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INTRODUCTION

Biogeochemical zones (BGZ) form the framework for

describing the early diagenesis of aquatic sediments.

They represent degradation of organic matter by bac-

teria using successively less energy-efficient terminal

electron accepting processes (TEAPs). Evidence for

the existence of these sequential processes has been

known for more than half a century (e.g. Mortimer et

al. 1941), but a formalised depth-related scheme was

not developed until the 1970s (e.g. Claypool & Kaplan

1974, Froelich et al. 1979). During the last 20 yr, BGZ

have been used to describe a wide variety of aquatic

environments where the supply of labile organic mat-

ter exceeds diffusion of oxygen into the sediment, from

hypertrophic systems (e.g. Barica & Mur 1980) to the

oligotrophic deep ocean (e.g. Froelich et al. 1979). The

depth range of each zone is determined from a charac-

teristic sequence of chemical changes in the sediment

pore-water (Jørgensen 1983).

During the last decade, research has begun to indi-

cate that sequential BGZ are an oversimplification of

the biogeochemical processes occurring in sediments

(e.g. Canfield et al. 1993, Coleman et al. 1993, Postma

& Jackobsen 1996). Concomitantly, new advances in

sampling pore-water geochemistry (e.g. Davison et al.

1991, 1994, Krom et al. 1994, Brendel & Luther 1995,

Zhang et al. 1995, Mortimer et al. 1998, Kjaer et al.

1999) have begun to reveal new biogeochemical inter-

actions (e.g. Luther et al. 1997).

In this paper, we present results from the first simul-

taneous field deployment of 2 of these new technolo-

gies, diffusive equilibrium in thin films (DET) gel

probes (Davison et al. 1994, Krom et al. 1994, Mortimer

et al. 1998) and diffusive gradient in thin films (DGT)

probes (Zhang et al. 1995). These results show new

pore-water features, and direct evidence for complex

recycling processes within the iron reduction (FeR)

and sulphate reduction (SR) zones.
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ABSTRACT: The classical scheme of biogeochemical zones (BGZ) is known to be an oversimplifica-

tion of the microbial processes that occur in organic-rich marine sediments. Results from a coupled

deployment of pore-water gel probes in Loch Duich, Scotland, provide direct evidence for rapid

recycling within the iron reduction (FeR) and sulphate reduction (SR) zones. High resolution pore-

water profiles obtained using diffusive equilibrium in thin films (DET) gel probes found a nitrate peak

at the boundary between the FeR and SR zones. This non-steady state feature is consistent with recy-

cling of reduced N occurring throughout the FeR zone. Both conventional pore-water iron profiles

and results from diffusive gradient in thin films (DGT) probes indicate that iron is solubilised and pre-

cipitated in rapid Fe/S recycling reactions throughout the SR zone. The presence of such complex

recycling reactions confirms the oversimplification of the classical BGZ scheme.
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MATERIALS AND METHODS

An undisturbed box core was collected from a depth

of 120 m in the centre of Loch Duich, a marine fjord on

the west coast of Scotland, in April 1997. Three DET gel

probes and 1 DGT gel probe were inserted and left for

24 h. DET probes consist of a perspex spear containing

a thin (0.5 to 1 mm) strip of polyacrylamide gel which

equilibrates with the pore-water chemistry and can

then be analysed at mm resolution. The DGT technique

uses a perspex probe containing a strip of chelex resin

with a diffusive gel layer in front (Zhang et al. 1995).

Metal ions diffuse through the gel layer and bind to the

chelex, allowing a depth profile of metal flux to be ob-

tained (Zhang et al. 1995). The probes were sampled

and analysed using standard procedures (Zhang et al.

1995, Mortimer et al. 1998) to obtain high-resolution

pore-water chemistry. A subcore was then taken from

the central undisturbed portion of the box core to obtain

conventional pore-water samples for comparison. This

core was sliced inside a N2-filled glovebox, centrifuged

and the supernatant filtered through a 0.45 µm filter.

The samples were analysed for NH4
+ using a flow injec-

tion analyser (Hall & Aller 1992); for Cl–, NO3
– and
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Fig. 1. Pore-water profiles of nitrate (A), manganese (B), iron (C), sulphate (D) and sulphide (E) in Loch Duich. Labels indicate

position of biogeochemical zones (NR, MnR, FeR, SR = nitrate, manganese, iron and sulphate reduction, respectively). Note the

different depth scale for nitrate (only upper 2.5 cm shown). (s) DET gel profiles and (■ ) conventional pore-water profiles obtained 

by core slicing are indicated
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SO4
2– using a Dionex DX100 Ion Chromatograph with

an AS14 column; for S2– using the methylene blue

method; and for ∑Fe using a Perkin-Elmer Zeeman

4100 ZL atomic absorption spectrometer.

RESULTS AND DISCUSSION

Biogeochemical zones

The sediments of Loch Duich show the classical se-

quence of biogeochemical zones (Fig. 1). The conven-

tional core profile for nitrate did not resolve any struc-

ture, but in the high resolution DET gel profile there

was a decrease from a maximum immediately below

the sediment surface due to coupled nitrification-deni-

trification (Fig. 1A). There was a peak of Mn immedi-

ately below the sediment water interface which de-

creased due to precipitation of Mn2+ at depth (Fig. 1B;

Krom & Sholkovitz 1978). The Fe concentration in-

creased down-core to a peak of approximately 190 µM

at a depth of 10 cm, which delineates the base of the

iron reduction (FeR) zone (Fig. 1C). The sulphate con-

centration was constant throughout the FeR zone

(down to 10 cm), but then de-

creased below 10 cm (top of the SR

zone) (Fig. 1D). As has been ob-

served previously (e.g. Goldhaber

et al. 1974), there was no measur-

able sulphide in the upper part of

the SR zone (10 to 20 cm), presum-

ably due to removal by uptake on

labile Fe oxides and precipitation

with Fe2+ (Canfield et al. 1993).

When labile Fe oxides were de-

pleted (>25 cm), free dissolved

sulphide accumulated in the pore-

waters (Fig. 1E).

Nitrate peak within the 

suboxic zone

The complete depth profile of

nitrate shows a striking non steady-

state peak at a depth of 10 cm, the

boundary between the FeR and SR

zones (Fig. 2B). This peak was up

to 900 µM and defined by 6 gel

samples spread over a depth of

0.5 cm and a single point in the

0.5 cm spaced conventional mea-

surements.

The presence of this nitrate peak

at the FeR-SR boundary within Loch

Duich sediments was confirmed by a

subsequent re-deployment of a ni-

trate DET probe at the same site in

May 2000. This time, analysis was

performed using the standard col-

orimetric method (Strickland &

Parsons 1972), modified for small

samples (Harris et al. in press), re-

sulting in a lower detection limit

(0.25 µM) and increased precision

(relative SD < 4%). A large nitrate

peak was again found exactly at the
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Fig. 2. Pore-water profiles of ammonia-N (A), nitrate (B,C) and DGT iron (D) in

Loch Duich. Labels indicate position of iron and sulphate reduction zones (FeR 

and SR, respectively) as determined from relevant pore-water profiles
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FeR-SR boundary (Fig. 2C). We have measured nitrate

profiles in 11 cores from Loch Duich over 3 sampling

trips and have found large suboxic nitrate peaks in 2 and

smaller peaks in a further 4.

A possible explanation for this nitrate peak is the

presence of macrofaunal burrows (cf. Mortimer et al.

1999). This is considered implausible here because the

nitrate peak was present in both the gel sample and

conventional sample at approximately the same depth,

yet these samples were horizontally separated by

several cm in the box core. It is considered extremely

unlikely that a burrow would have intersected these

samples at the same depth and at no other. Further-

more, if the sediment contained macrofauna capable of

introducing enough oxygen to trigger conventional

nitrification at a depth of 10 cm, it would be expected

to cause a minimum in the ammonia-N profile (Luther

et al. 1998, Mortimer et al. 1999) which was not ob-

served (Fig. 2A).

The presence of high nitrate concentrations at the

onset of the SR zone shows that microbial nitrification

was occurring deep within the anaerobic layers. This

confirms other recent work that has shown that nitrifi-

cation can occur in suboxic sediments (e.g. Luther et al.

1997, 1998, Hulth et al. 1999). The most likely explana-

tion is that there was recycling of reduced N occurring

throughout the FeR zone. Since the nitrate peak is at

the base of the FeR zone, it is tempting to postulate that

sub-oxic nitrification occurred by oxidation of ammo-

nia with Fe oxyhydroxides. However, Luther et al.

(1997, 1998) calculated that nitrification of ammonia

with Fe oxides is not thermodynamically possible,

although their calculation used crystalline goethite

rather than the labile Fe oxyhydroxides which are the

reactive phase at this depth zone. Instead, they pro-

vided indirect evidence for coupling between the Mn

and N cycles whereby Mn2+ was oxidised by nitrate

(Eq. 1) and of oxidation of ammonia by Mn oxides (Eq. 2)

(Luther et al. 1997, 1998).

5Mn2+ + 2NO3
– + 4H2O → 5MnO2 + N2 + 8H+ (1)

3MnO2 + 2NH3 + 6H+ → 3Mn2+ + N2 + 6H2O (2)

4MnO2 + NH4
+ + 6H+ → 4Mn2+ + NO3

– + 5H2O (3)

In our sediments, nitrification by MnO2 (Eq. 3) could

have occurred throughout the FeR zone, causing the

observed conventional Mn (II) profile (Fig. 1B). Excess

labile MnO2 has been determined within the FeR zone

in this location (Burns 1996). Throughout most of the

FeR zone, any nitrate produced was immediately

denitrified to N2 which accounts for the low observed

concentrations.

This coupled nitrification-denitrification mechanism

would result in reduced accumulation of ammonia-N

in the FeR zone compared to the SR zone and is there-

fore consistent with the observed change in gradient of

the ammonia-N profile at 10 cm depth (Fig. 2A). By this

mechanism, the nitrate peak is attributed to a selective

inhibition of the denitrification part of the couple, pos-

sibly by local production of sulphide or diffusion up

from the SR zone below. Denitrification is known to be

more susceptible than nitrification to inhibition by

sulphide (Jørgensen 1983, Sørensen 1987).

Since the nitrate peak is so sharp, the process must

be transient and non-steady state. One mechanism is

that it is caused by boundary effects between an upper

region of Mn/N cycling and a lower region of Fe/S

cycling (see below). An alternative mechanism is that a

sediment slump has occurred, burying a thin horizon of

Mn oxides to a depth of 10 cm. Whilst the pore-waters

have had time to equilibrate, there is sufficient Mn

oxide in the sediment to significantly increase suboxic

nitrification within this narrow zone. This in turn drives

higher rates of denitrification immediately above and

below the peak. Both of these mechanisms are non-

steady state effects and are caused by a perturbation of

the suboxic nitrification-denitrification couple.

Iron-sulphur recycling

The Fe profile obtained using the DGT probe shows

that rapid recycling of Fe and S was also occurring in

the SR zone (Fig. 2D) (Krom et al. unpubl.). The DGT

Fe profile increases towards the base of the FeR zone.

Assuming that the FeR rate decreases exponentially

with depth, this increase may be due to decreasing

rates of Fe removal. Alternatively, there may be a

gradual increase in SR within the FeR zone, with the

sulphide produced reacting with Fe minerals to pro-

duce more dissolved iron. At the FeR-SR boundary,

there is a minimum in the DGT-Fe profile due to non-

steady state iron removal. Below the boundary, the

DGT Fe decreases through the SR zone. This may be

caused by a decrease in SR rates, producing less sul-

phide to react with Fe minerals, or to a decrease in the

availability of reactive Fe minerals to react with any

sulphide produced.

Significance

The existence of complex recycling reactions sug-

gests that our understanding of sedimentary biogeo-

chemical processes is far from complete. The original

BGZ scheme relied on specific groups of bacteria using

a single electron acceptor in a particular zone. How-

ever, it has been shown that bacteria are capable

of switching between different electron acceptors

(Sørensen 1982, 1987, Coleman et al. 1993, Dollhopf et
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al. 2000). FeR and SR can also occur concomitantly

(Jacobson 1994, Postma & Jakobsen 1996).

Luther et al. (1997, 1998) suggested that the cycles of

Mn and N should not be viewed separately, but as

inherently linked. Direct evidence for coupling be-

tween these 2 cycles was recently obtained in labora-

tory experiments by Hulth et al. (1999). They showed

that Mn reduction could be coupled to anoxic nitrifica-

tion (Eq. 3) and that the latter would not always be evi-

dent in pore-waters due to rapid coupled denitrifica-

tion. Our results from Loch Duich provide direct field

evidence for similar reactions occurring throughout the

FeR zone, as well as for an additional complex cou-

pling of the Fe and S cycles in the SR zone.
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