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Abstract: We examine a general wireless sensor network (WSN) model which incorporates a large
number of sensors distributed over a large and complex geographical area. The study proposes
solutions for a flexible deployment, low cost and high reliability in a wireless sensor network. To
achieve these aims, we propose the application of an unmanned aerial vehicle (UAV) as a flying relay
to receive and forward signals that employ nonorthogonal multiple access (NOMA) for a high spectral
sharing efficiency. To obtain an optimal number of subclusters and optimal UAV positioning, we
apply a sensor clustering method based on K-means unsupervised machine learning in combination
with the gap statistic method. The study proposes an algorithm to optimize the trajectory of the UAV,
i.e., the centroid-to-next-nearest-centroid (CNNC) path. Because a subcluster containing multiple
sensors produces cochannel interference which affects the signal decoding performance at the UAV,
we propose a diagonal matrix as a phase-shift framework at the UAV to separate and decode the
messages received from the sensors. The study examines the outage probability performance of
an individual WSN and provides results based on Monte Carlo simulations and analyses. The
investigated results verified the benefits of the K-means algorithm in deploying the WSN.

Keywords: wireless sensor network (WSN); unnamed aerial vehicle (UAV); optimal UAV positioning;
K-means clustering; gap statistic method; centroid-to-next-nearest-centroid (CNNC) trajectory

1. Introduction

Deployments of wireless sensor networks (WSNs) are increasing because of their
beneficial applications. For example, WSNs can be deployed to monitor or collect environ-
mental data (meteorological information such as precipitation, wind speed and direction,
air pressure, humidity, temperature, etc.) in remote or difficult terrain [1–6]. A major
challenge in deploying a WSN is distributing a large number of wireless sensors over a
large and complex geographical area. Wireless sensors are generally low cost, have low
power consumption and are highly flexible in their application. However, transmitting a
signal from a wireless sensor directly to a control centre presents an important challenge [7],
especially if a large number of wireless sensors are deployed to directly collect data. Using
terrestrial infrastructure for the purpose of collecting data from wireless sensors is imprac-
tical because of high deployment costs and a low flexibility. A potential solution to this
problem is using an environmental monitoring system which dispatches an unmanned
aerial vehicle (UAV) to a geographical area to retrieve the collected sensor data.
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To deploy a WSN, Heinzelman et al. [8] proposed a low-energy adaptive clustering
hierarchy (LEACH), a clustering method now considered the most well-known clustering
protocol for WSNs. In a hierarchical topology, clusters contain two types of node: cluster
members and cluster heads. Member nodes are grouped into different clusters, and in each
cluster, a single node is designated a cluster head. The cluster head has the most important
role in the cluster, tasked with receiving signals from cluster members and forwarding
those signals to other cluster heads [9] or the base station [10].

UAVs have gained increasing consideration as aerial relays which deliver mobility
and on-demand wireless connections in areas with complex topography and no network
coverage. A UAV’s online time, however, is limited by its own on-board energy limitations.
The evolution of UAV-assisted WSNs is compelling the scientific community to search for
new ways of performing energy harvesting (EH) from external power sources to prolong
the online time of UAVs. A variety of effective solutions have been proposed, grouped
according to two main types of technique, namely, simultaneous wireless information and
power transfer (SWIPT) and techniques for determining the optimal positions for the UAV.

Radio frequency EH shows promise as a potential solution for UAV-assisted WSNs.
Initial studies on radio frequency EH were used in a technology termed wireless power
transfer (WPT) to recharge the wireless sensors in the WSN. A new radiofrequency EH
technique, termed SWIPT, introduced significant benefits to WPT [11]. Many authors have
studied SWIPT over the last two decades [12–15], investigating the performance difference
between time switching and power splitting in SWIPT protocols [16]. The current study
applied a time-switching protocol because it supports a phase for EH.

Applied to all beyond 5G/6G wireless communications, nonorthogonal multiple
access (NOMA) provides massive connections, low latency and high reliability [14,17–21].
In the current study, we took advantage of NOMA’s benefits, applying NOMA at the UAV
to superimpose coding of the data received from wireless sensors and to forward this
superimposed signal to a mobile data centre.

1.1. Motivation

The use of machine learning in practical applications is escalating. The authors in [6]
applied an artificial neural network (ANN) for sensor clustering. By contrast, some wireless
sensors in the study in [6] were clustered as separate single-member clusters. In [22],
the authors proposed a distance- and energy-constrained K-means clustering scheme
(DEKCS) for cluster head selection to prolong the lifetime of underwater WSNs. With this
new clustering algorithm, a prospective cluster head was selected according to its position
in the cluster and its residual battery level. The authors dynamically updated residual
energy thresholds set for prospective cluster heads to ensure that the network fully depleted
its energy before disconnection. In this manner, cluster heads could be drained of energy
and become inactive/dead sensors. The current study applied the K-means algorithm and
the gap statistic method first introduced in [23] to obtain an optimal number of subclusters.
To our best knowledge, the gap statistic method has not been applied for WSN clustering
in any previous study.

In [24], the authors examined a UAV-assisted data collection WSN. The UAV’s tra-
jectory was optimized by applying the travelling salesman problem. Note that in [1],
the UAV in the proposed network visited every wireless sensor, while in [24], the optimal
serving order for sensors was determined according to a standard travelling salesman
problem algorithm, which can be optimally solved with the efficient cutting-plane method
(i.e., the shortest path from the start point to the end point). The authors also proposed
an algorithm which used the pattern search method to solve the problem of optimizing
the UAV position and sensor uploading power. In [1], the UAV could be exhausted as a
consequence of long flight distances. The authors in [24] used a UAV that navigated the
shortest path from the start point to end point, but it consequently ignored/missed some
wireless sensors. In another study, the authors addressed the UAV’s trajectory problem by
jointly optimizing the UAV’s velocity, hovering positions and visiting sequence [25]. The
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scientific community is very interested in studying UAVs’ trajectories for the significant
potential gains in aerial network performance. Researchers have applied several types of
trajectory, for example, straight trajectory [26,27], circular trajectory [10,28,29] and spiral
trajectory [30–32]. The authors in [25] introduced an interesting UAV trajectory scheme
(Figure 4), where the UAV visited all N monitoring areas and then found suitable positions
to transmit the collected data. In [25], the UAV collected data in four stages: (i) UAV data
collection flight, (ii) UAV data collection processing, (iii) UAV data transmission flight
and (iv) UAV data transmission processing. That UAV’s operating schedule is illustrated in
Figure 5 [25].

The current study proposes the use of a UAV for its high mobility, quick implemen-
tation and low cost. The main drawback to a small-sized, lightweight aircraft such as a
UAV, however, is its limited on-board energy. UAVs are therefore not suitable for flying
close to each sensor to collect data, as proposed in [25]. The current study therefore inves-
tigated the application of a K-means algorithm to cluster wireless sensors into multiple,
optimized subclusters.

1.2. Contribution

Inspired by the studies mentioned in the previous section, we employed a UAV as an
aerial relay to provide a sustainable, functional solution for a WSN. The main contributions
of the current study are:

• The use of three-dimensional Cartesian coordinates for a WSN which contains a
random number of randomly distributed wireless sensors.

• The decomposition of the UAV trajectory optimization into two subproblems: (i) the
global WSN cluster is divided into multiple subclusters whose number is optimized
with unsupervised machine learning which applies K-means clustering in combination
with the gap statistic method; (ii) a centroid-to-next-nearest-centroid algorithm is then
applied to find the shortest path for travel through every subcluster.

• An analysis of the system performance of the WSN over Rayleigh distributions and a
presentation of the derived closed-form expressions for the outage probability at the
UAV and mobile base station.

• Outage probability results for the UAV and mobile base station derived from Monte
Carlo simulations and verified with an analysis.

The remainder of the paper is organized as follows: Section 2 introduces the WSN
model, wireless sensor clustering algorithm, joint UAV trajectory, free-space channel mod-
elling, and joint UAV operating schedule; Section 3 provides an analysis of the WSN’s
performance based on outage probability and presents the closed form expressions for
outage probability at the UAV and mobile base station; Section 4 examines and plots the
investigated results; Section 5 discusses conclusions.

For clarity, Table 1 presents the notation used in the paper.

Table 1. List of important notations.

Notations Describe Conditions

N Random number of sensors 20 ≤ N ≤ 50

K
Optimal number of clusters given by the K-means
algorithm, where the number of subclusters K
is optimized

kmin ≤ K ≤ N
kmin

Sn
nth sensor node, where a lower value for n has
higher priority n = {1, . . . , N}

C Global wireless sensor cluster C ⊃ Sn s.t. ∀n ∈ N, |C| = N
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Table 1. Cont.

Notations Describe Conditions

Ck kth subcluster k = {1, . . . , K}, Nk = |Ck|

S(i,k)
n

nth sensor is ith member of the kth subcluster, where
a lower value for i has higher priority i = {1, . . . ,NK}, NK = |Ck|

T Global transmission time period T ∈ Z+

t UAV time period t = mod(T, K) ∨ K

ASn , AU , AB
Number of antennae at the sensors, UAV and mobile
base station ASn ≥ 1, AU ≥ 1, and AB ≥ 1

ε Path-loss exponent factor ε ≥ 2

C̃ Visited cluster set Updated after the UAV visits the centroid of a sub-
cluster Ck as given by C̃← C̃ ∪ Ck

HSn ,U , HU,B
Precoding fading channel matrices from sensors to the
UAV and from the UAV to the mobile base station

HSn ,U ∈ CASn×AU and HU,B ∈ CAU×AB have sizes
of ASn × AU and AU × AB, respectively

σSn ,U , σU,B Channel gains σSn ,U = E
{∣∣∣h(.,.)Sn ,U

∣∣∣2}, σU,B = E
{∣∣∣h(.,.)U,B

∣∣∣2}
α

S(i,k)
n

Power allocation factor for sensor Sn, indexed ith in
subcluster Ck

α
S(1,k)

n
+ . . . + α

S
(Nk ,k)
n

= 1 and α
S(1,k)

n
> . . . > α

S
(Nk ,k)
n

PSn , PU , PB
Respective power domains at the sensors, UAV and
mobile base station B Let PS1 = . . . = PSN dB

R Predefined bit-rate threshold for sensors bps/Hz

γU−x
S(i,k)n

, γB−x
S(i,k)n

SINR reached at UAV U and B when message x
S(i,k)

n
of sensor Sn is decoded

SIC decodes the message with the biggest power
allocation factor by treating other messages and
AWGN as interference

RU−x
S(i,k)n

, RB−x
S(i,k)n

Instantaneous bit rate reached at UAV U and mo-
bile base station B when message x

S(i,k)
n

of sensor Sn

is decoded
bps/Hz

OPU , OPB
Outage probabilities at UAV U and mobile base
station B

0 ≤ OPU ≤ 1, 0 ≤ OPB ≤ 1, a lower outage proba-
bility result is better performance

2. WSN Model

The current study examines a general WSN with a randomly distributed number of
wireless sensors. Figure 1 depicts a WSN with a random number of sensors N = 42 posi-
tioned at the Cartesian coordinate (x, y, z) in three dimensions. Let us assume that a mobile
base station B is positioned at B(0, 0, 0) and each wireless sensor Sn for n = {1, . . . , N} is
positioned randomly at coordinate Sn(x, y, 0), where x = {0.1, . . . , 1} and y = {0.1, . . . , 1}
as shown in Table 2. For simplicity, we assume that the wireless sensors and mobile base
station are positioned relative to a flat earth.

Definition 1. We denote the global set C as containing all wireless sensors. |C| returns N, the
total number of wireless sensor nodes (i.e., |C| = N). Let us assume that the data observations
(i.e., wireless sensor positioning) are clustered into K subclusters, i.e., C ⊇ C1 ∪ . . . ∪ CK and
N = |C| = |C1|+ . . . + |CK| = ∑K

k=1Nk, where Nk = |Ck|.

Figure 1 illustrates a random distribution of wireless sensors. Each wireless sensor is
allocated a given index by the subscript n, where n = {1, . . . , N} and a lower index n has a
higher priority. For clarity, sensor Sn has a higher priority than sensor Sn+1 (e.g., sensor S1
has a higher priority than sensor S2).
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Figure 1. Random positioning of sensor nodes, where 20 ≤ N ≤ 50.

Table 2. Wireless sensor positions are distributed randomly.

Sensors x-Coordinate y-Coordinate Sensors x-Coordinate y-Coordinate

S1 1 0.3 S2 0.2 0.8
S3 0.8 0.8 S4 0.8 0.6
S5 0.3 0.2 S6 1 0.5
S7 0.3 0.7 S8 0.8 0.3
S9 0.4 0.6 S10 0.4 0.8
S11 0.4 0.1 S12 1 0.2
S13 0.5 0.2 S14 0.7 0.3
S15 0.9 0.5 S16 0.3 0.4
S17 0.8 0.1 S18 0.9 0.3
S19 0.5 1 S20 0.9 0.8
S21 0.2 0.3 S22 0.6 0.2
S23 0.1 0.1 S24 0.6 0.7
S25 0.7 0.2 S26 0.9 0.2
S27 0.9 0.6 S28 0.7 0.6
S29 0.2 0.7 S30 1 0.9
S31 1 1 S32 0.6 1
S33 0.9 0.4 S34 1 0.4
S35 1 0.7 S36 0.8 0.2
S37 0.5 0.1 S38 0.2 0.9
S39 0.4 0.4 S40 0.5 0.9
S41 0.1 0.7 S42 0.5 0.4

Note: Two or more wireless sensors will never occupy the same position; each position is allocated only one
wireless sensor, as illustrated in Figure 1.

2.1. WSN Clustering

Remark 1. Because the optimization problem is complex, we propose breaking it down into several
subproblems and observing the random distribution of wireless sensors over a large geographical
area, as illustrated in Figure 1. The global wireless sensor cluster can be divided into multiple
subclusters. The number of subclusters can be optimized by applying the gap statistic method,
and the wireless sensors can be assigned to a subcluster using the K-means algorithm. To solve these
problems, we propose a solution in Proposition 1.
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Proposition 1. The optimal number of subclusters is yielded as follows:

• Observing the latitudes (x-axis) and longitudes (y-axis) of the wireless sensors, we determine
the optimal number of subclusters K ← koptimal . The gap statistic method is applied to the
number of subclusters k to compute the corresponding total within the intracluster variation
Wk, i.e., the sum of squares function, given by

Wk =
k

∑
κ=1

1
2|Cκ | ∑

Si ,Sj∈Cκ

dSi ,Si
, (1)

where κ = {1, . . . , k}, |Cκ | returns the number of wireless sensor nodes in cluster Cκ and dSi ,Sj

is the squared Euclidean distance of all pairwise sensor nodes in the cluster Cκ for Si, Sj ∈ Cκ

and i 6= j. It is important to note that we assume kmin = 4 and kmax = |C|
kmin

= N
kmin

, where
|C| is the number of observations (or the number of sensors within the global cluster C). Let us
briefly consider factors kmin and kmax. We define kmin = 4 to prevent a uniform distribution
of wireless sensors positions throughout the area; the gap statistic method thus returns the
optimal number of clusters koptimal = 1. For example, Figure 2a,b in [23] plots the distribution
of sensors spread throughout a region and the corresponding optimal number of clusters at
K = 1, respectively. However, we also define kmax = N

kmin
to prevent each wireless sensor

owning a private cluster, a problem that would lead to a UAV visiting every wireless sensor to
collect data.

• Reference data sets Ω with a random uniform distribution are generated. Each reference
data set ω of these reference data sets Ω is clustered with a variable number of clusters
k = {kmin, . . . , kmax}. The corresponding total is computed within the intracluster variation
Wκω given in the dispersion metrics for κ = {1, . . . , k} and ω = {1, . . . , Ω}.

• The estimated gap statistic is computed as the deviation of the observed Wk value from its

expected value Wκω under the null hypothesis Gap(k) = 1
Ω

Ω
∑

ω=1
log(Wκω)− log(Wk). Let

l = 1
Ω

Ω
∑

ω=1
log(Wκω). The standard deviation (sd) of the statistics is then computed, given by

sdk =

√
1
Ω

Ω
∑

ω=1
(log(Wκω)− l)2.

• Using the gap statistic method, the smallest value of κ is selected as the optimal number of
clusters, the gap statistic being within one standard deviation of the gap statistic at κ + 1,

given koptimal = min{k} and Gap(k) ≥ Gap(k + 1)− θk+1, where θk+1 = sdk+1

√
1 + 1

Ω .

For example, Figure 2 indicates the optimal number of clusters at koptimal = 4, deter-
mined by the gap statistic algorithm according to the randomly positioned sensor nodes
shown in Figure 1.

The K-means algorithm was used to calculate the position for each centroid, with an
optimal number of clusters K ← koptimal . The computed centroids of four subclusters
(K = 4) are listed in Table 3. Figure 3 illustrates all wireless sensor nodes after clustering to
K subclusters. After clustering, each sensor node is grouped into a subcluster; for example,
S3

1 indicates that sensor S1 is a member of subcluster C3 (Figure 3).

Table 3. Centroids after clustering.

Centroids x-Axis y-Axis Centroids x-Axis y-Axis

C1 0.38 0.24 C2 0.3636 0.8

C3 0.8769 0.3 C4 0.8875 0.75
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Figure 2. Optimized number of subclusters using the gap statistic method, the optimal number of
clusters at K = 4 satisfying the first maximum standard error.
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2.2. Joint UAV Trajectory

Definition 2. We introduce a novel joint UAV trajectory algorithm to compute the centroid to
next nearest centroid.

Problem 1. Operating as a flying relay, the UAV has the advantage of a high mobility and is able
to fly close to wireless sensors to receive and forward a superimposed signal. This, however, leads to
a long flight path, and the other wireless sensors must wait to be served. We minimized the flight
time/path of the UAV according to the cluster centroid positions shown in Table 3. How to obtain
the shortest flight path is outlined in Proposition 2.

Proposition 2. The centroid-to-next-nearest-centroid trajectory was computed as follows:

• Step 1: To determine the nearest centroid from the mobile base station B, we calculate the
smallest pairwise Cartesian distance from the mobile base station to each subcluster centroid.

• Step 2: The UAV selects the next nearest cluster centroid. In this case, the UAV considers
candidate centroids without regard to any of the previously selected cluster centroids in C̃. It
is important that the centroids contained in the visited set C̃ be removed from the candidate
list to prevent the UAV returning to the previous subcluster C̃. The UAV repeats Step 2 (i.e.,
C\C̃ 6= ∅) until the list of candidate subclusters is empty (i.e., C\C̃ = ∅).

Without loss of generality, we examined a single round trip of the UAV. Table 4 lists the
next nearest subcluster centroids determined from the above selection strategy. The results
in Figure 3 indicate that subcluster C1 was the nearest to the mobile base station B compared
to the other subclusters. Subcluster C1 was therefore selected at block period time T = 1.
The UAV visited subcluster C1 first to collect data from all sensor members in subcluster
C1. The visited set C̃← C̃ ∪ C1 was then updated. After all data from the sensor members
in subcluster C1 were collected, the UAV selected subcluster C3 because it contained the
next nearest subcluster centroid. The UAV then visited subcluster C3 at global time period
T = 2 to collect data from all sensor members in the subcluster. The visited set C̃← C̃ ∪C3
was again updated. The UAV continued to follow this procedure, selecting the next nearest
centroid and updating the visited set, until all data have been collected from each subcluster.
In this manner, the UAV followed the shortest possible flight path, as shown in Figure 4.
After travelling through all K subclusters (C̃ ≡ C) and collecting all data from wireless
sensor members in each subcluster, the UAV’s task was complete and it returned to the
mobile base station. For the real-time application of a UAV-assisted WSN, the UAV would
repeat the round trips summarized in Table 5.

Table 4. Pairwise centroid-to-centroid distance based on Cartesian distances.

C1 C2 C3 C4

C1 0 0.5602 0.5005 0.7195
C3 0.5005 0.7166 0 0.4501
C4 0.7195 0.5262 0.4501 0
C2 0.5602 0 0.7166 0.5262

Observing Table 4, notice that numbers with inclined lines (e.g., 0) and numbers with
bold (e.g., 0.5005) mean visited clusters and next nearest clusters. For clarity, when UAV
visited cluster C1 (row with C1), the UAV selects the next-nearest cluster (i.e., C3) and
ignores cluster C1. Next, the UAV visited cluster C3 (row with C3), the UAV selects the
next-nearest cluster (i.e., C4) and ignores clusters C1 and C3. The remaining rows in Table 4
have the same meaning.
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Figure 4. Joint UAV trajectory and the shortest path based on the centroid-to-next-nearest-centroid
distance given by Algorithm 1 (i.e., C1 → C3 → C4 → C2).

Algorithm 1 K-means clustering for the optimal number of subclusters and shortest path
determined from a centroid to the next nearest centroid
Input: Generate a wireless sensor network with a number N of randomly positioned

wireless sensors;
Output: An optimal number of subclusters K and subcluster centroids;

1: Initialize variables kmin = 4, kmax = N
kmin

;
2: Attempt ∀k = {kmin, . . . , kmax} to find the optimal number K of subclusters, computed

according to Proposition 1;
3: Find the centroid positions for K subclusters by applying K-means clustering;
4: Compute the pairwise distances between the mobile base station B and subcluster

centroids;
5: Select the nearest centroid and update C̃;
6: while

∣∣C ∩ C̃
∣∣ 6= |C| do

7: Compute the pairwise distances between the current centroid and other centroids;
8: Select the nearest centroid and then update C̃.
9: end while

10: return the number of subclusters K, centroid positions Ck(x, y) for k ∈ K and the
shortest path.
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Table 5. Joint trajectory schedule for global transmission time period T and optimal number of
clusters K, where the UAV period t = {(mod{T, K}|mod{T, K} 6= 0 ) ∨ (K|mod{T, K} = 0 )}.

Global period T 1 2 3 4 5 . . .

UAV period t 1 2 3 4 1 . . .

Clusters Ck|k ∈ K C1 C3 C4 C2 C1 . . .

No. members
Nk = |Ck|

10 13 8 11 10 . . .

Members S(i,k)
n

S(1,1)
5 , S(2,1)

11 , S(3,1)
13 ,

S(4,1)
16 , S(5,1)

21 , S(6,1)
22 ,

S(7,1)
23 , S(8,1)

37 , S(9,1)
39 ,

S(10,1)
42

S(1,3)
1 , S(2,3)

6 , S(3,3)
8 ,

S(4,3)
12 , S(5,3)

14 , S(6,3)
15 ,

S(7,3)
17 , S(8,3)

18 , S(9,3)
25 ,

S(10,3)
26 , S(11,3)

33 ,

S(12,3)
34 , S(13,3)

36

S(1,4)
3 , S(2,4)

4 , S(3,4)
20 ,

S(4,4)
27 , S(5,4)

28 , S(6,4)
30 ,

S(7,4)
31 , S(8,4)

35

S(1,2)
2 , S(2,2)

7 , S(3,2)
9 ,

S(4,2)
10 , S(5,2)

19 , S(6,2)
24 ,

S(7,2)
29 , S(8,2)

32 , S(9,2)
38 ,

S(10,2)
40 , S(11,2)

41

S(1,1)
5 , S(2,1)

11 , S(3,1)
13 ,

S(4,1)
16 , S(5,1)

21 , S(6,1)
22 ,

S(7,1)
23 , S(8,1)

37 , S(9,1)
39 ,

S(10,1)
42

2.3. Channel Modelling for a UAV-Assisted WSN

In our previous work [33], we considered free space (i.e., air-to-ground (A2G), ground-
to-air (G2A) and air-to-air (A2A)) and first introduced the flat-earth distance based on
real latitudes and longitudes. The proposed solutions were effective in determining and
tracking the optimal positions for the UAV. A separate study [33] examined the problems
related to channel modelling in a WSN which contained multiple subclusters. In the current
study, we address the uplinks, i.e., the channels from the wireless sensors to the UAV
(HSn ,U) and the channels from the UAV to the mobile base station (HU,B). The precoding
channel matrices HSn ,U and HU,B are expressed by

HSn ,U =


h(1,1)

Sn ,U · · · h(1,AU)
Sn ,U

...
. . .

...

h(
ASn ,1)

Sn ,U · · · h(
ASn ,AU)

Sn ,U

 ∈ CASn×AU , (2)

where ASn and AU are the number of antennae on the wireless sensor Sn and UAV U, respec-

tively; the channel coefficient h(.,.)Sn ,U ∈ HSn ,U is formulated according to h(.,.)Sn ,U = g
(

dG2A
Sn ,U

)−ε
,

where g is the Rayleigh fading channel, ε is the path-loss exponent, and dG2A
Sn ,U is the G2A

distance from the sensor node Sn to UAV U. Note that the free-space distance based
on latitude and longitude is given by expression ([33], Equation (2)). For simplicity and
without loss of generality, all wireless sensors are allocated with Cartesian coordinates
in a three-dimensional space. The G2A distance from wireless sensor Sn to UAV U is

therefore given by d(G2A)
Sn ,U =

√
|xSn − xU |2 + |ySn − yU |2 + |zSn − zU |2, where the x, y and

z axes represent latitude, longitude and altitude, respectively, on a flat earth.
Similarly, the precoding channel matrix HU,B is expressed as

HU,B =


h(1,1)

U,B · · · h(1,AU)
U,B

...
. . .

...
h(AB ,1)

U,B · · · h(AB ,AU)
U,B

 ∈ CAB×AU , (3)

where AB is the number of antennae at the mobile base station, and the channel

coefficient h(.,.)U,B ∈ HU,B is formulated according to h(.,.)U,B = g
(

dA2G
Sn ,U

)−ε
, where dA2G

U,B
is the A2G distance from the UAV U to the mobile base station B and given by

d(A2G)
U,B =

√
|xU − xB|2 + |yU − yB|2 + |zU − zB|2.
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2.4. UAV Joint Schedule

This study introduces a novel scheduling protocol for a UAV-assisted WSN. The coeffi-
cient t is the time required to complete a transmission cycle of three phases, i.e., λ1, λ2 and
λ3, where λ1 is the first phase during which the UAV receives signals from the sensor nodes
in a cluster, λ2 is the second phase during which the UAV receives radiofrequency energy
from the mobile base station, and λ3 is the third phase during which the UAV transmits
the superimposed signals to the mobile base station for data analysis. Figure 5 depicts
an electronic control unit (ECU) which performs a task corresponding to a predefined
operation in a common UAV schedule.

ECU

Receiving signals

Energy harvesting

TAS/SC

Transmitting signalsMulti-

antennas

Figure 5. Joint schedule.

The ECU implements an electronic switch which applies three successive modes
during the same transmission block t:

• In phase λ1, the interface of the receiving signal circuit is active while the other
interfaces are inactive. The UAV receives signals from the sensor nodes in the currently
visited subcluster, given by (5).

• In phase λ2, the interface of the EH circuit is active while the other interfaces are
inactive. The UAV receives radiofrequency energy from the mobile base station B,
given by (10), while the ECU decodes the messages from the signals received from the
wireless sensors.

• In phase λ3, the interface of the transmitting signal circuit is active while the other
interfaces are inactive. The UAV encodes the messages received in the first phase and
forwards the superimposed signals to the mobile base station B, given by (11).

2.4.1. Phase 1: Uplinks between Wireless Sensors and the UAV

In the first phase, having selected the next nearest subcluster centroid, the UAV visits
and hovers at the selected centroid and receives signals wirelessly from the subcluster’s
sensors. Figure 6 illustrates the procedure of receiving signals and processing data at the
UAV during the first phase.

Figure 6. Procedure of processing data at the UAV.
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Based on the number of subclusters K and the global period T, we calculate the UAV
period t as follows:

t =
{

mod{T, K}, s.t. mod{T, K} > 0,
K, s.t. mod{T, K} = 0,

(4)

where the mod{T, K} function refers to the modulo value between T and K (e.g., for T = 10
and K = 4, t = mod{T, K} = 2). At each UAV period t, the UAV selects the next nearest
centroid using the centroid-to-next-nearest-centroid algorithm. According to the trajectory
mapped in Table 5, for T = 10, K = 4 and t = 2, the UAV selects the subcluster C3

and serves wireless sensors S(1,3)
1 , S(2,3)

6 , S(3,3)
8 , S(4,3)

12 , S(5,3)
14 , S(6,3)

15 , S(7,3)
17 , S(8,3)

18 , S(9,3)
25 , S(10,3)

26 ,

S(11,3)
33 , S(12,3)

34 and S(13,3)
36 . The signals received from the wireless sensors in subcluster Ck

over UAV period t are given by

max
[ASn×AU ]

{
y

S(i,k)
n

(T, N, K)
}

=
√

PSn max
[ASn×AU ]

{∣∣HSn ,U
∣∣}x

S(i,k)
n

+ nU , (5)

s.t. 1 ≤ n ≤ N, 1 ≤ k ≤ K, 1 ≤ i ≤ Nk,Nk = |Ck|, (6)

where t is obtained from (4), k is mapped as in Table 5, and PSn is the transmit power of
sensor Sn. For simplicity, we assume that PS1 = . . . = PSN .

Let us denote D(T, N, K), which is the mathematical description of a diagonal matrix,
as follows:

D(T, N, K) = diag(1, . . . , 1)Nk×Nk
=

 1
. . .

1


|Ck |×|Ck |

, (7)

where the diagonal matrix D has the size |Ck| × |Ck| for transmission period T and all
nondiagonal elements are zero, as indicated in Figure 6. The predecoded matrix obtained
at the UAV is derived by multiplying the received signal matrix (5) with the diagonal
matrix (7); thus, preDecode(T, N, K) = y

S(i,k)
n

(T, N, K)×D(T, N, K). The UAV selects each

element in the predecoded matrix to obtain the SINR at the point when the UAV decodes
message xSn from sensor Sn ∈ Ck, as follows:

max
[ASn×AU ]

{
γU−x

S(i,k)n

(T, N, K)
}

= ρSn max
[ASn×AU ]

{
|HSn ,U |2

}
, (8)

where the signal-to-noise ratio (SNR) ρSn = PSn

/
N0. For simplicity, we assume that

ρS1 = . . . = ρSN .
We then obtain the instantaneous bit rate at the point when the UAV decodes message

x
S(i,k)

n
from sensor S(i,k)

n , as follows:

max
[ASn×AU ]

{
RU−x

S(i,k)n

(T, N, K)
}

=
1
2

log2

(
1 + max

[ASn×AU ]

{
γ

U−x(i,k)n
(T, N, K)

})
. (9)

2.4.2. Phase 2: Prolong the UAV’s Online Time with EH

The most challenging aspect of deploying a UAV is managing its power limitations as
a small, lightweight aircraft. We propose applying SWIPT techniques to prolong the UAV’s
online time. In a previous study [33] (Figure 4), we adopted a power splitting protocol.
In the current study, we applied a time-switching technique for its advantages in a WSN
(Figure 5); the technique is different from the proposed time-switching models in [33]
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(Figure 4). In phase λ2, the UAV harvests radiofrequency energy from the mobile base
station according to

EH(T, N, K) = ηPBσB,U , (10)

where PB is the power domain at the mobile base station, and σB,U is the expected channel
gain between the mobile base station and the UAV at its current UAV position. It is impor-
tant to note that η is the collected energy factor and that we assume η = 1 for simplicity.

2.4.3. Phase 3: Transmitting Signals

In [10], the authors applied the amplify-and-forward protocol at the UAV to receive
and forward signals to a single device. In the current study, we implemented a decode-
and-forward protocol at the UAV to ensure that the UAV received, decoded and encoded
messages successfully before forwarding the superimposed signals to the mobile base
station. To improve latency, we applied the emerging NOMA technique for its high spectral
efficiency. The UAV U encoded the messages ∀xSn

(i,k) ∈ Xk from the sensors in the current
subcluster Ck and superimposed them into the signal by sharing the power domain PU and
using different power allocation factor α

(i,k)
Sn

. From the precoding matrix HU,B, as given by
(3), only the best channel was selected for signal transmission.

In the third phase λ3 of transmission block t, the mobile base station B received
radiofrequency signals as follows:

max
[AU×AB ]

{yB(T, N, K)} = max
[AU×AB ]

{|HU,B|} ∑
∀S(i,k)

n ∈Ck

√
PUα

S(i,k)
n

x
S(i,k)

n
+ nB, (11)

where nB is the AWGN (i.e., nB ∼ CN(0, N0) with zero mean and variance N0) at the
mobile base station B, PU is the power domain at UAV U, and α

S(i,k)
n

is the power allocation

factor for message x
S(i,k)

n
of wireless sensor S(i,k)

n . The NOMA technique applies superim-
posed coding by sharing the power domain and therefore, the power allocation strategy
strongly affects the success or failure of decoding a message. Previous studies [17,21,34]
have also applied power allocation strategies; the current study, however, addresses a
WSN divided into multiple subclusters and therefore proposes the novel power allocation
strategy described below.

Proposition 3. The power allocation strategy for transmitting messages from wireless sensors over
UAV transmission period t while the UAV visits subcluster Ck is expressed as follows:

α
S(i,k)

n
=
Nk − i + 1

∑Nk
j=1 j

, (12)

where a sensor with a higher priority is allocated a larger power allocation factor; for example, sensor
S1, which has the highest priority and is the first member in subcluster C3, is allocated the largest
power allocation factor α

S(1,3)
1

= 0.1428, whereas sensor S36, which has the lowest priority and is the

last member in the subcluster C3, is allocated the smallest power allocation factor α
S(13,3)

36
= 0.011.

For clarity, we applied the power allocation factors presented in Table 6. From Equation (12),
the power allocation strategy in the subcluster is constrained such that α

S(i,k)
n

> . . . > α
S(1,k)

n
and

α
S(i,k)

n
+ . . . + α

S(1,k)
n

= 1.
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Table 6. Power allocation factors at wireless sensors for transmitting messages, arranged according
to subclusters.

C1

α
S(1,1)

5
= 0.18182, α

S(2,1)
11

= 0.16364, α
S(3,1)

13
= 0.14545, α

S(4,1)
16

= 0.12727, α
S(5,1)

21
= 0.10909,

α
S(6,1)

22
= 0.090909, α

S(7,1)
23

= 0.072727, α
S(8,1)

37
= 0.054545, α

S(9,1)
39

= 0.036364,

α
S(10,1)

42
= 0.018182

C2

α
S(1,2)

2
= 0.16667, α

S(2,2)
7

= 0.15152, α
S(3,2)

9
= 0.13636, α

S(4,2)
10

= 0.12121, α
S(5,2)

19
= 0.10606,

α
S(6,2)

24
= 0.090909, α

S(7,2)
29

= 0.075758, α
S(8,2)

32
= 0.060606, α

S(9,2)
38

= 0.045455,

α
S(10,2)

40
= 0.030303, α

S(11,2)
41

= 0.015152

C3

α
S(1,3)

1
= 0.14286, α

S(2,3)
6

= 0.13187, α
S(3,3)

8
= 0.12088, α

S(4,3)
12

= 0.10989, α
S(5,3)

14
= 0.098901,

α
S(6,3)

15
= 0.087912, α

S(7,3)
17

= 0.076923, α
S(8,3)

18
= 0.065934, α

S(9,3)
25

= 0.054945,

α
S(10,3)

26
= 0.043956, α

S(11,3)
33

= 0.032967, α
S(12,3)

34
= 0.021978, α

S(13,3)
36

= 0.010989

C4
α

S(1,4)
3

= 0.22222, α
S(2,4)

4
= 0.19444, α

S(3,4)
20

= 0.16667, α
S(4,4)

27
= 0.13889, α

S(5,4)
28

= 0.11111,

α
S(6,4)

30
= 0.083333, α

S(7,4)
31

= 0.055556, α
S(8,4)

35
= 0.027778

The SINR at the mobile base station B when B decodes message x
S(i,k)

n
∈ Xk treats other

messages x
S(j,k)

n
∈ Xk, where α

S(j,k)
n

< α
S(i,k)

n
, and AWGN nB as interference by applying SIC:

max
[AU×AB ]

{
γB−x

S(i,k)n

(T, N, K)
}

=

max
[AU×AB ]

{
|HU,B|2

}
α

S(i,k)
n

ρUσU,B

max
[AU×AB ]

{
|HU,B|2

}
ρUσU,B

Nk
∑

j=i+1
α

S(j,k)
n

+ 1
, (13)

= max
[AU×AB ]

{
|HU,B|2

}
α

S
(Nk ,k)
n

ρUσU,B, (14)

where i < Nk in (13) and i = Nk in (14).
The maximum instantaneous bit-rate threshold attained if the mobile base station

decodes message x
S(i,k)

n
in the best-received signal, given by (11), is expressed as:

max
[AU×AB ]

{
RB−x

S(i,k)n

(T, N, K)
}

=
1
2

log2

(
1 + max

[AU×AB ]

{
γB−x

S(i,k)n

(T, N, K)
})

, (15)

where ∀x
S(i,k)

n
∈ Xk, and ∀i = {1, . . . ,Nk}.

3. System Performance Analysis

In this section, we derive the novel closed-form expressions for the independent outage
probability at the UAV and the dependent outage probability at the mobile base station.

3.1. Outage Probability Performance at the UAV

Theorem 1. The independent outage probability at the UAV U relates to the UAV’s unsuccess-
ful decoding of the message in the received signal, given by (5). In other words, the maximum
instantaneous bit-rate threshold, given by (9), cannot reach the predefined bit-rate threshold R.
The independent outage probability at the UAV U in transmission block t is therefore expressed as

OPU−x
S(i,k)n

(T, N, K) = 1− Pr

{
max

[ASn×AU ]

{
RU−x

S(i,k)n

(T, N, K)
}
≥ R

}
. (16)

Based on Equation (16), we propose Algorithm 2 to calculate the Monte Carlo simula-
tions for the outage probability at the UAV U.
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Algorithm 2 Calculate the outage probability at the UAV U from (16) for transmission block t.

Input: Initialize the parameters as in Table 1 and randomly generate 106 samples of each
fading channel over a Rayleigh distribution

Output: Simulate (Sim) the results for outage probability at the UAV U in transmission
block t

1: for k = 1 to the optimal number of subclusters K do
2: for i = 1 to the number Nk of sensor members within the subcluster Ck do
3: Calculate the SINR at the UAV from (8);
4: Calculate the achievable maximum instantaneous bit-rate from (9);
5: Initialize variable count← 0;
6: for l = 1 to 106 samples do

7: if

(
min

S(i,k)
n ∈Ck

max
[ASn×AU ]

{
R

S(i,k)
n

(T, N, K)
}
≥ R

)
then

8: count← count + 1;
9: end if

10: end for
11: OP

U−x(i,k)Sn

(T, N, K) = 1− count
106 ;

12: end for

13: OPU(T, N, K) = 1
Nk

Nk
∑

k=1
OP

U−x(i,k)Sn

(T, N, K);

14: end for
15: return Outage probabilities at UAV OPU(T, N, K);

Remark 2. From expression (16), we obtain the outage probability at the UAV over Rayleigh
distributions:

OPU−x
S(i,k)n

(T, N, K) =
ASn AU

∑
ψ=0

(−1)ψ(ASn AU)!
ψ!(ASn AU − ψ)!

exp
(
− ψγ

ρSn σSn ,U

)
, (17)

where the SINR threshold is given by γ = 22R − 1. It is important to note that Equation (17)
obtains the independent outage probabilities at the UAV. Generally, the outage probability at the

UAV is calculated from OPU(T, N, K) = 1
Nk

Nk
∑

i=1
OPU−x

S(i,k)n

(T, N, K).

See Appendix C for the proof.

3.2. Outage Probability at the Mobile Base Station

Theorem 2. The dependent outage event at the mobile base station occurs when the flying relay
(FR)-UAV either cannot decode at least the message x

S(i,k)
n
∈ Xk or the mobile base station B

cannot decode at least the message x
S(i,k)

n
∈ Xk from the best-received signal yB(T, N, K), given by

(11). The outage probability at the mobile base station with an underlying U-assisted multi-input
multioutput (MIMO)-NOMA network is therefore expressed as

OPB(T, K, N) = 1−Pr

 min
x

S(i,k)n
∈Xk

max
[ASn×AU ]

{
RU−x

S(i,k)n

(T, N, K)
}
≥ R,

min
x

S(i,k)n
∈Xk

max
[AU×AB ]

{
RB−x

S(i,k)n

(T, N, K)
}
≥ R

. (18)

Based on Equation (18), we propose Algorithm 3 to calculate the Monte Carlo sim-
ulations for outage probability at the mobile base station for transmission block t over
Rayleigh distributions.
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Algorithm 3 Calculate the outage probability at the mobile base station from (18) for
transmission block t over Rayleigh distributions.

Input: Initialize the parameters as in Table 1 and randomly generate 106 samples of each
fading channel over a Rayleigh distribution;

Output: Simulate (Sim) the results for outage probability at the mobile base station B;
1: for k = 1 to the optimal number K of the subcluster do
2: for i = 1 to the number of sensors Nk do
3: Calculate the SINR at the UAV U from (8);
4: Calculate the achievable maximum instantaneous bit-rate at the UAV U from (9);
5: Calculate the minimum-maximum instantaneous bit-rate threshold at the UAV U

from (9);
6: Calculate the SINR at the mobile base station from (13) or (14);
7: Calculate the achievable maximum bit-rate at the mobile base station from (15);
8: Calculate the achievable minimum-maximum bit-rate at the mobile base station

from (15);
9: Initialize variable count← 0;

10: for l = 1 to 106 samples do

11: if

min

 min
x

S(i,k)n
∈Xk

max
[AS×AU ]

{
RU−x

S(i,k)n

(T, N, K)
}

,

min
x

S(i,k)n
∈Xk

max
[AU×AB ]

{
RB−x

S(i,k)n
(T, N, K)

} ≥ R
 then

12: count← count + 1;
13: end if
14: end for
15: OP

B−x(i,k)Sn

(T, N, K) = 1− count
106 ;

16: end for

17: OPB(T, N, K) = 1
Nk

Nk
∑

k=1
OP

B−x(i,k)Sn

(T, N, K);

18: end for
19: return Dependent outage probability at the mobile base station OPB(T, N, K);

Remark 3. The outage probability at the mobile base station in transmission block t is given by
(18) from Theorem 1 and expressed in novel closed-form as follows:

OP(i)
B (T, N, K) = max

{
AS AU

∑
ψ=0

(−1)ψ(AS AU)!
ψ!(AS AU−ψ)! exp

(
− ψγ

min{ρSn σSn ,U}

)
,

AU AB
∑

ψ=0

(−1)ψ(AU AB)!
ψ!(AU AB−ψ)! exp

(
− ψγ

βρU σU,B

)} , (19)

s.t. βi = α
S(i,k)

n
− γ

Nk

∑
j=i+1

α
S(j,k)

n
, (20)

β = min
i={1,...,Nk}

{βi}, (21)

where SINR threshold γ = 22R − 1.

See Appendix D for the proof.

4. Numerical Results and Discussion

In this section, we examine the individual WSN and discuss the results of the study.
For the purposes of the analysis and the Monte Carlo simulations, a random number of
wireless sensors N was generated and randomly distributed according to the positions il-
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lustrated in Figure 1. Unless specified otherwise, we assumed that the mobile base station’s
position was at coordinate B(0, 0, 0) and that the UAV’s position U(x, y, 1) determined by
K-means clustering had a fixed altitude at z = 1. The number of antennae equipped at the
wireless sensors, UAV and mobile base station was ASn = AU = AB = 2. The K-means
algorithm determined the optimal number of subclusters as K = 4. The path-loss exponent
factor was ε = 4. The list of pairwise distances from each subcluster centroid to the mobile
base station was dA2G

C1,B = 0.494, dA2G
C2,B = 0.8788, dA2G

C3,B = 0.9268 and dA2G
C4,B = 1.1620. The near-

est subcluster to the mobile base station was therefore C1. The UAV selected subcluster C1
for the global period T = {1, 5, 9, 13, . . .}. At global period T = {2, 6, 10, 14, . . .}, the UAV
then selected the next nearest subcluster to its current subcluster C1, i.e., subcluster C3,
because distances dA2A

C1,C3
= 0.5005 < dA2A

C1,C2
= 0.5602 < dA2A

C1,C4
= 0.7195. At global period

T = {3, 7, 11, 15, . . .}, the UAV again selected the next nearest subcluster to subcluster
C3, i.e., subcluster C4, since distances dA2A

C3,C4
= 0.4501 < dA2A

C3,C4
= 0.7166. At global pe-

riod T = {4, 8, 12, 17, . . .}, the UAV selected the next nearest subcluster to subcluster C4,
i.e., subcluster C2, because the final distances dA2A

C4,C2
= 0.5262. The UAV thus selected the

shortest trajectory C1 → C3 → C4 → C2. Without loss of generality and for simplicity,
we assumed that λ1 = λ2 = λ3 = t

3 for a single round trip of the UAV and global period
T = {1, 2, 3, 4}.

4.1. Numerical Results

Figure 7a–d plot the outage probabilities at the UAV at the point when it decoded
the received signals from wireless sensors in subclusters C1, C3, C4 and C2, respectively.
The bit-rate threshold for all wireless sensors wasR = 1.5 bps/Hz. The outage probabilities
at the majority of wireless sensors were very similar as SNR ρSn → ∞; however, the graphs
in Figure 7a indicate that the outage probability of sensor S23 was worse than the outage
probability at the other sensors of the same subcluster C1. Figure 3 indicates that wireless
sensor S23 was the farthest from the subcluster centroid C1 (dG2A

S(7,1)
23

= 1.0479). The results

verified the efficiency of the K-means algorithm. It is important that the bit-rate threshold
R for the wireless sensors was set to R = 1.5 bps/Hz. However, the UAV successfully
decoded most of the messages from the wireless sensors, achieving a high outage probability
performance (Figure 7). We conclude that the outage probability performance of the
majority of wireless sensors in each subcluster was equal since they were evenly distributed
around the subcluster’s centroid. The Monte Carlo simulations given by (16) were also
verified by the analysis results given by (17).

Next, we examined the results for the mobile base station and obtained its outage
probability performance at the points when the UAV visited subclusters C1, C3, C4 and C2
and forwarded the superimposed signals, given by (11), to the base station (Figure 8a–d).
The outage probability performance of the mobile base station was poorer than the outage
probability performance at the UAV (Figure 7a–d), even though the bit-rate threshold
was set to R = 0.1 bps/Hz. This may have been because the UAV was deployed with
NOMA and therefore, the sensors were forced to share the power domain to transmit the
messages in the superimposed signal. This means that the last member in the subcluster
was allocated a very small power allocation factor, given by (12). These power allocation
factors are presented in Table 6. Subcluster C3 contained N3 = 13 wireless sensors, and the
last wireless sensor in C3 ( S(13,3)

36 ) was allocated the lowest power allocation factor (α
S(13,3)

36
).

Therefore, despite a global optimization of the subclusters and the positions of the cluster
centroids by the K-means algorithm, the large number of wireless sensors in the subcluster
unfortunately led to unsatisfactory results.
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Figure 7. Outage probability at the UAV for the UAV’s subcluster trajectory sequence (a) C1, (b) C3,
(c) C4 and (d) C2.
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Figure 8. Outage probability at the mobile base station for the UAV’s subcluster trajectory sequence
(a) C1, (b) C3, (c) C4 and (d) C2.

4.2. Discussion

The outage probability performance at the mobile base station was strongly affected
by several factors, such as the UAV’s transmit power PU , the distance of the UAV from the
mobile base station dU,B and the number Nk of messages transmitted in the superimposed
signals. The UAV was not able to increase the transmit power PU , however, because of
its power limitations. A large number of antennae at both the wireless sensors and the
UAV could not be equipped since the constraints for a small size, light weight and low
cost did not permit it. It was also not possible to reduce the distance from the UAV to the
mobile base station because of obstructions in the terrain. To address these conditions,
we equipped a larger number of antennae at the mobile base station, as the mobile base
station incorporated a generator and energy was not a significant problem. Therefore,
equipping AB = 32 antennae at the mobile base station instead of the same number at the
UAV ASn = AU = AB = 2 (Figure 8a–d) yielded the results in Figure 9a–d. It is clear that
the outage probability improved significantly at the mobile base station for AB = 32 while
ASn = AU = 2. It is also clear that the outage probability performance at the mobile base
station when the UAV visited subcluster C1 improved greatly since this subcluster C1 was
closer than the other subclusters. The outage probabilities at the other subclusters also
improved as the SNR ρU → ∞.
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Figure 9. Improved outage probability at the mobile base station equipped with AB = 32 antennae
for the UAV trajectory subcluster sequence (a) C1, (b) C3, (c) C4 and (d) C2.

5. Conclusions

This study presented a general WSN containing a randomly distributed number of
wireless sensors with three-dimensional Cartesian coordinates. To improve the WSN’s
performance, we applied a K-means algorithm and gap statistic method to optimize sensor
clustering into a number of subclusters K. The UAV’s trajectory was calculated with an
algorithm which determined the shortest path between the subcluster centroids. The aims
of the study were achieved (i.e., flexible deployment, low cost and high reliability) through
the effective proposed solutions, and the results were verified with both Monte Carlo
simulations and theoretical analysis. Although the study provided some benefits from the
application of the K-means algorithm for wireless sensor clustering, some problems still
persisted that can be studied in future work. Future studies can investigate the problems
with (1) fragmented power resources created by an imbalance in the number of subcluster
sensors and (2) some clusters covering a larger geographic area than others as a result of
sparsely distributed sensors. As a potential solution, we propose dividing the network into
larger clusters when the number of sensors reaches a certain threshold.
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Abbreviations

A2A air-to-air
A2G air-to-ground
AWGN additive white Gaussian noise
CDF cumulative distribution function
CSI channel state information
EH energy harvesting
FR flying relay
G2A ground-to-air
MIMO multi-input multioutput
NOMA nonorthogonal multiple access
PDF probability density function
SIC successive interference cancellation
SINR signal-to-interference-plus-noise ratio
SNR signal-to-noise ratio
SWIPT simultaneous wireless information and power transfer
UAV unmanned aerial vehicle
WPT wireless power transfer
WSN wireless sensor network

Appendix A

The probability density function (PDF) and cumulative distribution function (CDF) of
the Rayleigh distribution are expressed, respectively, as:

f|hsrc,des|2(
x) =

1
σsrc,des

exp
(
− x

σsrc,des

)
, (A1)

and

F|hsrc,des|2(
x) = 1− exp

(
− x

σsrc,des

)
, (A2)

where
∣∣hsrc,des

∣∣2 are random independent variables, i.e., x in (A1) and (A2). In addition,

σsrc,des is the expected channel gain, where σsrc,des = E
[∣∣hsrc,des

∣∣2] between the source (src)
and destination (des).

Appendix B

We studied an individual WSN (Figure 1) which contained an optimal number of
subclusters K = 4 (Figure 2) and wireless sensors allocated according to those subclusters
(Figure 3). A UAV travelled the shortest path from each subcluster centroid through all
subclusters (Figure 4). The results for the outage probability at the UAV indicated a high
performance (Figure 7a–d); however, the outage probability at the mobile base station was
comparatively poorer (Figure 8a–d). We hypothesized that the MIMO technique could
improve the OP performance and therefore equipped a larger number of antennas at the
mobile base station (AB = 32); the results showed a significant improvement in outage
probability at the mobile base station (Figure 8a,c,d), except when the mobile base station
decoded the message of the last sensor S(13,3)

36 of subcluster C3, which demonstrated a worse
performance (Figure 8b), probably because the subcluster contained |C3| = 13 sensors.
Another individually generated WSN (Figure A1a) contained an optimal number of K = 10
subclusters (Figure A1b) and wireless sensors allocated according to those subclusters
(Figure A1c). This configuration also contained an optimal UAV trajectory (Figure A1d). It
is important to note that the subclusters depicted in Figure A1c contained fewer sensors than
the subclusters in Figure 3. The wireless sensors depicted in Figure A1c were consequently
better served than the wireless sensors in Figure 3. However, fewer sensors in each
subcluster, and thus a greater number of subclusters, led to a longer UAV flight path.
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For example, the results in Figure 4 indicate that the UAV’s period to visit all subclusters
was t = 4; the results in Figure A1d, however, indicate a UAV period of t = 10. We conclude
that fewer sensors in each subcluster deliver better results, but at the expense of the UAV
consuming more energy to travel longer distances.
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Figure A1. The randomly distributed WSN (a), determined optimal number of subclusters K (b),
division into subclusters (c) and centroid-to-next-nearest-centroid trajectory (d).

Appendix C

By substituting the SINR given by (8) into (9) and then substituting (9) into Theorem
1, as given (16), we thus obtain the independent outage probability at the UAV:

OPU−x
S(i,k)n

= 1− Pr
{

max
{
|HSn ,U |2

}
≥ γ

ρSn

}
. (A3)

From the precoding matrix |HSn ,U |2 given (2) and the PDF given by (A1), we obtain

OPU−x
S(i,k)n

= 1−

1−
ASn AU

∑
ψ=0

(−1)ψ
(

ASn AU
ψ

) +∞∫
γ/ρSn

1
σSn ,U

exp
(
− ψx

σSn ,U

)
dx


=

ASn AU

∑
ψ=0

(−1)ψ(ASn AU)!
ψ!(ASn AU − ψ)!

exp
(
− ψγ

ρSn σSn ,U

)
. (A4)

Note that Equation (A4) evaluates the independent outage probability at the UAV
at the point when the UAV decodes the received signal from wireless sensor S(i,k)

n in
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subcluster Ck unsuccessfully. The outage probability at the UAV is generally expressed as

OPU(T, N, K) = 1
Nk

Nk
∑

k=1
OP

U−x(i,k)Sn

(T, N, K).

Appendix D

Expression (18) is rewritten as follows:

OPB(T, K, N) = 1− Pr

 min
x

S(i,k)n
∈Xk

max
[ASn×AU ]

{
RU−x

S(i,k)n

(T, N, K)
}
≥ R,

min
x

S(i,k)n
∈Xk

max
[AU×AB ]

{
RB−x

S(i,k)n

(T, N, K)
}
≥ R


= max

1− Pr

 min
x

S(i,k)n
∈Xk

max
[ASn×AU ]

{
RU−x

S(i,k)n

(T, N, K)
}
≥ R

,

1− Pr

 min
x

S(i,k)n
∈Xk

max
[AU×AB ]

{
RB−x

S(i,k)n

(T, N, K)
}
≥ R


. (A5)

Let ϑ = 1− Pr

 min
x

S(i,k)n
∈Xk

max
[ASn×AU ]

{
RU−x

S(i,k)n

(T, N, K)
}
≥ R

. By substituting the

SINR given by (8) into (9) and then substituting (9) into ϑ, we obtain

ϑ = 1−

1− min
i={1,...,Nk}


ASn AU

∑
ψ=0

(−1)ψ
(

ASn AU
ψ

) +∞∫
γ/ρsn

1
σ

S(i,k)
n ,U

exp

(
− ψx

σ
S(i,k)

n ,U

)
dx




= min
i={1,...,Nk}


ASn AU

∑
ψ=0

(−1)ψ(ASn AU)!
ψ!(ASn AU − ψ)!

+∞∫
γ/ρsn

1
σ

S(i,k)
n ,U

exp

(
− ψx

σ
S(i,k)

n ,U

)
dx


=

ASn AU

∑
ψ=0

(−1)ψ(ASn AU)!
ψ!(ASn AU − ψ)!

exp

− ψγ

ρsn min
i={1,...,Nk}

{
σ

S(i,k)
n ,U

}
. (A6)

Similarly, let ξ = 1− Pr

 min
x

S(i,k)n
∈Xk

max
[AU×AB ]

{
RB−x

S(i,k)n

(T, N, K)
}
≥ R

. By substitut-

ing the SINR given by (13) or (14) into (15) and then substituting (15) into ξ, we obtain
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ξ = 1− Pr

 min
x

S(i,k)n
∈Xk

max
[AU×AB ]

{
RB−x

S(i,k)n

(T, N, K)
}
≥ R



= 1−


1− min

i={1,...,Nk}


AU AB

∑
ψ=0

(−1)ψ
(

AU AB
ψ

) +∞∫
γ
/

ρU

(
α

S(i,k)
n
− γ

Nk
∑

j=i+1
α

S(j,k)
n

) 1
σU,B

exp
(
− ψx

σU,B

)
dx





=
AU AB

∑
ψ=0

(−1)ψ(AU AB)!
ψ!(AU AB − ψ)!

exp

− ψγ

ρU min
i={1,...,Nk}

{
α

S(i,k)
n
− γ

Nk
∑

j=i+1
α

S(j,k)
n

}
σU,B

. (A7)

From expression (A5), we conclude that the outage probability at the mobile base
station is independent since it belongs to the outage probability at UAV. The study verified
that ϑ < ξ and therefore, the outage probability at the mobile base station given by (A5)
refers to OPB(T, N, K) = max{ϑ, ξ} = ξ. Observing the individual WSN model depicted
in Figure 4, a possible explanation is that the UAV was close to the wireless sensors,
which thus strongly owned the channel state information (CSI) hSn ,U , even though they
simply transmitted their own messages xSn under their own power domain PSn . However,
the UAV travelled a long distance since the subcluster was far from the mobile base station;
therefore, it forwarded messages in the superimposed signal by sharing the power domain
PU , and thus OPB(T, N, K) = max{ϑ, ξ} = ξ. To improve OPB(T, N, K), both ϑ and ξ
must be improved. To improve ϑ, the number of antennae at the wireless sensors or their
transmit power must be increased. However, wireless sensors have certain constraints,
such as having a low cost and low power. These solutions are therefore not practical or
even obtainable. To address these conditions, we attempted to improve ξ by increasing the
number of antennae at the mobile base station (AB = 32). The outage probabilities at the
mobile base station improved (Figure 9a–d) over the previous results (Figure 8a–d).
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