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Abstract 
Direct-acting antivirals eliminate hepatitis C virus (HCV) in more than 95% of treated individuals 

and may abolish liver injury, arrest fibrogenesis, and reverse fibrosis and cirrhosis. However, liver 

regeneration is usually a slow process that is less effective in the late stages of fibrosis. What is more, 

fibrogenesis may prevail in patients with advanced cirrhosis, where it can progress to liver failure and 

hepatocellular carcinoma. Therefore, the development of antifibrotic drugs that halt and reverse 

fibrosis progression is urgently needed. 

Fibrosis occurs due to the repair process of damaged hepatic tissue, which eventually leads to 

scarring. The innate immune response against HCV is essential in the initiation and progression of 

liver fibrosis. HCV-infected hepatocytes and liver macrophages secrete proinflammatory cytokines 

and chemokines that promote the activation and differentiation of hepatic stellate cells (HSCs) to 

myofibroblasts that produce extracellular matrix (ECM) components. Prolonged ECM production by 

myofibroblasts due to chronic inflammation is essential to the development of fibrosis. 

While no antifibrotic therapy is approved to date, several drugs are being tested in phase 2 and phase 

3 trials with promising results. This review discusses current state-of-the-art knowledge on treatments 

targeting the innate immune system to revert chronic hepatitis C (CHC)-associated liver fibrosis. 

Agents that cause liver damage may vary (alcohol, virus infection, etc.), but fibrosis progression 

shows common patterns among them, including chronic inflammation and immune dysregulation, 

hepatocyte injury, HSC activation, and excessive ECM deposition. Therefore, mechanisms 

underlying these processes are promising targets for general antifibrotic therapies. 

 

Key points: 
 The development of liver fibrosis is related to life-threatening complications, which can end in 

liver failure and hepatocellular carcinoma. 

 Strategies targeting the innate immune system to induce fibrosis regression include blocking 

chronic inflammation, hepatocyte injury, hepatic stellate cell activation, and excessive deposition 

of the extracellular matrix. 

 Although several drugs are being tested in phase 2 and 3 trials with promising results, no 

antifibrotic therapy has been approved to date. 

 New therapeutic strategies, such as combination therapies with different antifibrotics, novel 

techniques for drug testing and delivery, and the use of omics to decipher key signaling pathways 

involved in liver fibrosis, will aid in searching for an effective antifibrotic treatment. 
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1 Introduction 
Hepatitis C virus (HCV) is a significant global health burden. The World Health Organization (WHO) 

estimates that there are about 71 million people with chronic hepatitis C (CHC) worldwide [1, 2]. 

CHC leads to hepatic inflammation, fibrosis, cirrhosis [3], and life-threatening complications that, 

even after HCV elimination, can end in hepatocellular carcinoma (HCC) [3, 4]. 

Liver fibrosis is a dynamic and potentially reversible process that attempts to repair damaged hepatic 

tissue but, ultimately, leads to the excessive accumulation of extracellular matrix (ECM). Liver 

fibrosis is induced by chronic liver injury of different etiologies, such as viral hepatitis, non-alcoholic 

fatty liver disease (NAFLD), alcohol-associated liver disease (AALD), or cholestatic, autoimmune, 

and genetic disorders [5]. Although these diseases are triggered by different agents [6-9], they all 

converge towards common mechanisms: chronic parenchymal injury, inflammatory/immunological 

responses, fibrogenesis, and portal hypertension [10]. Notably, molecular mechanisms and disease 

progression triggered by CHC resemble those causing NAFLD [11, 12].  

The recent introduction of direct-acting antivirals (DAAs) has led to sustained virological response 

(SVR) rates greater than 95% in DAA-treated HCV patients [13]. SVR is associated with a reduced 

risk of hepatic decompensation, liver transplantation, and mortality [14, 15]. Moreover, many studies 

have shown that achieving SVR abolishes liver injury, arrests fibrogenesis, and helps reverse fibrosis 

and compensated cirrhosis, as discussed in various reviews and meta-analyzes on long-term outcomes 

in CHC patients who achieve SVR both with interferon (IFN)-based [16, 17] and IFN-free treatments 

[18]. However, despite the impressive efficacy of DAAs, some critical issues remain that would 

benefit from antifibrotic therapy. (i) Liver fibrosis is usually reversed in the early stages of infection 

after HCV clearance [19], but regression of liver fibrosis is not often observed in patients with 

advanced fibrosis or cirrhosis [20-27]. (ii) The spontaneous reversal of liver fibrosis is slow and could 

be accelerated by antifibrotic therapy [28]. (iii) Some degree of immune system activation may persist 

after SVR [29-33]. (iv) About 5% of CHC patients fail to clear the virus after DAA treatment [34-

36]. (v) Many individuals become reinfected or relapse after DAA therapy, especially in high-risk 

behavior groups (people who inject drugs, men who have sex with men) [37-39]. In all these 

individuals, fibrosis regression is hampered. 

Therefore, patients in all the above-mentioned situations are potential candidates for antifibrotic 

therapy. Although several drugs are currently in phase 2 and 3 trials [40-42], there is no currently 

approved antifibrotic treatment. Therefore, halting fibrosis progression continues to be a public health 

priority, and potent antifibrotic strategies are urgently needed [8, 43-45].  

This review focuses on targets and molecular mechanisms involved in HCV-associated liver fibrosis 

to decrease inflammation and halt or reverse fibrosis progression. Additionally, advanced clinical 

trials involving treatments to these targets are briefly discussed as well. Studies on liver fibrosis 

regression from non-viral aetiologies are also examined since they may guide research on HCV-

associated hepatic fibrosis due to shared mechanisms.  

1.2 Methodology 

A comprehensive search using MEDLINE (PubMed), Web of Science, SCOPUS, AdisInsight 

databases, clinical trial registries (ClinicalTrials.gov), and websites of manufacturers was conducted 

(the main search from 2017 to 2020, although previous studies are also mentioned). A search using 

combinations of the following terms was performed: ‘HCV’, ‘innate’, ‘therapy’, ‘antifibrotic’, ‘liver 

fibrosis’, ‘chronic liver disease’, ‘chronic hepatitis C’, and ‘liver cirrhosis’. All studies were included 

without language restriction. 
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2 Mechanisms underlying hepatic fibrosis 
Liver fibrosis results from the activation of several complex pathways designed to repair damaged 

hepatic tissue but ultimately lead to uneven scarring of liver tissue [46]. Fibrosis begins with the 

damage of hepatocytes resulting in the release of inflammatory cytokines, which trigger the activation 

of resident liver macrophages (Kupffer cells [KCs]); the activation and differentiation of hepatic 

stellate cells (HSCs) into proliferative, contractile, and fibrogenic myofibroblasts (activated HSCs; 

aHSCs); and the migration of leukocytes to the site of injury [46]. The aHSCs secrete reactive oxygen 

species (ROS), cytokines and chemokines that promote inflammation [47, 48]. Leukocytes amplify 

the inflammatory response and activate more HSCs. The aHSCs produce fibers and large amounts of 

ECM proteins, such as collagen types 1 (Col1), 3 and 4, elastin, fibronectin, laminin, and 

proteoglycans [49, 50]. Additionally, ECM degradation (fibrinolysis) is reduced. Therefore, liver 

fibrosis is a dynamic and potentially reversible process characterized by an imbalance between 

fibrogenesis and fibrinolysis [51]. Eventually, progressive ECM accumulation results in a disruption 

of liver architecture, vascular changes, scarring, and organ dysfunction [52]. 

2.1 Inflammatory response 

Inflammation is a defense mechanism against HCV infection and hepatic damage caused by the virus 

[53]. The mechanism responsible for CHC-associated fibrosis is a multifaceted process orchestrated 

by a broad spectrum of non-immune cells (hepatocytes, liver sinusoidal endothelial cells (LSECs), 

and HSCs) and professional immune cells (KCs, dendritic cells (DCs), natural killer (NK), and NK 

T cells) that are in the circulation or distributed within the hepatic compartment. There are multiple 

innate immune responses to HCV infection due to cellular diversity and the release of many 

immunological factors that activate HSCs, secrete ECM components, and promote fibrosis [49]. For 

clarity, the topic of inflammatory response to HCV infection is divided here into four sections. The 

reader is referred to recent seminal reviews for more details [52, 54-58]. 

(i) Activation of pattern recognition receptors (PRRs) and induction of the IFN response in infected 

hepatocytes. Infected hepatocytes express several PRRs that recognize viral pathogen-associated 

molecular patterns (PAMPs), such as single- and double-stranded RNA (ssRNA and dsRNA), by 

cytoplasmic sensors, such as retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-

associated protein 5 (MDA-5), and the endosomal toll-like receptor (TLR)3 [59, 60]. Viral 

recognition activates a signaling cascade that induces IFN, a primary response to the viral infection 

[61], proinflammatory chemokines (C-C motif chemokine ligand (CCL)3, CCL4, regulated on 

activation, normal T-cell expressed and secreted (RANTES), interleukin (IL)-8, and C-X-C motif 

chemokine ligand (CXCL)10) [59, 62, 63], and several IFN-stimulated genes (ISGs) [64-66], which 

establish an antiviral state in uninfected neighboring cells to control virus replication and spread.  

(ii) Hepatocyte injury and inflammatory response. In response to hepatocyte injury, high levels of 

proinflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), IL-18, IL-12, and IL-1β, 

are produced by KCs and other immune cells that are recruited to the liver. This is responsible for the 

amplification of the inflammatory response during CHC [67-72].  

(iii) Inflammasome activation. HCV is phagocytosed by KCs where it activates the nucleotide-

binding oligomerization domain-like receptor pyrin domain-containing protein 3 (NLRP3) 

inflammasome. The inflammasome is a cytoplasmic multiprotein complex that stimulates the 

activation of caspase-1, which cleaves pro-IL-1β and pro-IL-18 resulting in their mature forms [73]. 

The production of IL-1β is correlated with amplified inflammatory responses and liver fibrosis 

progression [67, 74, 75]. NLRP3-mediated activation of IL-18 induces IFN in monocytes, which 

inhibits HCV replication [76]. IL-18 activation is also a marker in acute hepatitis C infection and an 

indicator of persistent HCV infection [69].  

(iv) Other cells involved in chronic inflammation. HCV's initial interaction with other innate immune 

cells is essential to understand the adaptive immune response and CHC. In addition to KCs, 
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infiltrating human monocyte-derived macrophages, defined in humans as CD14/CD16 cell subsets 

[77] and in the mouse as lymphocyte antigen 6 complex, locus C (Ly6C) [78, 79], contribute to 

inflammation and fibrogenesis [80, 81]. Mouse Ly6Clow macrophages (homologous to human 

CD14low/CD16high) adopt a fibrinolytic phenotype that reduces inflammation and replaces resident 

tissue macrophages. Ly6Chigh macrophages (homologous to human CD14high/CD16low) are 

inflammatory and are recruited when the injury persists [81, 82].  

In the early stages of liver injury, NK cells are activated by IFN-I and other cytokines (IL-12, IL-18) 

[83] and control HCV infection by killing HCV-infected hepatocytes and inducing T-cell responses 

[84, 85]. However, alterations in phenotype and function of NK cells are observed in liver disease's 

final advanced stages [86], namely increased cytotoxicity, which contributes to healthy hepatocyte 

death, and a decreased production of IFN-γ, which reduces HCV clearance [87, 88]. Similarly to NK 

cells, NK T cells inhibit HCV replication during the acute phase of infection through IFN-γ 

production [89]. However, the prevalence of NK T cells decreases during CHC [90]. At the same 

time, they produce profibrotic cytokines (IL-4, IL-13), promoting HSC activation [91].  

DCs play a key role in controlling the antiviral response during CHC. Conflicting evidence in 

functionality and phenotype of DCs from CHC patients has been observed [92]. Some studies show 

that DCs exhibit normal maturation and proliferation markers, and preserve their ability to present 

antigens [93-95]. In contrast, other reports demonstrate that DC maturation and proliferation is altered 

in CHC patients, leading to an attenuated antiviral response [96-99].  

HCV clearance coincides with strong and sustained T-cell responses, which deteriorate once CHC is 

established, leading to T-cell exhaustion [100]. CHC patients develop a lack of effective HCV-

specific CD4+/CD8+ T-cells [101, 102], coincident with an increase in regulatory T cells (Treg) and 

a reduction in T-helper 17 cells (Th17) [103], leading to immune dysfunction and loss of immune 

control, which can only be partially restored [104]. 

2.2 HSC activation and ECM deposition 

During normal repair/regeneration of damaged liver, healthy hepatocytes fill the gaps created by dead 

hepatocytes. When liver damage persists, there is an excessive replacement of healthy parenchyma 

by scar tissue (ECM) that interferes with normal liver function. Liver injury leads to the secretion of 

profibrotic and growth factor molecules (transforming growth factor-beta (TGF-β) [105-108], 

platelet-derived growth factor (PDGF) [109, 110], vascular endothelial growth factor (VEGF) [111-

113], connective tissue growth factor (CTGF) [114-116], ROS [117-120], etc.) from infected-

hepatocytes, activated KCs, infiltrating immune cells, LSECs, and cholangiocytes that activate HSCs 

[121-123]. The aHSCs phagocytose apoptotic bodies from HCV-infected hepatocytes [124, 125], 

triggering a profibrotic response [126]. The aHSCs cause an exaggerated wound scarring response 

through the excessive replacement of healthy parenchyma with ECM components [50]. Matrix 

metalloproteinases (MMPs) and their endogenous inhibitors, tissue inhibitors of metalloproteinases 

(TIMPs), are implicated in ECM degradation and HSC activation. The ECM increase is accompanied 

by the downregulation of MMPs and the upregulation of TIMPs, which are produced by several 

hepatic cells [127-133]. Therefore, an MMP/TIMP imbalance is associated with fibrosis. Further, the 

activation of HSCs leads to the loss of lipid droplets that contain retinoids (vitamin A and its 

metabolites) present in the cytoplasm of quiescent HSCs [134-136], which leads to homeostatic 

imbalance and chronic inflammation [137, 138].  

In summary, all these findings support the idea that HSC activation, scar formation inhibition, and 

enhancement of ECM degradation are potential targets for remodeling ECM and reversing fibrosis. 
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3 Strategies for liver fibrosis regression 
The elimination of the causal agent is not sufficient to induce a rapid reversal of advanced fibrosis or 

cirrhosis. After HCV clearance, the regression, or the resolution of fibrosis, involves eliminating 

inflammatory pathways, aHSCs, and degradation of excess ECM. Overall, strategies to induce 

fibrosis regression include: (i) reducing inflammation and immune responses, (ii) inhibiting 

hepatocyte injury, (iii) suppressing HSC activation and the underlying signaling pathways, and (iv) 

inducing scar ECM degradation [5, 139, 140]. Therefore, many mechanisms related to the innate 

immune response are involved in the regression of liver fibrosis, making them potential targets for 

therapy (Figure 1). 

 

Figure 1. Antifibrotic strategies and targets for the treatment of hepatitis C virus-associated liver 

fibrosis. See the text for a full description of each therapeutic approach. ASK-1 apoptosis signal-

regulating kinase 1, CCR C-C motif chemokine receptor, Col1 collagen type 1, CXCL C-X-C motif 

chemokine ligand, Gal-3 galectin 3, HSCs hepatic stellate cells, LOXL2 lysyl oxidase-like 2, MR 

mineralocorticoid receptor, NOXs nicotinamide adenine dinucleotide phosphate oxidases, ROCKs 

Rho-associated protein kinases, TLRs toll-like receptors, VAP-1 vascular adhesion protein 1 

3.1 Inflammation and immunoregulatory targets 

Despite the successful elimination of HCV infection after DAA treatment, both residual liver disease 

and immune activation persist in many cases. For example, after viral clearance several 

immunological traits remain altered, such as elevated markers of macrophage activation [30], 

decreased NK cell repertoire diversity [32], an altered milieu of soluble inflammatory mediators 

[141], the appearance of Tregs [31], and dysfunction of mucosal-associated invariant T-cells [33]. 

Therefore, the impact of the cellular immune system could persist after achieving SVR, and 

modulation of the proinflammatory response that leads to liver injury is a potential target for 

antifibrotic treatments. Other strategies, mostly targeting the innate inflammatory system, have also 

been discussed. The most advanced antifibrotic candidates developed to interfere with 

inflammation/immunomodulation processes are summarized in Table 1. 

Table 1 Clinical studies focusing on antifibrotics targeting inflammation/immunoregulatory 

mechanisms 
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Compound Target Patients Clinical trial 

identifier / Trial 

stage 

Ref. 

Nalmefene (JKB-

121) 

TLR4 Biopsy-proven NASH NCT02442687 

Phase 2 completed 

[142] 

Cenicriviroc CCR2/CCR5 NASH with fibrosis NCT02217475 

(CENTAUR) 

Phase 2 completed 

[143-

145] 

  NASH with fibrosis NCT03028740 

(AURORA) 

Phase 3 recruiting 

[146] 

  NASH from CENTAUR/ 

AURORA studies 

NCT03059446 

Phase 2 enrolling by 

invitation 

- 

Cenicriviroc + 

Tropifexor (LJN-

452) 

CCR2/CCR5 + 

FXR 

NASH with fibrosis NCT03517540 

(TANDEM) 

Phase 2 active, not 

recruiting 

[147] 

BI-1467335 (PXS-

4728A) 

VAP-1 NASH with fibrosis NCT03166735 

Phase 2 completed 

[148] 

TERN-201 VAP-1 NASH with fibrosis Phase 2 recruiting [149] 

Belapectin (GR-MD-

02) 

Gal-3 NASH with advanced bridging 

fibrosis 

NCT02421094 

(NASH-FX) 

Phase 2 completed 

[150] 

  NASH with cirrhosis and 

portal hypertension 

NCT02462967 

(NASH-CX) 

Phase 2 completed 

[151] 

  NASH with cirrhosis, portal 

hypertension and not 

esophageal varices 

NCT04365868  

(NASH-RX)  

Phase 2/3 recruiting 

[152] 

Apararenone (MT-

3995) 

MR NASH NCT02923154 

Phase 2 completed 

- 

CCR2 C-C motif chemokine receptor 2, CCR5 C-C motif chemokine receptor 5, FXR farnesoid X receptor, 

Gal-3 galectin 3, MR mineralocorticoid receptor, NASH non-alcoholic steatohepatitis, TLR4 toll-like receptor 

4, VAP-1 vascular adhesion protein 1 

3.1.1 Toll-like receptors (TLRs) 

TLRs are PRRs that play a fundamental role in innate immunity [153, 154]. TLRs recognize HCV 

PAMPs (viral RNA and proteins), mediate cytokine production, lead to liver damage, and are 

associated with CHC pathogenesis [155-157]. TLR4 is activated by HCV NS5A and increases IFN-

β and IL-6 production [158]. In CHC patients, there is increased TLR4 expression, which leads to 

high levels of serum and intrahepatic TNF-α that contribute to chronic inflammation [155, 159, 160]. 

Therefore, TLR4 antagonists are potential therapeutic agents for the management of liver fibrosis 

(Table 1). JKB-121 is the only small molecule that has progressed as a TLR4 receptor antagonist to 

a phase 2 trial (NCT02442687) in patients with biopsy-proven non-alcoholic steatohepatitis (NASH). 

Despite the promising results obtained in in vitro and preclinical studies [161], JKB-121 did not 

improve endpoints compared to the control group and did not show a beneficial effect on liver disease 

[142]. 

Other TLRs are also potential targets for antifibrotic therapy. HCV core and NS3 proteins activate 

TLR2, which forms a heterodimer complex with TLR1 or TLR6 in monocytes and KCs [162]. In 

CHC patients, TLR2-TLR1/6 dimers stimulate the production of inflammatory cytokines, such as 

TNF-α, IL-10, and IL-8, which alter DC function and antiviral activity of KCs [98, 163, 164].  
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NS3/4A disrupts TLR3 signaling by cleaving toll-IL-1-receptor domain-containing adaptor-inducing 

IFN-β (TRIF), which hampers IFN antiviral activity [165, 166] and promotes persistent HCV 

infection [167]. Notably, polyinosinic:polycytidylic acid (usually abbreviated poly I:C) is a TLR3 

ligand that has been shown to reduce liver fibrosis by killing aHSCs in a mouse model of liver fibrosis 

[168]. Therefore, TLR3 agonists may be useful in counteracting liver fibrosis.  

Phagocytosed HCV ssRNA stimulates TLR7/8, which leads to inflammatory mediators via NLRP3-

dependent inflammasomes [67]. TLR9 recognizes unmethylated cytosine-phosphate-guanine (CpG) 

DNA motifs from apoptotic cells, and acts as a critical mediator of HSC differentiation [169]. In this 

case, TLR7/8/9 antagonists may also work as potential antifibrotic treatments.  

3.1.2 Chemokines and chemokine receptors 

CHC progression is associated with proinflammatory macrophage recruitment via C-C motif 

chemokine receptor (CCR)2 [170-173], and recruitment of HSCs and leukocytes via CCR5 [173, 

174]. Cenicriviroc (TAK-652) is a dual CCR2/CCR5 antagonist initially used as a treatment against 

human immunodeficiency virus (HIV) infection [175]. A phase 2 study (CENTAUR; NCT02217475) 

evaluated cenicriviroc's efficacy and safety in NASH patients with liver fibrosis [143], showing an 

improvement in liver fibrosis and attenuated inflammatory signaling in treated patients [144, 145]. 

Cenicriviroc is currently in a phase 3 trial (AURORA; NCT03028740) in NASH patients with liver 

fibrosis to evaluate the improvement in fibrosis and long-term clinical outcomes related to cirrhosis 

progression [146]. There is currently a phase 2 rollover study (NCT03059446) in patients who 

participated in CENTAUR or AURORA studies to assess the long-term safety of continuous 

cenicriviroc treatment. A phase 2 trial (TANDEM, NCT03517540), testing the combination of 

cenicriviroc and tropifexor (LJN-452; a farnesoid X receptor (FXR) agonist) in NASH patients with 

liver fibrosis is currently ongoing to evaluate the safety, tolerability, and efficacy of the combination 

therapy compared to monotherapy [147] (Table 1). 

Other chemokines, such as CXCL9, 10, and 11, are ligands of the C-X-C motif chemokine receptor 

3 (CXCR3), which are highly expressed during chronic inflammation and CHC progression [176-

178]. In a mouse model of chronic liver inflammation [179] and CHC patients [180, 181], there is a 

downregulation of C-X3-C motif chemokine receptor 1 (CX3CR1) and its ligand CX3CL1. These 

chemokines are, therefore, potential targets for antifibrotic therapies. 

3.1.3 Vascular adhesion protein 1 (VAP-1) 

Vascular adhesion protein 1 (VAP-1) is a sialoglycoprotein that facilitates leukocyte recruitment and 

promotes oxidative stress [182]. Increased levels of the soluble form of VAP-1 (sVAP-1) have been 

reported in different chronic liver diseases, such as NAFLD, primary sclerosing cholangitis [182, 

183], and recently, CHC [184]. Therefore, VAP-1 is being investigated in different chronic liver 

diseases and has been suggested as a potential therapeutic target for CHC [185]. 

The VAP-1 inhibitor BI-1467335 (PXS-4728A) has been in a phase 2 clinical trial (NCT03166735) 

to evaluate the liver infiltration of immune cells, reduction of alanine aminotransferase (ALT) levels, 

and fibrosis in NASH patients (Table 1). This trial has already been completed, and despite meeting 

the targets, the study has been halted due to possible undesired drug interactions [148]. To avoid 

potential drug-drug interactions of PXS-4728A, the semicarbazide-sensitive amine oxidase inhibitor 

TERN-201 is currently in a phase 2 trial to treat non-cirrhotic NASH patients. In healthy volunteers, 

TERN-201 is well-tolerated and inhibits VAP-1 after single and multiple doses [149] (Table 1). 

3.1.4 Galectin (Gal) 

Galectins (Gal) are galactose-binding proteins expressed and released by several cells involved in 

numerous biological processes, including innate immune responses [186]. Gal-3 is an important 

marker of chronic liver fibrosis because Gal-3 stimulates aHSCs to produce Col1 and TGF-β [187-

190]. Gal-3 is elevated in patients with chronic liver diseases, and its expression is 3-fold higher in 



9 
 

alcoholic cirrhosis than in HCV-mediated cirrhosis due to different injury mechanisms [191]. Thus, 

Gal-3 could also be a target for antifibrotic therapy in CHC patients. 

Belapectin (GR-MD-02) is a Gal-3 polysaccharide polymer inhibitor [192] that has been in two phase 

2 trials to evaluate safety and efficacy in NASH patients with cirrhosis (NASH-CX; NCT02462967) 

and advanced fibrosis (NASH-FX; NCT02421094) [150, 151]. Belapectin improved hepatocyte 

ballooning, reduced the development of esophageal varices (a marker of reduced blood flow to the 

liver), and showed a favorable safety profile. However, these findings were not significant [150, 151]. 

Belapectin announced patient enrollment to phase 2b/3 (NASH-RX; NCT04365868) to assess the 

safety, tolerability, and efficacy in NASH patients with cirrhosis, clinical signs of portal hypertension, 

and without esophageal varices (Table 1). The study is expected to start in late 2020, and data readout 

is expected in late 2023 [152]. 

3.1.5 Mineralocorticoid receptor (MR) 

The mineralocorticoid receptor (MR) is a nuclear receptor expressed in LSECs and HSCs, whose 

activation induces inflammation by stimulating ROS and collagen deposition [193, 194]. It is relevant 

in the NAFLD setting [193, 195], but few studies are currently evaluating MR expression in the 

progression of CHC [196]. However, preliminary investigations point to MR receptor blockade as a 

potential antifibrotic strategy to explore in patients with CHC. 

To date, the non-steroidal MR antagonist apararenone (MT-3995) has already completed a phase 2 

trial (NCT02923154) to evaluate the efficacy, safety, tolerability, and pharmacokinetics in NASH 

patients (Table 1). However, this study analyzes ALT levels and adverse changes, not a direct 

improvement in liver fibrosis, but no published data are available yet. 

3.2 Inhibition of hepatocyte injury/death 

Inhibition of hepatocyte apoptosis may be an approach for potential antifibrotic therapies in CHC 

patients. Caspase inhibition or reduction of oxidative stress by blocking apoptosis signal-regulating 

kinase-1 (ASK-1), nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs), or 

Rho-associated protein kinases (ROCKs) are promising strategies. Antifibrotics undergoing clinical 

trials based on inhibition of hepatocyte injury/death are listed in Table 2. 

Table 2 Clinical studies focusing on antifibrotics inhibiting hepatocyte injury/death  

Compound Target Patients Clinical trial 

identifier / Trial 

stage 

Ref. 

Emricasan (IDN-6556, 

PF-03491390) 

Caspase CHC (1) with compensated 

cirrhosis 

Phase 1/2 completed [197] 

  CHC (2) without cirrhosis NCT00088140 

Phase 2 completed 

[198] 

  CHC (3) with compensated 

cirrhosis and portal 

hypertension 

NCT02230683 

Phase 2 completed 

[199] 

  CHC (4), AALD, or NASH with 

cirrhosis 

NCT02230670 

Phase 2 completed 

[200] 

  CHC (5) with advanced cirrhosis 

and acute or chronic liver 

failure 

NCT01937130 

Phase 2 terminated 

[201] 

  NASH with decompensated 

cirrhosis 

NCT03205345 

(ENCORE-LF) 

Phase 2b active, not 

recruiting 

[202] 
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  NASH with compensated 

cirrhosis and portal 

hypertension 

NCT02960204 

(ENCORE-PH) 

Phase 2b completed 

[202] 

  NASH with fibrosis NCT02686762 

(ENCORE-NF) 

Phase 2b completed 

[151] 

  CHC (6) with liver 

transplantation but still with 

fibrosis 

NCT02138253  

(POLT-HCV-SVR) 

Phase 2b completed 

[203] 

Nivocasan 

(GS-9450) 

Caspase Biopsy-proven NASH NCT00740610 

Phase 2 completed 

[204] 

  CHC (7) with fibrosis NCT00874796 

NCT00725803 

Phase 2 terminated 

and completed 

[205, 

206] 

Selonsertib (GS-4997) ASK-1 NASH with fibrosis NCT02466516 

Phase 2 completed 

[207, 

208] 

  NASH with bridging fibrosis NCT03053050  

(STELLAR-3) 

Phase 3 terminated 

[209-

211] 

  NASH with compensated 

cirrhosis 

NCT03053063 

(STELLAR-4) 

Phase 3 terminated 

[209-

211] 

Selonsertib in dual 

combination 

ASK-1 + 

FXR 

ASK-1 + 

ACC 

NASH with bridging fibrosis or 

compensated cirrhosis 

NCT03449446  

(ATLAS) 

Phase 2 completed 

[212] 

Selonsertib in dual and 

triple combinations 

ASK-1 + 

ACC 

ASK-1 + 

FXR 

ASK-1 + 

FXR + ACC  

NASH  

with advanced fibrosis 

NCT02781584 

Phase 2 active, not 

recruiting 

[213] 

Fasudil ROCK NASH and CHC (8) with 

cirrhosis and portal 

hypertension 

Phase 2 completed [214] 

IMM 124-E Gut-liver 

axis 

NASH NCT02316717 

Phase 2 completed 

- 

(1) HCV patients had HCV RNA (PCR) >105 IU/mL, (2) Patients with HCV infection who were previously 

intolerant to treatment or failed to achieve an SVR during anti-HCV treatment; (3) Excluded HCV infected 

subjects receiving or planning on receiving antiviral therapy during the course of the study; (4) Excluded HCV 

infected subjects who are receiving or are planed to receive antiviral therapy during the study; (5) Active HCV 

infection; (6) HCV was eliminated by antiviral therapies prior to the study; (7, 8) Not specified whether the 

individuals included are with active HCV or not. ACC acetyl-CoA carboxylase, AALD alcohol-associated liver 

disease, ASK-1 apoptosis signal-regulating kinase 1, CHC chronic hepatitis C, FXR farnesoid X receptor, HCV 

hepatitis C virus, NASH non-alcoholic steatohepatitis, PCR polymerase chain reaction, ROCK Rho-associated 

protein kinases, SVR sustained virological response.  

3.2.1 Caspases 

Caspases are proteases involved in the apoptosis of HCV-infected hepatocytes via the extrinsic 

pathway (a death receptor-dependent pathway that activates caspase 8/10) or the intrinsic pathway 

(triggered by intracellular stress resulting in mitochondrial membrane perturbation, activation of 

caspases 9, 3, 6, and 7, and subsequent degradation of cellular components) [215]. Moreover, 
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hepatocyte apoptosis via caspase results in HSC activation, Col1 production [216, 217], and is 

associated with inflammation in CHC [218, 219]. 

Emricasan (IDN-6556, PF-03491390) is a pan-caspase inhibitor that reduces aspartate 

aminotransferase (AST) and ALT activity in CHC patients [197]. Two clinical trials in phase 1 and 

phase 2 have shown emricasan to be safe and well-tolerated in CHC patients [197, 198]. Emricasan 

was also effective in CHC patients (NCT00088140) and patients with compensated cirrhosis and 

portal hypertension (NCT02230683). Both studies showed significant reductions in AST and ALT 

levels [198, 199]. Moreover, in a phase 2 trial (NCT02230670), emricasan improved liver function 

in cirrhotic patients with CHC, AALD, or NASH using the Model for End-Stage Liver Disease 

(MELD) score [200], a predictor of survival in decompensated cirrhotic patients. However, in another 

phase 2 trial (NCT01937130) in CHC patients with advanced cirrhosis and acute or chronic liver 

failure, its efficacy was not confirmed [201]. Recently, three phase 2b trials evaluating emricasan in 

NASH patients with preexisting liver fibrosis (ENCORE-NF; NCT02686762), decompensated 

cirrhosis (ENCORE-LF; NCT03205345), or compensated/early decompensated cirrhosis (ENCORE-

PH; NCT02960204), also failed because they did not reach the endpoints related to improvement of 

liver inflammation or hepatic fibrosis [151, 202]. On the other hand, a phase 2 trial in CHC patients 

who had liver transplantation and achieved SVR following anti-HCV therapy but still had fibrosis 

and/or incomplete cirrhosis (POLT-HCV-SVR; NCT02138253) has shown a significant 

improvement in liver fibrosis [203] (Table 2). 

The safety and activity of another caspase inhibitor, nivocasan (GS-9450), was evaluated in patients 

with CHC (NCT00874796, NCT00725803) and NASH (NCT00740610). Nivocasan reduced ALT 

levels in both types of patients, but only CHC patients showed a reduction in cytokeratin 18 (a marker 

for liver cell apoptosis) [204, 220]. Nevertheless, the phase 2 trial was stopped due to significant 

abnormalities and adverse events in several individuals [205] (Table 2). 

In summary, there is evidence that targeting cell death may be beneficial for liver fibrosis resolution. 

Despite the disappointing results, the knowledge gained will guide the search for other caspase 

inhibitor-based alternatives to treat chronic liver disease [221]. 

3.2.2 Apoptosis signal-regulating kinase 1 (ASK-1) 

ASK-1 is a serine/threonine-protein kinase that is primarily activated in response to oxidative stress 

and regulates cell death through p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal 

kinase (JNK) intracellular pathways [222]. In CHC patients, TGF-β, VEGF, and ROS production 

mediate the development of angiogenesis via ASK-1 [113]. 

The only ASK-1 compound that has successfully entered the clinical stage is selonsertib (GS-4997) 

(Table 2). In a phase 2 trial (NCT02466516), selonsertib was safe, effective, and improved fibrosis 

in NASH patients [207, 208]. Furthermore, reduced fibrosis was associated with decreased liver 

stiffness and collagen content, but these results must be taken with a grain of salt due to the absence 

of a control group. Selonsertib progressed to a phase 3 trial for NASH-induced bridging fibrosis 

(STELLAR-3, NCT03053050) or compensated cirrhosis (STELLAR-4, NCT03053063), but 

unfortunately, neither fibrosis regression nor reduction of disease progression was observed [209].  

A phase 2 trial (ATLAS, NCT03449446) has recently evaluated the safety and efficacy of dual 

combinations of selonsertib/cilofexor (GS-9674, a non-steroidal FXR agonist) and 

selonsertib/firsocostat (GS-0976, an acetyl-CoA carboxylase inhibitor) in NASH patients with 

advanced fibrosis, including bridging fibrosis and cirrhosis. Both dual combinations showed fibrosis 

improvement at lower doses compared with the higher doses used in monotherapy. Moreover, fewer 

side effects of cilofexor were observed in the combination group compared with cilofexor as 

monotherapy [212]. Another phase 2 trial also evaluated dual and triple combinations with 

selonsertib, cilofexor, firsocostat, fenofibrate (a peroxisome proliferator-activated receptor (PPAR)-

α specific inhibitor) and vascepa (a diacylglycerol acyltransferase inhibitor) in NASH patients with 

advanced fibrosis (Table 2). Preliminary data presented at the 2019 American Association for the 
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Study of Liver Diseases (AASLD) annual meeting showed that only firsocostat/fenofibrate 

combination led to a fibrosis improvement [213]. Nevertheless, these results on combination therapies 

should be interpreted with caution due to the small sample size. 

3.2.3 Nicotinamide adenine dinucleotide phosphate oxidases (NOXs)/Rho-
associated protein kinases (ROCKs) 

NOXs are enzymes that mediate electron transfer from NADPH to molecular oxygen, producing 

superoxide radicals. NOXs promote oxidative stress, which leads to hepatocyte apoptosis, HSC 

activation, and ECM deposition [223]. The role of NOXs in CHC patients has been increasingly 

recognized and involves dysregulation of T-cell response and hepatocyte injury [224-228].  

As with NOXs, Ras homolog gene member A (RhoA) and its downstream effector, ROCKs, promote 

oxidative stress. ROCKs are serine/threonine kinases that act as effectors of the small GTPase Rho, 

enhancing fiber formation, HSC contractility, and promoting hepatocyte apoptosis [229, 230]. 

Although few studies relate ROCKs and HCV infection [231], ROCKs and NOXs share oxidative 

stress as the mechanism that causes the fibrosis progression. Therefore, ROCKs are targets to consider 

as antifibrotic therapy in CHC patients in the future. Interestingly, the ROCK inhibitor fasudil reduces 

portal venous pressure in cirrhotic rats [232] and decreases portal venous and arterial pressure in CHC 

and NASH patients with cirrhosis and portal hypertension [214] (Table 2). 

3.2.4 Hepatocyte protection via gut-liver axis 

The importance of the gut-liver axis in CHC has been recently revised [233-236]. The gut and the 

liver are interconnected, both anatomically and physiologically. The gut-liver imbalance in CHC 

patients can be responsible for several cirrhosis-related complications [237] and HCC development 

[238, 239]. These studies are consistent with those of patients with other chronic liver diseases [233, 

240]. The liver harbors translocated bacteria and a repertoire of gut-derived microbial products 

(lipopolysaccharide (LPS) is the most studied PAMP) that traverse the intestinal epithelium and 

activate the innate and inflammatory immune response in the liver [241, 242]. This bacterial 

translocation from the gut occurs during CHC, particularly in the cirrhotic stage [243]. The 

exacerbated cellular activation in CHC leads to impaired intestinal permeability with an increased 

translocation of bacteria and bacterial products that activate TLR4 [244]. Additionally, CHC patients 

show an altered intestinal microbial composition associated with liver fibrosis, which is characterized 

by an abundance of Enterobacteriaceae and Bacterioidetes and a slight decrease in Firmicutes [245]. 

Thus, therapies that prevent bacterial translocation into systemic circulation and the liver are of 

interest. However, further studies should be performed to show whether there are more factors in 

addition to the bacterial composition that modulate the gut-liver axis, liver function, and fibrosis 

progression. 

A phase 2 trial with IMM 124-E (hyperimmune bovine colostrum enriched with IgG anti-LPS) has 

currently been completed in patients with severe alcoholic hepatitis (NCT02316717) (Table 2). The 

results are expected soon, although the improvement in fibrosis is not one of the endpoints.  

3.3 Inhibition of HSC activation 

There are numerous potential targets to inhibit HSC activation and its fibrogenic response due to the 

complexity and multitude of pathways involved in their activation and functionality and the number 

of substances released during liver damage. Here, we focus on antifibrotic strategies aimed at the 

inactivation/elimination of aHSCs or any pathways involved in their activation [246] (Figure 2). 

Candidates that are currently in clinical trials are summarized in Table 3. 
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Figure 2. Hepatic stellate cell (HSC) activation/inactivation in liver disease. When chronic hepatitis 

C-mediated liver injury occurs, HSC activation is triggered by different cytokine stimuli from 

neighboring cells. If liver damage persists, many changes in HSC physiology occur. Activated HSCs 

(aHSC) proliferate, acquire a contractile phenotype, and produce ECM components. Inactivation or 

elimination of aHSCs is achieved by apoptosis, senescence, or reversion to quiescence. See the text 

for a full description of the different processes. 5HT serotonin 5-hydroxytryptamine, Akt 

serine/threonine-protein kinase B, Ang II angiotensin II, ASK-1 apoptosis signal-regulating kinase 1, 

CB1/2 cannabinoid receptor type 1/2, CCL C-C motif chemokine ligand, CTGF connective tissue 

growth factor, CX3CR1 C-X3-C motif chemokine receptor 1, ECM extracellular matrix, FGF 

fibroblast growth factor, Gal-3 galectin 3; Hg hedgehog, IFN-γ interferon-gamma, IL interleukin, 

JNK c-Jun N-terminal kinase, Ly6C lymphocyte antigen 6 complex locus C, MMP matrix 

metalloproteinase, NF-κB nuclear factor κ-light-chain-enhancer of activated B cells, NGF nerve 

growth factor, NK natural killer, NKG2D natural killer group 2 member D, NOXs nicotinamide 

adenine dinucleotide phosphate oxidases, PDGF platelet-derived growth factor, PPAR-γ peroxisome 

proliferator-activated receptor-gamma, ROCKs Rho-associated protein kinases, ROS reactive oxygen 

species, TFG-β transforming growth factor-beta, TIMP tissue inhibitor of metalloproteinase, TNF-α 

tumor necrosis factor-alpha, TRAIL tumor necrosis factor-related apoptosis-inducing ligand, VEGF 

vascular endothelial growth factor, ↑ increased, ↓ decreased 

 

Table 3 Clinical studies focusing on antifibrotics inhibiting hepatic stellate cell activation  

Compound Target Patients Clinical trial identifier 

/ Trial stage 

Ref. 

Tipelukast (MN-

001) 

Leukotriene 

receptor 

NASH and NAFLD with 

hypertriglyceridemia 

NCT02681055 

Phase 2 completed 

- 

Pirfenidone TGF-β CHC (1) with cirrhosis 
NCT02161952 

Phase 2 completed 
[247] 

Pirfenidone TGF-β CHC (2) with advanced fibrosis 

NCT04099407 

(PROMETEO) 

Phase 2 recruiting 

[248] 

Losartan ATR1 CHC (3) with fibrosis NCT00298714 

Phase 4 completed 

[227] 
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Losartan, valsartan 

and irbesartan 

ATR1 CHC (4) with portal 

hypertension and liver biopsy 

Phase 2 completed [249] 

Irbesartan ATR1 CHC (5) with fibrosis NCT00265642 

(FIBROSAR) 

Phase 3 completed 

- 

Candesartan and 

ramipril 

ATR1 CHC (6) with fibrosis NCT03770936 

Phase 3 recruiting 

- 

OCA FXR NASH without cirrhosis NCT01265498 

(FLINT) 

Phase 2 completed 

[250] 

  NASH with compensated 

cirrhosis 

NCT03439254 

(REVERSE) 

Phase 3 active, not 

recruiting 

[251] 

  NASH with fibrosis NCT02548351 

(REGENERATE) 

Phase 3 active, not 

recruiting 

[251, 

252] 

Nor-UDCA FXR Primary sclerosing cholangitis NCT01755507 

(NUC-3) 

Phase 2 completed 

[253] 

Tropifexor in dual 

combination 

FXR + 

CCR2/CCR5 

NASH with fibrosis NCT03517540 

(TANDEM) 

Phase 2 active, not 

recruiting 

[147] 

Cilofexor in dual 

combination 

FXR + ASK-1 NASH with bridging fibrosis 

or compensated cirrhosis 

NCT03449446 

(ATLAS) 

Phase 2 completed 

[212] 

Cilofexor in 

dual/triple 

combinations 

FXR + ASK-1 

FXR + ACC 

FXR + ASK-1 

+ ACC 

FXR + ACC + 

DGAT 

FXR + ACC + 

PPAR 

NASH  

with advanced fibrosis 

NCT02781584 

Phase 2 active, 

recruiting 

[213] 

Pioglitazone PPAR-γ NASH with fibrosis NCT00063622 

(PIVENS) 

Phase 3 completed 

[148, 

254] 

Farglitazar PPAR-γ CHC (7) with fibrosis NCT00244751 

Phase 2 completed 

[255] 

Elafibranor (GFT-

505) 

PPAR-α/δ NASH without cirrhosis NCT01694849 

(GOLDEN-505) 

Phase 2b completed 

[256] 

  NASH with fibrosis NCT02704403 

(RESOLVE-IT) 

Phase 3 active, not 

recruiting 

[167] 

Lanifibranor (IVA-

337) 

PPAR-α/γ/δ NASH with steatosis and 

necroinflammation  

NCT03008070 

(NATIVE) 

Phase 2b completed 

[257] 

(1) Patients with positive anti-HCV antibodies and detectable serum HCV RNA; (2) Patients with SVR; (3) Active 

HCV infection; (4) Positive serology for HCV and detectable HCV RNA; (5) Patients without antiviral therapy, 

and non-responders or patients with relapse after antiviral treatment; (6) Not specified whether the individuals 

included are with active HCV or not; (7) Serum HCV RNA positive, and failure to achieve SVR with previous 
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treatment. ACC acetyl-CoA carboxylase, ASK-1 apoptosis signal-regulating kinase 1, ATR1 angiotensin II type 

1 receptor, CCR2 C-C motif chemokine receptor 2, CCR5 C-C motif chemokine receptor 5, CHC chronic 

hepatitis C, DGAT diglyceride acyltransferase, FXR farnesoid X receptor, HCV hepatitis C virus, NAFLD non-

alcoholic fatty liver disease, NASH non-alcoholic steatohepatitis, nor-UDCA nor-ursodeoxycholic acid, 
OCA obeticholic acid, PPAR peroxisome proliferator-activated receptor, SVR sustained virological response, 

TGF-β transforming growth factor-beta. 

3.3.1 Clearance of activated HSCs 

Removing aHSCs can be achieved through three well-known mechanisms [246] (Fig. 2), which are 

described below: 

(i) Apoptosis. In contrast to hepatocytes, HSC apoptosis is required for fibrosis regression in CHC 

patients [258]. Hepatocytes, KCs, NK, and NK T cells can initiate HSC apoptosis through different 

signaling pathways [259], such as the inhibition of leukotriene receptors, a class of arachidonic acid-

derived bioactive molecules, and the blockade of JNK phosphorylation [260, 261]. In this regard, 

tipelukast (MN-001) is a promising compound demonstrating antifibrotic and antiinflammatory 

activity in preclinical models. However, new therapies promoting aHSC apoptosis are still not 

available in clinical trials, although current studies with tipelukast are being carried out in NASH and 

NAFLD individuals with hypertriglyceridemia (NCT02681055) (Table 3). 

(ii) Senescence. Senescence is a physiological mechanism that restricts cell division to avoid the 

accumulation of damaged cells. Senescent HSCs adopt a more inflammatory but less fibrogenic 

phenotype [262-265]. Therefore, inducing HSC senescence may be a potential antifibrotic therapy. 

(iii) Quiescence. Monocyte-derived macrophages direct the reversal of aHSC to an inactive 

phenotype. Nearly 50% of aHSCs can revert to a quiescent phenotype with a lower threshold to 

reactivation by exposure to fibrogenic agents [266]. Therefore, this process is another potential 

antifibrotic target.  

3.3.2 Inhibition of cellular receptor signaling pathways  

Several growth factors and signaling pathways are involved in the development of liver fibrosis: 

(i) TGF-. The most potent profibrotic cytokine in the liver is TGF-β, which is stored as an inactive 

latent complex in the ECM [267, 268]. TGF-β triggers several signaling pathways to control the 

epithelial-to-mesenchymal transition involved in chronic liver disease [269, 270]. Several studies 

have shown high levels of TGF-β in CHC patients [271, 272] that decrease after SVR [273, 274]. 

TGF-β can have apoptotic or cancerogenic effects during CHC [275, 276]. A phase 2 trial 

(NCT02161952) with pirfenidone, a TGF-β inhibitor, showed an improvement in liver inflammation 

and fibrosis in cirrhotic CHC patients [247]. Pirfenidone is currently in a phase 2 trial (PROMETEO; 

NCT04099407) in patients with advanced liver fibrosis from diverse chronic liver disease aetiologies, 

including CHC patients. This study showed an improvement in inflammation and liver stiffness 

through the administration of extended-release pirfenidone, but these results must be interpreted 

carefully due to the absence of a control group [248]. Therefore, targeting TGF-β1 as an antifibrotic 

therapy will be a challenge, and additional studies are required to understand the mechanisms 

involved in CHC. 

(ii) Other growth factors. Liver injury is further exacerbated by growth factors and signaling 

pathways, such as PDGF, VEGF, CTGF, epidermal growth factor (EGF), and Wnt/β-catenin, which 

are strongly implicated in CHC and HCC [116, 277-280]. PDGF is the most potent mitogen and 

chemoattractant factor that stimulates HSC proliferation [281, 282] and contributes to the 

development of CHC [109, 110]. VEGF is released from LSECs and HSCs to form new blood vessels 

by playing a key role in angiogenesis [113]. Several reports have shown that HCV core can upregulate 

VEGF expression in chronic patients with HCV-related HCC [280, 283-285]. CTGF is a potent 

fibrogenic protein expressed at low levels in normal liver, but it is produced at high levels in 

hepatocytes and aHSCs during CHC [114-116]. EGF is overexpressed in aHSCs and contributes to 
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fibrosis development and HCC [278, 286, 287]. EGF is also elevated in CHC patients with advanced 

stages of fibrosis [288, 289]. 

(iii) Wnt pathway. The Wnt pathway plays a crucial role in cellular differentiation and development 

and is associated with both the induction and inhibition of HSC activation [290]. When Wnt activation 

occurs, β-catenin translocates to the nucleus recruiting cyclic adenosine monophosphate (cAMP)-

response element-binding protein (CREB), which activates HSCs and promotes macrophage-

mediated inflammation [291]. Inhibition of canonical Wnt pathway activation using CREB/β-catenin 

inhibitors was shown to reduce aHSC and liver fibrosis in mice [292]. In contrast, β-catenin-

dependent canonical Wnt activation seems necessary to maintain the quiescent state of HSCs [205]. 

Non-canonical Wnt pathway activation increased HSC survival in a rat model [293]. It has recently 

been reported that the inhibition of the activation of canonical and non-canonical Wnt signaling 

pathways can prevent NASH-related liver fibrosis in mice on a methionine-choline-deficient diet 

[294]. Therefore, the Wnt pathway is a highly complex process, but its careful modulation could be 

a promising antifibrotic strategy. 

(iv) Angiotensin II (Ang II). Ang II is secreted by HSCs and binds to Ang II type 1 receptor (AT1R) 

[295]. Ang II/AT1R interactions induce HSC activation, proliferation, contraction, and increased 

deposition of Col1. Therefore, blocking Ang II by Ang-converting enzyme inhibitors or AT1R 

blockers may be an effective antifibrotic strategy [203, 296]. In a phase 4 trial (NCT00298714), the 

long-term administration of losartan (an AT1R blocker) decreased inflammation, fibrogenic 

mediators, and Col1 deposition in CHC patients [227] (Table 3). However, this study lacked 

randomization. A phase 3 clinical trial (NCT03770936) is also evaluating the efficacy of two AT1R 

antagonists, candesartan and ramipril, in CHC patients, and results are expected in 2027. A mixture 

of ATR1 antagonists (losartan, valsartan, and irbesartan) led to reduced fibrosis in CHC patients with 

portal hypertension [249]. A phase 3 study examined the efficacy of irbesartan on liver fibrosis 

progression in CHC patients (NCT00265642) (Table 3), but these results have not been published 

yet. 

(v) Hedgehog pathway. The Hedgehog pathway is a critical modulator of liver repair [297]. During 

CHC, HCV activates Hedgehog signaling in hepatocytes to promote fibrogenesis [298, 299], which 

is enhanced by the accumulation of profibrotic and growth factors, such as TGF-β, PDGF, and EGF 

[300-302]. Thus, Hedgehog signaling inhibitors could attenuate liver fibrosis, as has been observed 

in different animal models [303-305]. 

(vi) Neurotransmitters. HSC activation is also influenced by neurotransmitters expressed in 

myofibroblasts, such as cannabinoids (CB), opioids, and serotonin 5-hydroxytryptamine (5HT). The 

CB system is involved in neuromodulatory functions through a profibrogenic receptor (CB1) and an 

antifibrotic and hepatoprotective receptor (CB2) [212]. Curcumin and derivatives can inhibit CB1 

and the cellular pathways involved in HSC activation [306, 307]. There are currently ongoing trials 

using CB1 antagonists for metabolic liver diseases, but the goal of fibrosis improvement is not listed 

as an endpoint. Conversely, CB2 agonists have been seen to reduce collagen by inducing HSC 

quiescence/apoptosis [308, 309]. Moreover, a germline genetic variant in the CNR2 gene (encoding 

CB2) is associated with necro-inflammation in CHC patients with HIV/HCV coinfection [310]. 

Therefore, antifibrotic therapies should be aimed at using mainly CB1 antagonists and, to a lesser 

extent, CB2 agonists. Opioid signaling increases HSC proliferation, and the opioid antagonist 

naltrexone and other opioid-like compounds attenuate liver fibrosis [214, 311]. 5HT has a profibrotic 

effect, and its receptors are upregulated in HSCs. Moreover, 5-HT2A and 5-HT2B receptor 

antagonism reduces inflammation and aHSCs, and increases aHSC apoptosis in mice and rat models 

[312]. 

3.3.3 Inhibition of nuclear receptor signaling pathways 

HSCs express a diverse group of nuclear receptors, mainly the FXR and PPARs, which are potential 

targets for antifibrotic agents [49, 313]. 
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(i) FXR. FXR is a nuclear receptor present in the liver that plays a role as a regulator of hepatic bile 

acid homeostasis, HSC activation, and Col1 production [314, 315]. It is important for bile acid-

mediated HCV replication [316]. Thus, FXR could also represent a therapeutic target for the treatment 

of liver fibrosis [313]. However, most FXR ligands failed clinical assessment due to poor 

pharmacokinetics or toxicity. Obeticholic acid (OCA) is a potent whole-body bile acid FXR agonist 

that, in a phase 2 study (FLINT; NCT01265498), was well-tolerated, improved necroinflammation, 

and reduced fibrosis in non-cirrhotic NASH patients [250]. OCA is currently being conducted in two 

phase 3 studies in NASH patients with compensated cirrhosis (REVERSE; NCT03439254) and non-

cirrhotic patients (REGENERATE; NCT02548351) [251]. The results of the REGENERATE interim 

analysis showed a clinically significant improvement in liver fibrosis [252] (Table 3). However, OCA 

has some side effects, such as elevation of low-density lipoprotein (LDL) levels ('bad' cholesterol) 

and pruritus [317]. Other bile acid FXR agonists are being investigated, such as nor-ursodeoxycholic 

acid (nor-UDCA), which is the most advanced drug in a phase 2 trial for primary sclerosing 

cholangitis (NUC-3; NCT01755507), but the goal of improvement of liver fibrosis is not listed as an 

endpoint [253] (Table 3). Several non-bile acid synthetic FXR agonists have been developed to 

enhance tolerability and avoid the drawbacks of OCA [318], such as cilofexor (ATLAS, 

NCT03449446, and NCT02781584) and tropifexor (Table 3). Tropifexor has entered a phase 2 trial 

(TANDEM, NCT03517540) combined with cenicriviroc [147]. INT-767, a dual agonist on FXR/G-

protein-coupled bile acid receptor (Gpbar1), has shown to modulate KC activation and improve liver 

function by reducing steatosis and fibrosis in preclinical studies. Unfortunately, currently there are 

no ongoing clinical trials [319]. 

(ii) PPARs. PPARs belong to the steroid/thyroid hormone receptor superfamily and are mainly 

expressed in hepatocytes [320]. Three PPAR isoforms have been identified (PPAR-γ, PPAR-α, and 

PPAR-δ), which vary in tissue distribution and are potential antifibrotic therapy targets. PPAR-γ and 

PPAR-α are decreased during HCV infection [321, 322], while PPAR-δ has not been investigated 

relating to HCV infection. Thiazolidinediones (TZDs) are PPAR-γ agonists that reduce aHSC and 

collagen deposition  [323]. A phase 2 study with pioglitazone (PIVENS, NCT00063622) showed 

significant reductions in liver enzyme levels, steatosis, inflammation, and hepatocellular ballooning, 

but with substantial adverse effects [148, 254]. Clinical trials in both CHC and NASH patients have 

been unsuccessful regarding evidence of reduced fibrosis [148, 255] (Table 3). TZDs can suppress 

HCC recurrence in HCV-infected patients [324] and help to improve steatosis in the context of 

HIV/HCV co-infection [325]. Nevertheless, TZD treatments have several clinical concerns, such as 

a higher risk of prostate and pancreas cancer, body weight gain, and increased cardiovascular events, 

among others. Elafibranor (GFT-505), a hepatotropic dual PPAR-α/δ agonist tested in a phase 2b trial 

(GOLDEN-505; NCT01694849), was well-tolerated, improved liver enzymes, and reduced liver 

fibrosis in non-cirrhotic NASH patients [256]. A phase 3 trial is currently underway to evaluate 

histological improvement and all-cause mortality and liver-related outcomes in NASH patients 

(RESOLVE-IT; NCT02704403), but results from an interim analysis were disappointing [167] 

(Table 3). 

Other PPAR drugs are also in development, including lanifibranor (IVA-337; a pan-PPAR agonist), 

saroglitazar (a PPAR-α/γ dual agonist), and seladelpar (a PPAR-δ agonist). IVA-337 is an agonist 

that activates all three PPARs (PPAR-γ, PPAR-α, and PPAR-δ) and is currently being tested in a 

phase 2b trial (NATIVE; NCT03008070) in non-cirrhotic NASH patients with liver steatosis and 

moderate to severe necroinflammation (Table 3). The clinical trial has already been completed and 

showed a favorable tolerability profile with a significant reduction in steatosis and fibrosis. These 

results support the idea of entering into phase 3 development [257]. 

3.4 Reduction of fibrosis 

Drugs directly targeting fibrosis are promising candidates. Scarring is a dynamic process whose 

regression depends on its duration and scar factors. Since aHSCs are in the injured liver, not in the 

healthy liver, their apoptosis may facilitate scar removal and fibrosis regression [326]. Here, we focus 
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on potential antifibrotic therapies based on inhibiting collagen synthesis and ECM cross-linking 

enzymes that directly affect scar tissue. In this regard, nanotechnology could have a crucial role [327]. 

Examples of antifibrotic candidates that reduce fibrotic scar evolution undergoing clinical trials are 

listed in Table 4. 

Table 4 Clinical studies focusing on antifibrotics promoting fibrosis degradation  

Compound Target Patients 
Clinical trial identifier / Trial 

stage 
Ref. 

ND-L02-

s0201 
Col1 

CHC (1) with moderate to extensive 

fibrosis 

NCT02227459 

Phase 1b/2 completed 

[328-

330] 

  CHC (2) with cirrhosis  
NCT03420768 

Phase 2 completed 

[328-

330] 

Simtuzumab LOXL2 Unknown etiology with fibrosis 
NCT01452308 

Phase 2 completed 
[331] 

  HIV and/or CHC (3) with fibrosis 
NCT01707472 

Phase 2 completed 
[331] 

  
NASH with advanced fibrosis, but 

not cirrhosis 

NCT01672866 

Phase 2 terminated 
[332] 

  NASH with compensated cirrhosis 
NCT01672879 

Phase 2 terminated 
[332] 

PAT-1251 LOXL2 Healthy volunteers 
NCT02852551 

Phase 1 completed 
- 

PXS-5153A LOXL2 Healthy volunteers Two phases 1 completed 
[240, 

318] 

(1) Patients with SVR; (2) Patients with a SVR for at least one year before the date of screening are included, 

and patients with detectable HCV RNA at screening are excluded; (3) Patients must have HCV RNA ≥ 2000 

IU/ml, and failed therapy or are unwilling to receive or have contraindications to interferon therapy for HCV. 

CHC chronic hepatitis C, Col1 collagen type 1, HCV hepatitis C virus, HIV human immunodeficiency virus, 

LOXL2 lysyl oxidase-like 2, NASH non-alcoholic steatohepatitis, SVR sustained virological response. 

3.4.1 Collagen type 1 (Col1) 

The major ECM components produced by aHSCs are collagens, especially Col1, which represent the 

major structural component of the fibrotic scaffold (more than 50% of the scar protein) [333, 334] 

with levels being 10-fold higher in advanced fibrosis and cirrhosis [335]. Therefore, targeting Col1 

could be a potent antifibrotic strategy. Total hepatic collagen content and proinflammatory cells in 

the liver were significantly reduced after treatment with specific small interfering RNAs (siRNAs) 

targeting the procollagen α1(I) gene in three in vivo models of liver fibrosis progression and an in 

vivo model of advanced fibrosis regression [327]. Similar results were found in transgenic mice with 

inducible knockdown of Col1, 3, 4, or 6 [336]. Promising results were also obtained with Col1 

siRNA-loaded cationic nano-hydrogel particles [337, 338]. 

Human heat shock protein 47 (hsp47) is a Col1 chaperone expressed in HSCs that is essential for the 

maturation and secretion of collagen [49]. Targeted conjugates like vitamin A-coupled liposomes 

containing hsp47-siRNA (ND-L02-s0201) can be used to block collagen synthesis in different rodent 

models [339]. Currently, ND-L02-s0201 is being investigated in two clinical trials in phase 1b/2 and 

2, respectively, in patients with fibrosis (NCT02227459) and cirrhosis after clearing the HCV 

infection (NCT03420768) (Table 4). These studies have shown that ND-L02-s0201 was well-

tolerated [329, 330] and was not immunogenic [328]. Therefore, Col1, and other ECM molecules that 

play essential roles in the fibrotic matrix organization could also be targets of antifibrotic therapy. 

3.4.2 Lysyl oxidase-like 2 (LOXL2) 

The lysyl oxidases are a family of enzymes secreted by HSCs involved in collagen cross-linking and 

ECM stabilization. The imbalance in this process leads to excessive cross-linking characterized by 
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liver scarring and stiffness, which leads to liver failure [340]. Moreover, ECM stiffness promotes 

HSC proliferation via integrins. Of the five members, lysyl oxidase-like-2 (LOXL2) is the most 

widely studied in chronic liver diseases including CHC [341, 342]. LOXL2 is a matrix enzyme 

overexpressed by aHSCs that stabilizes ECM, making it more resistant to protease degradation. 

Therefore, ECM cross-linking and remodeling can be regulated by LOXL2 inhibitors [343]. 

The IgG4 monoclonal antibody simtuzumab (SIM, GS-6624) is a LOXL2 inhibitor that has shown 

poor results in a clinical trial (Table 4) [341]. Two pilot phase 2 trials (NCT01452308, 

NCT01707472) in patients with liver fibrosis of variable etiology (i.e., HIV and/or HCV-infected 

patients) showed that simtuzumab was well-tolerated and had no serious adverse events [331]. 

However, two phase 2 studies in NASH patients with bridging fibrosis or compensated cirrhosis 

(NCT01672866, NCT01672879) were stopped due to a lack of efficacy in decreasing liver fibrosis 

or liver-related clinical events in cirrhotic patients [332]. These disappointing results using antibodies 

have opened the way for small molecules, which can maximize inhibition by more easily penetrating 

the fibrotic matrix and intracellular compartments, and some of which are now in the early stages of 

clinical trials [344]. 

PAT-1251 is a potent irreversible inhibitor of LOXL2 that has shown high specificity in preclinical 

studies [345]. Consequently, PAT-1251 was the first small-molecule LOXL2-inhibitor to enter into 

clinical trials (Table 4). The phase 1 trial (NCT02852551) in healthy volunteers has already been 

completed, but results are not publicly available. PXS-5153A (BI-1467335), another LOXL2 

inhibitor, improved liver function by diminishing collagen content and collagen cross-links in a 

mouse model [343]. Two phase 1 trials with PXS-5153A have been completed showing good safety 

and pharmacokinetic profile and a substantial and highly significant reduction of LOXL2 levels [240, 

318] (Table 4). These results support the use of small molecules targeting LOXL2, or other lysyl 

oxidases, as a tool for treating liver diseases with abnormal increases in collagen cross-linking. 

4 Conclusions 
After HCV clearance by successful DAA treatments, liver fibrosis may persist. Even if the cure of 

HCV infection leads to fibrosis regression, this is a long process. Therefore, once HCV infection is 

cured, the therapeutic targets for reversing liver fibrosis focus on using antifibrotic agents. 

Current antifibrotic approaches targeting HCV-associated liver fibrosis are mainly based on reducing 

inflammation, hepatocyte injury, and HSC activation; or inducing ECM degradation after HCV 

removal. To date, there is a wide variety of antifibrotic drugs that are being tested in clinical trials, 

but most of them are analyzed on NASH patients. These antifibrotic drugs should also be evaluated 

in patients cured of HCV infection, although it is expected that the results with NASH patients can 

be extrapolated to CHC patients. However, no compound is currently approved by the Food and Drug 

Administration (FDA) or the European Medicines Agency (EMA). Moreover, the promising results 

obtained in preclinical steps do not accurately predict outcomes in human clinical trials. Furthermore, 

due to the diverse stages of liver fibrosis, the complexity of the process, and different patients’ genetic 

backgrounds, more research is needed to explore the question of whether or not antifibrotic drugs are 

effective treatments. 

Liver fibrosis regression requires new therapeutic strategies, such as the use of mitochondrial open 

reading frames of the 12S ribosomal RNA type-c (MOTS-c) agonists [346], cell-based therapy [347-

349], or combined treatments. Nanoparticles can also be an attractive tool because they accumulate 

in the liver [350]. The combinations of two or more antifibrotic compounds addressing multiple 

pathways offer the most exciting approaches. The advantages of combination therapies rely on using 

lower doses of drugs, which reduces toxicity problems and side-effects derived from prolonged 

treatments, and has a higher efficacy due to additive or even synergistic effects compared to 

monotherapy. 
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Several promising antifibrotic drugs and targets are currently undergoing preclinical studies and will 

be evaluated in the clinic shortly. Moreover, the use of novel techniques, such as precision-cut liver 

slice cultures, human liver organoids, humanized mice, as well as omics technology for the analysis 

of signaling pathways triggered during chronic liver disease [2, 351-354], will provide valuable 

information for testing possible antifibrotic drugs.  
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