 256] [128]
Kernel size for layers [1,2,3,4,5,6,7,8] [8]
Padding [0,1,2,3,4] [0]
Conv2D stride [1,2,3,4] [2]
Dropout rate layer 1,2 [0.1,0.2,0.3,0.4] [0.2]
Dropout rate layer 1,2 [0.1,0.2,0.3,0.4] [0.4]

Two separate experiments were performed to measure the classification performance.
In the first experiment, the grayscale segmented weed images are used, while in the
second experiment, color segmented weed images are used. The same Weed-ConvNet
model is utilized in both experiments. The training is repeated for 50 epochs in both
cases. Figures 6 and 7 display the training and testing accuracy and loss curves for weed
plant classification with grayscale segmented weed images and color segmented weed
images, respectively.
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Figure 6. Training and testing accuracy and loss curves for weed plant classification with grayscale

segmented weed images.
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Figure 7. Training and testing accuracy and loss curves for weed plant classification with color

segmented weed images.

From the above curves, it is marked that there is a narrow difference between the train-
ing and the validation loss. This specifies that the network has learned the training data
properly. These trained models neither overfitted nor underfitted means well regularized.
Table 4 presents the test results in terms of a confusion matrix for Weed-ConvNet-based
classification with grayscale segmented weed images. A confusion matrix is a metric de-
signed to assess the quality of a classification model. It is a square matrix whose dimensions
the number of classes in a classifier determines. In this N x N matrix, rows denote to true
classes and the columns signify the categorized class by the model.
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Table 4. Confusion matrix for Weed-ConvNet-based classification with grayscale segmented weed

images.
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Small —
flowered Cranesbill 0 ? 13 0 3 2 2 3 0 0 134 20
Sugar beet 0 3 0 0 6 1 0 10 0 0 1 118
Table 5 presents the results in terms of a confusion matrix for Weed-ConvNet-based
classification with color segmented weed images. By comparing the confusion matrices, it
can be observed that the color segmented weed images give low false classifications.
Table 5. Confusion matrix for Weed-ConvNet-based classification with color segmented weed images.
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Table 5. Cont.
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Maize 0 0 0 0 1 0 0 77 0 0 0 1
Scentless Mayweed 3 3 1 7 0 1 0 2 155 1 0 5
Shepherd's Purse 0 3 0 2 0 1 0 0 1 52 0 2
Small — flw. Cranesbill 0 2 2 0 1 1 0 0 2 0 176 2

Sugar beet 0 1 0 0 0 1 0 2 0 0 3 132

Output metrics are measured using the above confusion matrices to further test the
qualified models. Precision, recall, and the F1 score are all used as performance indicators.
The proportion of accurate predictions to total predictions is defined as classification
accuracy. Precision is described as the proportion of correct predictions to the total number
of correct predictions expected. This metric assesses the classifier’s ability to predict
positive outcomes. The ratio of correct positive predictions to total positive predictions is
referred to as sensitivity or recall. The F1 score combines precision and recall in relation to a
specific positive class. The F1 score is a weighted average of recall and precision, with one
signifying the best and zero representing the worst [27]. These metrics are specified below.

. True™
Prec151on = m (6)

. True™
Sensitivity = Truet + False— (7)
F1 — Score — Z*Pre.ci'sion * Sen.sijci\./ity ®)

Precision + Sensitivity
True™ + True~

Accuracy = rue_ + True 9)

Truet + True— + False— + False™
where:

True™ and True™ are the truly labelled positive and negative weed samples, respectively.
False™ represents the no. of negative weed samples labelled incorrectly as positive.
False™ denotes the no. of positive weed samples labelled incorrectly as negative.

Table 6 consists of these measures. These three performance measures are higher in
color segmented weed images which are 0.86, 0.87, and 0.86 respectively. The test accuracy
of the Weed-ConvNet model with the color segmented weed images is 0.978, which is
better than 0.942 of the Weed-ConvNet model with the grayscale segmented weed images.
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Table 6. Performance metrics for regularized Weed-ConvNet-based classification with grayscale and

color segmented weed images.

Performance Measures with Grayscale Segmented Weed Images

Performance Measures with Color Segmented Weed Images

Class
Precision Recall F1 Score Precision Recall F1 Score

Black-grass 0.33 0.13 0.19 0.53 0.44 0.48
Charlock 0.63 0.89 0.74 0.88 0.94 0.91
Cleavers 0.61 0.65 0.63 0.92 0.87 0.89
Common chickweed 0.74 0.46 0.57 0.95 0.95 0.95
Common wheat 0.31 0.85 0.45 0.78 0.73 0.75
Fat hen 0.86 0.84 0.85 0.85 0.96 0.9
Loose silky-bent 0.76 0.61 0.68 0.8 0.76 0.78
Maize 0.56 0.82 0.67 0.91 0.97 0.94
Scentless mayweed 0.91 0.47 0.62 0.97 0.87 0.92
Shepherd’s purse 0.64 0.41 0.5 0.98 0.85 0.91
Small-flowered cranesbill 0.94 0.72 0.82 0.94 0.95 0.94
Sugar beet 0.46 0.85 0.6 0.78 0.95 0.85
Average 0.7 0.64 0.64 0.86 0.87 0.86

Test Loss 0.169 0.059

Test Accuracy 0.942 0.978

Figure 8 displays the ROC curves to affirm the robustness of these weed plant classifica-
tion problems. ROC analysis is a graphical method for analyzing a classifier’s performance.
It characterizes a classifier’s performance using two statistics: true positive rate (TPR) and
false positive rate (FPR). The x-axis of a ROC curve normally shows the FPR, while the
y-axis displays the TPR. This means that the plot’s top left corner is the “ideal” point, with
a TPR of one and a FPR of zero. This implies that having a larger area under the curve
(AUC) is generally better. These ROC plots show that the Weed-ConvINet model with color
segmented weed images outperforms greyscale segmented weed images, as indicated by
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Figure 8. Receiver operating characteristic curves: (a) experiment with grayscale segmented weed

images; (b) experiment with grayscale segmented weed images.
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ROC plots are commonly used in binary classification to investigate a classifier’s
performance. Binarizing the output is needed to extend the ROC plot and AUC to multi-
label or multi-class problems. Micro-averaging is a binarized plot in which the ROC is
plotted by treating each member of the label matrix as a binary classification. Tang et al.
developed an alternative multi-class label evaluation metric that delivers the same weight
to each class label (2014). As shown in these ROC curves, for the first Weed-ConvNet
model, the micro-average area and macro-average area are 09.4 and 0.96, respectively. With
the color segmented weed images, the metrics micro-average area and macro-average area
improve to 0.99 in each case.

4. Conclusions

10T technology-based smart farming can empower cultivators and farmers to decrease
waste and improve production. With the help of an IOT-based system for monitoring the
crop field, crops can be improved with the help of humidity, light, image, temperature, and
moisture sensors. Out of these sensors, an image-acquisition-enabled IOT device plays a
vital role. This work discussed a case study where image processing and IOT played an
important role for weed plant seedling detection and classification. The early detection of
weed seedling can enable farmers to use herbicides or other control mechanisms on time.
The regularized Weed-ConvNet is made to classify weed images that have been colored
and gray scaled. The Weed-ConvNet model’s accuracy with color segmented weed images
is 0.978, which is higher than the model’s accuracy with grayscale segmented weed images
of 0.942. In future, it will be vital to determine that on which crops can an IOT-enabled
model be applied to, since weeds spread amongst different crops. It might not be able to
distinguish some weeds from crops since they resemble them so closely. Additionally, the
density of plant seeding, stage of plant development, and other aspects will have a big
impact on the IOT-enabled model’s ability to identify weeds.
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