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A B S T R A C T   

Exposure to low to moderate arsenic (As) levels has been associated with type 2 diabetes (T2D) and other chronic 
diseases in American Indian communities. Prenatal exposure to As may also increase the risk for T2D in 
adulthood, and maternal As has been associated with adult offspring metabolic health measurements. We hy-
pothesized that T2D-related outcomes in adult offspring born to women exposed to low to moderate As can be 
evaluated utilizing a maternally-derived molecular biosignature of As exposure. Herein, we evaluated the as-
sociation of maternal DNA methylation with incident T2D and insulin resistance (Homeostatic model assessment 
of insulin resistance [HOMA2-IR]) in adult offspring. For DNA methylation, we used 20 differentially methylated 
cytosine-guanine dinucleotides (CpG) previously associated with the sum of inorganic and methylated As species 
(ΣAs) in urine in the Strong Heart Study (SHS). Of these 20 CpGs, we found six CpGs nominally associated (p <
0.05) with HOMA2-IR in a fully adjusted model that included clinically relevant covariates and offspring 
adiposity measurements; a similar model that adjusted instead for maternal adiposity measurements found three 
CpGs nominally associated with HOMA2-IR, two of which overlapped the offspring adiposity model. After 
adjusting for multiple comparisons, cg03036214 remained associated with HOMA2-IR (q < 0.10) in the offspring 
adiposity model. The odds ratio of incident T2D increased with an increase in maternal DNA methylation at one 
HOMA2-IR associated CpG in the model adjusting for offspring adiposity, cg12116137, whereas adjusting for 
maternal adiposity had a minimal effect on the association. Our data suggests offspring adiposity, rather than 
maternal adiposity, potentially influences the effects of maternal DNAm signatures on offspring metabolic health 
parameters. Here, we have presented evidence supporting a role for epigenetic biosignatures of maternal As 
exposure as a potential biomarker for evaluating risk of T2D-related outcomes in offspring later in life.   

1. Introduction: 

Arsenic (As), a ubiquitous environmental toxicant in water and food 
(Chung et al., 2014), contributes to adverse health outcomes in human 
populations (Hong et al., 2014), and is considered a major global health 
concern. 

Long-term exposure to low to moderate As in drinking water, which 
is common in the rural Western US, has been associated with metabolic 

conditions in American Indian (AI) communities, including type 2 dia-
betes (T2D), the metabolic syndrome, and insulin resistance (Kuo et al., 
2015; Grau-Perez et al., 2017; Spratlen et al., 2018; Spratlen et al., 2018) 
. Arsenic is known to readily cross the placenta, may alter fetal devel-
opment, and underlie disease risk later in life (Punshon et al., 2015). 
Growing experimental evidence shows that prenatal and early-life As 
exposure may contribute to adverse offspring health into adulthood, 
such as increased metabolic disease risk (Navas-Acien et al., 2019; 
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Rodriguez et al., 2020; Rodriguez et al., 2016; Huang et al., 2018). These 
experimental findings are consistent with findings in the Strong Heart 
Study (SHS), a population-based cohort study in American Indian 
communities in the Southwest and the Great Plains, where maternal As 
exposure was associated with adult offspring T2D risk and insulin 
resistance (Tinkelman et al., 2020). 

Epigenetic modifications, including DNA methylation (DNAm), are 
plausible molecular mechanisms linking prenatal and early life expo-
sures to future disease risk, given these epigenetic marks are responsive 
to environmental factors, with long-lasting effects on gene expression (i. 
e., cellular phenotypes) (Godfrey et al., 2015). Due to improvements in 
methodology for acquiring and interpreting epigenetic data in large- 
scale studies, the utility of epigenetic information, including DNAm 
modifications, has gained prominence as a potential molecular 
biomarker of health and disease (García-Giménez et al., 2017). How-
ever, assessing long-term disease risk in those exposed to adverse 
environmental influences during sensitive windows of development re-
mains a challenge. To identify those at risk for adverse metabolic health 
later in life—due, in part, to environmental exposure during devel-
opment—minimally invasive strategies for identifying stable bio-
markers amenable to the clinical setting will be invaluable. For instance, 
parental DNAm in buccal cells has predicted preterm birth in offspring 
(Winchester et al., 2022), and blood-based DNAm markers in mothers 
has been associated with offspring birthweight (Kheirkhah Rahimabad 
et al., 2021). Whether maternal DNAm signatures of As exposure can be 
used as a biosignature for evaluating offspring metabolic health out-
comes into adulthood has yet to be examined. 

The SHS provides a unique opportunity to identify potential epige-
netic biosignatures of As exposure on risk for T2D-related outcomes 
across generations. Indeed, As exposure remained relatively constant 
over many decades in the SHS communities prior to 2006 and residential 
mobility is low. Thus, urinary As measurements obtained in mothers at 
baseline in 1989–1991 likely reflect long periods of exposure (Navas- 
Acien et al., 2009), including during pregnancy and fetal development, 
and, thus may have lasting effects on offspring health. Prior work by our 
group identified an association between maternal As exposure with 
adult offspring metabolic health (Tinkelman et al., 2020). Arsenic 
exposure has also been associated with blood-based DNAm markers in 
the SHS (Bozack et al., 2020), including at genes involved in glucose 
metabolism and As-induced oxidative stress. However, whether these 

blood-based epigenetic signatures of exposure are related to offspring 
T2D-related phenotypes is unknown. This study sought to explore blood- 
based DNAm signatures of maternal As exposure as a biomarker to assess 
T2D-related outcomes in adult offspring of mothers exposed to variable 
levels of As, likely covering sensitive windows of development (i.e., 
pregnancy and early life). Utilizing previously identified differentially 
methylated cytosine-guanine dinucleotides (CpGs) associated with As 
measurements from the SHS cohort at baseline (1989–1991) (Bozack 
et al., 2020), we examined an association of As-associated DNAm sig-
natures in mothers with adverse metabolic phenotypes in adult offspring 
who were part of the SHS family expansion, the Strong Heart Family 
Study (SHFS). 

2. Methods: 

2.1. Study population 

The SHS is a National Heart, Lung, and Blood Institute funded pro-
spective cohort of men and women aged 45–74 years old from 13 AI 
communities spanning North and South Dakota, Oklahoma, and Arizona 
who were recruited and examined in 1989–1991 (Visit 1) with follow-up 
examinations every 3–4 years (Lee et al., 1990). The SHFS recruited 
family members of original SHS participants with at least 5 siblings (96 
families) between 1998 and 1999 (Visit 3 pilot) or 2001 to 2003 (Visit 
4). In the present study, participants from SHS and SHFS were excluded 
based on specific criteria (Fig. 1). From all participants in the SHS at 
Visit 1 (n = 4,549), we excluded data from one tribe that requested no 
further participation, participants who did not meet criteria for urine 
metals analysis (e.g., insufficient urine), male participants, and women 
without DNAm data collected or low-quality DNAm data. From the 
remaining 1,361 female SHS participants, we excluded those without 
offspring in the SHFS or whom had offspring with missing outcome 
(fasting glucose, Homeostasis Model Assessment of Insulin Resistance 
[HOMA2-IR], incident T2D) and covariate measurements (urinary total 
As, BMI, waist circumference, smoking status), as well as mothers 
missing covariate measurements (total urinary As, BMI, waist circum-
ference, smoking status, fasting glucose) and estimated glomerular 
filtration rate (eGFR). In a similar approach, from SHFS participants at 
baseline (Visit 3 and Visit 4; n = 3,838), the same tribe as previously 
mentioned declined participation in the SHFS (n = 919). We further 

Fig. 1. Study exclusion criteria. Flowchart represents exclusion criteria for the DNA methylation analysis of Strong Heart Study (SHS) mothers and matched Strong 
Heart Family Study (SHFS) offspring participants for this study. 
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excluded participants who had prevalent diabetes to control for the ef-
fects of diabetes treatment regiments on metabolic measurements used 
in this study. We then excluded those with insufficient urine for metals 
analysis or whose SHS parent was excluded from urine metals analysis. 
Finally, SHFS participants who had a mother in SHS that was not 
excluded based on our previously mentioned criteria were retained (n =
1,720); an in-depth exclusion criteria for SHFS can be found elsewhere 
(Spratlen et al., 2018; Tinkelman et al., 2020). Subsequently, we 
excluded offspring missing relevant study variables (total urinary As, 
fasting glucose, HOMA2-IR, BMI, diabetes status at Visit 5, and waist 
circumference) or offspring whose mothers were missing relevant study 
variables (total urinary As, BMI, waist circumference, and fasting 
glucose). Finally, of the remaining 466 SHFS offspring participants, we 
excluded those whose mothers did not have DNAm data collected at 
Visit 1, retaining a total of 226 SHFS offspring paired to 119 mothers for 
DNAm analyses. The SHS protocol was approved by institutional review 
boards (IRBs), participating tribal communities, and the respective area 
Indian Health Service IRBs, and all participants provided informed 
consent. 

2.2. Data collection 

At SHS baseline (Visit 1) and follow-up visits, physical examinations 
and interviews were conducted by trained staff following standard 
procedures. Participants reported sociodemographic information (age, 
sex, study site, education), smoking status (never, former, and current), 
and medical history during interviews. Anthropometric measures were 
collected during physical examinations. Fasting blood samples (12 h) 
and spot urine samples were collected and stored according to stan-
dardized procedures (Lee et al., 1990). Maternal measurements were 
based on Visit 1 (1989–1991), baseline measurements for offspring were 
based either on Visit 3 (1998–1999) or Visit 4 (2001–2003), and 
outcome data for offspring were based on Visit 5 (2006–2009). 

2.3. Urine Arsenic measurements 

Analytical methods and quality control for urinary As measurements 
are described in detail elsewhere (Scheer et al., 2012). Spot urine sam-
ples were collected in polypropylene tubes, frozen within 2 h of 
collection, and shipped on dry ice to MedStar Health Research Institute 
(Washington, DC, USA), where they were stored at < -70℃. In 
2009–2010, aliquots of up to 1.0 mL from stored urine samples were 
shipped on dry ice to the Trace Element Laboratory at Graz University 
(Graz, Austria). Arsenic species (arsenite, arsenate, methylarsonate 
[MMA], and dimethylarsinate [DMA]) were measured using the Agilent 
z high-performance liquid chromatography coupled with Agilent 7700x 
inductive coupled plasma mass spectrometry (Agilent Technologies, 
Santa Clara California, USA). The LOD for inorganic As (iAs), MMA, and 
DMA was 0.1 µg/L (Scheer et al., 2012). No samples were below the LOD 
for these species. Arsenobetaine, a non-toxic As species typically found 
in seafood, was low in SHS participants (median: 0.65 µg/g creatinine), 
suggesting minimal seafood intake in this study population. Urinary 
creatinine was measured at the National Institute of Diabetes and 
Digestive and Kidney Diseases Epidemiology and Clinical Research 
Branch Laboratory (Phoenix, Arizona, USA) utilizing automated alkaline 
picrate methods on a rapid flow analyzer. Total urinary iAs concentra-
tions (μg/L) were divided by urinary creatinine (g/L) concentration to 
account for inter-individual variability in urine dilution. The sum of iAs 
and methylated As species (MMA and DMA) were considered as the 
measure of exposure of inorganic As exposure, hereafter reported as 
total As (ΣAs). 

2.4. Fasting glucose, HOMA2-IR, and T2D measurements 

Blood samples collected after a 12-hour fast were obtained to mea-
sure lipids, glucose, insulin, and other metabolic markers in SHS and 

SHFS participants. Plasma samples were measured for fasting glucose 
and insulin by MedStar Research Institute (Washington, DC, USA) 
following standardized methods as previously described (Lee et al., 
1990; Howard et al., 1995). The corrected Homeostasis Model Assess-
ment of Insulin Resistance, HOMA2-IR, an improved computing model 
employed as a surrogate measure for beta cell function and insulin 
resistance, was obtained from calculations applied to fasting insulin and 
fasting glucose concentrations (Levy et al., 1998). T2D was defined as 
either a self-reported physician diagnosis, self-reported use of insulin or 
oral diabetic treatment, or a fasting plasma glucose concentration ≥ 126 
mg/dL. By design for this study, no SHFS participants had prevalent T2D 
at baseline. 

2.5. DNA methylation quantification, preprocessing and normalization 

The quantification and processing of DNAm from blood samples 
provided by SHS participants at Visit 1 have been described in detail 
previously (Bozack et al., 2020). Briefly, leukocytes were isolated from 
blood samples and purified for genomic DNA. DNA was bisulfite- 
converted and hybridized to Illumina’s Infinium MethylationEPIC 
BeadChip (850K; Illumina, Inc., San Diego, CA, USA), which signifi-
cantly improves on its predecessor, the HumanMethylation450 Bead-
Chip, in genome coverage, reproducibility, accuracy and reliability 
(Pidsley et al., 2016). Samples were randomized within and across 
sample plates to control for batch effects, internal controls and replicate 
controls were included in each plate, and standard quality control 
probes were integrated using Illumina’s GenomeStudio software (Illu-
mina, Inc.). IDAT files were generated in six batches and combined 
employing the R package minfi (Aryee et al., 2014). Quality control 
assessment and normalization was performed on both samples and CpG 
probes. Normalization utilized single sample noob normalization 
method within the minfi package. In total, 26 samples were removed that 
did not pass quality control and normalization (Fig. 1). ComBat in the sva 
package (version 3.36.0) was used to correct for batch effects (Leek 
et al., 2012). Failed probes based on Illumina’s recommendations were 
removed (detection p-value > 0.01 in 5 % of individuals or more). CpG 
probes residing on sex chromosomes, enriched at single-nucleotide 
polymorphisms (SNPs) and cross-reactive CpG probes were also 
removed. To correct for probe-type bias, Representative Concentration 
Pathway (RCP) normalization was performed. Houseman’s projection 
method was performed to estimate blood immune cell-type proportions 
in each sample (Houseman et al., 2012). DNAm data was available 
across 788,753 CpGs from 2,325 participants in the SHS, including the 
119 mothers that were selected for this study. DNAm values (β-values) 
were generated for the remaining CpG loci based on the ratio of meth-
ylated CpG probe intensity and total CpG probe methylation intensity 
(methylated + unmethylated probe intensities), yielding DNA methyl-
ation proportions from 0.0 (unmethylated) to 1.0 (fully methylated). 

Previously, our group identified 20 differentially methylated CpG 
positions (DMP) associated with urinary ΣAs in SHS participants at a 
significant threshold (q < 0.05) (Bozack et al., 2020), using the limma 
package in R (Ritchie et al., 2015). Here, β-values were logit transformed 
to M− values (M = log2[β-value/1 – β-value]), as they better satisfy 
parametric modeling assumptions for differential methylation analyses 
as compared to β-values, which tend to be heteroscedastic at the highly 
methylated or unmethylated CpGs (Du et al., 2010). Linear regression 
modeling for differential methylation analysis was adjusted for sex, age, 
BMI, smoking status, education (<high school, high school graduate or 
GED, > high school), study site (Arizona, North and South Dakota, or 
Oklahoma), eGFR, and Houseman’s cell type proportions. False- 
discovery rates (FDR) were accounted for using the Benjamini and 
Hochberg method for multiple comparisons and significance was 
determined at q < 0.05. Sensitivity analyses were performed to test for 
effect modification of covariates, including sex, smoking status, study 
site, and T2D status. Importantly, sensitivity analysis stratified by sex 
found the same 20 ΣAs-associated CpGs achieved nominal significance 
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with ΣAs (p < 0.05), suggesting sex did not have a significant effect on 
the resulting relationship between urinary ΣAs and DNAm. This is 
relevant, as in the current study, we sought to solely employ female 
DNAm signatures of ΣAs exposure (i.e., mothers) to identify a relation-
ship with offspring metabolic outcomes. These findings support that the 
20 ΣAs-associated CpGs can be used in our study that includes an all- 
female (i.e., maternal) population. 

2.6. Statistical analyses 

Descriptive statistics for both maternal (n = 119) and offspring (n =
226) variables were calculated as: median (1st quartile, 3rd quartile) for 
continuous variables, and counts (frequency [%]) for categorical vari-
ables. Urinary ΣAs (iAs, MMA, and DMA) (µg/L) was adjusted for urine 
dilution using creatinine concentrations (g/L). 

We used generalized estimating equations (GEE) with an indepen-
dent correlation structure to examine the associations between maternal 
ΣAs-associated DNAm and the following offspring variables: HOMA2-IR 
(continuous), and incident T2D (binary). All regression models were 
performed between maternal methylation of ΣAs-associated CpGs 
(M− value) at SHS baseline (Visit 1) as the exposure variable and 
continuous or binary variables at SHFS Visit 5 (2006–2009) as the 
outcome of interest. Continuous outcome variables (i.e., HOMA2-IR) 
were log transformed to satisfy linear regression model assumptions, 
and the resulting β coefficients were exponentiated to delineate the 
relative change in the outcome variable (geometric mean ratios [GMR]). 
For the binary outcome, we employed GEE with a logit link to perform 
logistic regression analysis, and resulting coefficients were expo-
nentiated to an odds ratio. GEE were used to account for clustered data 
based on familial relationships (i.e., mother–child pairs, and siblings) 
(Homish et al., 2010), given the flexibility of GEE in handling related 
data, such as shared exposures of siblings and DNAm data derived from 
paired mothers. To account for multiple comparisons, the Benjamini- 
Hochberg method was employed within each outcome at a threshold 
q < 0.10 for significance. To assist with interpretation of DNAm 
M− values, which are not as easily interpretable as β-values (percentage 
of DNAm at a specific CpG locus), DNAm data was mean-centered and 
scaled by subtracting the sample mean from every value of the predictor 
variable and running the model on the centered data. Results were 
interpreted as a change in the GMR or odds ratio (OR) of the outcome 
variable for every standard deviation in the predictor variable (i.e., ΣAs- 
associated CpG locus methylation). Likewise, for HOMA2-IR, we 
included the absolute change in HOMA2-IR for each model to assist in 
interpretation (e.g., change in HOMA-2IR scores vs GMR of HOMA2-IR). 
Four separate models were employed in our analyses, including an un-
adjusted model, a model adjusting for a priori selected variables (Model 
1), a model including variables from Model 1 and offspring adiposity 
(Model 2), and a model including variables from Model 1 and maternal 
adiposity (Model 3). Covariates selected for Model 1, and subsequently 
included into Models 2 and 3, included offspring sex, age, smoking 
status (never, ever, current), and log2 transformed ΣAs (µg/g creatinine) 
at the baseline offspring visit (Visit 3 or 4); and maternal age, smoking 
status, log2 transformed ΣAs (µg/g creatinine), log2 transformed fasting 
glucose (mg/dL) at baseline (Visit 1). Model 2 further included maternal 
waist circumference (cm) at baseline and Model 3 included offspring 
waist circumference (cm) at baseline. Likewise, we performed the same 
analyses with offspring and maternal BMI (kg/m2) to determine which 
measure of adiposity was a better clinical indicator for including when 
assessing offspring T2D risk. We chose to adjust for offspring and 
maternal adiposity measurements separately to determine whether the 
relationship between maternal DNAm signatures and offspring meta-
bolic parameters were influenced by maternal or offspring adiposity. 

3. Results 

3.1. Participant Characteristics 

The age (IQR) at enrollment was 54.4 (49.3, 61.6) years for the SHS 
mothers (n = 119) (Visit 1) and 40.4 (35.5, 47.2) years for SHFS 
offspring (Visit 3 or 4; n = 226) (Table 1). Of the SHFS offspring par-
ticipants, 82 were male (36.2 %). BMI was similar between mothers and 
offspring at baseline time points, 30.9 (27.2, 35.2) kg/m2 and 30.4 
(26.8, 34.9) kg/m2, respectively. Among the mothers, 44 (37.0 %) were 
never smokers, 32 (26.9 %) were former smokers, and 43 (36.1 %) were 
current smokers. Among the offspring, 78 (34.5 %) were never smokers, 
55 (24.3 %) were former smokers, and 93 (41.2 %) were current 
smokers. 44 out of 119 (37.0 %) mothers had prevalent T2D at baseline, 
whereas 42 out of 104 (40.4 %; 15 participants were missing data) had 
diabetes at follow-up, including 6 new cases. No offspring had T2D at 
baseline by design, however, at follow-up there were 41 cases of incident 
T2D (41/226; 18.1 %). The median fasting glucose concentration was 
111.0 (99.0, 168.0) mg/dL for mothers and 94.0 (87.0, 103.0) mg/dL for 
offspring at their respective baseline visits, and at follow-up it was 113.0 
(98.0, 171.0) mg/dL and 94.0 (86.0, 106.3) mg/dL, respectively. Me-
dian (IQR) HOMA2-IR scores were higher in mothers compared to 
offspring at baseline (3.7 (2.4, 5.5) vs 1.35 (1.0, 2.5)) and follow-up (3.5 
(1.9, 6.0) vs 1.6 (0.9, 2.7)). Median (IQR) ΣAs concentrations in mothers 
were also higher than offspring (7.3 (5.0, 13.8) vs 4.6 (3.0, 8.4) µg/g 
creatinine). 

3.2. Maternal Arsenic-Associated DNA methylation with Insulin 
Resistance 

We estimated the GMR and absolute difference in offspring HOMA2- 
IR scores for one SD increase in each of the candidate CpG locus 
methylation states (M− value), and found several maternal ΣAs-associ-
ated CpGs overlapped multiple models (Fig. 2.a) and were nominally 
associated with offspring HOMA2-IR in different models (Fig. 1.b-g; 
Supplementary Table 1). In the unadjusted model, three CpGs were 
nominally associated with HOMA2-IR (cg12106731 tagged to the TSS of 
neurochondrin [NCDN]/KIAA0319L, cg07021906 tagged to an intronic 
region of SLC7A5, also known as large amino transporter 1 [LAT1], and 
cg03036214 tagged proximal to an exon of carbonic anhydrase 12 
[CA12]). These CpG remained differentially associated with HOMA2-IR 
after base adjustment for offspring and maternal factors (Model 1) and 

Table 1 
SHS and SHFS Participant Baseline Characteristics.   

SHS Mothers (n =
119) 

SHFS Offspring (n =
226) 

Age (Years) 54.4 (49.3, 61.6) 40.4 (35.5, 47.2) 
Sex (Male) – 82 (36.2 %) 
Smoking Status   
Never 44 (37.0 %) 78 (34.5 %) 
Ever 32 (26.9 %) 55 (24.3 %) 
Current 43 (36.1 %) 93 (41.2 %) 
Waist Circumference (cm) 105.0 (98.0, 116.0) 100.0 (92.0, 111.0) 
BMI (kg/m^2) 30.9 (27.2, 35.2) 30.4 (26.8, 34.9) 
Diabetes Status (Diabetic) 44 (37.0 %) 0 (0.0 %) 
Follow-up Diabetes Status 41 (41.2 %) 41 (18.1 %) 
Fasting Glucose (mg/dL) 111.0 (99.0, 168.0) 94.0 (87.0, 103.0) 
Follow-up Fasting Glucose (mg/ 

dL) 
113.0 (98.0, 171.0) 94.0 (86.0, 106.3) 

HOMA2-IR 3.7 (2.4, 5.5) 1.5 (1.0, 2.5) 
Follow-up HOMA2-IR 3.5 (1.9, 6.0) 1.6 (0.9, 2.7) 
Total Arsenic (μg/g creatinine) 7.3 (5.0, 13.8) 4.6 (3.0, 8.4) 

Continuous variables: median (1st, 3rd Quartile); categorical variables: count 
(frequency %). Diabetes status based on criteria: currently taking diabetes 
medication, impaired fasting glucose (≥126 mg/dL), 2-hr post-prandial plasma 
glucose ≥ 200 mg/dL, or HbA1c ≥ 6.5 %. BMI: Body mass index, HOMA2-IR: 
Homeostatic Model Assessment for Insulin Resistance. 
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with further adjustment for maternal waist circumference (Model 2). 
Further adjustment for offspring waist circumference (instead of 
maternal waist circumference) (Model 3) resulted in six CpGs nominally 
associated with HOMA2-IR. Two of them overlapped with the CpGs 
found in the unadjusted model, Model 1 and Model 2 (cg07021906 and 
cg03036214). The CpGs exclusively found in model 3 were cg08059112 
(tagged to the 5′ UTR of the leucine-rich repeat and Ig domain con-
taining 3 [LINGO3]), cg14595618 (tagged intragenically to hexokinase 1 
[HK1]), cg12116137 (tagged proximal to an exon of pre-mRNA pro-
cessing factor 8 [PRPF8]), and cg03497652 (tagged intragenically/ 
proximal to an exon of ankyrin repeat and sterile alpha motif domain 
containing 3 [ANKS3]). All the nominally significant GMRs of HOMA2- 
IR and maternal DNAm were positive, indicating higher methylation 
levels in the mother were associated with higher levels of HOMA2-IR in 
the offspring. After FDR-correction, cg03036214 (CA12) in Model 3 
remained associated with HOMA2-IR at q < 0.10 (Supplementary Table 
1). Finally, we compared these results to our group’s previous obser-
vations identifying an association between maternal urinary ΣAs and 
offspring adulthood HOMA-2-IR (Tinkelman et al., 2020). Previously, 
we found that the GMR of offspring HOMA2-IR per IQR increase in 
maternal urinary ΣAs ranged between 1.00 and 1.04 in five different 
covariate-adjusted models. Using maternal ΣAs-associated DNAm sig-
natures, we found the GMR of adult offspring HOMA2-IR per standard 
deviation increase in maternal DNAm ranged between 1.13 and 1.19, 
depending on CpG of interest and covariates included in the model. 

3.3. Maternal arsenic-Associated DNA methylation with Type 2 Diabetes 
Risk 

Insulin resistance is a hallmark characteristic of T2D pathogenesis 
and related cardiometabolic complications. Because our data suggests 
maternal ΣAs-associated CpG methylation is associated with offspring 
insulin resistance, we posited that this subset of CpG loci associated with 
offspring HOMA2-IR may contain an underlying biosignature capable of 
assessing T2D risk in adult offspring, as measured by incident T2D. In 
unadjusted logistic regression models, the OR of incident T2D in the 
adult offspring per SD in the M− value of each CpG ranged from 1.01 to 
1.30, and none of them were nominally significant (Table 2). The OR 
remained similar with the base adjustment (Model 1) and with adjust-
ment for maternal waist circumference (Model 2). However, adjustment 
for offspring waist circumference (Model 3) showed a non significant 
increase in the OR for cg03497652 (ANKS3) to 1.24 (95 %CI 0.83, 1.86) 
and for cg12116137 (PRPF8) to 1.45 (0.97, 2.18). Finally, our group’s 
previous observations identifying an increased OR of incident T2D for an 
IQR increase in maternal urinary ΣAs ranged between 1.18 (0.94, 1.49) 
to 1.43 (1.16, 1.78) in different covariate-adjusted models (Tinkelman 
et al., 2020), which was comparable to results utilizing ΣAs-associated 
DNAm signatures at cg03497652 and cg12116137 in Model 3. 

4. Discussion 

The SHS and SHFS prospective cohorts provide a unique opportunity 
to gain insight into the potential effects of adverse environmental ex-
posures, such as As, on health across generations. Our results sought to 

Fig. 2. Maternal ΣAs-associated CpGs associated with offspring HOMA2-IR. a. Venn diagram illustrates the number of CpGs overlapping each GEE model. b-f. 
Absolute difference in HOMA2-IR (95 % CI) in offspring at Visit 5 for every standard deviation change in baseline maternal DNA methylation (M− value) at specific 
CpG loci, including b) cg08059112 (LINGO3), c) cg07021906 (LAT1), d) cg14595618 (HK1), e) cg12116137 (PRPF8), f) cg03497652 (ANKS3), and g) cg03036214 
(CA12). Values above each graph represent the GMR of offspring HOMA2-IR scores (95 % CI) per standard deviation change in baseline maternal DNA methylation; 
calculated by exponentiating the β-coefficients of each model using GEE on log-transformed HOMA2-IR scores. Asterisks represent unadjusted (for multiple com-
parisons), significant (p < 0.05) GMRs of HOMA2-IR per change in maternal DNA methylation. GEE: Generalized estimating equation; HOMA2-IR: Homeostatic 
Model Assessment for Insulin Resistance; CI: Confidence interval; LINGO3: leucine rich repeat and Ig domain containing 3; LAT1: large amino acid transporter 1 
(SLC7A5); HK1: hexokinase 1; PRPF8: pre-mRNA processing factor 8; ANKS3: ankyrin repeat and sterile alpha motif domain containing 3; CA12: carbonic anhydrase 
12. Significance taken at nominal p < 0.05* and p < 0.01 **. Model 1: adjusted for offspring sex, age, smoking status, and log(Σas), and for maternal age, smoking 
status, log(Σas), and log(fasting glucose). Model 2: Model 1 and further adjusted for maternal waist circumference. Model 3: Model 1 and further adjusted for 
offspring waist circumference. 
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expand and potentially improve upon maternal ΣAs measurements for 
assessing offspring metabolic health by investigating DNAm signatures 
of ΣAs exposure (Bozack et al., 2020) in mothers as a feasible molecular 
biosignature of this relationship. Leveraging twenty CpGs previously 
associated with As exposure in SHS-enrolled mothers – CpGs of which 
did not associate with metabolic health outcomes within mothers 
(Bozack et al., 2020) – we observed nominally significant positive re-
lationships between differential methylation for 3 of these CpGs and 
insulin resistance (i.e., HOMA2-IR) in the offspring in unadjusted and 
adjusted models that included adjustment for maternal central 
adiposity. In the model adjusted for offspring central adiposity, we 
observed the DNAm states of six CpGs were associated with insulin 
resistance, including two CpGs that overlapped with the unadjusted 
model, an adjusted model, and the adjusted model that included 
maternal adiposity. Among these six CpGs, two of them were non- 
significantly associated with an increased risk of T2D after adjustment 
for offspring central adiposity. Despite the limited sample size, our re-
sults support the utility of ΣAs exposure-associated DNAm signatures in 
the maternal lineage as a potential epigentic biomarker to assess the 
long-term metabolic health risk in offspring from mothers exposed to 
variable levels of ΣAs. 

Further examination of the six maternal-derived ΣAs-associated CpG 
loci associated with adult offspring HOMA2-IR found each to have some 
biological relevance to T2D pathogenesis. For instance, for the ubiqui-
tous isoenzyme mediating the catalysis of glucose to glucose-6- 
phosphate as the initiating steps in canonical glycolysis, HK1 harbored 
the intragenic ΣAs-associated CpG in mothers, cg14595618. Research in 
diabetic rodent models have demonstrated changes in HK1 gene 
expression in response to increased glucose concentrations (Henningsen 
et al., 2003), which may act through epigenetic mechanisms (El-Osta 
et al., 2008). Hexokinase activity facilitates the activation of the NLRP3 
inflammasome (Wolf et al., 2016). It is plausible epigenetic regulation of 
HK1 may contribute to shifts in inflammatory phenotypes, which have 
been linked to insulin resistance (Odegaard and Chawla, 2012). Further, 
differential methylation at a specific CpG locus of HK1 was found to be 
associated with adverse lung function in children (Everson et al., 2019), 
suggesting its role in early childhood health. 

A member of the carbonic anhydrase family, CA12, contained an 
intragenic ΣAs-associated CpG, cg03036214. Carbonic anhydrases are 
ubiquitous zinc metalloenzymes that are involved in the reversible hy-
dration of CO2 to HCO3

–, which is a required substrate for hepatic 
gluconeogenesis (Ismail, 2018). These metal enzymes are also altered in 
people with impaired fasting glucose (Biswas and Kumar, 2012). Car-
bonic anhydrases have also been proposed as potential therapeutic 
targets for T2D-related microvascular (Weiwei and Hu, 2009) and 
macrovascular diseases (Torella et al., 2014). Further, carbonic anhy-
drases have been investigated as viable biomarkers to characterize type 
1 diabetes and T2D (Ghosh et al., 2016). 

Cg03497652 is situated proximal to exon 9 of ANKS3. Changes in 
Anks3 levels have been linked to altered cellular and mitochondrial 

metabolism in mice (Schlimpert et al., 2018). Notably, a previous 
epigenome-wide association study observed cg03497652 was differen-
tially methylated in those with T2D compared with healthy controls 
(Walaszczyk et al., 2018), supporting a role for this CpG locus in 
metabolic disease risk. That cg03497652 was associated with HOMA2-IR 
and incident T2D in all models, it may be a feasible molecular marker for 
assessing insulin resistance and T2D risk. Given that although other 
clinical variables—such as those incorporated as covariates in the 
models used in this study—strengthened the association between 
maternal DNAm and offspring metabolic parameters, a strong associa-
tion was still present in our unadjusted model, suggesting a clinically 
feasible marker that would bypass the need for other clinical variables 
for evaluating metabolic disease risk. 

Cg07021906 is an intragenic CpG between exons 9 and 10 of SLC7A5, 
also known as LAT1. An amino acid transporter, LAT1 supplies the key 
amino acids required for amino acid metabolism. Previous evidence has 
revealed its expression levels are altered under hyperglycemic and 
hyperinsulinemic conditions via inhibition of AMP-activated protein 
kinase, suggesting a role for LAT1 in aberrant energy metabolism in 
hyperglycemic conditions (Yamamoto et al., 2017). Likewise; LAT1 
plays an active role in metabolic processes involved in T-cell differen-
tiation and effector function (Sinclair et al., 2013), facilitating the 
metabolic demands of T-cells to propagate a pro-inflammatory response; 
which; if persistent, has been linked to T2D pathogenesis (Jagannathan- 
Bogdan et al., 2011; Shoelson et al., 2006). On the other hand; in vitro 
studies using a human placental cell line found LAT1 has a protective 
role against oxidative stress and inflammation induced by metal toxicity 
(Granitzer et al., 2021). Taken together; depending on the cellular 
context, LAT1 may have a fundamental role in environmental toxicant- 
induced oxidative damage and inflammation. 

A core component of the spliceosome, PRPF8, contained a ΣAs- 
associated CpG within exon 24, cg12116137. Intragenic CpGs—within 
or proximal to exons—facilitate alternative splicing, increasing the 
complexity of the transcriptome and subsequent proteome (Shayevitch 
et al., 2018; Maunakea et al., 2013). Aberrant mRNA splicing—poten-
tially induced by altered DNAm at environmentally responsive 
loci—may be involved in the expression of atypical isoforms that induce 
cellular phenotypes contributing to disease pathogenesis (Kim et al., 
2018). Indeed, mis-splicing of mRNA caused by dysfunctional PRPF8 
isoforms have been linked to chronic diseases, including myeloid neo-
plasms (Kurtovic-Kozaric et al., 2015) and insulin resistance (Sánchez- 
Ceinos et al., 2021). In general, aberrant alternative splicing has also 
been associated with T2D-related macrovascular diseases (Cornelius 
et al., 2021). Taken together, ΣAs-associated epigenetic alterations to 
spliceosome factors, such as PRPF8, may have adverse effects on proper 
splicing of downstream targets, contributing to diabetic phenotypes. 

Harbored within the 5′ UTR of LINGO3 is cg08059112. Members of 
the Lingo family of genes are expressed during early mouse development, 
and Lingo3 is ubiquitously expressed across embryonic tissues of the 
developing embryo (Haines and Rigby, 2008). A SNP within a member 

Table 2 
Odds ratio (95% CI) of incident diabetes in adult offspring by maternal ΣAs-associated DNA methylation.  

(Incident diabetes: 41/226 SHFS Participants)   

Unadjusted Model 1 Model 2 Model 3 

CpG Gene(s) OR (95 % CI) OR (95 % CI) OR (95 % CI) OR (95 % CI) 
cg14595618 HK1 1.01 (0.70,1.46) 0.96 (0.68,1.36) 0.94 (0.66,1.34) 1.02 (0.69,1.52) 
cg08059112 LINGO3 1.11 (0.81,1.54) 0.99 (0.71,1.39) 0.98 (0.70,1.38) 1.03 (0.72,1.47) 
cg03036214 CA12 1.17 (0.86,1.59) 1.07 (0.77,1.48) 1.06 (0.76,1.47) 1.15 (0.79,1.69) 
cg07021906 SLC7A5 (LAT1) 1.27 (0.95,1.71) 1.12 (0.79,1.59) 1.11 (0.78,1.57) 1.17 (0.80,1.73) 
cg03497652 ANKS3 1.06 (0.74,1.52) 1.10 (0.76,1.59) 1.08 (0.74,1.58) 1.24 (0.83,1.86) 
cg12116137 PRPF8 1.30 (0.93,1.82) 1.30 (0.90,1.88) 1.27 (0.86,1.88) 1.45 (0.97,2.18) 

GEE were used to account for family clustering. β-coefficients were exponentiated (shown here) to odds ratio (95% CI). 
Model 1: adjusted for offspring sex, age, smoking status, and log(ΣAs) at baseline, and for maternal age, smoking status, log(ΣAs), and log(fasting glucose) at baseline. 
Model 2: Model 1 adjustment, plus further adjustment for maternal waist circumference. 
Model 3: Model 1 adjustment, plus further adjustment for offspring waist circumference. 
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of the LINGO family, LINGO2 (rs10968576), has previously been asso-
ciated with an almost two-times higher likelihood of pediatric-onset T2D 
(Miranda-Lora et al., 2019). These findings suggest a fundamental role 
for LINGO members in early development, and its aberrant expression in 
early life, including during pregnancy, may contribute to adverse health 
of the child later in life. 

Regarding the two models that were adjusted for measures of 
adiposity in mothers (Model 2) or offspring (Model 3), we found 
offspring adiposity to be more influential than maternal adiposity on the 
association between maternal DNAm signatures of ΣAs exposure and 
offspring metabolic health. In the study by Tinkelman et al., the asso-
ciation of maternal ΣAs exposure with offspring metabolic health was 
attenuated after adjustment for offspring adiposity, supporting the po-
tential role of offspring adiposity as a mediator of the relationship be-
tween maternal As and offspring metabolic health (Tinkelman et al., 
2020). With DNAm signatures related to ΣAs exposure, we also found a 
potential influence by offspring adiposity, although in this case the as-
sociation between DNAm and offspring metabolic factors became 
actually stronger. While the interpretation of these findings are specu-
lative at this point, it is possible that the influence of offspring adiposity 
could be related to adiposity reprogramming occurring early in life that 
may act through differing mechanisms between maternal urinary As and 
DNAm on offspring metabolic health later in life. Early life adiposity has 
been linked to insulin resistance and metabolic syndrome into adulthood 
(Liang et al., 2015). Prior evidence suggests exposure to adverse envi-
ronmental influences during prenatal and early childhood development 
may increase adiposity and metabolic disease later in life through 
epigenetic mediators (Nugent and Bale, 2015). Further, maternal 
obesity may induce offspring adiposity through epigenetic alterations 
(Yang et al., 2013). Taken together, it is plausible that ΣAs-induced al-
terations to the maternal epigenome during pregnancy may influence 
fetal development via epigenetic programming towards adipogenic 
phenotypes in offspring that may underlie metabolic disease risk later in 
life. 

The Developmental Origins of Health and Disease (DOHaD) hy-
pothesis posits adverse environmental exposure during developmental 
windows may affect offspring health later in life, likely by reprogram-
ming fetal phenotypes without altering genotype (Gillman, 2005). 
Consistent with DOHaD, exposure to As during pregnancy may have 
lasting effects on offspring health (Young et al., 2018), such as to T2D 
later in life (Navas-Acien et al., 2019). Although urinary As measure-
ments have a relatively short half-life, previous evidence in the SHS has 
shown that urinary As measures spanning a decade were relatively 
constant, consistent with stable levels in drinking water and supporting 
the use of urinary As as an indicator of long-term exposure in the SHS 
(Navas-Acien et al., 2009). These findings suggest that SHS-participating 
mothers were potentially exposed to As during sensitive timeframes, 
such as pregnancy and early childhood, which may have had an impact 
on fetal development in offspring, ultimately, contributing to metabolic 
disease risk later in life. However, capturing As exposure during these 
sensitive windows is not always feasible. Epigenetic mod-
ifications—known to alter phenotype and not genotype—are relatively 
stable, reflect environmental influences, and may be involved in altered 
fetal reprogramming in response to exposures during development, 
having a lasting effect on an offspring’s short and long-term health 
(Nugent and Bale, 2015). Prenatal exposures have been shown to alter 
genome-wide DNAm in both maternal and fetal blood (Kile et al., 2012), 
and the expression of epigenetic regulatory genes in fetal placenta 
(Winterbottom et al., 2019), including at genes related to T2D (Rojas 
et al., 2015). Exposure-induced changes to the maternal epigenome may 
be similarly imparted to offspring via in utero exposure, altering fetal 
programming. Developing stable epigenetic markers of exposure may 
prove a clinically viable option to assess As exposure-associated meta-
bolic disease risk of children born to exposed mothers. Because maternal 
ΣAs levels may represent better indicators of offspring metabolic health 
than offspring ΣAs (Tinkelman et al., 2020), maternal ΣAs-associated 

epigenetic biosignatures may show even more promise as an accurate 
measure for evaluating metabolic disease risk in offspring born to 
chronically exposed mothers; long before clinical and subclinical disease 
manifestation, which will prove indispensable for preventative health 
measures. 

Our results should be interpreted with caution due to several limi-
tations. Despite observing a nominal association between maternal 
DNAm signatures of ΣAs exposure and offspring insulin resistance, all 
but one of the CpGs remained significant after adjustment for multiple 
comparisons. Another limitation was the small sample size, given our 
inclusion criteria, including the modest number of mothers with DNAm 
data and paired diabetes-free children enrolled in the subsequent SHFS 
(Lai et al., 2003). Future work should seek to validate these results in 
larger populations, including additional studies in American Indian 
communities. Although participants in this study represent geographi-
cally distinct American Indian communities throughout the U.S., repli-
cating these results in other diverse cohorts will provide compelling 
broader generalizability. Whether ΣAs-associated DNAm patterns in 
blood are representative of target tissues relevant to metabolic disease 
pathogenesis is unknown. Blood, however, provides a much more 
accessible resource that circumvents the need for target tissues directly 
involved in disease pathogenesis and is suitable for a wide range of 
clinical applications (O’Neill et al., 2016). Although DNAm marks and 
ΣAs measurements are relatively stable, we could not ascertain the 
stability of DNAm changes during pregnancy and early life, given SHS 
and SHFS participants were recruited after those windows. Our study, 
however, has multiple strengths. We employed robust ΣAs-associated 
DNAm signatures collected in a modest sample size of American Indian 
participants and used strict criteria for inclusion in this association 
study. The prospective nature of our study allowed us to investigate 
follow-up disease outcomes, such as incident T2D, in offspring. This is 
the first study that has employed molecular patterns as a proxy of ΣAs 
exposure in mothers to identify T2D and related metabolic risk factors in 
adult offspring. 

5. Conclusions 

In this study, we found that ΣAs-associated DNA methylation sig-
natures in the maternal lineage were associated with insulin resistance, 
as measured by HOMA2-IR, and non-significantly associated with type 2 
diabetes mellitus in adult offspring from AI communities across the 
Southwest and the Great Plains. Our results suggest offspring adiposity 
moderates the relationship between maternal DNA methylation signa-
tures and adult offspring diabetes-related outcomes. These results sup-
port the utility of epigenetic biomarkers for assessing metabolic disease 
risk of offspring to mothers who may have been exposed to As, especially 
during labile windows of development, and provide a molecular signa-
ture for disease risk and prevention. Future studies should confirm these 
findings, validate in other diverse cohorts, and elucidate the mecha-
nisms by which epigenetic phenomena may be inherited or contribute to 
long-term health trajectories in offspring exposed to As during sensitive 
windows of development. 
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Rodríguez, N.L., López-Martínez, B., Klünder-Klünder, M., 2019. Genetic 
polymorphisms associated with pediatric-onset type 2 diabetes: A family-based 

C.K. Dye et al.                                                                                                                                                                                                                                   

https://doi.org/10.1016/j.envint.2023.107774
https://doi.org/10.1016/j.envint.2023.107774
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0005
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0005
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0005
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0005
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0010
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0010
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0015
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0015
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0015
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0015
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0015
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0015
https://doi.org/10.3961/jpmph.14.036
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0025
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0025
https://doi.org/10.1186/1471-2105-11-587
https://doi.org/10.1186/1471-2105-11-587
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0035
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0035
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0035
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0035
https://doi.org/10.1186/s13223-019-0356-z
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0045
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0045
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0045
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0045
https://doi.org/10.1038/srep35836
https://doi.org/10.1038/srep35836
https://doi.org/10.1056/NEJMe058187
https://doi.org/10.1017/S204017441500121X
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0065
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0065
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0065
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0065
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0070
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0070
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0070
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0070
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0070
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0070
https://doi.org/10.1016/j.modgep.2007.10.003
https://doi.org/10.1016/j.modgep.2007.10.003
https://doi.org/10.1159/000069555
https://doi.org/10.1016/j.addbeh.2010.01.002
https://doi.org/10.1016/j.addbeh.2010.01.002
https://doi.org/10.3961/jpmph.14.035
https://doi.org/10.1186/1471-2105-13-86
https://doi.org/10.1186/1471-2105-13-86
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0105
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0105
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0105
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0105
https://doi.org/10.1007/s00204-018-2206-z
https://doi.org/10.1007/s00204-018-2206-z
https://doi.org/10.2174/1573399812666161214122351
https://doi.org/10.2174/1573399812666161214122351
https://doi.org/10.4049/jimmunol.1002615
https://doi.org/10.4049/jimmunol.1002615
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0125
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0125
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0125
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0125
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0130
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0130
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0130
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0130
https://doi.org/10.1007/s00424-018-2136-x
https://doi.org/10.1007/s00424-018-2136-x
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0140
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0140
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0140
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0140
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0145
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0145
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0145
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0145
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0145
https://doi.org/10.1016/s1047-2797(02)00261-2
https://doi.org/10.1016/s1047-2797(02)00261-2
https://doi.org/10.1093/bioinformatics/bts034
https://doi.org/10.1093/bioinformatics/bts034
https://doi.org/10.2337/diacare.21.12.2191
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0170
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0170
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0170
https://doi.org/10.1038/cr.2013.110
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0180
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0180
http://refhub.elsevier.com/S0160-4120(23)00047-8/h0180


Environment International 173 (2023) 107774

9

transmission disequilibrium test and case-control study. Pediatr. Diabetes 20 (3), 
239–245. 

Navas-Acien, A., Umans, J.G., Howard, B.V., Goessler, W., Francesconi, K.A., 
Crainiceanu, C.M., Silbergeld, E.K., Guallar, E., 2009. Urine arsenic concentrations 
and species excretion patterns in American Indian communities over a 10-year 
period: the Strong Heart Study. Environ. Health Perspect. 117 (9), 1428–1433. 

Navas-Acien, A., Spratlen, M.J., Abuawad, A., LoIacono, N.J., Bozack, A.K., Gamble, M. 
V., 2019. Early-Life Arsenic Exposure, Nutritional Status, and Adult Diabetes Risk. 
Curr. Diab. Rep. 19 (12) https://doi.org/10.1007/s11892-019-1272-9. 

Nugent, B.M., Bale, T.L., 2015. The omniscient placenta: Metabolic and epigenetic 
regulation of fetal programming. Front. Neuroendocrinol. 39, 28–37. https://doi. 
org/10.1016/j.yfrne.2015.09.001. 

Odegaard, J.I., Chawla, A., 2012. Connecting type 1 and type 2 diabetes through innate 
immunity. Cold Spring Harb. Perspect. Med. 2 (3), a007724. 

O’Neill, S., Bohl, M., Gregersen, S., Hermansen, K., O’Driscoll, L., 2016. Blood-Based 
Biomarkers for Metabolic Syndrome. Trends Endocrinol. Metab. 27, 363–374. 
https://doi.org/10.1016/j.tem.2016.03.012. 

Pidsley, R., Zotenko, E., Peters, T.J., Lawrence, M.G., Risbridger, G.P., Molloy, P., Van 
Djik, S., Muhlhausler, B., Stirzaker, C., Clark, S.J., 2016. Critical evaluation of the 
Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation 
profiling. Genome Biol. 17 (1) https://doi.org/10.1186/s13059-016-1066-1. 

Punshon, T., Davis, M.A., Marsit, C.J., Theiler, S.K., Baker, E.R., Jackson, B.P., 
Conway, D.C., Karagas, M.R., 2015. Placental arsenic concentrations in relation to 
both maternal and infant biomarkers of exposure in a US cohort. J. Eposure Sci. 
Environ. Epidemiol. 25 (6), 599–603. 

Ritchie, M.E., Phipson, B., Wu, D.i., Hu, Y., Law, C.W., Shi, W., Smyth, G.K., 2015. limma 
powers differential expression analyses for RNA-sequencing and microarray studies. 
Nucleic Acids Res. 43 (7), e47. 

Rodriguez, K.F., Ungewitter, E.K., Crespo-Mejias, Y., Liu, C., Nicol, B., Kissling, G.E., 
Yao, H.-C., 2016. Effects of in Utero Exposure to Arsenic during the Second Half of 
Gestation on Reproductive End Points and Metabolic Parameters in Female CD-1 
Mice. Environ. Health Perspect. 124 (3), 336–343. 

Rodriguez, K.F., Mellouk, N., Ungewitter, E.K., Nicol, B., Liu, C., Brown, P.R., Willson, C. 
J., Yao, H.-C., 2020. In utero exposure to arsenite contributes to metabolic and 
reproductive dysfunction in male offspring of CD-1 mice. Reprod. Toxicol. 95, 
95–103. 

Rojas, D., Rager, J.E., Smeester, L., Bailey, K.A., Drobná, Z., Rubio-Andrade, M., 
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