
Vol.:(0123456789)1 3

Physical and Engineering Sciences in Medicine (2023) 46:903–913 
https://doi.org/10.1007/s13246-023-01265-0

SCIENTIFIC PAPER

Radiomics analysis of bone marrow biopsy locations in [18F]FDG PET/
CT images for measurable residual disease assessment in multiple 
myeloma

Eva Milara1   · Rafael Alonso2,3,4,5   · Lena Masseing1 · Alexander P. Seiffert1   · Adolfo Gómez‑Grande5,6   · 
Enrique J. Gómez1,7   · Joaquín Martínez‑López2,3,4,5   · Patricia Sánchez‑González1,7 

Received: 30 September 2022 / Accepted: 19 April 2023 / Published online: 8 May 2023 
© The Author(s) 2023

Abstract
The combination of visual assessment of whole body [18F]FDG PET images and evaluation of bone marrow samples by 
Multiparameter Flow Cytometry (MFC) or Next-Generation Sequencing (NGS) is currently the most common clinical prac-
tice for the detection of Measurable Residual Disease (MRD) in Multiple Myeloma (MM) patients. In this study, radiomic 
features extracted from the bone marrow biopsy locations are analyzed and compared to those extracted from the whole 
bone marrow in order to study the representativeness of these biopsy locations in the image-based MRD assessment. Whole 
body [18F]FDG PET of 39 patients with newly diagnosed MM were included in the database, and visually evaluated by 
experts in nuclear medicine. A methodology for the segmentation of biopsy sites from PET images, including sternum and 
posterior iliac crest, and their subsequent quantification is proposed. First, starting from the bone marrow segmentation, 
a segmentation of the biopsy sites is performed. Then, segmentations are quantified extracting SUV metrics and radiomic 
features from the [18F]FDG PET images and are evaluated by Mann–Whitney U-tests as valuable features differentiating 
PET+/PET− and MFC+ /MFC− groups. Moreover, correlation between whole bone marrow and biopsy sites is studied by 
Spearman ρ rank. Classification performance of the radiomics features is evaluated applying seven machine learning algo-
rithms. Statistical analyses reveal that some images features are significant in PET+/PET− differentiation, such as SUVmax, 
Gray Level Non-Uniformity or Entropy, especially with a balanced database where 16 of the features show a p value < 0.001. 
Correlation analyses between whole bone marrow and biopsy sites results in significant and acceptable coefficients, with 11 
of the variables reaching a correlation coefficient greater than 0.7, with a maximum of 0.853. Machine learning algorithms 
demonstrate high performances in PET+/PET− classification reaching a maximum AUC of 0.974, but not for MFC+/MFC− 
classification. The results demonstrate the representativeness of sample sites as well as the effectiveness of extracted features 
(SUV metrics and radiomic features) from the [18F]FDG PET images in MRD assessment in MM patients.
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Introduction

Multiple Myeloma (MM) is a malignancy characterized 
by the excessive growth of monoclonal plasma cells in the 
bone marrow that accounts for about 10% of all hemato-
logic cancers [1–3]. The main consequence of this over-
production is an uncontrolled production of immunoglobu-
lins along with various symptoms including anemia, bone 
lesions, infections, hypercalcemia, renal failure, fatigue, 
and pain [4, 5]. The last decade, thanks to novel therapies, 
the achievement of deeper responses is becoming more 
likely for MM patients [6]. However, subclinical levels 
of tumor burden, known as Measurable Residual Disease 
(MRD), are still detectable using techniques with higher 
sensitivity as compared to conventional serum and urine 
protein evaluation [7]. The MRD, also called Minimal 
Residual Disease, has been defined by the International 
Myeloma Working Group (IMWG) [6] as one of the most 
important features for identifying patients with different 
survival outcomes.

Currently, the most widely used method for MRD 
quantification consists on a bone marrow biopsy/aspira-
tion taken from the pelvis or sternum of the patient. Once 
the sample is extracted, residual tumor burden is quan-
tified using Multiparameter Flow Cytometry (MFC) or 
Next-Generation Sequencing (NGS) [3, 6]. Despite the 
high sensitivity of these techniques, a number of MRD- 
patients, i.e. patients with a negative biopsy result, still 
experience relapse due to the small representation or poor 
quality of the taken sample, the heterogeneity of the bone 
marrow involvement, the existence of extramedullary 
disease or the insufficient sensitivity of the applied tech-
nique [7, 8]. For this reason, the combined use of MFC 
or NGS with visual evaluation of imaging by low-dose 
whole body CT or PET/CT with fluorine-18 fluorodeoxy-
glucose ([18F]FDG) is becoming increasingly important 
in the MRD detection [9, 10]. In fact, the IMWG recom-
mends this imaging technique to evaluate the extent of 
bone disease and the presence of extramedullary disease 
[11, 12]. Despite the lack of standardization in the inter-
pretation of PET studies, Nanni et al. [13] have proposed a 
reading model for response assessment, called IMPeTUs, 
which has been established as the standardized criterion 
for the visual interpretation of PET based on the Deauville 
Criteria [14]. However, this criterion is controversial for 
bone marrow evaluation in difficult-to-assess cases. Con-
sequently, bone marrow analysis based simply on visual 
interpretation remains very limited.

To assess MRD by [18F]FDG PET imaging, not only 
visual evaluation is performed, but also quantification 
of activity concentration, especially the Standardized 
Uptake Value (SUV) and its maximum value (SUVmax) 

[10, 15]. However, SUV values can be altered by a wide 
variety of artifacts. Therefore, the IMPeTUs criteria have 
excluded SUV as a valid MRD marker [13, 16]. In other 
pathologies, the quantification of [18F]FDG PET images 
have evolved to analysis based on textural features within 
the field of radiomics, increasing the level of quantitative 
information to be extracted from the image, with the aim 
of improving diagnostic accuracy and prognostic predic-
tion [17–20]. Indeed, for patients newly diagnosed MM, 
radiomics quantification of [18F]FDG PET images have 
been studied as prognostic indicators of worse survivall 
[21, 22]. Moreover, machine learning (ML) models based 
on radiomic features for MM diagnosis [23] and MRD 
detection [24] with [18F]FDG PET images has been previ-
ously studied.

In the study of Milara et al. [24], a segmentation method-
ology along with the analysis of radiomic features extracted 
from [18F]FDG PET/CT images in MM patients was pro-
posed and implemented in a software tool for supporting 
visual assessment of MRD. The proposed segmentation 
evaluated the whole bone marrow, hindering the relationship 
between MFC results, taken from small and specific biopsy 
sites such as the iliac crest and sternum, and [18F]FDG PET 
visual assessment. For this reason, the main aim of this study 
is to estimate the representativeness of a single bone marrow 
biopsy in the evaluation of the whole bone marrow MRD. 
To this end, the bone marrow of the biopsy locations in [18F]
FDG PET/CT images is segmented and quantified by radi-
omic features extraction. Then, these features are compared 
to whole bone marrow features and to MFC outcomes.

Material and methods

Subjects

Patients newly diagnosed with MM and treated at Hospital 
Universitario 12 de Octubre, Madrid, Spain, between 2013 
and 2019 with assessment of MRD by both MFC and [18F]
FDG PET–CT after the achievement of complete response 
are retrospectively included in the study cohort. Due to noise 
in the CT images or an incorrect position of the patient 
during acquisition, three patients are excluded, resulting 
in a study cohort of 39 cases. The study cohort is divided 
between PET+ and PET− based on the visual assessment of 
the [18F]FDG PET–CT by nuclear medicine experts. Dur-
ing the visual assessment, increased focal metabolic activity 
exclusive to the recent biopsy site is considered an inflam-
matory process and PET−. However, a significant imflam-
matory focal enhancement is usually not observed at the 
biopsy site, due to the small thickness of the needle used for 
the aspiration process and the time between tests. Patients 
are also grouped into MFC+ and MFC− according to MFC 
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results. [18F]FDG PET/CT acquisition and MFC are per-
formed based on the standards used by the Spanish Myeloma 
Group, as described in [9, 13], and were performed for each 
patient over a time period ranging from days to a maximum 
of two months between both evaluations.

MFC acquisition and assessment

Bone marrow samples were collected from each patient 
to assess MRD by MFC when a complete response was 
reached. Erythrocyte-lysed whole bone marrow samples 
were immunophenotyped using a FACSCanto II flow cytom-
eter (Becton–Dickinson, San Jose, CA) and analyzed by 
Infinicyt software (Cytognos, Salamanca, Spain), accord-
ing to standards of the Spanish Myeloma Group. Samples 
in which aberrant immunophenotypic plasma cells were 
undetectable with a sensitivity between 10–4 and 10–5 were 
considered MRD−.

Image acquisition

Siemens Biograph TruePoint 6 PET/CT (Siemens Health-
ineers, Erlangen, Germany) was used to obtain whole body 
[18F]FDG PET/CT scans. These images were acquired at 
the Department of Nuclear Medicine of the Hospital Uni-
versitario 12 de Octubre based on the European Associa-
tion Nuclear Medicine (EANM) procedure guidelines [25]. 
An intravenous weight-adjusted shot of [18F]FDG with a 
mean dose of 352 ± 62.9 MBq was injected into the sub-
jects. 50 to 60 min later, PET images were acquired with an 
emission time of 3 min per bed position. Random, scatter 
and attenuation corrections were performed. Reconstructed 
PET images have a matrix size of 168 × 168 with a voxel 
size of 4.0728 × 4.0728 × 5 mm3. Additionally, CT images 
were obtained using helical CTs (120–140 kVp, 25–170 
mAs) with a resolution of 512 × 512 with a voxel size of 
0.9766 × 0.9766 × 2.5 mm3.

Image processing

The image preprocessing methodology and bone marrow 
segmentation is based on Milara et al. [24]. This segmen-
tation is based on the application of different thresholding 
and morphological operations on the CT image to obtain de 
skeleton mask from the humeri, femora and torso regions. 
Then, spinal canal and compact bone are removed obtain-
ing exclusively the bone marrow mask. All cases are visu-
ally reviewed and manually edited by an expert in Nuclear 
Medicine with the tool developed in Milara et al. [24]. Once 
this mask is obtained, a segmentation of the biopsy location 
is performed. Then, texture features and SUV metrics are 
extracted from the [18F]FDG PET image in the area charac-
terized as biopsy on CT.

Biopsy location segmentation

Per clinical practice in Hospital Universitario 12 de Octubre, 
three different biopsy sites are considered: sternum, left pos-
terior iliac crest and right posterior iliac crest. The first step 
for each location is common, consisting on removing humeri 
and femora masks from the whole bone marrow mask. Then, 
each of the segmentation processes are developed separately.

For the sternum segmentation, the posterior half of the 
whole bone marrow mask, i.e., those voxels corresponding 
to the spine, are then removed. The same step is applied in 
the lower half of the torso mask in order to remove the pel-
vic region. Then, the longest component in the axial direc-
tion of the remaining mask is found and extracted, obtain-
ing the sternum mask. Finally, only a cube of 40 voxels of 
edge length positioned at the upper location of the sternum 
remains in the final sternal mask, in order to more accurately 
represent the region of biopsy.

Similarly to the sternum segmentation, for the posterior 
iliac crest segmentation, the superior half of the whole bone 
marrow mask is removed to eliminate the torso region. Then, 
the widest component in the sagittal plane is extracted to 
obtain solely the pelvis. The pelvis mask is divided into 5 
regions (R1–R5) by 4 equidistant sagittal planes as shown in 
Fig. 1. In patients with the right posterior iliac crest as their 
biopsy location, only the first 2 (R1 and R2) out of these 5 
regions remain on the mask. In those with left posterior iliac 
crest biopsy, only the last 2 (R4 and R5) are maintained.

Finally, in both segmentations, the anterior iliac crest is 
removed by eliminating the anterior half of the remaining 
pelvis mask, obtaining exclusively posterior iliac crest. The 
final masks, represented over a 3D representation of the 
CT image in Fig. 2, are small enough to be representative 

Fig. 1   Illustration of the pelvic bone divided by four sagittal planes 
forming five distinct areas (R1–R5), with R1 being the region located 
on the far right and R5 the region located on the far left
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for the biopsy, but also account for spatial variations of the 
specific puncture site for each patient. The predefined size, 
location, and shape for the three biopsy sites were reviewed 
and approved by experts in Nuclear Medicine.

For each patient, only the location of the biopsy obtained 
for the MFC assessment is segmented, other locations are 
discarded with the rest of the bone marrow mask. Subse-
quently, the texture features are extracted for biopsy location.

Texture features extraction

Radiomics toolbox (https://​github.​com/​mvall​ieres/​radio​
mics, accessed on 12 September 2022) by M. Vallières 
for MATLAB [26–28] is used to quantized [18F]FDG PET 
images and to extract radiomic features. The quantization 
is performed using a uniform algorithm with 64 Gy levels, 
which scales the bone marrow mask intensity range line-
arly between 0 and the maximum SUVmax from the study 
cohort, following Eq. (1)

where R(x) is the rescaled value in voxel x, I(x) is the value 
in voxel x in the image before being rescaled and Ng the 
number of discrete gray level values. A total of 3 histogram-
based features, 9 features from the grey-level co-occurrence 
matrix (GLCM), 13 features from the grey-level run length 
matrix (GLRLM), 5 features from Neighborhood Gray-Tone 
Difference Matrix (NGTDM) are extracted, along with the 
SUVmax and SUVmean.

(1)R(x) = round

(

Ng ×
I(x)

SUVmax

)

Statistical analysis and machine learning approach

Previous to the analysis, a Safe-Level-Synthetic Minority 
Over-Sampling Technique (Safe-Level-SMOTE) [29] is 
applied to the study cohort increasing the balance between 
PET+/PET− and MFC+/MFC− groups, obtaining an extra 
database. Every analysis is performed in both the original 
and oversampled databases for both pairs of groups.

Mann–Whitney U-test is applied to the texture features 
to assess differences between PET+/PET− and MFC+/
MFC− groups. Moreover, the relationship between the 
feature magnitude and the respective class is estimated 
by Spearman’s rank correlation coefficients (ρ). For 
these analyses, SPSS Statistics Version 26.0 (IBM Corp., 
Armonk, NY) is used. Statistically significant differences 
are considered in analysis with a p value < 0.05. Over p 
value resulted, a multiple testing correction by means of 
Benjamini–Hochberg procedure is performed. Thus, a total 
of 4 Mann–Whitney-tests and 4 tests were performed to 
estimate Spearman correlation coefficients (to differenti-
ate PET± and CBM±, both with the original database and 
with the oversampled database), performing for the 8 tests 
a correction by means of the Benjamini–Hochberg pro-
cedure. Finally, the correlation between the whole bone 
marrow mask and biopsy location mask quantification is 
tested in SPSS by analyzing the Spearman ρ of image fea-
tures of both masks.

Orange 3.31 software (Bioinformatics Laboratory at the 
University of Ljubljana, Slovenia) is used for the applica-
tion of eight ML classification algorithms [30] for PET+/
PET− and MFC+/MFC− classification based on radiomic 
features and SUV metrics: decision tree, Support Vector 
Machine (SVM) with linear, polynomial and RBF kernels, 
random forest, logistic regression, k-nearest neighbors 
(kNN) and a neural network.

The decision tree is a sequential model that recursively 
organizes the information extracted from the training data 
into a hierarchical structure composed of nodes (attributes) 
and branches (classes) [31, 32]. Similarly, random forest is 
a model which combines many decision trees for prediction 
[33]. SVM is a classification algorithm that estimates the 
hyperplane equation that divides the input data into different 
output classes, maximizing the minimum distance between 
the classes and the hyperplane [34, 35]. Logistic regression 
is an algorithm by which a logistic curve is fitted to a train-
ing data set by modeling the probability of belonging to one 
of the classes. kNN is a machine learning model that stores 
training data and classifies new inputs as the class of the 
most k-nearest neighbors of the stored data. Finally, Neural 
networks are algorithms based on simple units called neu-
rons or nodes. These nodes are connected to each other by 
simulating biological synapses and assigning weights to the 
connections that obtain better classifications [32].

Fig. 2   Segmentations of the bone marrow in biopsy locations (Ster-
num, Left Posterior Iliac Crest and Right Posterior Iliac Crest) rep-
resented in green overlays with the 3D reconstruction of a CT image

https://github.com/mvallieres/radiomics
https://github.com/mvallieres/radiomics
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The hyperparameters of the algorithms are defined in 
Supplementary material Table 1. For the internal valida-
tion of the model performance, a cross validation with five 
folds is used and six performance metrics are obtained: area 
under the curve (AUC) of the receiver operating characteris-
tic curve, accuracy, F1-score (a weighted harmonic mean of 
precision and recall), precision (also known as positive pre-
dictive value), recall (or sensitivity) and specificity. For all 
these metrics, a value greater than 0.7 is considered accepta-
ble, while a value greater than 0.9 is considered outstanding.

Results

Patients

Patient characteristics of the study cohort are shown in 
Table 1, which includes a total of 39 newly diagnosed with 
MM. Regarding PET visual assessment, 79.49% of patients 
are classified as PET−, whereas for biopsy evaluation 
61.53% are MFC− cases. Additionally, sternum is observed 
as the preferred site for biopsy aspiration with a 56.41% 
followed by Left Iliac Crest with 38.46%. Discrepancies in 
12 patients with PET−/MFC+ (38.71% of PET− cases) and 
3 with PET+/MFC− (37.5% of PET+ cases) are observed.

Radiomics analyses

Mann–Whitney U-tests results for the most significant tex-
ture features and SUV metrics for distinguishing between 
PET+ and PET− groups are shown in Table 2. For the 
original database, 19 out of 32 extracted characteristics are 
statistically significant, being only 8 of them significant 
after testing correction by means of Benjamini–Hochberg 
procedure. The lowest p values are obtained for SUVmax (p 
value = 0.002), followed by Entropy and GLN (Gray Level 
Non-Uniformity, p value = 0.007). On the other hand, for 
the oversampled database, most features (28 out of 32) 
show statistically significant differences between PET+ and 
PET− groups, even after testing correction by means of 
Benjamini–Hochberg procedure, obtaining 16 of them a p 
value < 0.05.

Spearman coefficients for the original database demon-
strate positive correlations between PET+ cases and image 
features related to heterogeneity due to the heterogeneous 
pattern of the disease. This is the case for features like 
SUVmax, Entropy, Variance, Short Run Emphasis (SRE), 
High Gray Level Run Emphasis (HGRE), Short Run High 
Gray Level Emphasis (SRLGE) and Complexity. Analyzing 
the resulting correlation coefficients, lower values of these 
variables are related to PET− cases, while higher values 
are with PET+. In contrast, features related to homogene-
ity like Energy, Gray Level Non-Uniformity (GLN), Low 
Gray Level Run Emphasis (LGRE), Long Run Low Gray 
Level Emphasis (LRLGE) and Run Length Variance (RLV) 
show negative correlation coefficients. For the oversampled 
database, almost all variables have a significant correlation, 
showing the same patterns.

Results from the Mann–Whitney U-tests showing 
statistically significant differences between MFC+ and 
MFC− patients are summarized in Table 3. Only 1 of the 
features is discriminative for MFC groups for the original 
database. Nevertheless, with the oversampled database, 8 of 
the features show statistically significant p values lower than 
SUVmax, with the lowest being GLV (Gray Level Variance, 
p value = 0.004). None of the variables are significant after 
multiple testing correction by means of Benjamini–Hoch-
berg procedure.

PET+/PET− visual assessment by experts in Nuclear 
Medicine is done considering the whole bone marrow, not 
only the biopsy site. For this reason, a Spearman rank corre-
lation coefficient (ρ) between image features of whole bone 
marrow mask and the same features for biopsy location mask 
are obtained. The statistically significant correlations are 
shown in Table 4. The highest correlation is observed for 
SRHGE (ρ = 0.853) and most of the extracted features are 
significantly correlated between the biopsy and the whole 
bone marrow analyses.

Machine learning approach

Performance results for PET+/PET− classification by ML 
models based on all radiomic features are shown in Table 5 
for the original database. None of them show an outstanding 
performance, as only acceptable values are obtained for 3 
out of 6 performance metrics: AUC, accuracy and specific-
ity. However, every model acquires a great specificity with 
values between 0.806 and 0.986.

ML models based on radiomic features with significant 
differences between PET+/PET− groups in Mann–Whitney 
U-test are developed, obtaining results similar to those of 
the models based on all variables (Supplementary material 
Table 2). AUC values obtain better outcomes while specific-
ity reach lower values.

Table 1   Demographics of the study cohort

S sternum, LIC left iliac crest, RIC right iliac crest

N Sex (m/f) Age (y ± SD) MFC ( ±) Biopsy loca-
tion (S, LIC, 
RIC)

PET+ 8 3/5 52.8 ± 8.5 3/5 5/3/2
PET− 31 8/23 57.6 ± 7.4 12/19 17/12/0
Total 39 11/28 56.6 ± 7.9 15/24 22/15/2
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On the other hand, performance metrics for PET+/
PET− classification in the oversampled database based on 
all radiomic features is shown in Table 6. In this case, all ML 
models achieve acceptable performance with values > 0.7 in 
all metrics. The most outstanding performance is reached by 
Random Forest model, highlighting its great ability to distin-
guish PET+ cases. Nonetheless, SVM algorithm with RBF 
and Polynomial kernels also achieve remarkable results. In 
general, all models obtain AUC values between 0.786 and 
0.974 and recall with values between 0.774 and 1.

ML models for PET+/PET− classification based on 
radiomic features with p values < 0.05 after Mann–Whit-
ney U-testing are also developed, obtaining results which 
are almost the same than those of the models based on all 
variables (Supplementary material Table 3). Moreover, 
the same ML models, based on all radiomic for original 
database (Supplementary material Table 4) and models 
based on all radiomic features and only on those with p 
values < 0.05 for oversampled database (Supplementary 
material Tables 5 and 6, respectively), are tested for the 
MFC+/MFC− classification. However, performance met-
rics of these models result in non-acceptable results.

Table 2   Relationship between image features extracted from the bone marrow biopsy locations and PET classification including p value for 
Mann–Whitney U-test and ρ for Spearman correlation

The variables marked with * are significant after multiple testing correction by means of Benjamini–Hochberg procedure too. The variables 
marked with ** have a significative Spearman correlation at a 0.05 level (bilateral)
SRE short run emphasis, LRE long run emphasis, GLN gray level non-uniformity, RLN run length non-uniformity, RP run percentage, LGRE 
low gray level run emphasis, HGRE high gray level run emphasis, SRLGE short run high gray level emphasis, SRHGE short run high gray level 
emphasis, LRLGE long run low gray level emphasis, RLV run length variance

Image feature Original database Oversampled

Mann Whitney 
(p value)

Spearman ρ Spearman 
(p value)

Mann Whitney 
(p value)

Spearman ρ Spearman 
(p value)

SUVmax 0.002* 0.502** 0.001*  < 0.001* 0.662**  < 0.001*
SUVmean 0.237 0.192 0.242 0.014* 0.315** 0.013*
Energy 0.009* − 0.423** 0.007*  < 0.001* − 0.576**  < 0.001*
Contrast 0.028 0.355** 0.026 0.001* 0.444**  < 0.001*
Entropy 0.007* 0.434** 0.006*  < 0.001* 0.596**  < 0.001*
Homogeneity 0.015 − 0.395** 0.013*  < 0.001* − 0.507**  < 0.001*
Correlation 0.040 0.333** 0.038  < 0.001* 0.470**  < 0.001*
SumAverage 0.065 0.299 0.064 0.005* 0.363** 0.004*
Variance 0.009* 0.423** 0.007*  < 0.001* 0.628**  < 0.001*
Dissimilarity 0.026 0.361 0.024  < 0.001* 0.459**  < 0.001*
AutoCorrelation 0.060 0.305 0.059 0.004* 0.370** 0.003*
SRE 0.010* 0.418** 0.008*  < 0.001* 0.551**  < 0.001*
LRE 0.031 − 0.350** 0.029  < 0.001* − 0.506**  < 0.001*
GLN 0.007* − 0.434** 0.006*  < 0.001* − 0.610**  < 0.001*
RLN 0.012* 0.406** 0.010*  < 0.001* 0.547**  < 0.001*
RP 0.012* 0.406** 0.010*  < 0.001* 0.562**  < 0.001*
LGRE 0.076 − 0.288 0.076 0.004* − 0.370** 0.003*
HGRE 0.047 0.322** 0.046 0.001* 0.415** 0.001*
SRLGE 0.154 0.389** 0.014* 0.028* 0.506**  < 0.001*
SRHGE 0.016 − 0.231 0.157  < 0.001* − 0.282** 0.026*
LRLGE 0.040 − 0.333** 0.038  < 0.001* − 0.452**  < 0.001*
RLV 0.028 − 0.355** 0.026  < 0.001* − 0.455**  < 0.001*
Contrast (NGTDM) 0.251 0.186 0.256 0.006* 0.349** 0.005*
Complexity 0.024 0.367** 0.022  < 0.001* 0.511**  < 0.001*
Strength 0.237 0.192 0.242 0.018* 0.302** 0.017*
Variance (G) 0.465 0.118 0.473 0.025* 0.288** 0.023*
Skewness 0.028 0.355** 0.026 0.000* 0.448**  < 0.001*
Kurtosis 0.135 − 0.243 0.137 0.007* − 0.343** 0.006*
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Discussion

Bone marrow biopsy/aspiration combined with [18F]FDG 
PET/CT images are the most common techniques to eval-
uate MRD, which has shown to correlate with survival 
outcomes. In this study, bone marrow of the biopsy loca-
tions from [18F]FDG PET/CT images of MM patients is 

segmented in order to develop a quantitative analysis by 
extracting radiomic features.

In the segmentation process, standardization of the 
regions to be extracted is needed since the exact puncture is 
unknown. For this reason, the proposed biopsy location seg-
mentation contemplates a relatively wide region compared 
to the sample taken in the MFC technique.

Radiomic features extracted from [18F]FDG PET/CT 
allow to distinguish between PET+ and PET− cases. Spe-
cifically, 19 features (7 GLCM, 9 GLRLM, 1 NGTDM, 1 
histogram-based feature and SUVmax) for the original data-
base and 28 features (9 GLCM, 11 GLRLM, 3 NGTDM, 
3 histogram-based features, SUVmean and SUVmax) for the 
oversampled database out of 32 extracted features show sig-
nificant differences. Indeed, 17 of them with p values < 0.001 
for the oversampled database. Comparing the results with 
those obtained in the study of Milara et al. [24] where the 
whole bone marrow is evaluated, a greater representative-
ness of the MRD affectation in the biopsy regions than in the 
whole bone marrow can be observed, even though the visual 
analysis was performed for the whole body image.

The usefulness of radiomic features for heterogeneous 
pattern quantification is demonstrated by Spearman rank 
correlation coefficients (ρ), since the best variables in the 
prediction of PET+ cases are those with significant posi-
tive correlation coefficients, matching with heterogeneity-
related variables such as Entropy or Variance. In contrast, 
homogeneous pattern is observed in PET− cases, since those 
features which represent homogeneity, such as Homogeneity 
and Energy, obtains significant negative coefficients. These 
results are in line with those of Milara et al. [24] since simi-
lar correlation values are obtained. As a result, biopsy loca-
tions are observed to be representative in the heterogeneous 
MRD pattern quantification.

Mann–Whitney U-test is unable to detect differences 
in radiomics features extracted from bone marrow biopsy 

Table 3   Relationship between 
image features extracted 
from the bone marrow 
biopsy locations and MFC 
classification including p value 
for Mann–Whitney U-test and ρ 
for Spearman correlation

There are no variables significant after multiple testing correction by means of Benjamini–Hochberg proce-
dure too. The variables marked with ** have a significative Spearman correlation at a 0.05 level (bilateral)
GLV gray level variance

Image feature Original database Oversampled database

Mann Whit-
ney (p value)

Spearman ρ Spearman 
(p value)

Mann Whit-
ney (p value)

Spearman ρ Spearman 
(p value)

SumAverage 0.133 − 0.244 0.135 0.019 − 0.343** 0.017
AutoCorrelation 0.157 − 0.229 0.160 0.025 − 0.328** 0.023
LGRE 0.089 0.276 0.089 0.010 0.376** 0.008
HGRE 0.133 − 0.244 0.135 0.021 − 0.337** 0.019
SRLGE 0.166 − 0.220 0.178 0.017 − 0.319** 0.027
SRHGE 0.175 0.225 0.169 0.029 0.349** 0.015
LRLGE 0.126 0.248 0.128 0.021 0.337** 0.019
GLV 0.021 − 0.375** 0.019 0.004 − 0.415** 0.003

Table 4   Results from Spearman rank correlation analysis between 
images features of complete bone marrow and biopsy location

Image feature Spearman

ρ p value

SUVmax 0.634  < 0.001
Energy 0.729  < 0.001
Contrast 0.709  < 0.001
Entropy 0.755  < 0.001
Homogeneity 0.773  < 0.001
SumAverage 0.693  < 0.001
Variance 0.570  < 0.001
Dissimilarity 0.750  < 0.001
AutoCorrelation 0.721  < 0.001
SRE 0.757  < 0.001
LRE 0.570  < 0.001
GLN 0.652  < 0.001
RLN 0.750  < 0.001
RP 0.680  < 0.001
LGRE 0.675  < 0.001
HGRE 0.762  < 0.001
SRHGE 0.853  < 0.001
LRLGE 0.740  < 0.001
GLV 0.554  < 0.001
RLV 0.495  < 0.001
Complexity 0.572  < 0.001
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locations between MFC+ and MFC− cases, similar to the 
case of using the complete bone marrow mask [24]. Tak-
ing into account the number of discrepancies in the [18F]
FDG PET/CT visual assessment and MFC analyses with 12 
patients with PET−/MFC+ and 3 with PET+/MFC− and 
the limited number of patients, the difficulty of differentiat-
ing MFC status by analyzing radiomics features extracted 
from the PET image was expected. Only 8 of the radiomic 
features show significant differences for the oversampled 
database before multiple testing correction by means of Ben-
jamini–Hochberg procedure. Moreover, correlation analyses 
for image features and MFC result show a weak relation-
ship between homogeneity-related features and MFC+ cases. 
These results could be a consequence of the non-represent-
ativeness of the biopsy, due to the sample taken or the sen-
sitivity of the applied technique for the analysis, or the lack 
of accuracy in the extension or location of the bone marrow 
site segmented from the image, as well as the time difference 
between the biopsy and the [18F]FDG PET/CT image acqui-
sitions, which could result in a progression of the patient 
towards CR between biopsy and image acquisition. For these 
reasons, two findings are observed: (1) both acquisitions, 
PET and MFC, are necessary for the MRD evaluation and 
(2) taking these acquisitions in a shorter period of time than 
two months may reduce the discrepancies found between 

PET+/MFC− and PET−/MFC+ cases. The order and time 
between acquisitions, and the specific percentage of immu-
nophenotypically aberrant plasma cells in the MFC assess-
ment, may result in different discrepancies in the assess-
ments, which are caused by the recovery or relapse of the 
patient, or inflammatory processes due to the biopsy. For this 
reason, these factors should be reviewed in each individual 
case and will be taken into account in future works.

Spearman rank correlation analysis between radiomic fea-
tures extracted from whole and biopsy location bone marrow 
results in 11 significant strong positive correlation (ρ > 0.7, p 
value < 0.05, bilateral). This comparison between the results 
of evaluating radiomic features based on whole body bone 
marrow [24] and bone marrow from biopsy site in the cur-
rent study prove how the posterior iliac crest as well as the 
sternum are representative regions of the heterogeneous pat-
tern of MRD commonly evaluated in the visual assessment 
of the whole bone marrow on [18F]FDG PET images.

ML results demonstrate the improvement of classification 
models when using a balanced database, comparing original 
and oversampled data measurements. Moreover, comparing 
models based on all radiomic features to those considered 
statistically significant in the Mann–Whitney U-test, the 
non-significant variables do not notably improve the clas-
sification results, since performance metrics show similar 

Table 5   Classification 
performances of ML models 
with all image features extracted 
from the bone marrow biopsy 
locations for PET+ and PET− 
classification for the original 
database

Values in bold are considered acceptable (> 0.7). Values in italics are considered outstanding (> 0.9)

Original database PET+/PET−

Method AUC​ Accuracy F1-score Precision Recall Specificity

Decision tree 0.636 0.769 0.400 0.429 0.375 0.871
SVM-RBF 0.743 0.769 0.000 0.000 0.000 0.968
SVM-polynomial 0.867 0.769 0.308 0.400 0.250 0.903
SVM-linear 0.838 0.718 0.267 0.286 0.250 0.839
Random forest 0.701 0.795 0.333 0.500 0.250 0.935
Neural network 0.793 0.718 0.353 0.333 0.375 0.806
Logistic regression 0.731 0.718 0.353 0.333 0.375 0.806
kNN 0.563 0.744 0.000 0.000 0.000 0.935

Table 6   Classification 
performances of ML models 
with all image features extracted 
from the bone marrow biopsy 
locations for PET+ and 
PET− classification for the 
oversampled database

Values in bold are considered acceptable (> 0.7). Values in italics are considered outstanding (> 0.9)

Oversampled database PET+/PET−

Method AUC​ Accuracy F1-score Precision Recall Specificity

Decision tree 0.786 0.790 0.794 0.781 0.806 0.774
SVM-RBF 0.960 0.871 0.875 0.848 0.903 0.839
SVM-polynomial 0.950 0.855 0.873 0.775 1.000 0.710
SVM-linear 0.856 0.823 0.836 0.778 0.903 0.742
Random forest 0.974 0.887 0.892 0.853 0.935 0.839
Neural network 0.879 0.823 0.831 0.794 0.871 0.774
Logistic regression 0.897 0.790 0.806 0.750 0.871 0.710
kNN 0.840 0.774 0.774 0.774 0.774 0.774
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values. Performance of ML models applied in oversampled 
data suggest the possibility of developing models based on 
radiomic features as a Clinical Decision Support Systems 
(CDSS) for the PET+/PET− classification in MM patients, 
being the most remarkable Random Forest with every met-
ric superior to 0.8 highlighting its AUC of 0.974 and SVM 
algorithms reaching acceptable values for every metric in 
all three kernels tested, with the RBF kernel obtaining the 
values closest to those of Random Forest. However, using 
biopsy site segmentation exclusively obtains similar per-
formances to ML models based on whole bone marrow 
segmentation [24]. According to the results obtained in 
the Mann–Whitney U-tests and performance metrics, ML 
MFC+/MFC− classification models based on radiomic fea-
tures are not feasible in our series. However, ML MFC+/
MFC− classification models for the oversampled database 
focusing on biopsy sites generally obtain slightly better 
results (see Supplementary material Table 5), than models 
developed with the global bone marrow radiomic features 
(see Supplementary material Table 3 in Milara et al. [24]).

To the best of our knowledge, no other studies include 
bone marrow segmentation exclusively of the biopsy loca-
tion in [18F]FDG PET/CT images from patients with MM at 
MRD assessment. Radiomics analysis has evolved and being 
used for diagnostic and prognostic prediction of multiple 
pathologies [17–19], but, until this study, only Milara et al. 
[24] have applied radiomic features for MRD assessment in 
MM patients. However, Han et al. [20] compared radiomic 
features of manually drawn volumes of interest to bone mar-
row biopsy results for diffuse large B cell lymphoma. The 
authors observed non-significant increases in biopsy posi-
tive cases for SUV metrics and two radiomic features (high 
grey-level zone emphasis and short-zone high grey-level 
emphasis) extracted from the iliac crest volumes of interest. 
Regarding the ML approach, the model performance in the 
classification of PET+/PET− for MRD assessment in our 
study obtain similar results to those obtained by Mesguich 
et al. [23] for the diagnosis of diffuse bone marrow infiltra-
tion in MM. In their study, Random Forest classifier also 
showed the best performance with a mean accuracy of 0.91 
and AUC of 0.90 over 100 iterations (0.887 and 0.974 in 
our study, respectively). However, their study used only five 
radiomic features compared to 32 of our study.

Limitations of this study include a small and unbalanced 
cohort of patients (31 PET− and 8 PET+, 15 MFC+ and 
24 MFC−). Despite the fact of having oversampled the 
database in order to balance the PET+/PET− and MFC+/
MFC− groups, new created data is composed of original 
data and, therefore, information is still limited. On the other 
hand, due to the small and unknown specific location of the 
biopsy site inside the sternum or iliac crest, the segmenta-
tions were defined to include a slightly larger area while 
not encompassing the whole anatomical region. This limits 

the reproducibility of MFC+/MFC− analysis through [18F]
FDG PET/CT image quantification. Nonetheless, it allows 
observing the representativeness of these regions in the 
MRD assessment. Considering discrepancies between PET 
and MFC assessments (12 with PET−/MFC+ and 3 PET+/
MFC−), MFC analyses based on image features are limited 
by the time between both acquisitions, since the same state 
of progression of the disease is not being evaluated. Regard-
ing the study of radiomics characteristics, only 32 features 
are extracted, while other studies include more than 2000. 
A future work with a wider variety of features is proposed 
to be developed. Lastly, the performance of the ML models 
could be improved using both hyperparameter optimization 
and different feature selection algorithms. Thus, both perfor-
mance improvements along with the use of a wider variety 
of ML models is proposed as a future work.

Overall, the analyses proposed in this study lead to 
confirm the potential of radiomic features extracted from 
biopsy locations of [18F]FDG PET/CT images for the MRD 
assessment in patients diagnosed with MM. Furthermore, 
the representativeness of biopsy sites, iliac crest and ster-
num, in assessing the heterogeneous nature of the disease 
is demonstrated. Concerning ML results, future works lead 
to development of new models, based on hyperparameter 
optimization, capable of detecting patients with persistent 
MRD in bone marrow by quantification of [18F]FDG PET/
CT images.

Conclusions

In clinical routine practice, a combination of bone marrow 
biopsy and visual assessment of [18F]FDG PET/CT images 
are acquired for MRD evaluation in MM patients. However, 
results of both techniques are commonly inconsistent. In this 
study, an automatic segmentation methodology of the bone 
marrow at predefined biopsy sites is proposed. Radiom-
ics analysis reveal significant differences in the metabolic 
uptake patterns at the biopsy sites with ML models accu-
rately detecting PET+ patients.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s13246-​023-​01265-0.

Acknowledgements  The author E.M. received financial support 
through a predoctoral Fellowship (ayuda del Programa Propio de 
I+D+i 2020) from Universidad Politécnica de Madrid. The project 
was partially supported by COVITECH-CM (Plataforma científico-
tecnológica para alerta, diagnóstico, pronóstico, terapia y seguimiento 
de la enfermedad COVID19 y futuras pandemias) and REACT-UE 
through the European Regional Development Fund (ERDF), the Euro-
pean Social Fund (EFS) and the Fund for European Aid to the Most 
Deprived (FEAD).

https://doi.org/10.1007/s13246-023-01265-0


912	 Physical and Engineering Sciences in Medicine (2023) 46:903–913

1 3

Author contributions  EM, RA, LM, APS, AG-G, EJG, JM-L and PS-G 
have contributed to the conceptualization of the work, the investigation, 
and review and editing of the manuscript. EM, RA, LM, and AG-G 
were responsible for the data curation. EM, RA, LM, APS, AG-G and 
PS-G were responsible for methodology. EM and LM were respon-
sible for the software, as well as the formal analysis. EM, APS and 
PS-G were responsible for the writing—original draft. EM, RA, LM, 
APS, AG-G and PS-G were responsible for validation, assuring the 
reproducibility of the results. EM, APS and PS-G were responsible for 
visualization of the published work. RA, AG-G, JM-L and EJG were 
responsible of providing the resources. PS-G was responsible for the 
supervision. All authors have read and agreed to the published version 
of the manuscript.

Funding  Open Access funding provided thanks to the CRUE-CSIC 
agreement with Springer Nature. The authors declare that no funds, 
grants, or other support were received during the preparation of this 
manuscript.

Declarations 

Conflict of interest  The authors declare no conflict of interest.

Ethical approval  This research study was conducted retrospectively 
from data obtained for clinical purposes. According to the ethics com-
mittee of the Hospital Universitario 12 de Octubre, Madrid, Spain, our 
study did not need ethical approval due to involving a retrospective 
image database.

Informed consent  Informed consent was obtained from all subjects 
involved in the study.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Rajkumar SV (2019) Multiple myeloma: every year a new stand-
ard? Hematol Oncol 37:62–65. https://​doi.​org/​10.​1002/​hon.​2586

	 2.	 Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer sta-
tistics 2018: GLOBOCAN estimates of incidence and mortality 
worldwide for 36 cancers in 185 countries. CA Cancer J Clin 
68:394–424. https://​doi.​org/​10.​3322/​caac.​21492

	 3.	 Kyle RA, Rajkumar SV (2009) Criteria for diagnosis, staging, 
risk stratification and response assessment of multiple myeloma. 
Leukemia 23:3–9. https://​doi.​org/​10.​1038/​LEU.​2008.​291

	 4.	 Brigle K, Rogers B (2017) Pathobiology and diagnosis of multi-
ple myeloma. Semin Oncol Nurs 33:225–236. https://​doi.​org/​10.​
1016/j.​soncn.​2017.​05.​012

	 5.	 Gerecke C, Fuhrmann S, Strifler S et al (2016) The diagnosis and 
treatment of multiple myeloma. Dtsch Arztebl Int 113:470–476. 
https://​doi.​org/​10.​3238/​arzte​bl.​2016.​0470

	 6.	 Kumar S, Paiva B, Anderson KC et al (2016) International Mye-
loma Working Group consensus criteria for response and minimal 
residual disease assessment in multiple myeloma. Lancet Oncol 
17:e328–e346. https://​doi.​org/​10.​1016/​S1470-​2045(16)​30206-6

	 7.	 Fulciniti M, Munshi NC, Martinez-Lopez J, Di RF (2015) Deep 
response in multiple myeloma: a critical review. Biomed Res Int 
2015:1–7. https://​doi.​org/​10.​1155/​2015/​832049

	 8.	 Flores-Montero J, Sanoja-Flores L, Paiva B et al (2017) Next 
Generation Flow for highly sensitive and standardized detec-
tion of minimal residual disease in multiple myeloma. Leukemia 
31:2094–2103. https://​doi.​org/​10.​1038/​LEU.​2017.​29

	 9.	 Alonso R, Cedena MT, Gómez-Grande A et al (2019) Imaging and 
bone marrow assessments improve minimal residual disease pre-
diction in multiple myeloma. Am J Hematol 94:853–861. https://​
doi.​org/​10.​1002/​ajh.​25507

	10.	 Jamet B, Bailly C, Carlier T et al (2019) Interest of pet imaging in 
multiple myeloma. Front Med 1:69. https://​doi.​org/​10.​3389/​fmed.​
2019.​00069

	11.	 Hillengass J, Moulopoulos LA, Delorme S et al (2017) Whole-
body computed tomography versus conventional skeletal survey 
in patients with multiple myeloma: a study of the International 
Myeloma Working Group. Blood Cancer J 7:e599. https://​doi.​org/​
10.​1038/​bcj.​2017.​78

	12.	 Moreau P, Attal M, Caillot D et al (2017) Prospective evalua-
tion of magnetic resonance imaging and [18F]fluorodeoxyglucose 
positron emission tomography-computed tomography at diagno-
sis and before maintenance therapy in symptomatic patients with 
multiple myeloma included in the IFM/DFCI 2009 trial. J Clin 
Oncol 35:2911–2918. https://​doi.​org/​10.​1200/​JCO.​2017.​72.​2975

	13.	 Nanni C, Zamagni E, Versari A et al (2016) Image interpretation 
criteria for FDG PET/CT in multiple myeloma: a new proposal 
from an Italian expert panel. IMPeTUs (Italian Myeloma criteria 
for PET USe). Eur J Nucl Med Mol Imaging 43:414–421. https://​
doi.​org/​10.​1007/​s00259-​015-​3200-9

	14.	 Zamagni E, Nanni C, Dozza L et al (2021) Standardization of 
18 F-FDG-PET/CT according to deauville criteria for metabolic 
complete response definition in newly diagnosed multiple mye-
loma. J Clin Oncol 39:116–125. https://​doi.​org/​10.​1200/​JCO.​20.​
00386

	15.	 Lodge MA (2017) Repeatability of SUV in oncologic 18F-FDG 
PET. J Nucl Med 58:523–532. https://​doi.​org/​10.​2967/​jnumed.​
116.​186353

	16.	 Wang Y, Chiu E, Rosenberg J, Gambhir SS (2007) Standardized 
uptake value atlas: characterization of physiological 2-Deoxy-2-
[18F]fluoro-d-glucose uptake in normal tissues. Mol Imaging Biol 
9:83–90. https://​doi.​org/​10.​1007/​s11307-​006-​0075-y

	17.	 Wilson R, Devaraj A (2017) Radiomics of pulmonary nodules and 
lung cancer. Transl Lung Cancer Res 6:86–91. https://​doi.​org/​10.​
21037/​TLCR.​2017.​01.​04

	18.	 Kuusk T, Neves JB, Tran M, Bex A, (2021) Radiomics to bet-
ter characterize small renal masses. World J Urol 39:2861–2868. 
https://​doi.​org/​10.​1007/​s00345-​021-​03602-y

	19.	 Chen SW, Shen WC, Hsieh TC et al (2018) Textural features of 
cervical cancers on FDG-PET/CT associate with survival and 
local relapse in patients treated with definitive chemoradiotherapy. 
Sci Rep 8:1–11. https://​doi.​org/​10.​1038/​s41598-​018-​30336-6

	20.	 Han EJ, O JH, Yoon H et al (2022) Comparison of FDG PET, CT 
and bone marrow biopsy results in patients with diffuse large B 
cell lymphoma with subgroup analysis of PET radiomics. Diag-
nostics 12:222. https://​doi.​org/​10.​3390/​DIAGN​OSTIC​S1201​0222

	21.	 Jamet B, Morvan L, Nanni C et  al (2021) Random survival 
forest to predict transplant-eligible newly diagnosed multiple 
myeloma outcome including FDG-PET radiomics: a combined 
analysis of two independent prospective European trials. Eur J 
Nucl Med Mol Imaging 48:1005–1015. https://​doi.​org/​10.​1007/​
s00259-​020-​05049-6

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/hon.2586
https://doi.org/10.3322/caac.21492
https://doi.org/10.1038/LEU.2008.291
https://doi.org/10.1016/j.soncn.2017.05.012
https://doi.org/10.1016/j.soncn.2017.05.012
https://doi.org/10.3238/arztebl.2016.0470
https://doi.org/10.1016/S1470-2045(16)30206-6
https://doi.org/10.1155/2015/832049
https://doi.org/10.1038/LEU.2017.29
https://doi.org/10.1002/ajh.25507
https://doi.org/10.1002/ajh.25507
https://doi.org/10.3389/fmed.2019.00069
https://doi.org/10.3389/fmed.2019.00069
https://doi.org/10.1038/bcj.2017.78
https://doi.org/10.1038/bcj.2017.78
https://doi.org/10.1200/JCO.2017.72.2975
https://doi.org/10.1007/s00259-015-3200-9
https://doi.org/10.1007/s00259-015-3200-9
https://doi.org/10.1200/JCO.20.00386
https://doi.org/10.1200/JCO.20.00386
https://doi.org/10.2967/jnumed.116.186353
https://doi.org/10.2967/jnumed.116.186353
https://doi.org/10.1007/s11307-006-0075-y
https://doi.org/10.21037/TLCR.2017.01.04
https://doi.org/10.21037/TLCR.2017.01.04
https://doi.org/10.1007/s00345-021-03602-y
https://doi.org/10.1038/s41598-018-30336-6
https://doi.org/10.3390/DIAGNOSTICS12010222
https://doi.org/10.1007/s00259-020-05049-6
https://doi.org/10.1007/s00259-020-05049-6


913Physical and Engineering Sciences in Medicine (2023) 46:903–913	

1 3

	22.	 Morvan L, Carlier T, Jamet B et al (2020) Leveraging RSF and 
PET images for prognosis of multiple myeloma at diagnosis. Int J 
Comput Assist Radiol Surg 15:129–139. https://​doi.​org/​10.​1007/​
s11548-​019-​02015-y

	23.	 Mesguich C, Hindie E, De Senneville BD et al (2021) Improved 
18-FDG PET/CT diagnosis of multiple myeloma diffuse disease 
by radiomics analysis. Nucl Med Commun 42:1135–1143. https://​
doi.​org/​10.​1097/​MNM.​00000​00000​001437

	24.	 Milara E, Gómez-Grande A, Tomás-Soler S et al (2022) Bone 
marrow segmentation and radiomics analysis of [18F]FDG PET/
CT images for measurable residual disease assessment in multiple 
myeloma. Comput Methods Prog Biomed 225:107083. https://​doi.​
org/​10.​1016/J.​CMPB.​2022.​107083

	25.	 Boellaard R, Delgado-Bolton R, Oyen WJG et al (2015) FDG 
PET/CT: EANM procedure guidelines for tumour imaging: ver-
sion 2.0. Eur J Nucl Med Mol Imaging 42:328–354. https://​doi.​
org/​10.​1007/​s00259-​014-​2961-x

	26.	 Vallières M, Freeman CR, Skamene SR, El Naqa I (2015) A radi-
omics model from joint FDG-PET and MRI texture features for 
the prediction of lung metastases in soft-tissue sarcomas of the 
extremities. Phys Med Biol 60:5471–5496. https://​doi.​org/​10.​
1088/​0031-​9155/​60/​14/​5471

	27.	 Zhou H, Vallières M, Bai HX et al (2017) MRI features predict 
survival and molecular markers in diffuse lower-grade gliomas. 
Neuro-oncology 19:862–870. https://​doi.​org/​10.​1093/​neuonc/​
now256

	28.	 Vallières M, Kay-Rivest E, Perrin LJ et al (2017) Radiomics strate-
gies for risk assessment of tumour failure in head-and-neck cancer. 
Sci Rep 7:10117. https://​doi.​org/​10.​1038/​s41598-​017-​10371-5

	29.	 Bunkhumpornpat C, Sinapiromsaran K, Lursinsap C (2009) 
Safe-level-smote: safe-level-synthetic minority over-sampling 
technique for handling the class imbalanced problem. In: Theera-
munkong T, Kijsirikul B, Cercone N, Ho T (eds) Advances in 
knowledge discovery and data mining. PAKDD 2009. Springer, 
Berlin, pp 475–482

	30.	 Zagar T, Matija C, Laň P et al (2013) Orange: data mining toolbox 
in python. J Mach Learn Res 14:2349–2353

	31.	 Kotsiantis SB (2013) Decision trees: a recent overview. Artif Intell 
Rev 39:261–283. https://​doi.​org/​10.​1007/​s10462-​011-​9272-4

	32.	 Lorena AC, Jacintho LFO, Siqueira MF et al (2011) Comparing 
machine learning classifiers in potential distribution modelling. 
Expert Syst Appl 38:5268–5275. https://​doi.​org/​10.​1016/j.​eswa.​
2010.​10.​031

	33.	 Mogensen UB, Gerds TA (2013) A random forest approach for 
competing risks based on pseudo-values. Stat Med 32:3102–3114. 
https://​doi.​org/​10.​1002/​sim.​5775

	34.	 Alves AFF, Souza SA, Ruiz RL et al (2021) Combining machine 
learning and texture analysis to differentiate mediastinal lymph 
nodes in lung cancer patients. Phys Eng Sci Med 44:387–394. 
https://​doi.​org/​10.​1007/​s13246-​021-​00988-2

	35.	 Noble WS (2006) What is a support vector machine? Nat Biotech-
nol 24:1565–1567. https://​doi.​org/​10.​1038/​nbt12​06-​1565

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s11548-019-02015-y
https://doi.org/10.1007/s11548-019-02015-y
https://doi.org/10.1097/MNM.0000000000001437
https://doi.org/10.1097/MNM.0000000000001437
https://doi.org/10.1016/J.CMPB.2022.107083
https://doi.org/10.1016/J.CMPB.2022.107083
https://doi.org/10.1007/s00259-014-2961-x
https://doi.org/10.1007/s00259-014-2961-x
https://doi.org/10.1088/0031-9155/60/14/5471
https://doi.org/10.1088/0031-9155/60/14/5471
https://doi.org/10.1093/neuonc/now256
https://doi.org/10.1093/neuonc/now256
https://doi.org/10.1038/s41598-017-10371-5
https://doi.org/10.1007/s10462-011-9272-4
https://doi.org/10.1016/j.eswa.2010.10.031
https://doi.org/10.1016/j.eswa.2010.10.031
https://doi.org/10.1002/sim.5775
https://doi.org/10.1007/s13246-021-00988-2
https://doi.org/10.1038/nbt1206-1565

	Radiomics analysis of bone marrow biopsy locations in [18F]FDG PETCT images for measurable residual disease assessment in multiple myeloma
	Abstract
	Introduction
	Material and methods
	Subjects
	MFC acquisition and assessment
	Image acquisition
	Image processing
	Biopsy location segmentation
	Texture features extraction
	Statistical analysis and machine learning approach

	Results
	Patients
	Radiomics analyses
	Machine learning approach

	Discussion
	Conclusions
	Anchor 18
	Acknowledgements 
	References




