
Citation: Rajathi, K.; Gomathi, N.;

Mahdal, M.; Guras, R. Path

Segmentation from Point Cloud Data

for Autonomous Navigation. Appl.

Sci. 2023, 13, 3977. https://doi.org/

10.3390/app13063977

Academic Editor: Antonella Petrillo

Received: 23 February 2023

Revised: 16 March 2023

Accepted: 17 March 2023

Published: 21 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Path Segmentation from Point Cloud Data for Autonomous Navigation
Krishnamoorthi Rajathi 1,*, Nandhagopal Gomathi 1, Miroslav Mahdal 2,* and Radek Guras 2

1 Department of Computer Science & Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of
Science and Technology, Avadi 600 062, India; gomathin@veltech.edu.in

2 Department of Control Systems and Instrumentation, Faculty of Mechanical Engineering, VSB-Technical
University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava, Czech Republic; radek.guras@vsb.cz

* Correspondence: rajathi@veltech.edu.in (K.R.); miroslav.mahdal@vsb.cz (M.M.)

Abstract: Autonomous vehicles require in-depth knowledge of their surroundings, making path
segmentation and object detection crucial for determining the feasible region for path planning.
Uniform characteristics of a road portion can be denoted by segmentations. Currently, road segmen-
tation techniques mostly depend on the quality of camera images under different lighting conditions.
However, Light Detection and Ranging (LiDAR) sensors can provide extremely precise 3D geometry
information about the surroundings, leading to increased accuracy with increased memory consump-
tion and computational overhead. This paper introduces a novel methodology which combines
LiDAR and camera data for road detection, bridging the gap between 3D LiDAR Point Clouds (PCs).
The assignment of semantic labels to 3D points is essential in various fields, including remote sensing,
autonomous vehicles, and computer vision. This research discusses how to select the most relevant
geometric features for path planning and improve autonomous navigation. An automatic framework
for Semantic Segmentation (SS) is introduced, consisting of four processes: selecting neighborhoods,
extracting classification features, and selecting features. The aim is to make the various components
usable for end users without specialized knowledge by considering simplicity, effectiveness, and
reproducibility. Through an extensive evaluation of different neighborhoods, geometric features,
feature selection methods, classifiers, and benchmark datasets, the outcomes show that selecting the
appropriate neighborhoods significantly develops 3D path segmentation. Additionally, selecting
the right feature subsets can reduce computation time, memory usage, and enhance the quality of
the results.

Keywords: autonomous vehicles; path segmentation; LiDAR sensors; 3D geometry information;
semantic labels; feature selection; quality of results

1. Introduction

One of the countries with the highest traffic in the world is India. In 2018, there were
approximately 467,000 motor vehicle accidents in India, with 70% of them being attributed
to human error. Autonomous vehicles, with their ability to sense their surroundings,
can decrease the number of accidents on the road, making transportation safer and more
convenient for seniors and others who do not have to constantly rely on drivers. Level 0 (No
Automation) to Level 5 are the different levels of autonomy for vehicles (Full Automation).
Level 0 describes the typical non-automated vehicle, while Level 1 and 2 are driver-assisted
vehicles. Level 3 and 4 represent conditional and high automation, respectively, where
the driver is only required in certain circumstances. Level 5 vehicles are completely
autonomous, requiring no human intervention [1]. As the automotive industry continues
to advance, intelligent automobiles are becoming increasingly automated, moving from
driver-assisted vehicles to fully autonomous ones. These advancements bring incremental
improvements, such as structures that help humans maintain constant speed, stay in their
lane, and recognize obstacles.

Appl. Sci. 2023, 13, 3977. https://doi.org/10.3390/app13063977 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13063977
https://doi.org/10.3390/app13063977
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-9720-2201
https://doi.org/10.3390/app13063977
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13063977?type=check_update&version=1


Appl. Sci. 2023, 13, 3977 2 of 26

As a result, one of the most significant challenges facing autonomous or self-driving
vehicles is road detection. The study into self-driving cars heavily depends on road
segmentation, which can be accomplished in several ways. Camera images, using RGB
data, vanishing points, and edges, can perform road segmentation, but this method is
susceptible to errors due to weather, light, and shadow conditions. LiDAR sensors can
still detect road areas using 3D PC images from top, front, and distance views, but it
cannot utilize color data. Hence, even a small height difference could result in inaccurate
distinction between the road and the roadside. To overcome these limitations, the LiDAR
and camera data fusion technique was developed by calibrating both the camera and
LiDAR, and by displaying the LiDAR-detected cloud on the camera-captured image. This
combination of exceptional data sets facilitates accurate road area division using LiDAR
and camera information [2]. A comprehensive evaluation, using two standard benchmark
datasets, provides insights into the suitability of various approaches.

Autonomous navigation in modern driving systems relies on sensors’ abilities to detect
and classify both fixed and moving objects, which in turn aids in forecasting the future
state of the environment, preventing accidents, and organizing routes and schedules. By
separating moving from static objects in 3D LiDAR PC data, moving object segmentation
(MOS) techniques enhance environment awareness, localization, and future state prediction.
While the network model is sophisticated and the MOS job is computationally demanding,
it is crucial to fulfil the real-time processing needs of autonomous vehicle applications [3].

One of the areas of robotics that is expanding the quickest is automation. Giving
robots the capacity to navigate on their own is crucial given the ever-increasing interest in
automating procedures for both performance and privacy. For the autonomous navigation
of mobile robots, a variety of sensor technologies, navigational system types, and data
fusion techniques are available. The capacity to recognize things in their path and enable
them to move about freely with a minimal issue of collision is a crucial feature of mobile
autonomous robots. Other vehicles (such as forklifts and truck trailers) may not be spotted,
even when using laser scanners designed for outdoor usage, potentially resulting in crashes.
Under these challenging circumstances, 3D PCs recorded using a depth camera might be
utilized to lessen this issue. In a brief streaming sequence, 3D coordinates and reflection
intensities may be produced from more than 10,000 points of data using 3D PCs. PCs have
clear 3D spatial structures that also contain reflection elements on the surface of objects,
unlike RGB pictures, which are their main benefits [4].

We have developed a framework that can be used universally to interpret 3D PC data
captured from different sources, including airborne laser scanning (ALS), mobile laser
scanning (MLS), and terrestrial laser scanning (TLS). This is because it only relies on the
spatial 3D geometry, represented as appropriate object surface measurements, as input
from the real world.

Some applications, such as smart cities, agriculture, autonomous vehicles (AVs), and
mobile rover navigation, require a framework to tackle environmental obstacles. Examples
of automatic systems that observe the environment include reverse engineering, AVs and
robots, modeling, concurrent positioning, and navigation vision. In automated systems,
sensors play a crucial role, and LiDAR is widely used in research projects for remote
sensing of the earth’s surface. This active sensor has improved object detection accuracy
and provides a real-time, error-free environment, resulting in the generation of a local map
of the area.

Despite the widespread use of camera sensors in surveillance cameras, traffic signals,
and similar devices, they are not appropriate for applications that require distance and
lighting-based measurements, and their accuracy is limited. In the medical field, robots
utilize 3D scanners for body scans, which require a high resolution. An accurate laser
scanner, based on the triangulation principle, is used for this purpose. To prevent harm
to human eyes during face scanning, these precise scanners use laser emitters classified
as Class 1 or Class 1M. The motivation of this study is to make the different components



Appl. Sci. 2023, 13, 3977 3 of 26

useable for end users who do not have specialist expertise by taking into consideration
their ease of use, their efficiency, and their ability to be reproduced.

The paper’s primary contributions include,

• The creation of a connection among 3D LiDAR PCs and cameras data for road recogni-
tion by using a unique approach.

• The enhancement of autonomous navigation by choosing the most important geomet-
ric elements for route planning.

• The use of four steps to pick neighborhoods, obtain classifying characteristics, and
select features for an automated architecture in SS.

The other phases of the studies are as follows: Section 2 offers a related review;
Section 3 offers a proposed technique; Section 4 offers findings and perspectives; and
Section 5 offers the conclusions.

2. Literature Survey

A method for detecting pedestrians has been proposed that utilizes a Bayesian policy
that integrates semantic information with data from both the camera and LiDAR for 3D
terrestrial data. It employs heuristics approaches to assign probabilities to each of the
semantic classes included in the labelled pictures in the first phase of the four-step process
of transferring semantic information from the labelled image to the LiDAR point cloud.
Finally, taking into account the change in timestamps between each LiDAR scanning and
camera picture, the LiDAR points are adjusted to account for the motion of the vehicle. The
pixel coordinate for the accompanying camera picture is determined in a third stage. In
the last stage, we remove the LiDAR data that are hidden from view by the camera while
transferring semantic data from the heuristics likelihood pictures to the LiDAR frames [5].
This method employs classification and segmentation techniques.

The new segment data are trained using semantic class objects and a LiDAR test
dataset from a hierarchical segment learning scheme. The final product is the creation
of an SS class label for each point, which eliminates the main physical elements of the
environment and calculates the residual point using a feature vector. Feature vectors are
used to identify regions, classify information from SS with reduced data, and improve
contrast to aid in object identification in a 3D position tracing scheme for Wireless Sensor
Networks (WSNs) [6].

PC data are created using images in the form of spheres and important network
characteristics [7]. The authors have presented a new structure for PC named pointSeg,
consisting of three layers. The first layer emphasizes on creating a lightweight layer that
resembles Alexnet. The second layer, called Squeeze reweight layer, generates the feature
representation vector. Third layer, referred to as the extension layer, employs the pooling
layer to identify the background data. The RANSAC method is used to improve the results,
but the proposed scheme does not deliver the expected outcomes for low-level objects [8].

The Range-Image (RI) UNet is used to perform SS on 3D PC data using quasi-uniform
angular strides. This technique transforms the raw 3D PC data into a compact image
known as a range image [9]. The UNet framework starts with three-to-three convolutional
operations, followed by two-to-two max-pooling and down-sampling of attributes. The
latter half of the framework consists of both one-to-one convolutional and two-to-two up-
convolutional operations. The loss function of the system is determined using cross-entropy,
which is a simple and fast method compared to other schemes [10].

Another researcher proposed using the Gaussian Mixture Model (GMM) to create
a collection of vectors known as the Fisher Vector representation. The improved Fisher
Vector model is stable, but it may not always yield better results. The learning rate can be
increased by using the PC scheme’s part segmentation in the DmFV framework for similar
objects, thus reducing misclassification rates.

The loss function of a network can be calculated using cross entropy. It has been
found that the RI UNet is relatively simple and efficient when compared to other methods.
To further improve performance, the focal loss function is employed. The Fisher Vector



Appl. Sci. 2023, 13, 3977 4 of 26

representation is dependent on a set of vectors associated with the GMM. Although the
improved Fisher Vector model remains unchanged, it does not perform well enough to
provide a significant advantage. The learning process is occurring at a faster rate [11]. The
DmFV framework handles the part segmentation of the per PC method. Similar items
are subject to misclassification. Table 1 illustrates the various architectures used in path
planning for autonomous navigation.

Table 1. Architectures used in path planning.

Technique Architecture Work Proposed

Cityscapes test HRNetV2 + OCR [12] SS using Object-Contextual Illustrations

PASCAL VOC DeepLabv3+ [13] Semantic Image Segmentation using Encoder-Decoder
with Atrous divisible convolution

PASCAL Context OCR (HRNetV2-W48) [12] SS using Object-Contextual Illustrations

ADE20K val ACNet (ResNet-101) [14] Scene Parsing using adaptive context network

ScanNet MinkowskiNet [15] 4D spatio-temporal ConvNets: Minkowski
Convolutional Neural Network (CNN)

Semantic3D RandLA-Net [16] Large-Scale PCs based effective SS using RandLA-Net

ADE20K LaU-regression-loss [12] SS using Positon-based upsampling

LIP val SCHP (ResNet-101) [12] Human parsing using self-improvement

Cityscapes val HRNetV2 (HRNetV2-W48) [17] Visual acknowledgment using deep high-resolution
illustration learning

CamVid DeepLabV3Plus + SDCNetAug [18] Video propagation and label reduction based
improved SS

COCO-Stuff test OCR (HRNetV2-W48) [19] SS using object-contextual Illustrations

PASCAL VOC 2012 val ExFuse (ResNeXt-131) [20] SS using ExFuse, an improved feature fusion

Freiburg Forest SSMA [21] Multi-modal SS using self-supervised model

ScanNetV2 SSMA [22] Multi-modal SS using self-supervised Model

SUN-RGBD SSMA [23] Multi-modal SS using self-supervised Model

SYNTHIA- CVPR’16 SSMA [24] Multi-modal SS using self-supervised Model

ShapeNet SGPN [25] 3D PC Instance segmentation using Similarity Group
Proposal Network (SGPN)

KITTI SS DeepLabV3Plus + SDCNetAug [26] Video propagation and label reduction based
improved SS

NYU Depth v2 Dilated FCN-2s RGB [27] SS using effective Deep CNN

Our findings indicate that the alignment of the LiDAR sensor is consistent with that of
the camera, GPS, and IMU sensors as observed in prior studies. Our aim was to prove that
the LiDAR sensor can be used alone for environment reconstruction. To achieve accurate
results in our work, we are utilizing state-of-the-art techniques within the suggested
framework. To enhance the performance, we introduce a pre-learning module that allows
the framework to learn prior information about the world, which is referred to as prior
knowledge (e) by applying basic division and ordering calculations. The data used in our
approach will be based on prior experience. A new feature with labels known, desired,
and unknown for both structured and unstructured environments has been added to this
experience. In the study [28], they create and evaluate methods for autonomous ground
vehicle off-road navigating using the simulation design and annotated LiDAR data. For off-
road areas including paths and trees, the Mississippi State University Autonomous Vehicle
Simulator (MAVS) purpose of advancing 3D point clouds. In the paper [29], the authors
suggest an OpenStreetMap (OSM)-based autonomous robotic technique that combines



Appl. Sci. 2023, 13, 3977 5 of 26

road system data with local perception information in order to address the issue that
the map inaccuracy OSM would result in the global route being incompatible with the
actual environment.

Problem Statement

The majority of high-mix, low-volume manufacturing operations are still carried out
by hand, which is expensive and ineffective. Moreover, LiDAR PC could not be reliable or
accessible to support production. The user may utilize the scanner to obtain an accurate
representation of the sensor as scanning technology develops. If LiDAR and camera data
for road detection is developed directly on the scan data before being translated to cloud
scripts for execution, the production process may be greatly streamlined. In conclusion, this
work proposes unique scanned data that utilize geometric aspects for route planning and
enhancing autonomous navigation. This technique may aid manufacturers in automating
their production processes and enhancing their ability to respond quickly to individual
client demands.

3. Proposed Work

The framework of the suggested technique is depicted in Figure 1.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 26 
 

data. For off-road areas including paths and trees, the Mississippi State University Auton-
omous Vehicle Simulator (MAVS) purpose of advancing 3D point clouds. In the paper 
[29], the authors suggest an OpenStreetMap (OSM)-based autonomous robotic technique 
that combines road system data with local perception information in order to address the 
issue that the map inaccuracy OSM would result in the global route being incompatible 
with the actual environment. 

Problem Statement 
The majority of high-mix, low-volume manufacturing operations are still carried out 

by hand, which is expensive and ineffective. Moreover, LiDAR PC could not be reliable 
or accessible to support production. The user may utilize the scanner to obtain an accurate 
representation of the sensor as scanning technology develops. If LiDAR and camera data 
for road detection is developed directly on the scan data before being translated to cloud 
scripts for execution, the production process may be greatly streamlined. In conclusion, 
this work proposes unique scanned data that utilize geometric aspects for route planning 
and enhancing autonomous navigation. This technique may aid manufacturers in auto-
mating their production processes and enhancing their ability to respond quickly to indi-
vidual client demands. 

3. Proposed Work 
The framework of the suggested technique is depicted in Figure 1. 

 
Figure 1. Proposed structure. 

3.1. Data Acquirement 
Since LiDAR sensor can identify items in its immediate area, self-driving cars are able 

to make thoughtful judgements. It is the key element needed to make self-driving cars an 
actuality and may be seen as the “set of eyes” for a car. The most expensive sensor avail-
able is Velodyne’s Puck lidar sensor (formerly known as the VLP-16). The PuckTM is the 
best choice for economical low-speed autonomous and driving assistance systems owing 
to its dependability, power economy, and surrounding vision capabilities, in addition to 
its 100 meter-range and small form factor. Raw data are collected using the VLP16 PUCK 
sensor. Table 2 lists the characteristics and specifics of the LiDAR sensor. For the purpose 
of this research, a smaller section of the university lane has been taken and stored in the 
Packet Capture (PCAP) format. Wire Shark is commonly used as a packet analyzer to open 
the PCAP file and examine the frames. The frames contain information such as the X, Y, 
and Z coordinates intensity, timestamp, and the start and end of each frame. MATLAB 
R2019b is utilized to process these frames. The Velodyne LiDAR object includes the 

Figure 1. Proposed structure.

3.1. Data Acquirement

Since LiDAR sensor can identify items in its immediate area, self-driving cars are able
to make thoughtful judgements. It is the key element needed to make self-driving cars an
actuality and may be seen as the “set of eyes” for a car. The most expensive sensor available
is Velodyne’s Puck lidar sensor (formerly known as the VLP-16). The PuckTM is the best
choice for economical low-speed autonomous and driving assistance systems owing to
its dependability, power economy, and surrounding vision capabilities, in addition to its
100 m-range and small form factor. Raw data are collected using the VLP16 PUCK sensor.
Table 2 lists the characteristics and specifics of the LiDAR sensor. For the purpose of this
research, a smaller section of the university lane has been taken and stored in the Packet
Capture (PCAP) format. Wire Shark is commonly used as a packet analyzer to open the
PCAP file and examine the frames. The frames contain information such as the X, Y, and Z
coordinates intensity, timestamp, and the start and end of each frame. MATLAB R2019b is
utilized to process these frames. The Velodyne LiDAR object includes the model, timeout
for the port terminal, calibration file, IP address, number of available PCs, and streaming
capabilities. All simulation were carried out on Windows 10 system with Intel® Core™ i7
CPU, 16 GB RAM, and NVIDIA graphics card.



Appl. Sci. 2023, 13, 3977 6 of 26

Table 2. LiDAR Configuration.

Features Values

Make Velodyne LiDAR
Model Puck LITE
Weight 590 g
Output Dual reoccurrence and 16 Channels
Range 100 M
Capacity Up to ~600,000 points/s
FOV 360◦ Horizontal, ±15◦ Vertical

3.2. State Space Model

The environmental condition cannot be directly measured. Through a set of observ-
ables, the state measures the effect on the outside world. The state space model, which
consists of estimating and measuring the environment, describes the character of a dynamic
system. Equation (1) depicts the estimation of the environment’s state.

Xn+1 = An(xn+1,Wn) (1)

where

• Xn denotes the current PC data from the environment;
• Xn+1 denotes the subsequent PC data from the environment;
• Wn is the noise value in PC like NaN;
• An is the estimation function.

Measurement of environment state is represented as Equation (2),

Yn = bn(xn,Vn) (2)

where

• Yn the set of observable form LiDAR;
• bn is measurement function between points;
• Vn is the measured noise.

Let us assume the initial state Xo is uncorrelated with the dynamic noise W, and the
two sources of noise (Wn, Vn) are statically independent. The Extended Kalman Filter (EKF)
accommodate linear model. The main advantage of EKF is the small number of parameters
it can object.

In this work, the environment is captured using a LiDAR sensor, and the PC data
are generated from it. To model the state of the LiDAR PC data, the EKF algorithm is
employed. The EKF for LiDAR PC data is discussed in Algorithm 1. Three different states
are identified: Free State, Occupied State, and Unknown State. An octree data design is
utilized to store the sensor information and is effective for representing unknown features.
The features are then extracted and stored in a voxel representation. The EKF algorithm is
applied in both positioning systems and perception systems.

Algorithm 1: EKF for LiDAR PC Data

Input: observations {y1, y2 . . . , yn}
Output: State estimation and state prediction using PC data

1. The linearized matrix An+1, n and Bn are computed from the nonlinear parameter
an(x) and bn(x).

2. The values an(xn/m) and bn(xn/m) are obtained by substituting the filter state
estimate and predict the statement estimate.

3. Examine the order of iteration.



Appl. Sci. 2023, 13, 3977 7 of 26

3.3. Grid Map Construction

An advanced motion planning system has been developed for autonomous vehicles,
allowing them to navigate through dynamic and changing environments. The procedure
of searching a secure and collision-free path from an initial location to a final destination
is referred to as motion planning for autonomous vehicles. The path-planning problem is
solved using a Non-Parametric (NP) method. The grid map of the sensed environment
is generated using the Bayesian filtering method. Equation (3) represents the posterior
function of the Bayesian filter, which can be calculated using Equations (1) and (2).

P(m/z1:t) =
p(m/z1:t−1)p(Zt/m)

P(Zt/Z1:t−1)
(3)

where

• P(m/z1:t) is the Posterior Points Occupy;

• p(m/z1:t−1) is prior probability and p(Zt/m)
P(Zt/Z1:t−1)

is likelihood.

The log odds for each side of equation are found after simplifying Equation (3) by
assuming a uniform prior distribution threshold of 0.5 for the unknown state.

L(m/z1:t) = L(m/z1:t−1) + L(Zt/m) (4)

Equation (4) is recursive, and L(m/z1:t) is defined as the inverse of the sensor model.
Thus, the grid map was incrementally updated while reading the new sensor data. The
size of the voxel representation is assumed to be a × a × a, the normal distribution points
are defined as Nijk in Equation (5), and x, y, z is calculated with respect to i, j, k.

N f
ijk = N

(
a
d

(
1
θv

+
1
θh

)
, a2 (5)

where

• d is Sensor distance from the grid;
• θv is vertical resolution of 3D LiDAR;
• θh is horizontal resolution of 3D LiDAR.

Hence, the probability of occupancy for each grid is:

P(n) =
Nijk

N f
ijk

(6)

Because each state in the grid space is either “Free”, “Occupied”, or “Unknown”,
the grid state is defined as “F, O, U”. The minor object in the unknown state may not be
detected by the sensor due to its small size. The “Free” or “Occupied” or “Unknown”
or “Conflict” elements of sensor data in grid space are represented by the set F, O, U, C.
Conflict refers to data that are redundant, such as an image or some noise. The following
mass functions are shown for the grid space: m(F), m(O), m(U), m(C). All states have
masses that satisfy m = 1. The occupancy probability which is in Equation 6 shows grid
timing and the probability of occupancy for each grid, as well as the data fusion formula
derived to satisfy the Dezert Smarandache Theory (DSmT).

3.4. Learning Informative Path Planning

The researchers have introduced a new algorithm, named Learning Informative Path
Planning (Algorithm 2), to optimize a path in a continuous space with certain constraints
that pertain to path budgets and the motion capabilities of a robot designed for plant phe-
notyping. The utility of the location set A is assigned by the sensing quality function F(A).

Given: finite set V of locations



Appl. Sci. 2023, 13, 3977 8 of 26

Want: A∗ ⊆ V such that
A∗ = argmaxF(A)

|A| ≤ k

We now describe LIPP (Learning Informative Path Planning algorithm) follows re-
cursive Bayesian for updating and replanning the path periodically. An upper bound of
B time steps on the path cost and specified starting and ending locations (s1) are used
to initialize the algorithm. The utility function which represents the “conditional utility”
conditioned on observation Ys applies a nonadaptive algorithm in the first time step. After
that, the algorithm moves the robot to the next location on the chosen nonadaptive path
and iteratively uses update in subsequent time steps with an updated starting location of
s1 and a budget of B1, while maintaining the finishing location at sB. Selecting the sensing
location will be computed by,

S∗ := argmaxF(A ∪ {S})A := A ∪ {S∗}

Algorithm 2: Learning Informative Path Planning algorithm

Input: sL, su, u, B
Output: Sequence of selected locations π(xV)
Begin

s← s1; π[1] = s; Bpp← B; obs← {};
for 1 ≤ t ≤ B do

ys ← observe(s); obs← obs ∪ {ys = ys};
Pt ← update(s, sB, Bpp, F(|obs));
s← Pt[2]; π[t + 1]← s; Bpp← Bpp –1

return π
end

Latombe’s path planning techniques [30] and earlier work assumed that the world
was fully known in advance. However, particularly in outdoor settings, planning is often
initiated with information that is incorrect, incomplete, lacking sufficient resolution, or
has changed since it was obtained. This type of planning is based on the “free space
assumption”, which states that until it is proven otherwise, the unknown world can be
completely traversed. To allow replanning based on sensor data gathered during the
mission, the algorithms must be modified. This refers not to replanning around small
obstacles, which is the responsibility of the reactive local navigator, but to replanning to
obtain information critical to the robot’s ability to achieve its goal according to the previous
plan. The common approach is as follows: the system creates a global path using the
information available and uses obstacle avoidance to navigate around obstacles. A replan
is necessary if the route is completely blocked or if crucial information has been uncovered.
Planning and execution must go hand in hand. Replanning methods must be fast because
the robot cannot move toward its goal while replanning. Their design prioritizes speed of
operation, sometimes at the cost of optimality and completeness.

3.4.1. Path Planning for Exploring

An unmanned ground vehicle (UGV) can be beneficial for exploring and creating
maps. Thanks to various algorithms, robots are able to explore uncharted territories. By
computing the optimal route until a map discrepancy is found, updating the map, and
then replanning the entire path, they can exhibit optimal behavior. However, this can
be challenging on large maps, where replanning can be inefficient, especially if the map
contains limited information and requires frequent replanning. To achieve speed, some
algorithms prioritize coverage over optimality. The robot is guided [31] until it reaches
its objective. To prevent repeated visits to the same location, the robot moves to the next
location with the lowest cost, and the cost of that location is increased each time. Author [32]



Appl. Sci. 2023, 13, 3977 9 of 26

calculates the cost of reaching the goal for each state based on the initial data, and updates
it with backtracking costs as the robot progresses.

3.4.2. Path Planning for Partially Known Environments

The goal is to provide more goal-directed behavior than can be achieved with explo-
ration algorithms when working with partial maps, while still prioritizing planning speed.
When there are no obstacles, Lumelsky’s bug algorithms [33] steer the robot toward the
objective. If an obstacle is encountered, it moves around it until it reaches the point closest
to the goal, and then moves directly toward the goal. In the past, when incorrect informa-
tion was discovered, some early approaches to planning in partially known environments
required a complete replan [34]. However, since then, more efficient methods have been
developed to expedite the replanning process. These typically involve refined graph search
algorithms, such as those mentioned earlier. Using quad-trees [35] to indicate traversability
improves efficiency and speeds up the search by adjusting the heuristic using A* search
and past terrain navigation experience. There are also additional methods for accelerating
the search [36].

Some fundamental tools that speed up replanning include:

• Heuristics.
• Using limited look-ahead to limit the planning area (Real-time Heuristic Search).
• Replacing only the altered portion of the path (incremental search).
• Only changing the portion of the path that is necessary to reach the objective (incre-

mental search).

In this research, a LiDAR sensor is combined with a camera, and the current study
shows that no additional sensors are necessary in a LiDAR sensor-based environment.
Well-established benchmarked methods are used to obtain accurate results. The current
approach uses supervised data to handle image-based data, while unsupervised algorithms
are being developed and researched to address the shortage of image-based data. Pre-
training is suggested for SS as it provides the system with experience and prior knowledge
of the real world. Figure 2 shows the PC data captured by the LiDAR sensor and the
unstructured PC data. A PC is a set of data points in three-dimensional space that represent
the shape and form of an object or environment. These data points are typically collected
using 3D laser scanners or other surveying instruments, and they can be utilized to develop
detailed 3D designs of objects and environments.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 26 
 

calculates the cost of reaching the goal for each state based on the initial data, and updates 
it with backtracking costs as the robot progresses. 

3.4.2. Path Planning for Partially Known Environments 
The goal is to provide more goal-directed behavior than can be achieved with explo-

ration algorithms when working with partial maps, while still prioritizing planning 
speed. When there are no obstacles, Lumelsky’s bug algorithms [33] steer the robot toward 
the objective. If an obstacle is encountered, it moves around it until it reaches the point 
closest to the goal, and then moves directly toward the goal. In the past, when incorrect 
information was discovered, some early approaches to planning in partially known envi-
ronments required a complete replan [34]. However, since then, more efficient methods 
have been developed to expedite the replanning process. These typically involve refined 
graph search algorithms, such as those mentioned earlier. Using quad-trees [35] to indi-
cate traversability improves efficiency and speeds up the search by adjusting the heuristic 
using A* search and past terrain navigation experience. There are also additional methods 
for accelerating the search [36]. 

Some fundamental tools that speed up replanning include: 
• Heuristics. 
• Using limited look-ahead to limit the planning area (Real-time Heuristic Search). 
• Replacing only the altered portion of the path (incremental search). 
• Only changing the portion of the path that is necessary to reach the objective (incre-

mental search). 
In this research, a LiDAR sensor is combined with a camera, and the current study 

shows that no additional sensors are necessary in a LiDAR sensor-based environment. 
Well-established benchmarked methods are used to obtain accurate results. The current 
approach uses supervised data to handle image-based data, while unsupervised algo-
rithms are being developed and researched to address the shortage of image-based data. 
Pre-training is suggested for SS as it provides the system with experience and prior 
knowledge of the real world. Figure 2 shows the PC data captured by the LiDAR sensor 
and the unstructured PC data. A PC is a set of data points in three-dimensional space that 
represent the shape and form of an object or environment. These data points are typically 
collected using 3D laser scanners or other surveying instruments, and they can be utilized 
to develop detailed 3D designs of objects and environments.  

 
Figure 2. LiDAR PC data from PCAP file. 

  

Figure 2. LiDAR PC data from PCAP file.



Appl. Sci. 2023, 13, 3977 10 of 26

3.5. Pre-Learning

The pre-learning stage is critical for setting up the LiDAR sensor in a partially un-
known environment. It focuses on using raw LiDAR data with mono-model sensors. To
start, the Velodyne-FileReader function is used with parameters that take into account the
file and device names. This creates a Velodyne PC object from the disorganized PC data.
The input and ground regions of the PC are then segmented and avoided using this object.
The distance threshold is set at 0.5. The ground plans are then labeled. The output is the
number of clusters and their labels, which are obtained using M × N integer matrices.
Every point within a cluster is assigned a label that falls within a range of 1 to the total
number of clusters. Points that are deemed unacceptable, such as those labeled as “Not a
Number” (NaN) or “inf”, are allocated a label of “0” based on the IEEE754 2008 standard
for maintaining floating point values. The count of valid clusters can be represented by
looking at the total number of positive labels assigned to the points. Finally, the PC data
are segmented based on color and prepared for use. Image labelling that focuses on recog-
nizing and labelling certain aspects in a picture is known as image labelling. Pre-learning
applications for categorizing three-dimensional point clouds are becoming more popular
as a result of it.

The choice of either a single scale or many scales can be the primary consideration
when choosing a neighborhood. By postponing the decision on the appropriateness of
a neighborhood for the predictor, one can assess its characteristics across various scales.
However, numerous additional factors must also be considered, such as the architecture
of the scale space, the number of scales involved, and the technique used to calculate the
distance between scales. These decisions, which are often based on heuristics or empirical
selection [37], are unique to each dataset. In the context of the preceding to characterize the
local 3D design. Finding the 3D points in the vicinity of the specified 3D point X = (x, y, z)T

belonging to R is the primary challenge. This necessitates (i) a suitable definition of the
neighbourhood, (ii) an efficient method for recovering nearby 3D locations, and (iii) a
sufficient parameterization based on the neighbourhood’s size. We give these three issues
careful consideration.

The properties of the relevant PC data will undoubtedly affect the choice of the
appropriate neighborhood definition and scale parameter. In comparison to the cylindrical
as well as spherical definitions of neighborhoods Ns and NC, which, as discussed in
Section 2, require direct empirical or heuristic knowledge of the scene to determine an
appropriate radius, Nk, the neighbourhood description, allows for greater flexibility in the
face of changing point densities. We chose the Nk definition, which is dependent on the
KNN of a provided 3D point X, as it provides a flexible framework that is not limited to a
specific dataset. We can generate a spherical neighborhood with a radius that can vary by
selecting the nearest neighbors dependent on their 3D distances [38].

When choosing a suitable number of neighbors k to consider, the simplest method
would be to choose a fixed value of k for each point in the PC [39]. In this sense, the existing
heuristic or empirical knowledge still plays a role in the selection of k. However, it is
intuitive that a more adaptive and dynamic approach, where the variables k (also referred
to as the scale) can differ in the dataset, would be preferable. This is because k is clearly
influenced by the 3D structures and local point density in the dataset. Therefore, it would
be ideal to use a standardized approach to determine the optimal local neighborhoods. The
Pre-learning algorithm is discussed in Algorithm 3.

The proposed plan offers improved results, including increased space, speed, and
average space efficiency in LiDAR data. The pre-learning process is outlined in Figure 3,
and the framework is designed to work in both structured and unstructured environments.
The next crucial step in the pre-learning process is to find an open ROI. Ground truth
applications provide a more sophisticated approach to identifying rectangular ROIs.



Appl. Sci. 2023, 13, 3977 11 of 26

Algorithm 3: Pre-learning.

Input: LiDAR PC raw data
Output: Labelled Point-wise segmented 2D
1. Capture the surroundings
2. Alter the PCAP file into PC object
3. Eliminate ground segment from PC data
4. Eliminate the points that are not valid from PC
5. Divide image frames and follow steps for frames numbered from 1 to n

a. Initialize the point weights
b. Create ground truth vector as input for the building
c. Examine the point to find the weights that are similar to the input vector.
d. Compute the neighborhood similarity (The quantity of neighbors lessens with time)
e. Reward the winning weight by resembling the sample vector (neighbors

resemble the sample vector)
f. Repeat the step b for N times

End for
6. Allocate Color Index (CI) weight to every clustered point
7. Perform PC registration for successive frames

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 26 
 

4. Eliminate the points that are not valid from PC 
5. Divide image frames and follow steps for frames numbered from 1 to n 

a. Initialize the point weights 
b. Create ground truth vector as input for the building 
c. Examine the point to find the weights that are similar to the input vector. 
d. Compute the neighborhood similarity (The quantity of neighbors lessens with 

time) 
e. Reward the winning weight by resembling the sample vector (neighbors re-

semble the sample vector) 
f. Repeat the step b for N times 

End for 
6. Allocate Color Index (CI) weight to every clustered point 
7. Perform PC registration for successive frames 

The proposed plan offers improved results, including increased space, speed, and 
average space efficiency in LiDAR data. The pre-learning process is outlined in Figure 3, 
and the framework is designed to work in both structured and unstructured environ-
ments. The next crucial step in the pre-learning process is to find an open ROI. Ground 
truth applications provide a more sophisticated approach to identifying rectangular ROIs. 

In this work, physical ground truth values are employed. The unlabeled data are first 
introduced into the workspace, then labels are assigned to the designated objects and 
moved to the workspace. Label assignment is performed based on point similarity using 
the Color Index (CI). The CI is an RGB-based vector with values ranging from 0 to 255. 
These elements are deemed crucial as LiDAR sensor manufacturers assign labels, which 
are a collection of CI-related values. Using a bounding box that represents an object from 
an unstructured smart environment, these inputs are used to assign labels. The label “1 to 
N” is assigned with a CI value of “255, 255, 255”. The PC’s image frames are read to reg-
ister the arrangement of images, and the Normal Distributions Transform (NDT) scheme 
is used for image registration. The successive image frames of the PC are combined, re-
sulting in a two-dimensional mono-model with labels. The coordinate points and labels 
are included as features in the vector representation. 

 
Figure 3. Workflow of Pre-Learning. 

4. SS System 
Segmentation involves dividing the points of a PC into small, understandable, and 

connected subsets. It is a divisive approach. The points are then labeled based on their 
similarity, and each subset of points has distinctive characteristics. The PC process 

Figure 3. Workflow of Pre-Learning.

In this work, physical ground truth values are employed. The unlabeled data are
first introduced into the workspace, then labels are assigned to the designated objects and
moved to the workspace. Label assignment is performed based on point similarity using
the Color Index (CI). The CI is an RGB-based vector with values ranging from 0 to 255.
These elements are deemed crucial as LiDAR sensor manufacturers assign labels, which are
a collection of CI-related values. Using a bounding box that represents an object from an
unstructured smart environment, these inputs are used to assign labels. The label “1 to N”
is assigned with a CI value of “255, 255, 255”. The PC’s image frames are read to register
the arrangement of images, and the Normal Distributions Transform (NDT) scheme is used
for image registration. The successive image frames of the PC are combined, resulting in a
two-dimensional mono-model with labels. The coordinate points and labels are included
as features in the vector representation.



Appl. Sci. 2023, 13, 3977 12 of 26

4. SS System

Segmentation involves dividing the points of a PC into small, understandable, and
connected subsets. It is a divisive approach. The points are then labeled based on their
similarity, and each subset of points has distinctive characteristics. The PC process involves
three pipelined processes. Figure 4 shows the proposed architecture of the SS system.
Understanding semantics is a crucial aspect in autonomous cars and reverse engineering
and is a part of the positioning and vision-dependent navigation model for independent
robotic systems. Segmentations are of different types. The local segmentation of PCs
categorizes data points based on geometric factors in cluster-based schemes.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 26 
 

involves three pipelined processes. Figure 4 shows the proposed architecture of the SS 
system. Understanding semantics is a crucial aspect in autonomous cars and reverse en-
gineering and is a part of the positioning and vision-dependent navigation model for in-
dependent robotic systems. Segmentations are of different types. The local segmentation 
of PCs categorizes data points based on geometric factors in cluster-based schemes.  

Graph-dependent segmentation schemes are motivated by the neighborhood graph 
structure. However, these schemes have limitations such as difficulties in identifying bor-
ders and interpolation in the case of similar closed objects. To address these problems, the 
researchers have introduced a local descriptor that can be used to extract the relevant fea-
tures and information from the dataset. The Fast Point Fast Histogram (FPFH) [40] scheme 
is utilized to draw out local features. 

 
Figure 4. SS Process flow. 

4.1. Feature Extraction 
There have been various proposals on how to extract discriminative features from 

PCs that have varying densities of points [41]. Spin image descriptors are formed by ro-
tating a, and can be used to characterize the local 3D area surrounding a point X. An ef-
fective alternative to spin image descriptors is the use of shape distributions, which in-
volve randomly sampling geometric region properties such as intensity, color, texture, 
contours, regions, angles, and lengths. To determine the parameters of a color transfor-
mation that best separates the two groups, color data from the vehicle and nonroad zones 
are employed. After that, a line fitting method is used to express the contour as a series of 
parallel lines. Calculating the distances from the vehicle at each place𝑥௜, where the range 
is 𝑑௜,௝ =∥ 𝑥௜ ∥ for point 𝑖௧௛ allows us to describe the texture of an area. To eliminate the 
mean and magnify the noise, the distance data are next treated by obtaining the exact 
number of the first derivatives of the data. As a result, they are suitable for describing the 
immediate vicinity of a 3D point X [42]. Point Feature Histograms (PFHs) is another 
method that follows a similar approach. These relations are then encoded into histograms 
to construct the PFHs [43]. The “Signature of Histograms of Orientations (SHOT)” is an-
other type of descriptor that is dependent on a spherical grid centered at point X, which 
is used to construct the descriptor. However, it is rare to understand a single entry in the 
resulting feature vector for any of these approaches. 

4.2. Feature Selection 
To handle a large number of features or training cases, it is often desirable to use 

simpler and more efficient procedures. Therefore, filter-based approaches are commonly 
employed to choose a subset of related features [44]. These filter-based techniques focus 
on relationships between features and classes that are clearer and easier to understand, as 
well as possible relationships within features (such as relationships depending on better 
known concepts such as distance, consistency, dependency, or information), while em-
bedded approaches use more complicated relationships that are harder to understand 

Figure 4. SS Process flow.

Graph-dependent segmentation schemes are motivated by the neighborhood graph
structure. However, these schemes have limitations such as difficulties in identifying
borders and interpolation in the case of similar closed objects. To address these problems,
the researchers have introduced a local descriptor that can be used to extract the relevant
features and information from the dataset. The Fast Point Fast Histogram (FPFH) [40]
scheme is utilized to draw out local features.

4.1. Feature Extraction

There have been various proposals on how to extract discriminative features from PCs
that have varying densities of points [41]. Spin image descriptors are formed by rotating
a, and can be used to characterize the local 3D area surrounding a point X. An effective
alternative to spin image descriptors is the use of shape distributions, which involve
randomly sampling geometric region properties such as intensity, color, texture, contours,
regions, angles, and lengths. To determine the parameters of a color transformation that
best separates the two groups, color data from the vehicle and nonroad zones are employed.
After that, a line fitting method is used to express the contour as a series of parallel lines.
Calculating the distances from the vehicle at each place xi, where the range is di,j =‖ xi ‖
for point ith allows us to describe the texture of an area. To eliminate the mean and magnify
the noise, the distance data are next treated by obtaining the exact number of the first
derivatives of the data. As a result, they are suitable for describing the immediate vicinity
of a 3D point X [42]. Point Feature Histograms (PFHs) is another method that follows
a similar approach. These relations are then encoded into histograms to construct the
PFHs [43]. The “Signature of Histograms of Orientations (SHOT)” is another type of
descriptor that is dependent on a spherical grid centered at point X, which is used to
construct the descriptor. However, it is rare to understand a single entry in the resulting
feature vector for any of these approaches.

4.2. Feature Selection

To handle a large number of features or training cases, it is often desirable to use
simpler and more efficient procedures. Therefore, filter-based approaches are commonly
employed to choose a subset of related features [44]. These filter-based techniques focus on
relationships between features and classes that are clearer and easier to understand, as well



Appl. Sci. 2023, 13, 3977 13 of 26

as possible relationships within features (such as relationships depending on better known
concepts such as distance, consistency, dependency, or information), while embedded
approaches use more complicated relationships that are harder to understand [45]. Because
each score function focuses on reducing the classification error, it could be argued that
embedding methods are more appropriate for statistical learning or machine learning, as
they present these interactions as score functions. Further, embedded methodologies would
immediately debrief a dependence between the settings of a classifier and selected features,
such as the number and type of weak learners used and the number of (preferably high)
choices taken into account for each variable. To avoid extensive classifier adjustment and
maintain their applicability for non-expert users, we concentrate on filter-based approaches
and are willing to agree that these approaches generally produce slightly lower performance.
We will briefly discuss the fundamental ideas behind filter-based techniques for both
univariate and multivariate analysis in the following sections. It is significant to specify
that when using these methods, the data should be trained with an equal number of training
samples for each class to avoid bias in feature selection.

4.3. Classification

Most approaches tend to concentrate on supervised classification schemes for various
applications. The basic idea is to train a classifier with previously provided training data
so that it can adapt to unseen data. As a result, the testing data are typically depicted by
a set of testing samples, X, where each sample contains a class label and a feature vector
in a d-dimensional feature space. On the other hand, the test set, Y, typically consists
of new data that need to be classified and feature vectors in the d-dimensional feature
space. We focus on individual point categorization due to its simplicity, efficiency, and
reproducibility, as well as the availability of numerous suitable algorithms in different
software packages. In order to determine the relationship between feature vectors and class
labels during the training phase, multiple learning principles may be involved. Therefore,
we use various classifiers and provide a concise overview of the most significant concepts
in the following subsections. Here, we consider the possibility that the training procedure
may frequently be negatively impacted by an uneven splitting of training examples by
class in the training set. To prevent this, we provide class re-balancing, which lowers error
rates by randomly choosing the similar number of training samples for each class. End
users will, as a result, not only understand how each approach works, but they will also be
able to compare everything.

A classifier Is provided with either all or just the selected features in the final step, and
it assigns them to one of the specified (semantic) classes. Most approaches concentrate on
supervised classification schemes for a diverse range of applications. The basic idea is to
teach a classifier by utilizing existing training data, so that it can classify new information.
The training data comprise a set X of training samples, each consisting of a class label
and a feature vector in a feature space with d dimensions. Only feature vectors in the
d-dimensional feature space can be used in the test set Y, which contains new data that
need to be categorized.

We prioritize individual point classification because it offers simplicity, efficiency, and
reproducibility, as well as the availability of numerous suitable algorithms in different
software. In order to establish a correlation between feature vectors and class labels during
the training phase, we use various classifiers and provide a brief overview of the most
important concepts in the following sections. On the other hand, an uneven distribution of
training examples by class in the training set can frequently be detrimental to the training
procedure. We use class rebalancing to address this, which entails randomly choosing the
same number of testing samples for each class, which results in a smaller testing set. In this
manner, end users will not only comprehend how each method functions but will also be
able to compare them in a knowledgeable manner.



Appl. Sci. 2023, 13, 3977 14 of 26

Self-Organizing Maps (SOM)

In “Self-Organizing Maps (SOM)”, the pre-learned principal component data are taken
into consideration and trained. The input is chosen from the similar workspace. First,
the building is selected as the input of the ROI. Then, ten classes are considered, and the
specific data are trained.

In the building class, two distinct sub-labels are referred to as “Block 4” and “Block 6”.
The Weight Distance (WD) and the number of hits for the building are utilized. SOM
differs from other Artificial Neural Networks (ANN) as it implements an efficient learning
mechanism for error correction. The Weight Vectors (WVs) are initialized. From a randomly
selected sample vector, the WV is analyzed to identify the weight that represents the sample.
Each WV has neighboring weights that are close. The weight is adapted to resemble the
selected vector. Figure 5 illustrates the SOM framework. The modification of weights and
adjustments in the surrounding area are illustrated below.

Wij(t + 1) = Wij(t) + αi(t)
[
x(t)−Wij(t)

]
(7)

where W is Weight vector, Wij(t) is Connection Weight, t is Current iteration, αi(t) is
Learning Rate, x(t) is Input Vector.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 26 
 

First, the building is selected as the input of the ROI. Then, ten classes are considered, and 
the specific data are trained. 

In the building class, two distinct sub-labels are referred to as “Block 4” and “Block 
6”. The Weight Distance (WD) and the number of hits for the building are utilized. SOM 
differs from other Artificial Neural Networks (ANN) as it implements an efficient learning 
mechanism for error correction. The Weight Vectors (WVs) are initialized. From a ran-
domly selected sample vector, the WV is analyzed to identify the weight that represents 
the sample. Each WV has neighboring weights that are close. The weight is adapted to 
resemble the selected vector. Figure 5 illustrates the SOM framework. The modification of 
weights and adjustments in the surrounding area are illustrated below. 

 
Figure 5. SOM Framework. 

𝑊௜௝(𝑡 + 1) = 𝑊௜௝(𝑡) + 𝛼௜(௧)[𝑥(𝑡) −  𝑊௜௝(𝑡)  (7)

where W is Weight vector, 𝑊௜௝(𝑡) is Connection Weight, t is Current iteration, 𝛼௜(௧)  is 
Learning Rate, x(t) is Input Vector.  

5. Experiments 
This section includes a description of the experiment’s methodology and a data sum-

mary. The equipment and sensors used in this section are normally described. Here, we 
explain the steps used to gather the data. If the experiment is complicated, a separate sec-
tion could be dedicated to the technique. We employed a challenges being faced that was 
very comparable to the two datasets in order to test our claim. In the upcoming sections, 
we concentrate on evaluating the efficiency of our framework. Initially, in Section 5.1, we 
introduce two pertinent benchmark datasets, which are publicly accessible, and we de-
scribe their real-time application. We then elaborate on the experiments conducted in Sec-
tion 5.2. Later, in Section 6, we provide the outcomes of the analysis of selecting the ideal 
neighborhood size, comparing them with conventional neighborhood definitions and fo-
cusing on evaluating individual techniques. 

5.1. Data Set 

Figure 5. SOM Framework.

5. Experiments

This section includes a description of the experiment’s methodology and a data
summary. The equipment and sensors used in this section are normally described. Here,
we explain the steps used to gather the data. If the experiment is complicated, a separate
section could be dedicated to the technique. We employed a challenges being faced that was
very comparable to the two datasets in order to test our claim. In the upcoming sections,
we concentrate on evaluating the efficiency of our framework. Initially, in Section 5.1,
we introduce two pertinent benchmark datasets, which are publicly accessible, and we
describe their real-time application. We then elaborate on the experiments conducted in
Section 5.2. Later, in Section 6, we provide the outcomes of the analysis of selecting the
ideal neighborhood size, comparing them with conventional neighborhood definitions and
focusing on evaluating individual techniques.



Appl. Sci. 2023, 13, 3977 15 of 26

5.1. Data Set

We aim to facilitate an unbiased comparison with other approaches and prioritize the
ease of applying the procedures and reproducibility of results. As a result, we assess the
effectiveness of our framework by utilizing two labeled 3D PC datasets that are publicly
available. These datasets are elaborated on in the subsequent sections. The implementation
of these procedures is also performed in real-time data.

5.1.1. Oakland (3D PC Dataset)

The Oakland 3D PC Dataset is among the most extensively employed MLS datasets.
Table 3 displays the quantity of samples for training and testing data in the Oakland dataset.
This dataset was gathered using a mobile platform that was equipped with side-looking
“SICK LMS laser scanners operating in push-broom mode”, and it portrays an urban region.
“To every 3D point is allocated one of the five semantic labels, namely wire, pole/trunk,
façade, ground, and vegetation”. The dataset is separated into the training set X, validation
set V, and test set Y. Table 3 provides the number of samples for each class to give readers
an idea of the dataset’s distribution. Following class rebalancing, the training set is reduced
to 1000 training instances for each class.

Table 3. For the Oakland 3D PC Dataset, the number of samples per class.

S.No. Class Training Set Test Set

1 Wire 2572 3795
2 Pole/trunk 1087 7934
3 Façade 4714 222,113
4 Ground 14,122 934,147
5 Vegetation 14,442 267,326

Total 36,933 1,324,311

5.1.2. Paris-rue-Madame Database

We consider the Paris-rue-Madame database [46] as our second dataset. This
database was collected in the French city of Paris, with a street stretch measuring ap-
proximately 160 m in length representing the 20 million 3D points in this collection.
The Velodyne HDL32-equipped Mobile Laser Scanning system L3D2 was used for data
collection, and annotation was carried out with the help of a manual process. Point labels
as well as segmented objects are included in the annotated dataset, with 642 objects in
the database divided into 26 classes. Our tests are limited to 3D points that fall into
one of the six core semantic classifications—façade, ground, autos, motorbikes, traffic
signs, and pedestrians—because the remaining classes only make up less than 0.05% of
the whole dataset. Table 4 shows the Paris-rue-Madame database, with the number of
samples per class.

Table 4. For the Paris-rue-Madame database, the number of samples per class.

S.No. Class Training Set Test Set

1 Façade 1000 9,977,435
2 Ground 1000 8,023,295
3 Cars 1000 1,834,383
4 Motorcycles 1000 97,867
5 Traffic signs 1000 14,480
6 Pedestrians 1000 9048

Total 6000 19,956,508



Appl. Sci. 2023, 13, 3977 16 of 26

Once more, we perform a class rebalancing and choose at random a training sample X
including 1000 training instances for each class. The remaining data are then used as the
test set Y.

5.2. Classifying Vegetation

We acquired a minor portion of our institute’s facilities, including the building, road,
ground, open stage, trees, stone benches, lane, pillar, flag, rainwater channel, and other
features in the evening, for the purpose of processing as a Packet Capture Data (PCAP) file.
Our LiDAR data contain approximately 28 unknown classes and 25 known classes. The
Velo viewer tool was used to open the raw data and convert it to the CSV format for further
processing. After loading the data in CSV format, a PC object was created. Each PC in our
dataset contains approximately 100 frames. The distribution of LiDAR PC occupancy is
depicted in Figure 6, where the x-axis denotes the current position of the sensor, and the
y-axis denotes the number of points from the sensor.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 26 
 

We acquired a minor portion of our institute’s facilities, including the building, road, 
ground, open stage, trees, stone benches, lane, pillar, flag, rainwater channel, and other 
features in the evening, for the purpose of processing as a Packet Capture Data (PCAP) 
file. Our LiDAR data contain approximately 28 unknown classes and 25 known classes. 
The Velo viewer tool was used to open the raw data and convert it to the CSV format for 
further processing. After loading the data in CSV format, a PC object was created. Each 
PC in our dataset contains approximately 100 frames. The distribution of LiDAR PC oc-
cupancy is depicted in Figure 6, where the x-axis denotes the current position of the sen-
sor, and the y-axis denotes the number of points from the sensor.  

 
Figure 6. PC data distribution. 

We are conducting experiments in MATLAB R2019b. The sequence of images used 
to generate labels is loaded following the selection of the truth. Labels are made for re-
gions of interest, which are then imported and exported from the workspace for future 
use. This object serves as the foundation for subsequent processing. The k-nearest neigh-
bor algorithm is utilized to determine if two points are connected. Using this method, 53 
distinct segmented objects are categorized, and 9 of these 53 objects have pre-assigned 
labels, with one class named “unknown”. The organized PCs facilitate the identification 
of clusters, and each cluster is assigned a distinctive color index value. Buildings are as-
signed the color red, trees the color green, concrete the color yellow, and unknowns the 
color purple. The remaining clusters are not included in the pre-learning process. The PC 
data are organized in a specific order, with buildings, trees, lanes, concrete benches, an 
open terrace, and other features clearly visible in this frame. The ground truth value is 
utilized to extract the building points from the organized LiDAR PC. The Self-Organizing 
Map (SOM) clustering topology is created by passing the ground truth value to SOM as 
an input variable. Approximately 700 features are distinguished from the PC, with the 
main 200 elements being the target. Although the Mono model has high accuracy, it needs 
an important amount of time complexity. The process of detecting features using the 
Mono model requires a maximum of 100 iterations, a relaxation factor of 0.5, and a pyra-
mid level of 3. 

Figure 6. PC data distribution.

We are conducting experiments in MATLAB R2019b. The sequence of images used to
generate labels is loaded following the selection of the truth. Labels are made for regions
of interest, which are then imported and exported from the workspace for future use.
This object serves as the foundation for subsequent processing. The k-nearest neighbor
algorithm is utilized to determine if two points are connected. Using this method, 53 distinct
segmented objects are categorized, and 9 of these 53 objects have pre-assigned labels, with
one class named “unknown”. The organized PCs facilitate the identification of clusters,
and each cluster is assigned a distinctive color index value. Buildings are assigned the
color red, trees the color green, concrete the color yellow, and unknowns the color purple.
The remaining clusters are not included in the pre-learning process. The PC data are
organized in a specific order, with buildings, trees, lanes, concrete benches, an open
terrace, and other features clearly visible in this frame. The ground truth value is utilized
to extract the building points from the organized LiDAR PC. The Self-Organizing Map
(SOM) clustering topology is created by passing the ground truth value to SOM as an



Appl. Sci. 2023, 13, 3977 17 of 26

input variable. Approximately 700 features are distinguished from the PC, with the main
200 elements being the target. Although the Mono model has high accuracy, it needs an
important amount of time complexity. The process of detecting features using the Mono
model requires a maximum of 100 iterations, a relaxation factor of 0.5, and a pyramid level
of 3.

6. Results and Discussion

Python and C++ were used to create the point cloud categorization system. The
point cloud library (PCL) was modified to conduct point cloud downsampling and feature
extractions in order to process the point clouds quickly. The LiDAR and camera data
algorithms were implemented in the Scikit-learn framework for the classification procedure.
The implementation of both classification methods used parallel computing. Consequently,
both the training and testing procedures were sped up using a multicore processor. Python
version 2.7 was used to put the suggested tree location recognition and building footprint
extraction techniques into practice.

Our framework has the benefit of being made up of four separate components, which
can be individually evaluated, giving us the ability to thoroughly examine any possible
configuration. The free software OpenDroneMap was then used to process the photos that
had been gathered. Using the gathered photos, this software reassembles point clouds
and detailed 3D models of the survey objects. CloudCompare technique was used to
analyze the 3D models’ and point clouds’ degree of accuracy. Moreover, Jupiter Notebook’s
implementation of all the phases of the technique we describe here for LiDAR data uses the
Python programming language and open-source tools, making it free to use on any machine.
In this part, we briefly explain the key findings from our research for each component. The
use of individual, optimally sized neighborhoods provides a generic strategy for the first
part of neighborhood selection, eliminating the need for prior knowledge of the scene that
would be required when specifying neighborhoods using traditional methods. The concept
that the most suitable neighborhood size may differ between different classes and also rely
on the correct point density is reinforced by the use of each 3D neighborhoods. According
on the results of our classifying particular groups, neighborhood definitions with set scale
parameters may not be applicable across all groups [47].

Many tests have been run to improve this method throughout this effort. These tests
were carried out on the grounds of Active Space Technologies and involved recording
bags utilizing the depth with multiple sorts of obstacles placed at varied distances. We
evaluated the method for both stationary and moving obstructions in both indoor and
outdoor settings.

On the other hand, the eigen entropy-based scale selection method that has been
suggested is capable of immediately adjusting for the provided 3D PC data, resulting in
enhanced classification results, particularly with regard to the mean class recall values.
This enhancement has been observed across a broad range of classifiers. The substantial
impact on the smaller classes’ “wire” and “pole/trunk” is due to the positive effect of the
optimal size of individual neighborhoods on mean class recall values. As a result, the
use of individual, optimally sized neighborhoods reduce the likelihood of overfitting for
classifiers. This is evident from the unbalanced test set in the Oakland 3D PC Dataset,
where an overall accuracy of 70.5% could be achieved by correctly categorizing instances of
the “ground” class, but a trend toward overfitting of 20.0% is observed when considering
the mean class recall. Therefore, in our experiments, although the overall accuracy may not
be adequate, the mean class recall is a more reliable indicator of the quality of the outcomes.

For the investigation of the proposed system, a PCAP file was taken in the evening of
a minor part of the institute’s building, roads, trees, benches, lanes, pillars, etc. The LiDAR
data consist of 25 recognized classes and 28 unidentified classes. The Veloviewer tool is
used to convert it into a CSV file for processing after opening the raw data. The CSV file is
loaded and a PC object is created. The dataset includes nearly 100 frames per PC, which
are transformed and stored in separate locations.



Appl. Sci. 2023, 13, 3977 18 of 26

The labeling process involves selecting a ground truth and uploading the image
structure to generate the labels. New labels are added to the ROIs and exported to the
workspace for additional reference. This object can be used as input for further processing.
The connection between each point is generated using the K-Nearest Neighbor (KNN)
algorithm, which categorizes 53 varieties of segmented objects. Of these, 9 are labeled with
pre-defined terms.

Among them, one class is labeled as “unknown”. Clusters are identified from the
prearranged PC. Each cluster has a unique CI. Different colors are assigned for each label,
with red assigned to buildings, yellow to concrete, green to trees, and purple to unknown
objects. The remaining objects are not considered for the pre-learning process. Figure 7
shows a color-based classified image frame, which clearly indicates that Block 4 and 6
consist of buildings, trees, benches, lanes, etc. Figure 7, on the right, shows the PC’s contour
image. The labeling process begins with the selection of a ground truth, followed by the
uploading of the picture structure so that the labels may be generated. Updated with new
labels, and the labels are then exported to the workspace for further reference. Figure 8
depicts the SOM hit for a feature building.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 26 
 

algorithm, which categorizes 53 varieties of segmented objects. Of these, 9 are labeled with 
pre-defined terms.  

Among them, one class is labeled as “unknown”. Clusters are identified from the 
prearranged PC. Each cluster has a unique CI. Different colors are assigned for each label, 
with red assigned to buildings, yellow to concrete, green to trees, and purple to unknown 
objects. The remaining objects are not considered for the pre-learning process. Figure 7 
shows a color-based classified image frame, which clearly indicates that Block 4 and 6 
consist of buildings, trees, benches, lanes, etc. Figure 7, on the right, shows the PC’s con-
tour image. The labeling process begins with the selection of a ground truth, followed by 
the uploading of the picture structure so that the labels may be generated. Updated with 
new labels, and the labels are then exported to the workspace for further reference. Figure 
8 depicts the SOM hit for a feature building. 

 
Figure 7. Segmented PC for 3D Object. 

 
Figure 8. Amount of Hits for Building. 

Figure 9 depicts SOM neighbor weight distance. “An unsupervised machine learning 
method called a self-organizing map (SOM) or self-organizing feature map (SOFM)” is 
used to create a low-dimensional (usually 2D) representations of a higher-dimensional 

Figure 7. Segmented PC for 3D Object.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 26 
 

algorithm, which categorizes 53 varieties of segmented objects. Of these, 9 are labeled with 
pre-defined terms.  

Among them, one class is labeled as “unknown”. Clusters are identified from the 
prearranged PC. Each cluster has a unique CI. Different colors are assigned for each label, 
with red assigned to buildings, yellow to concrete, green to trees, and purple to unknown 
objects. The remaining objects are not considered for the pre-learning process. Figure 7 
shows a color-based classified image frame, which clearly indicates that Block 4 and 6 
consist of buildings, trees, benches, lanes, etc. Figure 7, on the right, shows the PC’s con-
tour image. The labeling process begins with the selection of a ground truth, followed by 
the uploading of the picture structure so that the labels may be generated. Updated with 
new labels, and the labels are then exported to the workspace for further reference. Figure 
8 depicts the SOM hit for a feature building. 

 
Figure 7. Segmented PC for 3D Object. 

 
Figure 8. Amount of Hits for Building. 

Figure 9 depicts SOM neighbor weight distance. “An unsupervised machine learning 
method called a self-organizing map (SOM) or self-organizing feature map (SOFM)” is 
used to create a low-dimensional (usually 2D) representations of a higher-dimensional 

Figure 8. Amount of Hits for Building.



Appl. Sci. 2023, 13, 3977 19 of 26

Figure 9 depicts SOM neighbor weight distance. “An unsupervised machine learning
method called a self-organizing map (SOM) or self-organizing feature map (SOFM)” is
used to create a low-dimensional (usually 2D) representations of a higher-dimensional
data collection while maintaining the topological architecture of the data. A data collection
containing parameters calculated in assumptions, for instance, could be described as groups
of findings with related variable values. A two-dimensional “map” of these clusters might
then be used to represent them, with study in proximal clusters having more similar values
than research in distal clusters. High-dimensional data may be easier to display and
interpret as a result.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 19 of 26 
 

data collection while maintaining the topological architecture of the data. A data collec-
tion containing parameters calculated in assumptions, for instance, could be described as 
groups of findings with related variable values. A two-dimensional “map” of these clus-
ters might then be used to represent them, with study in proximal clusters having more 
similar values than research in distal clusters. High-dimensional data may be easier to 
display and interpret as a result.  

 
Figure 9. Weight Distance. 

In Figure 10, the refurbished 2D image of the PC data are displayed. It is noticeable 
that the image is not well defined and lacks complete information, but the absent infor-
mation is reconstructed to enable further analysis. The image frames are incorporated into 
the training set for testing, and the testing period lasts for 3 days or more to verify the 
outcomes. Some objects are not accurately classified, and the errors observed from the 
results are eliminated from the image of interest. The error rate of the samples is illustrated 
in Figure 11. 

 
Figure 10. Reconstructed 2D Image from PC data. 

Figure 9. Weight Distance.

In Figure 10, the refurbished 2D image of the PC data are displayed. It is noticeable that
the image is not well defined and lacks complete information, but the absent information
is reconstructed to enable further analysis. The image frames are incorporated into the
training set for testing, and the testing period lasts for 3 days or more to verify the outcomes.
Some objects are not accurately classified, and the errors observed from the results are
eliminated from the image of interest. The error rate of the samples is illustrated in
Figure 11.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 19 of 26 
 

data collection while maintaining the topological architecture of the data. A data collec-
tion containing parameters calculated in assumptions, for instance, could be described as 
groups of findings with related variable values. A two-dimensional “map” of these clus-
ters might then be used to represent them, with study in proximal clusters having more 
similar values than research in distal clusters. High-dimensional data may be easier to 
display and interpret as a result.  

 
Figure 9. Weight Distance. 

In Figure 10, the refurbished 2D image of the PC data are displayed. It is noticeable 
that the image is not well defined and lacks complete information, but the absent infor-
mation is reconstructed to enable further analysis. The image frames are incorporated into 
the training set for testing, and the testing period lasts for 3 days or more to verify the 
outcomes. Some objects are not accurately classified, and the errors observed from the 
results are eliminated from the image of interest. The error rate of the samples is illustrated 
in Figure 11. 

 
Figure 10. Reconstructed 2D Image from PC data. Figure 10. Reconstructed 2D Image from PC data.



Appl. Sci. 2023, 13, 3977 20 of 26Appl. Sci. 2023, 13, x FOR PEER REVIEW 20 of 26 
 

 
Figure 11. Rate of misclassification. 

Table 5 shows the feature recognition using various models in image registration. 
Approximately 700 features were recognized from the PC, and 200 of these features were 
predicted. The mono-model provides higher accuracy, but requires more time. Feature 
detection takes a maximum of 100 iterations, with a relaxation factor of 0.5 and a pyramid 
level of 3. Figure 12 compares various feature identification methods, including the pro-
posed work, with minEigen, FAST, BRICK, and SURF. MimEigan’s accuracy is 86.5%, 
FAST accuracy is 89.2%, BRISK accuracy is 86.2%, SURF accuracy is 91.7%, and Mono-
model accuracy is 92%. MimEigan’s Timing is 60 ms, FAST Timing is 30 ms, BRISK Timing 
is 50 ms, SURF Timing is 50 ms, and Mono-model Timing is 20 ms. 

Table 5. Feature Identification Schemes. 

Feature Finding Models Accuracy (%) Timing (ms) 
MinEigan 86.5 60 
FAST 89.2 30 
BRISK 86.2 50 
SURF 91.7 50 
Mono-model 92 20 

Figure 11. Rate of misclassification.

Table 5 shows the feature recognition using various models in image registration.
Approximately 700 features were recognized from the PC, and 200 of these features were
predicted. The mono-model provides higher accuracy, but requires more time. Feature
detection takes a maximum of 100 iterations, with a relaxation factor of 0.5 and a pyramid
level of 3. Figure 12 compares various feature identification methods, including the pro-
posed work, with minEigen, FAST, BRICK, and SURF. MimEigan’s accuracy is 86.5%, FAST
accuracy is 89.2%, BRISK accuracy is 86.2%, SURF accuracy is 91.7%, and Mono-model
accuracy is 92%. MimEigan’s Timing is 60 ms, FAST Timing is 30 ms, BRISK Timing is
50 ms, SURF Timing is 50 ms, and Mono-model Timing is 20 ms.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 21 of 26 
 

 
Figure 12. Accuracy Measure for feature identification. 

6.1. Impact of Neighborhood Selection 
To investigate the influence of neighborhood selection on the classification of indi-

vidual points, we evaluate 21 geometric attributes for each of the 7 alternative neighbor-
hood definitions using 10 classifiers from various categories. Tables 6 and 7 provide a 
thorough investigation of the effect of neighborhood selection on classification outcomes 
by displaying the recall and accuracy values for the various neighborhood descriptions 
and classifiers. Additionally, Table 6 provides the absolute and relative processing times 
for the training and testing phases, enabling an assessment of the efficiency of the classi-
fiers involved. 

Table 6. Overall accuracy (in %) for different neighborhood definitions and different classifiers. 

Oakland NN [48] DT [48] NB [48] LDA [48] QDA [48] SVM [48] MLP [48] SOM 
N 10 73.86 65.64 78.88 87.38 78.93 85.69 80.54 82.54 
N 25 86.25 69.3 83.64 90.08 83.62 88.88 78.59 85.62 
N 50 88.89 75.47 85.03 92.83 84.95 92 85.68 89.03 
N 75 89.97 76.87 85 93.05 84.99 91.99 87.07 91.87 

N 100 89.9 84.45 84.33 92.6 84.43 91.76 84.39 88.32 

Table 7. Mean class recall values (in %) for different neighborhood definitions and different classi-
fiers with the respective classifier. 

Oakland NN DT NB LDA QDA SVM MLP SOM 
N 10 64.4 55.20 63.30 71.69 63.34 59.77 64.2 66.87 
N 25 70.01 57.41 68.46 75.54 68.47 68.5 68.03 70.5 
N 50 69.47 59.99 67.12 72.76 66.98 68.47 69.13 71.13 
N 75 68.29 57.82 65.49 73.05 65.44 68 70.47 73.05 

N 100 66.66 57.96 63.44 72.35 63.46 64.76 68.98 73.04 

Probabilistic learning involves inferring the most likely class label for each observed 
feature vector from a specified probabilistic model. One example of a probabilistic classi-
fier is the Naive Bayes (NB) classifier, which relies on Bayes’ theorem and assumes that 
all features are conditionally independent (John and Langley, 1995). In classification, a 
feature vector from the experimental set Y is given a class label that is most likely to accu-
rately reflect its content by utilizing the class probabilities and conditional probabilities 

86.5 89.2 86.2
91.7 92

60

30

50 50

20

0

20

40

60

80

100

MinEigan FAST BRISK SURF Mono-model

Ac
cu

ra
cy

 a
nd

 T
im

in
g

Feature Finding Model

Accuracy Measure

Accuracy (%) Timing (ms)

Figure 12. Accuracy Measure for feature identification.



Appl. Sci. 2023, 13, 3977 21 of 26

Table 5. Feature Identification Schemes.

Feature Finding Models Accuracy (%) Timing (ms)

MinEigan 86.5 60
FAST 89.2 30
BRISK 86.2 50
SURF 91.7 50
Mono-model 92 20

6.1. Impact of Neighborhood Selection

To investigate the influence of neighborhood selection on the classification of individ-
ual points, we evaluate 21 geometric attributes for each of the 7 alternative neighborhood
definitions using 10 classifiers from various categories. Tables 6 and 7 provide a thorough
investigation of the effect of neighborhood selection on classification outcomes by display-
ing the recall and accuracy values for the various neighborhood descriptions and classifiers.
Additionally, Table 6 provides the absolute and relative processing times for the training
and testing phases, enabling an assessment of the efficiency of the classifiers involved.

Table 6. Overall accuracy (in %) for different neighborhood definitions and different classifiers.

Oakland NN [48] DT [48] NB [48] LDA [48] QDA [48] SVM [48] MLP [48] SOM

N 10 73.86 65.64 78.88 87.38 78.93 85.69 80.54 82.54
N 25 86.25 69.3 83.64 90.08 83.62 88.88 78.59 85.62
N 50 88.89 75.47 85.03 92.83 84.95 92 85.68 89.03
N 75 89.97 76.87 85 93.05 84.99 91.99 87.07 91.87
N 100 89.9 84.45 84.33 92.6 84.43 91.76 84.39 88.32

Table 7. Mean class recall values (in %) for different neighborhood definitions and different classifiers
with the respective classifier.

Oakland NN DT NB LDA QDA SVM MLP SOM

N 10 64.4 55.20 63.30 71.69 63.34 59.77 64.2 66.87
N 25 70.01 57.41 68.46 75.54 68.47 68.5 68.03 70.5
N 50 69.47 59.99 67.12 72.76 66.98 68.47 69.13 71.13
N 75 68.29 57.82 65.49 73.05 65.44 68 70.47 73.05
N 100 66.66 57.96 63.44 72.35 63.46 64.76 68.98 73.04

Probabilistic learning involves inferring the most likely class label for each observed
feature vector from a specified probabilistic model. One example of a probabilistic classi-
fier is the Naive Bayes (NB) classifier, which relies on Bayes’ theorem and assumes that
all features are conditionally independent (John and Langley, 1995). In classification, a
feature vector from the experimental set Y is given a class label that is most likely to accu-
rately reflect its content by utilizing the class probabilities and conditional probabilities
for the presence of a class provided a particular class label, both of which are determined
by reference to the training set X. However, this method cannot accurately model corre-
lated features as it assumes conditional independence. An alternative approach is to use
distribution-based Bayesian Discriminant Analysis to construct a traditional maximum
likelihood (ML) classifier. During the training phase of a Gaussian-based classifier, the
variables of a Gaussian distribution are assessed for each class using either multivariate
Gaussian distribution or parameter fitting. The Linear Discriminant Analysis (LDA) classi-
fier assumes that each class has the same covariance matrix, with only the means varying.
On the other hand, the “Quadratic Discriminant Analysis (QDA) classifier” allows the
covariance matrix for each individual class to differ. The likelihood of a feature vector
belonging to each class is calculated, and the class with the greatest likelihood of accuracy
is selected when classifying a new feature vector. Figure 13 compares various classifiers
and their accuracy levels for different neighborhood definitions.



Appl. Sci. 2023, 13, 3977 22 of 26

Appl. Sci. 2023, 13, x FOR PEER REVIEW 22 of 26 
 

for the presence of a class provided a particular class label, both of which are determined 
by reference to the training set X. However, this method cannot accurately model corre-
lated features as it assumes conditional independence. An alternative approach is to use 
distribution-based Bayesian Discriminant Analysis to construct a traditional maximum 
likelihood (ML) classifier. During the training phase of a Gaussian-based classifier, the 
variables of a Gaussian distribution are assessed for each class using either multivariate 
Gaussian distribution or parameter fitting. The Linear Discriminant Analysis (LDA) clas-
sifier assumes that each class has the same covariance matrix, with only the means vary-
ing. On the other hand, the “Quadratic Discriminant Analysis (QDA) classifier” allows 
the covariance matrix for each individual class to differ. The likelihood of a feature vector 
belonging to each class is calculated, and the class with the greatest likelihood of accuracy 
is selected when classifying a new feature vector. Figure 13 compares various classifiers 
and their accuracy levels for different neighborhood definitions. 

 
Figure 13. Neighborhood definitions for various classifiers. 

Precision is the level of a classifier’s conformance and accuracy when measured 
against a real or absolute value. The accuracy levels of different classifiers for various 
neighborhood configurations are compared in Figure 14. Comparing the SOM approach 
to others, we find it to be very accurate. 

 
Figure 14. Comparison of Precision. 

0
20
40
60
80

100

NN DT NB LDA QDA SVM MLP SOM

Ac
cu
ra
cy

Classifiers

Overall accuracy (in %) for different neighborhood 
definitions

N 10 N 25 N 50 N 75 N 100

Figure 13. Neighborhood definitions for various classifiers.

Precision is the level of a classifier’s conformance and accuracy when measured against
a real or absolute value. The accuracy levels of different classifiers for various neighborhood
configurations are compared in Figure 14. Comparing the SOM approach to others, we find
it to be very accurate.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 22 of 26 
 

for the presence of a class provided a particular class label, both of which are determined 
by reference to the training set X. However, this method cannot accurately model corre-
lated features as it assumes conditional independence. An alternative approach is to use 
distribution-based Bayesian Discriminant Analysis to construct a traditional maximum 
likelihood (ML) classifier. During the training phase of a Gaussian-based classifier, the 
variables of a Gaussian distribution are assessed for each class using either multivariate 
Gaussian distribution or parameter fitting. The Linear Discriminant Analysis (LDA) clas-
sifier assumes that each class has the same covariance matrix, with only the means vary-
ing. On the other hand, the “Quadratic Discriminant Analysis (QDA) classifier” allows 
the covariance matrix for each individual class to differ. The likelihood of a feature vector 
belonging to each class is calculated, and the class with the greatest likelihood of accuracy 
is selected when classifying a new feature vector. Figure 13 compares various classifiers 
and their accuracy levels for different neighborhood definitions. 

 
Figure 13. Neighborhood definitions for various classifiers. 

Precision is the level of a classifier’s conformance and accuracy when measured 
against a real or absolute value. The accuracy levels of different classifiers for various 
neighborhood configurations are compared in Figure 14. Comparing the SOM approach 
to others, we find it to be very accurate. 

 
Figure 14. Comparison of Precision. 

0
20
40
60
80

100

NN DT NB LDA QDA SVM MLP SOM

Ac
cu
ra
cy

Classifiers

Overall accuracy (in %) for different neighborhood 
definitions

N 10 N 25 N 50 N 75 N 100

Figure 14. Comparison of Precision.

6.2. Impact of Feature Selection

Additionally, we aim to introduce a method for selecting significant features while
disregarding insignificant ones to minimize the computational load in terms of processing
time as well as memory utilization. Our emphasis is on the ability to analyze large-scale 3D
scenes with much huge datasets. To achieve this, we once again utilize a SOM classifier and
present the outcomes attained by utilizing the seven various neighborhood descriptions
and feature sets, resulting in 49 different possible combinations. The mean class recall
values (in percentage) for various neighborhood descriptions and classifiers are presented
in Table 7.

Decision trees (DTs) use a hierarchical structure of basic tests to make predictions. The
construction of a decision tree usually follows a top-down approach. At each step, the best



Appl. Sci. 2023, 13, 3977 23 of 26

parameter for splitting the training examples is selected. The description of the splitting
function and the stopping criterion for the recursive partitioning process is crucial to
building an accurate decision tree. In this case, standard settings are used for both criteria.

The complete feature set achieved a mean class recall of 83.56% and an overall accuracy
of 88.76%. The overall accuracy and mean class recall for Feature Set 1 were 88.98% and
84.66%, respectively; for Feature Set 2, these figures were 89.16% and 83.83%. The recall
values for different classifiers are displayed in Figure 15. By measuring the natural loga-
rithm of a classifier’s accuracy and recall, the F1-score integrates both into a single statistic.
It is utilized to compare the performance of two classifiers. For various neighborhood
definitions, Figure 16 compares several classifications and their F1-scores. Comparing our
SOM approach to others, it has a strong F1-score.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 23 of 26 
 

6.2. Impact of Feature Selection 
Additionally, we aim to introduce a method for selecting significant features while 

disregarding insignificant ones to minimize the computational load in terms of processing 
time as well as memory utilization. Our emphasis is on the ability to analyze large-scale 
3D scenes with much huge datasets. To achieve this, we once again utilize a SOM classifier 
and present the outcomes attained by utilizing the seven various neighborhood descrip-
tions and feature sets, resulting in 49 different possible combinations. The mean class re-
call values (in percentage) for various neighborhood descriptions and classifiers are pre-
sented in Table 7. 

Decision trees (DTs) use a hierarchical structure of basic tests to make predictions. 
The construction of a decision tree usually follows a top-down approach. At each step, the 
best parameter for splitting the training examples is selected. The description of the split-
ting function and the stopping criterion for the recursive partitioning process is crucial to 
building an accurate decision tree. In this case, standard settings are used for both criteria. 

The complete feature set achieved a mean class recall of 83.56% and an overall accu-
racy of 88.76%. The overall accuracy and mean class recall for Feature Set 1 were 88.98% 
and 84.66%, respectively; for Feature Set 2, these figures were 89.16% and 83.83%. The 
recall values for different classifiers are displayed in Figure 15. By measuring the natural 
logarithm of a classifier’s accuracy and recall, the F1-score integrates both into a single 
statistic. It is utilized to compare the performance of two classifiers. For various neighbor-
hood definitions, Figure 16 compares several classifications and their F1-scores. Compar-
ing our SOM approach to others, it has a strong F1-score. 

 
Figure 15. Recall Value for different neighborhood definitions. 

0

20

40

60

80

N 10 N 25 N 50 N 75 N 100

Ac
cu

ra
cy

 fo
r d

iff
er

en
t c

la
ss

ifi
er

Neighborfood Selection

Recall values (in %) for different neighborhood 
definitions 

NN DT NB LDA QDA SVM MLP SOM

Figure 15. Recall Value for different neighborhood definitions.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 24 of 26 
 

 
Figure 16. Comparison of F1-score. 

7. Conclusions 
In this paper, a mono-model pre-learning-based SS scheme is proposed for unstruc-

tured data and smart environments. The proposed scheme gains insight from PCs through 
the incorporation of a pre-learning process, which includes the use of Self-Organizing 
Maps (SOM). The PCs are transformed into 2D frames of images using a mono-model 
based image registration scheme. We present a novel, fully automated, and adaptable ar-
chitecture consisting of four sequential components, each equipped with a range of meth-
ods, designed to meet the requirements of simplicity, efficiency, and reproducibility. 

Our work addressed two interconnected issues: selecting the optimal size of individ-
ual neighborhoods for feature extraction and choosing a subset of the most applicable 
characteristics. We evaluated seven different neighborhood definitions, twenty-one dif-
ferent features, seven different feature selection strategies, and ten different classifiers in 
order to show how using appropriate neighborhood sizes and the benefits of feature se-
lection can significantly improve classification accuracy while decreasing the complexity 
of computation. We found that the neighborhood selection method depends on decreas-
ing the eigen entropy evaluation over a range of scales, which had a positive effect on 
classification, regardless of the classifier being used. We also found that feature subsets 
produced by feature selection methods based on the symmetrical uncertainty measure 
were the most appropriate as they removed unnecessary features and reduced feature 
redundancy. 

Our long-term goal is to employ well-spaced, smooth labelings to dramatically en-
hance the outcomes of 3D scene analysis in subsequent projects. This can be achieved 
through the use of smoothing techniques or approaches that utilize contextual data. These 
choices rely on the outcomes of individual point categorization, making the suggested 
approach a necessary precondition. Nevertheless, because this research addresses such an 
issue, it can be anticipated that the LiDAR sensor’s usage would rise in the future. More-
over, it is expected that this trend will progressively pick up speed when LiDAR sensor 
quality is enhanced to catch up to image sensor sensitivity. Further study will include 
extending the findings to real-time autonomous vehicles and validating the LiDAR object 
identification ability using filtering point cloud data. In our future study, we want to in-
vestigate more complex fusion structures using network architecture search approaches 
and make use of all of the color pixels that are now accessible. Conventional scanners are 
not designed to pick up on this trait, and thus, they do not normally look for it.  

Author Contributions: Conceptualization, K.R., N.G. and M.M.; methodology, K.R., N.G. and 
M.M.; validation, K.R. and N.G.; software, K.R., N.G., M.M. and R.G.; formal analysis, K.R., M.M. 

Figure 16. Comparison of F1-score.



Appl. Sci. 2023, 13, 3977 24 of 26

7. Conclusions

In this paper, a mono-model pre-learning-based SS scheme is proposed for unstruc-
tured data and smart environments. The proposed scheme gains insight from PCs through
the incorporation of a pre-learning process, which includes the use of Self-Organizing Maps
(SOM). The PCs are transformed into 2D frames of images using a mono-model based
image registration scheme. We present a novel, fully automated, and adaptable architec-
ture consisting of four sequential components, each equipped with a range of methods,
designed to meet the requirements of simplicity, efficiency, and reproducibility.

Our work addressed two interconnected issues: selecting the optimal size of indi-
vidual neighborhoods for feature extraction and choosing a subset of the most applicable
characteristics. We evaluated seven different neighborhood definitions, twenty-one differ-
ent features, seven different feature selection strategies, and ten different classifiers in order
to show how using appropriate neighborhood sizes and the benefits of feature selection
can significantly improve classification accuracy while decreasing the complexity of com-
putation. We found that the neighborhood selection method depends on decreasing the
eigen entropy evaluation over a range of scales, which had a positive effect on classification,
regardless of the classifier being used. We also found that feature subsets produced by
feature selection methods based on the symmetrical uncertainty measure were the most
appropriate as they removed unnecessary features and reduced feature redundancy.

Our long-term goal is to employ well-spaced, smooth labelings to dramatically en-
hance the outcomes of 3D scene analysis in subsequent projects. This can be achieved
through the use of smoothing techniques or approaches that utilize contextual data. These
choices rely on the outcomes of individual point categorization, making the suggested
approach a necessary precondition. Nevertheless, because this research addresses such
an issue, it can be anticipated that the LiDAR sensor’s usage would rise in the future.
Moreover, it is expected that this trend will progressively pick up speed when LiDAR
sensor quality is enhanced to catch up to image sensor sensitivity. Further study will
include extending the findings to real-time autonomous vehicles and validating the LiDAR
object identification ability using filtering point cloud data. In our future study, we want to
investigate more complex fusion structures using network architecture search approaches
and make use of all of the color pixels that are now accessible. Conventional scanners are
not designed to pick up on this trait, and thus, they do not normally look for it.

Author Contributions: Conceptualization, K.R., N.G. and M.M.; methodology, K.R., N.G. and M.M.;
validation, K.R. and N.G.; software, K.R., N.G., M.M. and R.G.; formal analysis, K.R., M.M. and R.G.;
investigation, K.R., N.G., M.M. and R.G.; resources, K.R. and N.G.; writing—original draft, K.R., N.G.
and M.M.; writing—review and editing, M.M. and R.G. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the project SP2023/074 Application of Machine and Process
Control Advanced Methods supported by the Ministry of Education, Youth and Sports, Czech Republic.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available through email upon
request to the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Schwarting, W.; Alonso-Mora, J.; Rus, D. Planning and Decision-Making for Autonomous Vehicles. Annu. Rev. Control. Robot.

Auton. Syst. 2018, 1, 187–210. [CrossRef]
2. Lee, J.-S.; Park, T.-H. Fast Road Detection by CNN-Based Camera-Lidar Fusion and Spherical Coordinate Transformation. IEEE

Trans. Intell. Transp. Syst. 2020, 22, 5802–5810. [CrossRef]
3. Xie, X.; Wei, H.; Yang, Y. Real-Time LiDAR Point-Cloud Moving Object Segmentation for Autonomous Driving. Sensors 2023,

23, 547. [CrossRef] [PubMed]

http://doi.org/10.1146/annurev-control-060117-105157
http://doi.org/10.1109/TITS.2020.2988302
http://doi.org/10.3390/s23010547
http://www.ncbi.nlm.nih.gov/pubmed/36617142


Appl. Sci. 2023, 13, 3977 25 of 26

4. Pires, M.; Couto, P.; Santos, A.; Filipe, V. Obstacle detection for autonomous guided vehicles through point cloud clustering using
depth data. Machines 2022, 10, 332. [CrossRef]

5. Akai, N.; Morales, Y.; Murase, H. Simultaneous pose and reliability estimation using convolutional neural network and Rao–
Blackwellized particle filter. Adv. Robot. 2018, 32, 930–944. [CrossRef]

6. Chromy, A.; Zalud, L. Robotic 3D scanner as an alternative to standard modalities of medical imaging. SpringerPlus 2014, 3, 13.
[CrossRef] [PubMed]

7. Abellan, A.; Derron, M.-H.; Jaboyedoff, M. “use of 3D point clouds in geohazards” special issue: Current challenges and future
trends. Remote Sens. 2016, 8, 130. [CrossRef]

8. Albano, R. Investigation on roof segmentation for 3D building reconstruction from aerial LIDAR point clouds. Appl. Sci. 2019,
9, 4674. [CrossRef]

9. Biasutti, P.; Bugeau, A.; Aujol, J.-F.; Bredif, M. RIU-Net: Embarrassingly simple semantic segmentation of 3D LiDAR point cloud.
arXiv 2019, arXiv:1905.08748.

10. Wang, X.; Lyu, H.; Mao, T.; He, W.; Chen, Q. Point cloud segmentation from iPhone-based LiDAR sensors using the tensor feature.
Appl. Sci. 2022, 12, 1817. [CrossRef]

11. Ben-Shabat, Y.; Lindenbaum, M.; Fischer, A. 3D Point Cloud Classification and Segmentation using 3D Modified Fisher Vector
Representation for Convolutional Neural Networks. arXiv 2017, arXiv:1711.08241.

12. Wang, W.; Zhou, T.; Yu, F.; Dai, J.; Konukoglu, E.; Van Gool, L. Exploring cross-image pixel contrast for semantic segmentation. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 10–17 October 2021; pp. 7303–7313.

13. Libiao, J.; Wenchao, Z.; Changyu, L.; Zheng, W. Semantic segmentation based on DeeplabV3+ with multiple fusions of low-level
features. In Proceedings of the 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference
(IAEAC), Chongqing, China, 12–14 March 2021; pp. 1957–1963.

14. Huang, Z.; Wei, Y.; Wang, X.; Liu, W.; Huang, T.S.; Shi, H. Alignseg: Feature-aligned segmentation networks. IEEE Trans. Pattern
Anal. Mach. Intell. 2021, 44, 550–557. [CrossRef] [PubMed]

15. Nekrasov, A.; Schult, J.; Litany, O.; Leibe, B.; Engelmann, F. Mix3d: Out-of-context data augmentation for 3d scenes. In Proceedings
of the 2021 International Conference on 3D Vision (3DV), London, UK, 1–3 December 2021; pp. 116–125.

16. Xie, B.; Li, S.; Li, M.; Liu, C.H.; Huang, G.; Wang, G. SePiCo: Semantic-Guided Pixel Contrast for Domain Adaptive Semantic
Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 1–17. [CrossRef]

17. Li, P.; Xu, Y.; Wei, Y.; Yang, Y. Self-correction for human parsing. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 44, 3260–3271.
[CrossRef]

18. Borse, S.; Cai, H.; Zhang, Y.; Porikli, F. Hs3: Learning with proper task complexity in hierarchically supervised semantic
segmentation. arXiv 2021, arXiv:2111.02333 2021.

19. Yuan, F.; Zhu, Y.; Li, K.; Fang, Z.; Shi, J. An anisotropic non-local attention network for image segmentation. Mach. Vis. Appl. 2022,
33, 23. [CrossRef]

20. Zhang, Z.; Zhang, X.; Peng, C.; Xue, X.; Sun, J. Exfuse: Enhancing feature fusion for semantic segmentation. In Proceedings of the
European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 269–284.

21. Valada, A.; Mohan, R.; Burgard, W. Self-supervised model adaptation for multimodal semantic segmentation. Int. J. Comput. Vis.
2020, 128, 1239–1285. [CrossRef]

22. Huang, S.-S.; Ma, Z.-Y.; Mu, T.-J.; Fu, H.; Hu, S.-M. Supervoxel convolution for online 3d semantic segmentation. ACM Trans.
Graph. (TOG) 2021, 40, 1–15. [CrossRef]

23. Gao, T.; Wei, W.; Cai, Z.; Fan, Z.; Xie, S.; Wang, X.; Yu, Q. CI-Net: Contextual information for joint semantic segmentation and
depth estimation. arXiv 2021, arXiv:2107.13800. [CrossRef]

24. Shikishima, J.; Tasaki, T. Dynamic 3D-Obstacles Detection by a Monocular Camera and a 3D Map. In Proceedings of the 2021
IEEE/SICE International Symposium on System Integration (SII), Fukushima, Japan, 11–14 January 2021; pp. 704–705.

25. Wang, X.; Liu, S.; Shen, X.; Shen, C.; Jia, J. Associatively segmenting instances and semantics in point clouds. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 4096–4105.

26. Cao, B.; Sun, Z.; Zhang, J.; Gu, Y. Resource Allocation in 5G IoV Architecture Based on SDN and Fog-Cloud Computing. IEEE
Trans. Intell. Transp. Syst. 2021, 22, 3832–3840. [CrossRef]

27. Rajathi, K.; Sarasu, P. Pre-Learning-Based Semantic Segmentation for LiDAR Point Cloud Data Using Self-Organized Map. In
Role of Edge Analytics in Sustainable Smart City Development: Challenges and Solutions; Wiley: Hoboken, NJ, USA, 2020; pp. 171–188.

28. Chen, P.; Pei, J.; Lu, W.; Li, M. A deep reinforcement learning based method for real-time path planning and dynamic obstacle
avoidance. Neurocomputing 2022, 497, 64–75. [CrossRef]

29. Li, J.; Qin, H.; Wang, J.; Li, J. OpenStreetMap-based autonomous navigation for the four wheel-legged robot via 3D-lidar and
CCD camera. IEEE Trans. Ind. Electron. 2022, 69, 2708–2717. [CrossRef]

30. Triharminto, H.H.; Wahyunggoro, O.; Adji, T.B.; Cahyadi, A.I. An integrated artificial potential field path planning with kinematic
control for nonholonomic mobile robot. Int. J. Adv. Sci. Eng. Inf. Technol. 2016, 6, 410–418. [CrossRef]

31. Cabreira, T.M.; Brisolara, L.B.; Paulo, R.F.J. Survey on coverage path planning with unmanned aerial vehicles. Drones 2019, 3, 4.
[CrossRef]

32. Yu, J.; LaValle, S.M. Optimal multi-robot path planning on graphs: Structure and computational complexity. arXiv 2015,
arXiv:1507.03289 2015.

http://doi.org/10.3390/machines10050332
http://doi.org/10.1080/01691864.2018.1509726
http://doi.org/10.1186/2193-1801-3-13
http://www.ncbi.nlm.nih.gov/pubmed/25694857
http://doi.org/10.3390/rs8020130
http://doi.org/10.3390/app9214674
http://doi.org/10.3390/app12041817
http://doi.org/10.1109/TPAMI.2021.3062772
http://www.ncbi.nlm.nih.gov/pubmed/33646946
http://doi.org/10.1109/TPAMI.2023.3237740
http://doi.org/10.1109/TPAMI.2020.3048039
http://doi.org/10.1007/s00138-021-01265-8
http://doi.org/10.1007/s11263-019-01188-y
http://doi.org/10.1145/3453485
http://doi.org/10.1007/s10489-022-03401-x
http://doi.org/10.1109/TITS.2020.3048844
http://doi.org/10.1016/j.neucom.2022.05.006
http://doi.org/10.1109/TIE.2021.3070508
http://doi.org/10.18517/ijaseit.6.4.832
http://doi.org/10.3390/drones3010004


Appl. Sci. 2023, 13, 3977 26 of 26

33. Khaksar, W.; Tang, S.H.; Khaksar, M. Improved Bug Algorithm for Online Path Planning: Utilization of Vision Sensor. Sci. Res.
Essays 2012, 7, 2744–2753. [CrossRef]

34. Ayawli, B.B.K.; Mei, X.; Shen, M.; Appiah, A.Y.; Kyeremeh, F. Mobile Robot Path Planning in Dynamic Environment using
Voronoi Diagram and Computation Geometry Technique. IEEE Access 2019, 7, 86026–86040. [CrossRef]

35. LaSalle, D.; Karypis, G. A parallel hill-climbing refinement algorithm for graph partitioning. In Proceedings of the 2016 45th
International Conference on Parallel Processing (ICPP), Philadelphia, PA, USA, 16–19 August 2016; pp. 236–241.

36. Fankhauser, P.; Hutter, M. A Universal Grid Map Library: Implementation and Use Case for Rough Terrain Navigation. In Robot
Operating System (ROS) The Complete Reference (Volume 1); Springer: Berlin/Heidelberg, Germany, 2016; pp. 99–120.

37. Boyko, A.; Funkhouser, T. Extracting roads from dense point clouds in large scale urban environment. ISPRS J. Photogramm.
Remote Sens. 2011, 66, S02–S12. [CrossRef]

38. Zhao, Z.; Morstatter, F.; Sharma, S.; Alelyani, S.; Anand, A.; Liu, H. Advancing Feature Selection Research—ASU Feature Selection
Repository; Tech. Rep.; School of Computing, Informatics, and Decision Systems Engineering, Arizona State University: Tempe,
AZ, USA, 2010.

39. Weinmann, M.; Jutzi, B.; Mallet, C. Semantic 3D scene interpretation: A framework combining optimal neighborhood size
selection with relevant features. In Proceedings of the ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information
Sciences, Zurich, Switzerland, 5–7 September 2014; pp. 181–188.

40. Rusu, R.B.; Marton, Z.C.; Blodow, N.; Beetz, M. Persistent point feature histograms for 3d point clouds. In Proceedings of the
International Conference on Intelligent Autonomous Systems, Zagreb, Croatia, 13–16 June 2008; pp. 119–128.

41. Criminisi, A.; Shotton, J. (Eds.) Decision Forests for Computer Vision and Medical Image Analysis; Springer Science & Business Media:
Berlin/Heidelberg, Germany, 2013.

42. Blomley, R.; Weinmann, M.; Leitloff, J.; Jutzi, B. Shape distribution features for point cloud analysis—A geometric histogram
approach on multiple scales. ISPRS Ann. Photogramm. Remote. Sens. Spat. Inf. Sci. 2014, II-3, 9–16. [CrossRef]

43. Monnier, F.; Vallet, B.; Soheilian, B. Trees Detection From Laser Point Clouds Acquired In Dense Urban Areas By A Mobile
Mapping System. ISPRS Ann. Photogramm. Remote. Sens. Spat. Inf. Sci. 2012, I-3, 245–250. [CrossRef]

44. Priyadarshini, J.; Premalatha, M.; Čep, R.; Jayasudha, M.; Kalita, K. Analyzing Physics-Inspired Metaheuristic Algorithms in
Feature Selection with K-Nearest-Neighbor. Appl. Sci. 2023, 13, 906. [CrossRef]

45. Ganesh, N.; Shankar, R.; Čep, R.; Chakraborty, S.; Kalita, K. Efficient Feature Selection Using Weighted Superposition Attraction
Optimization Algorithm. Appl. Sci. 2023, 13, 3223. [CrossRef]

46. Munoz, D.; Bagnell, J.A.; Vandapel, N.; Hebert, M. Contextual classification with functional max-margin Markov networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 975–982.

47. Yang, S.; Xu, S.; Huang, W. 3D point cloud for cultural heritage: A scientometric survey. Remote Sens. 2022, 14, 5542. [CrossRef]
48. Wang, Y.; Chen, Q.; Liu, L.; Li, X.; Sangaiah, A.K.; Li, K. Systematic comparison of power line classification methods from ALS

and MLS point cloud data. Remote Sens. 2018, 10, 1222. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.5897/SRE12.351
http://doi.org/10.1109/ACCESS.2019.2925623
http://doi.org/10.1016/j.isprsjprs.2011.09.009
http://doi.org/10.5194/isprsannals-II-3-9-2014
http://doi.org/10.5194/isprsannals-I-3-245-2012
http://doi.org/10.3390/app13020906
http://doi.org/10.3390/app13053223
http://doi.org/10.3390/rs14215542
http://doi.org/10.3390/rs10081222

	Introduction 
	Literature Survey 
	Proposed Work 
	Data Acquirement 
	State Space Model 
	Grid Map Construction 
	Learning Informative Path Planning 
	Path Planning for Exploring 
	Path Planning for Partially Known Environments 

	Pre-Learning 

	SS System 
	Feature Extraction 
	Feature Selection 
	Classification 

	Experiments 
	Data Set 
	Oakland (3D PC Dataset) 
	Paris-rue-Madame Database 

	Classifying Vegetation 

	Results and Discussion 
	Impact of Neighborhood Selection 
	Impact of Feature Selection 

	Conclusions 
	References

