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Abstract: The remediation of contaminated sites is often subject to sub-
stantial cost overruns. This persistent discrepancy between estimated and

realized costs is chiefly responsible for misguided land use and wasteful delays

in the reconversion of former industrial sites. In order to deal with incomplete

information and uncertainty in this context, this paper draws on stochastic

modelling and mathematical finance methods. We show that relatively simple

and usable formulas can then be derived for better assessing cleanup strate-

gies. These formulas apply to generic remediation technologies and scenarios.

They are robust to misspecification of key parameters (like the effectiveness

of a prescribed treatment). They also yield practical rules for decision making

and budget provisioning.
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“The Pentagon was so sloppy when calculating the cost of removing
perchlorate and other toxins from military sites that its estimate of
$16 billion to $165 billion is almost worthless, congressional investiga-
tors said Tuesday.” 1

1. Introduction

Over the last decades, the number of potentially contaminated sites in most developed

countries has grown to six or seven digits. In the European Union, more than 250,000 sites

are deemed to be contaminated and requiring remediation (Swartjes 2011). In the United

States, it is estimated that there are over 500,000 ‘brownfield’ sites in urban, suburban

and rural areas, and that their cleanup and redevelopment could cost more than $650

million (Bressler and Hannah 2000; Wernstedt et al. 2004).2 While some of these sites

might cover areas of several acres, most of them might only be ‘micro-sites’ of a few

squared-yards. But their sheer number and growing opportunity cost, the threats they

may pose to human health, wildlife, and land amenities, and the lasting stigma they can

put on certain locations, activities, industries, firms or even individuals have now brought

the matter on top of many policy makers’ and corporate boards’ agenda.

Dealing with contaminated sites raises a number of regulatory and business issues.

Many of them have been addressed over the last 40 years, and the researchers’ proposed

remedies have then often been implemented into effective policies. Since insolvency and

1Lisa Friedman, “Report says cleanup cost miscaculated,” Los Angeles Daily News, June 28,
2004.

2The U.S. Environmental Protection Agency (EPA) defines a brownfield as “an abandoned, idle or

underused industrial and commercial facility where expansion and redevelopment is complicated by real

or perceived environmental contamination.” As pointed out by an anonymous referee, the large number

of brownfield sites is mainly due to inadequate treatment of chemical liquids (such as oil) in the past

(e.g., in gas, chemical industry, heavy industry, dry-cleaning, and filling stations works). The growing

number of detected contaminated brownfield sites that was reported over the last three decades is to a

very large extent a result of gradual improvement and enhancement of investigation activities.
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limited liability often make it impossible to apply the polluter-pays principle, for instance,

it has been found that assigning some responsibility to lenders and other deep-pocket par-

ties up or down the value chain might contribute to set incentives right (see Alberini et al.

2005, and Hiriart and Martimort 2006, among others). Since the benefits of remediation

can be unclear, several works have developed rigorous benefit-assessment techniques (see

Swartjes 2011, Haninger et al. 2014, and the references therein). Since redevelopment

projects are frequently deterred by the perspective of unexpected costs and liability ex-

penses, two applied policy prescriptions are to preventively tax land users (which amounts

to enforcing precautionary savings on the implicated parties), as the Superfund Program

does in the United States, and to enhance risk sharing by the introduction of proper

insurance, financial and organizational means (see Yin et al. 2011, Zhang et al. 2012,

Medda et al. 2012, and Schroeder 2013, among many others). Coping with abandoned

sites and the difficulty to trace back contamination to its originator(s), however, remains a

major challenge for law makers. In the end, the effectiveness of any public policy, market

remedy, insurance scheme or business plan inevitably depends on the reliability of cleanup

cost estimates. This paper focuses on this question.

The evaluation of remediation investments is routinely done using the traditional net-

present-value (NPV) method. A stylized example, taken from Zhang (2009, p. 1), illus-

trates the shortcomings of this approach.

Two strategies are compared: strategy one is to implement P&T (pump and

treat) for the entire decision time frame; strategy 2 is to implement PRB (per-

meable reactive barrier) for the entire decision time frame. The traditional

method will value these two strategies based on their respective cash flows:
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$10,000 per year for the former, $30,000 on year 1 and $1000 thereafter for

the latter. Assuming a discount rate of 5% and a five-year horizon, the NPV

of strategy 1 would be $45,460, whereas the NPV of the PRB strategy would

amount to only $33,546. However, it is not taken into account that one tech-

nology (here: P&T) might be more flexible than the other one (here: PRB)

if the conditions at the site develop differently than expected. What if the

concentration of pollutants after two years of P&T is low enough to switch

to a cheaper ($5000 a year) alternative like monitored natural attenuation

(MNA)? This would reduce the cost of strategy 1 to $32,492. Or what if P&T

turns out to meet the remediation target after only three years and can then

be stopped? The NPV of strategy 1 over three years would then amount to

$28,594, which is much lower than the cost of strategy 2.

Basically, by ignoring uncertainty, learning and adaptation, the NPV approach overlooks

the value of flexibility; it misses many contingency-based scenarios and might therefore

lead to making costlier decisions. This important general fact was emphasized some time

ago by Henry (1974) and Arrow and Fisher (1974). Herath and Park (2000; 2001) have

conveyed it further to engineering economists, applying the more recent machinery of ‘real

options’ put forward by Dixit and Pindyck (1994). The relevance of flexible strategies

when dealing with contaminated sites was then successively pointed out by Bage et al.

(2002, 2003), Wang and McTernan (2002), and Zhang (2009).

While the advantages of applying the logic of real options to site remediation projects

are now well-understood, usable methods that would make valuing flexible strategies

standard in practice are still lacking. To overcome this, and get operational means to

correctly assess the costs of contingent cleanup strategies, this paper draws from the

literatures on stochastic processes, mathematical finance and the theory of real options.

Specifically, our mathematical arguments borrow from the study of hitting times for a

geometric Brownian motion (see, e.g., Jeanblanc et al. (2004), and the references therein).
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The first part of this paper considers the estimation of remediation costs. This involves

the computation of the probability of being compliant (i.e., reaching a contamination level

that lies below the mandatory threshold) at various times including the required deadline

as well as each intermediate time where monitoring is required. The second part next

focuses on developing effective rules for decision making and budget provisioning. This

requires the characterization of a decisional contamination threshold which allows to select

a remediation approach (and a corresponding budget) that would keep the probability of

not meeting the compliance deadline at an acceptable level.

These developments rely on somewhat involved mathematical tools. Yet, the obtained

formulas and strategies stick to the most common (software-based) probabilistic depic-

tions of contaminated sites and can be computed relatively easily (again using common

softwares, like Excel). The formula’s sensitivity to measurement errors or misspecification

of key parameters (like the effectiveness of a chosen remediation technology) can also be

readily grasped.

The rest of this text unfolds as follows. In the upcoming section, we introduce the

notation and assumptions needed to represent typical remediation strategies. Section 3

next derives closed-form formulas for assessing the cost of such a strategy. These formulas’

robustness to parametric variations is examined in Section 4. Section 5 proposes a simple

systematic way to set a contingent (hence flexible) site remediation strategy based on

our formulas. Section 6 addresses the important practical matter of budget provisioning.

Some extensions are discussed in the concluding Section 7. All proofs are in the Appendix.

5



2. The basic model

Consider a piece of land that has been characterized as contaminated. In this case,

some accountable entity - a private firm or a public body - has been identified. It must

now deploy effective and affordable means in order to comply with regulation within a

certain deadline. This situation can be modelled as follows.3

2.1 The decisionmaker’s information and regulatory constraints

Thanks to the site characterization report, the decision-making entity holds a reason-

ably accurate picture of the land’s contaminants, their respective properties, extent and

concentration, and the hazards they may thus pose to human health and the environment

(in view of the area’s specific location, geology, weather exposure, and current or antici-

pated use).4 This information supports a summary score 0 - concretely, a ‘risk index’ or

a soil ‘quality rating’ (Swartjes 2011, p. 33 and 49) - along with a forecast of this score’s

likely evolution as the contaminants get naturally dispersed or transform over time.

Taking stock of measurement errors and the effect of random natural events (such

3 Two warnings are in order here. First, our model intends to be general, but most of the proce-

dures and technologies we mention below for concreteness apply mainly to soil remediation rather than

groundwater treatment (the two categories of intervention). Second, this section begins on what is of

course a highly stylized account of a real situation. ‘Site characterization’ is itself a complex process

which calls upon many types of scientific expertise (geochemistry, geohydrology, toxicology, biology, etc.)

and involves sophisticated multivariate and geostatistical tools (such as Kriging interpolation). As for

regulatory constraints, they are often the result of demanding tradeoffs and negotiations between stake-

holders (land owners, local residents, national and local public authorities, urban developers, scientists

and engineers, and even international institutions), which seek to strike a fine balance between economic

development and concerns about ecosystems and human health. For a more complete picture, see the

introduction and contributed chapters in Swartjes (2011).
4 There are thousands of listed contaminants. The most frequently encountered ones include metals

and metalloids (cadmium, lead, copper, zinc, arsenic, ...), non-metal inorganic substances (cyanides, ...),

aromatic hydrocarbons (benzene, toluene, ...), organic pollutants (polychlorinated biphenyls or PCBs,

chloroethylenes, ...), and petroleum hydrocarbons. For a standard classification of contaminants and

their respective health impacts, see Swartjes (2011).
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as weather conditions, rainfall, etc.), any score estimation would be non-deterministic;

concretely, a provided rating (now or in the future) may then be granted a margin which

follows a Normal distribution (Swartjes 2011, p. 37). For our modelling purposes, this

suggests that the evolution of the site’s score can be captured by the stochastic process

 = 0


0−2

2


+ (1)

or equivalently

 =  (0+ )

0 = 0 ,

(2)

where the index  ∈ [0∞) stands for time. This process, a geometric Brownian motion,

embodies (i) the site’s estimated capacity to naturally regenerate, through the average

rate of pollution decay 0  0, and (ii) the uncertainty surrounding the value of a stated

score at any time , through the random term  where  is a positive real number

and (;  ≥ 0) is a standard Brownian motion defined on a reference probability space

(ΩF P). The probability measure P formally represents the decision-maker’s beliefs

based on the available information; hence, letting E (·) denote mathematical expectations

under P, we have that E
³

0

´
= 0, which corresponds to the characterization report’s

prediction concerning the likely average evolution of the site’s contamination score.

All things considered (site characterization, environmental law, the stakeholders’ ex-

pressed preferences, etc.), the regulator deems any score above a certain threshold  to

be unacceptable. However, the site characterization report indicates that 0  . After

negotiations, the responsible entity is given a time span  to work on the site so the

measured contamination rating at the end of the period,  , would be such that  ≤ .
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Failure to comply will result in the entity having to pay a penalty , which we assume to

be proportional to the difference between  and  , i.e.

 = fine ( − )
+
, (3)

where fine  0 may not only account for the tax inflicted by the regulator but also the

reputational stigma from violating the law, damaging nature, hurting the local residents’

property value, and endangering people’s health. For safety reasons, the regulator also

requires the entity to perform a number  of monitorings at some pre-specified times

1 =
1


 2 =

2


   =




   =  . (4)

Each monitoring will cost a constant pre-agreed amount.5 Of course, as soon as the

mandated contamination level  is reached, remediation efforts will stop. From now on,

we let  
 denote the first time the threshold  is hit, i.e.  

 = inf{   ≤ }.

2.2 Remediation technologies

The decision-making entity is now contemplating a set of technologies that could deal

with the problem.6 Whether a remediation technology is feasible or not, to begin with, de-

pends on the actual contaminants (a given treatment may be suitable for organic materials

but not for metals), the area’s relevant features (e.g., peculiar soil characteristics such as

texture, permeability, moisture content, etc.), the regulatory constraints, the technology’s

side effects, and certain regulatory standards (‘landfarming’, for instance, which involves

thin spreading of excavated dirty soil, may be forbidden under some jurisdictions).

5 Site monitoring is often outsourced to a specialized firm subject to a fixed-price contract.
6 Kahn et al. (2004) provides an exhaustive overview of site remediation technologies, their respective

properties and some real-life applications, together with a valuable list of references. The technology

descriptions that follow draw without restraints from this article.

8



Aside from feasibility, remediation technologies are also usually classified into two

distinct groups. The first subset includes what are called ‘ex situ’ technologies. These

approaches proceed by first excavating the contaminated soil and ship it elsewhere for

handling. Possible modes of treatment then include:

(d) Biopiles, which consist in stacking the contaminated soil and then boost

natural depollution processes using aeration or other devices;

(e) Incineration, where the contaminated soil is heated in order to release

petroleum waste and/or destroy organic contaminants.

Ex situ technologies are radical and effective. Accordingly, and to simplify matters, let’s

assume that using one of these means will immediately bring the decision-making en-

tity into compliance. The downside, however, is that ex situ technologies are largely

irreversible and generally expensive.

The second group comprises what are called ‘in situ’ technologies. Contrary to the

above, an in situ approach requires no removal of soil material. Common examples are:

(a) Bioventing, which consists in injecting air into the contaminated media at

a rate designed to maximize biodegradation;

(b) Soil flushing, in which contaminated soil is flooded with a solution that

carries contaminants to a spot where they can be removed;

(c) Natural attenuation, which relies on natural processes to degrade contami-

nants, reduce their concentration, and/or bind them to the soil matrix so that

their spreading is retarded and/or reduced.7

7Note that the precise definition of natural attenuation may vary from country to country; in some
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In situ technologies are typically cheaper and more flexible.8 They can usually be com-

bined with or followed by other modes of treatment. But they require a longer time

horizon on average, and their outcome is uncertain. This suggests that, under an in situ

approach, the site contamination score will evolve according to the stochastic process

 =  (+ )

0 = 0 ,

(5)

where pollution decreases at a faster (but finite) mean rate  ≤ 0.
9

Once the feasible remediation technologies and their respective properties are estab-

lished, the decisionmaker then needs to assess and compare the cost of different cleanup

strategies. This issue is taken up in the next section.

3. Some cost assessment formulas

Two generic remediation strategies will now be considered: uninterrupted in situ re-

mediation, and interim in situ intervention followed by an ex situ approach. We shall

compute the expected cost of each strategy, assuming a constant discount rate .10 Other

decision criteria, dealing specifically with risk aversion, are indicated in the Conclusion.

3.1 Relying on an in situ technology

Suppose the decisionmaking entity chooses to proceed using only an in situ approach.

According to the experts, the selected technology has a mean effectiveness rate given by .

cases, contaminants dilution is also included. We thank an anonymous referee for this remark.
8 There are exceptions of course, such as ‘vitrification’ - an in situ technique which aims to melt soil

or other earthen materials at extremely high temperatures (1600-2000 C), thereby immobilizing most

inorganic and destroying organic pollutants. But this confirms rather than invalidates our main point.
9 Equality holds here for natural attenuation.
10 This is without loss of generality. Allowing for a stochastic discount rate in the present framework

is equivalent to changing the reference probability measure (El Karoui et al. 1998).
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This strategy entails three types of expenses: (i) a fixed cost of implementation,  (),

to be paid initially, which might be close to 0 for natural attenuation and increase as the

efficiency parameter  grows in absolute value, (ii) the operational and monitoring cost

&
1 () based on a constant total expected cost  incurred meanwhile the treatment

is applied (this cost comprises operational expenses related to, say, electricity to operate

pumps, chemicals to mix flushing solutions, etc., as well as the cost of monitoring the site

at the end of the period), and (iii) the penalty  defined by Equation (3). The present

value of penalties and total operational and monitoring expenditures are random numbers

given respectively by

&
1 () = 

X
=1

−1 , and (6)


1 () = −fine ( − )× 1


. (7)

Let 1() be the total cost associated with this strategy, i.e.

1 () =  () + &
1 () + 

1 () . (8)

It is possible to obtain a closed form expression for this cost’s expected value. This

expression will use the following notation:

F− (  ) + Φ (2 (  ))−
³


0

´ 2(− 12 2)
2 × Φ (1 (  ))

F+ (  ) + Φ (2 (  ))−
³


0

´ 2(+1
2
2)

2 ×Φ (1 (  ))

where Φ refers to the standard Normal cumulative distribution function,

and 1 (  ) +
1

ln


0


+(− 

2)√


, 2 (  ) +
− 1

ln


0


+(− 

2)√


.
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Proposition 1: The expected present value of the total cost associated with using an

in situ technology with mean effectiveness rate  is given by:

E (1 ()) =  () + 
P
=1

−


F−

¡
  



¢

+fine
− ¡0F+ (−  )− F− (   )

¢
This formula will prove useful for decision-making and budget provisioning, as Sections

5 and 6 below will show. It might look rather cumbersome, but it involves only standard

normal distributions and can thus be easily encoded. Quite intuitively, the value of

E (1 ()) decreases with the required contamination threshold  and goes up with the

operational costs  and the punishment .

3.2 Combining in situ and ex situ approaches

Suppose now that the decision-maker commits to treating the contaminated soil ex situ

after having applied an in situ technology with effectiveness parameter  for  periods.

This strategy avoids paying the penalty . Its total cost 2 ( ) consists of (i) the initial

cost  () for implementing the in situ technology, (ii) the operational and monitoring

cost  incurred over the period    , and (iii) the implementation cost 

2 ( ) of the

ex situ technology, that is:

2 ( ) =  () + &
2 ( ) + 

2 ( ) , (9)

where &
2 ( ) is the total operational and monitoring cost given by

&
2 ( ) = 

X
=1

− × 1 . (10)
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Let’s assume that the cost of an ex situ approach is proportional to the contamination

score at time ; this cost’s present value is then


2 ( ) = −ex situ × 1 (11)

where ex situ is a positive constant. A closed form expression for the expected total cost

in this case is again at hand.

Proposition 2: The expected present value of the total cost associated with a strategy

involving an ex situ approach that will take place after having used an in situ technology

of effectiveness parameter  up to time  is given by:

E (2 ( )) =  ()+

X
=1

−


F−

µ
 






¶
+ex situ0

−(−)F+ (− ) (12)

The expexted cost E (2 ( )) increases with  and ex situ, and decreases with the

mandatory contamination standard .

Examples of E (1 ()) and E (2 ( )) for different values of  and  and selected

but fixed parameters , , and  are depicted in Figure 1. Both these expected costs

are convex and decreasing in |  | (i.e. as the situ technology becomes more effective).

The latter also goes down when switching to an ex situ treatment is delayed (i.e. as 

increases). When the absolute value of  is low, combining in situ and ex situ approaches is

less expensive than relying on in situ treatment only; the reverse holds when the absolute

value of  is high. From now on, we shall assume this situation to hold.11

Insert Figure 1 about here.

Of course, a remediation strategy could be more complex than the one described here,

11 This will always be the case if operational and monitoring costs are not too large.
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involving, say, two in situ technologies (e.g., natural attenuation, then soil flushing) fol-

lowed by the excavation and incineration of the remaining contaminated soil. Provided

each remediation technology fits the assumptions made above, the approach which un-

derlies our propositions can handle these cases as well and generate similar formulas.

Indeed, as the Appendix shows, our assumptions allow to invoke a key lemma, shown in

Douady (1998) and Jeanblanc et al. (2004), which expresses the probability the random

time threshold  
 is greater than some given time  as the weighted difference of two

Normal cumulative distributions; computing expected costs formulas similar to the ones

in Propositions 1 and 2 is then straightforward.

Thanks to Propositions 1 and 2, the formulas’ sensitivity with respect to one essential

parameter - the predicted effectiveness rate  of an in situ treatment - can readily be

assessed, as we will now see.

4. Robustness

Suppose now that, instead of ascribing a point estimate to the effectiveness rate of

a given in situ technology, the decision-maker deems this rate  to lie between some

reasonable bounds  and . This belief may be based on laboratory tests, as well as the

information conveyed by the site characterization report. The next proposition then sets

an interval on the random total costs.

Proposition 3: Assume there exist two negative constants  and  such that −∞ 

 ≤  ≤   0. Then we have (i) 1
¡

¢ ≤ 1 () ≤ 1 () for a pure in situ intervention,

and (ii) 2
¡
 

¢ ≤ 2 ( ) ≤ 2 ( ) under a mixed in situ/ex situ approach.
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This result is rather strong, since it is written in terms of the random total costs

themselves, not in terms of their expected value. One important benefit is to allow better

forecasts of future expenses, hence better provisioning of financial, organizational and

technological resources. Provisioning is further addressed in Section 6.

The decision-making entity might also want to assess the cost difference from using

two distinct in situ techniques. Our next statement provides a bound on this difference

(this time, however, in expected values).

Proposition 4: Let ∗ and +, ∗  +, represent two in situ technologies’ respective

mean effectiveness rate. Then:

i) If only in situ technologies are involved, for some constant  we have that

0 ≤ E [1 (∗)− 1 (
+)] ≤ [ (∗)−  (+)] +  (

∗ − +) + −fine(
∗−+)

ii) And if an ex situ approach is deployed at time , for some constant  we have

0 ≤ E [2 ( ∗)− 2 ( 
+)] ≤ £ (∗)−  (+)

¤
+  (

∗ − +) + −ex situ(
∗−+)

The constants  and  summarize the bounds on the expectations, which are given

by some finite deterministic series (see the Appendix).

The accountable entity could use this result on at least two sorts of occasions. First,

for a number of reasons (e.g., social acceptability, local employment, technology transfers,

etc.), implementing the most effective or the cheapest in situ technology could still be

questioned; while it may then be difficult to assign monetary value to these additional

considerations, proposition 4 gives an order of magnitude for how great this value should

15



be in order to compensate for the extra spending. Second, suppose that two subcon-

tractors are bidding for implementing the in situ treatment, each one proposing a distinct

approach; the latter inequalities offer a way to judge whether the gap between bids is plau-

sible (a legitimate concern if the winning firm is going to operate under a cost-sharing

contract).

The above statements were obtained under predetermined cleanup strategies. Thanks

to these results, however, the next section will now address the design of such a strategy.

5. Contingent strategies

Suppose the site’s depollution has already begun using a given in situ technology with

effectiveness rate . We shall now consider a rule that the decisionmaking entity could

use at any time  in order to decide whether or not to switch to an ex situ approach.

Since operational and monitoring expenses are often significant, and postponing the

eradication of contamination entails the provisioning of valuable resources, the account-

able entity may not want to pursue in situ treatment when the odds of succeeding are

low. This view can be expressed by holding a ‘tolerance level’ , 0    1, (which might

also embed the entity’s tolerance of risk, since the outcome from continuing the in situ

treatment is always uncertain) and a rule stipulating that

An ex situ approach is adopted whenever

the site’s score exceeds some dynamic trigger  defined as

 = max( 

 ) where 


 = inf { / P (     = ) ≥ } . (13)
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The rule thus asks to keep up with in situ treatment as long as meeting the regulator’s

demands at or before time  remains within acceptable sight in probabilistic terms, or

as long as the site’s current risk index  makes reaching the legal threshold  on time

sufficiently likely (likelier than ).

The following technical assumption will prove useful in characterizing  .

Assumption: Let Φ denote the standard Normal cumulative distribution function.

Then Φ

µ
−2

2

√




¶
≤  ≤ 05 .

The second inequality,  ≤ 05, seems reasonable, for a properly accountable entity would

hardly tolerate a large probability of being found noncompliant. As to the first inequality,

notice that  is negative, which implies that Φ

µ
−2

2

√




¶
 05. Further justification

will come after the next proposition.

Proposition 5: For 0    1 and time    , the trigger  defined by (14) can be

written as

 = max[  exp

µ

√
 − Φ−1 ()−

µ
− 2

2

¶
( − )

¶
] (14)

As it can be seen more easily now, assuming that Φ

µ
−2

2

√




¶
≤  ensures that

the coefficient 0 in (13) is such that 

0 ≥ . This condition seems natural: if it does

not hold, then 0 =  so an ex situ treatment should have been adopted right away.

Taking stock of proposition 5, one can now consider the behavior of the trigger 

as time elapses. The next figure illustrates the pattern for different values of .12 As

12 We focus here on , as the decision-making entity should determine its tolerance level after the
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expected, when  gets smaller, so the accountable entity’s tolerance of failure decreases,

the subjective lower bound  for site contamination scores that would mandate a rad-

ical intervention goes down.13 Other observable features are formally stated in our last

proposition.

Insert Figure 2 about here.

Proposition 6: The decision trigger  has the following properties:

i)  =  ;

ii) it is decreasing in the current time  ;

iii) it is a convex function of the current time .

These attributes make the above decision rule rather sensible. Under this rule, compli-

ance is ultimately achieved (property i), and the pressure to switch to a fully dependable

ex situ treatment grows more and more as the deadline  looms (properties ii and iii).

As we shall now see, taking on such a trigger strategy additionally allows to handle

budget provisioning - an important practical matter - in a systematic fashion.

6. Budget provisioning

Before engaging in any remediation project, the responsible entity would normally

have to put aside some capital and build provisions. Suppose that she plans to use the

remediation strategy defined in the preceding section. Suitable provisions could then be

established as follows.

remediation technologies have been selected (so these technologies can be considered as given). Besides,

considering various values for the parameters  and  would yield the same qualitative pattern for  .
13The reader might observe that the values  = −02 and  = 03 used here differ from the values

−09 ≤  ≤ −01 and  = 02 employed in Figure 1. The only reason is that it makes each graph as easy
to read as possible.

18



Let b denote the monitoring time at which the in situ treatment is terminated
and replaced by an ex situ approach, i.e.b = inf { /  ∈ {0 1 2  } and  ≥  } .
If the probability of ever switching to an ex situ technology before time  is

lower than some predetermined level , i.e.

max
∈{01−1}

{P (b = )}   ,

the decisionmaking entity should make provisions according to the expected

cost  (1 ()) of using a pure in-situ technology. Otherwise, she should set

set aside an amount min (2 ( )) corresponding to the cheapest mixed

remediation strategy.

Thanks to the above results, computing the needed probabilities P (b = ) turns out

to be relatively tractable. Indeed, for  = 0, either 0  0 and then P (b = 0) = 0 or
0 ≥ 0 and then P (b = 0) = 1.
For  = 1, we have P (b = 1) = P

¡
0  0 ∩ 1 ≥ 1

¢
. When 0  0 , this expression

becomes

P (b = 1) = P
¡
1 ≥ 1

¢
= Φ

¡− ¡1 1¢¢
with


¡
1 


1

¢
=
ln

1
0
−
³
− 2

2

´
1


√
1

For  = 2, the probability P (b = ) can be written as

P (b = 2) = P
¡
0  0 ∩ 1  1 ∩ 2 ≥ 2

¢
If 0  0 , then

P (b = 2) = P
¡
2 ≥ 2 |1  1

¢
P
¡
1 ≥ 1

¢
= P

¡
2 ≥ 2 |1  1

¢
Φ
¡

¡
1 


1

¢¢
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and

P
¡
2 ≥ 2 |1  1

¢
=

1Z
0

P
¡
2 ≥ 2|1  1

¢
 ( (1)) 

=

1Z
0

1√
2
P
µ
 exp

µµ
− 2

2

¶
(2 − 1) +  (2 −1)

¶
≥ 2

¶
exp

Ã
− (1)

2

2

!


=

1Z
0

1√
2

Φ ( (1 2 )) exp

Ã
− (1)

2

2

!


where  is the density function of the standard Normal distribution, and

 (1 2 ) =
ln 


+

−2

2


(+1)−Φ−1()

√
−2


√
2−1 (replacing 2 by its explicit value)

 (1) =
ln


0
−

−2

2


1


√
1

Hence,

P (b = 2) =

1Z
0

1√
2

Φ ( (1 2 )) exp

Ã
− (1)

2

2

!
 ×Φ

¡

¡
1 


1

¢¢

The general case  ≥ 3 is handled in the Appendix.

7. Concluding remarks

Around the world, policymakers, regulators, land owners, local communities, industrial

firms, insurance companies, etc. have to deal with the remediation of contaminated sites.

One important hurdle is that cleaning up a contaminated site is often subject to significant

cost uncertainties. This paper’s motivation was to cope with this issue. Drawing on

studies of random hitting times carried out in mathematical finance and real-options
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theory, we computed closed-form tractable expressions for assessing the expected cost of

cleanup strategies, and derived simple rules for selecting remediation technologies and

provisioning financial resources.

Several extensions of this study appear to be natural at this stage.

First, while the rules we examined look rather reasonable and applicable, these rules

were not shown to be optimal. Seeking the best decision in the present framework would

constitute a nontrivial and certainly worthwhile exercise in stochastic optimization. The

obtained solution would then have to be compared with the above rules, both analytically

and/or through simulations.

Secondly, although the decisionmaker’s risk aversion could somewhat be captured by

the ‘tolerance’ thresholds introduced in Sections 5 and 6, more precise ways to represent

risk aversion can be called for. One should then turn to other decision criteria, such as a

mean-variance criterion or some of the convex risk measures developed in mathematical

finance (see, e.g., Artzner et al. 1999).

Third, as the ultimate test for the current propositions and their possible extensions

lies in their concrete application, one would want to see the approach outlined in this pa-

per implemented in algorithms and softwares. A related complementary challenge would

also be to understand better how our cleanup cost assessment method might affect reme-

diation management projects overall, through changing stakeholders’ perceptions, say, or

impacting negotiations with the regulator.
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APPENDIX

To start with, let us state a general result that is essential for computing the formulas

in Propositions 1 and 2.

Lemma: Let ()≥0 and
¡




¢
≥0 be the processes defined respectively by  = +

and 
 = inf { 0 ≤  ≤ }. For  ≤ 0, we have

P
¡


 ≥ 
¢
= Φ

µ− + √


¶
− 2Φ

µ
 + √



¶
where Φ is the standard Normal cumulative distribution function: Φ () = 1√

2

R
−∞

−
2

2 

Proofs can be found in Douady (1998) or Jeanblanc et al. (2004).

Proof of Proposition 1:

Since

P
¡
   



¢
= P [inf { 0 ≤  ≤ }  ]

= P
h
inf
©¡




− 

2

¢
+ 0 ≤  ≤ 

ª
 1


ln
³


0

´i
,

and   0 by assumption, the Lemma entails that:

P
¡
   



¢
= Φ

⎛⎝− 1

ln
³


0

´
+
¡



− 

2

¢


q





⎞⎠
−
µ


0

¶ 2(− 122)
2 × Φ

⎛⎝ 1

ln
³


0

´
+
¡



− 

2

¢


q





⎞⎠
Hence,

E
¡
&
1 ()

¢
= 

X
=1

−




⎛⎜⎜⎜⎝
Φ

µ
− 1

ln


0


+(−

2 )


√





¶
−
³


0

´ 2(− 122)
2 ×Φ

µ
1

ln


0


+(−

2 )


√





¶
⎞⎟⎟⎟⎠
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Moreover,

P
¡
   



¢
= P

h
inf
©¡




− 

2

¢
+ 0 ≤  ≤ 

ª
 1


ln
³


0

´i
= P

h
inf
©¡




+ 

2

¢
+ 

  0 ≤  ≤ 
ª
 1


ln
³


0

´i
,

where the probability measure P is equivalent to P and is defined by the Radon-Nikodym

derivative P

P

¯̄̄̄
F

= − 1
2
2

and where the process  
 =  −  is a P-Brownian motion. Thanks again to the

Lemma, we obtain

P−
¡
   



¢
= Φ

⎛⎝− 1

ln
³


0

´
+
¡



+ 

2

¢


√


⎞⎠
−
µ


0

¶2(+1
2

2)
2 × Φ

⎛⎝ 1

ln
³


0

´
+
¡



+ 

2

¢


√


⎞⎠
Formula (9) now follows from the fact that

E
h
 × 1



i
= 0

P
¡
   



¢
and

E
¡

1 ()

¢
= E

h
fine

− ( − )× 1


i
= fine

−E
h
 × 1



i
− fine

−P
¡
   



¢
¥

Proof of Proposition 2:

Using the same line of arguments as in the previous derivation, the expected present

value of turning to incineration at time at time  can be expressed as
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E
¡

2 ( )

¢
= ex situE

h
− × 1

i
= ex situ0

−(−)P
¡
   



¢

= ex situ
−(−)

⎡⎢⎢⎢⎣
Φ

µ
− 1

ln


0


+(+


2 )√



¶
−
³


0

´ 2(+1
2
2)

2 ×Φ

µ
1

ln


0


+(+


2 )√



¶
⎤⎥⎥⎥⎦

And the expected operational and monitoring costs are similarly given by

E
¡
&
2 ( )

¢
= 

X
=1

−E
³
1

´

= 

X
=1

−




⎡⎢⎢⎢⎣
Φ

µ
− 1

ln


0


+(−

2 )


√





¶
−
³


0

´ 2(− 122)
2 × Φ

µ
1

ln


0


+(−

2 )


√





¶
⎤⎥⎥⎥⎦ ¥

Proof of Proposition 3:

) Notice that the function14  
 is non-decreasing in  and so are the functions 1

and 1 . As

1 () =  () + 

X
=1

−1 + −fine ( − )× 1

,

the function 1 () is also non-decreasing in . Hence the result.

) The functions  
 and  () are non-decreasing in . Therefore, the desired result is

obtained from the equality

2 ( ) =  () + 

X
=1

− × 1 + −ex situ × 1 ¥

14The dependency in  of this function and the subsequent functions is not explicitely indicated, but

comes from the process  .
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Proof of Proposition 4:

For  = 1 2, we denote by   the solution of the stochastic differential equation

 
 =  

 (
+ ) , 


0 = 0 .

i) Technology in situ

The difference 1 (
1)− 1 (

2) consists of the following three terms :

1 (
1)− 1 (

2) =  (1)−  (2)

+
P
=1

−
h
1


 1



− 1


 2



i
+− fine

h
( 1

 − )× 1


1



− ( 2
 − )× 1


2



i
Let us first consider the second term 

P
=1

−
h
1


 1



− 1


 2



i
From 1  2 we get

0 ≤ 
P
=1

−
h
1


 1



− 1


 2



i
≤ 

P
=1

−1


2




 1



Hence

E
µ


P
=1

−
h
1


 1



− 1


 2



i¶
≤ 

P
=1

−P
³
  2

      1



´
We have

P
³
  2

      1



´
= P

³¡
1 − 1

2
2
¢
  ln

³

0

´
−  

¡
2 − 1

2
2
¢


´
= P

⎛⎝ ln
³


0

´
− ¡1 − 1

2
2
¢



√



√



ln
³


0

´
− ¡2 − 1

2
2
¢



√


⎞⎠
=

1√
2
×

(2)Z
(1)

−
2

2 

with  ( ) =
ln
³


0

´
− ¡− 1

2
2
¢



√


 From this we deduce
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E
µ


P
=1

−
h
1


 1



− 1


 2



i¶
≤ √

2

P
=1

−
(2)Z

(1)

−
2

2 

≤ √
2

P
=1

− ((2 )− (1 ))

≤  (1 − 2)


√
2

P
=1

−
√


Now, since the sum
P
=1

−
√
 does not depend on ,  = 1 2, we can assert that

there exists a constant  that only depends on  and such that

E

Ã


X
=1

−
h
1
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 1



− 1
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 2



i!
≤ 

¡
1 − 2

¢
We now consider the third term +− fine

h
( 1

 − )× 1


1



− ( 2
 − )× 1


2



i
From 1  2 we deduce

0 ≤ ( 1
 − )× 1


1



− ( 2
 − )× 1


2



≤  1
 −  2



and therefore

E
³
− fine

h¡
 1
 − 

¢× 1


1



− ¡ 2
 − 

¢× 1


2



i´
≤ − fine(

1−2)

ii) Technology ex situ

The difference 2 (
1)− 2 (

2) consists of three terms as follows :

 () + 
P

=1

− × 1 + − ex situ × 1

2 (
1)− 2 (

2) =  (1)−  (2)

+
P

=1

−
h
1


 1



− 1
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 2



i
+−ex situ

h
 1

× 1


 1



−  1

× 1


 1



i
and the proof is similar to the previous one. ¥
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Proof of Proposition 5:

We focus on the characterization of

 = inf { / P (     = ) ≥ }

The inequality P (     = ) ≥  can be written on the form P
³



  

´
≥ 

where






=  exp

µµ
− 2

2

¶
( − ) +  ( −)

¶
Thus

P
³



  

´
= P

⎛⎝ 
ln 


−
³
− 2

2

´
( − )


√
 − 

⎞⎠ where  ∼  (0 1)

and therefore

P
³



  

´
= P (     ≥ ) ≥  ⇐⇒ Φ

µ
ln



+

−2

2


(−)


√
−

¶
≥ 

⇐⇒ ln


+

−2

2


(−)


√
− ≥ Φ−1 ()

We finally get ln


+
³
− 2

2

´
( − )


√
 − 

≥ Φ−1 ()

and the desired result. ¥

Proof of Proposition 6:

i) This condition follows immediately from Equation (14).

ii) Let us first recall that

 =

⎧⎪⎪⎨⎪⎪⎩
 if   

 otherwise

where  =  exp
¡

√
 − +  ( − )

¢
. Let  () be defined as

 () = { /  =  }
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Obviously,  () =
©
 / 
√
 − +  ( − )  0

ª
and from this, we get that the map  ∈

 ()→  is decreasing with respect to the current time . Therefore, the same property

of decreasing monotonicity holds for  .

iii) The sign of the second derivative
2
2

is that of
³



2
√
− + 

´2
− 

4(−)√− . Now

for  in  () we haveµ


2
√
 − 

+ 

¶2
− 

4 ( − )
√
 − 



µ


2
√
 − 

− √
 − 

¶2
− 

4 ( − )
√
 − 

=
2

4 ( − )
− 

4 ( − )
√
 − 

=

¡

√
 − − 1¢

4 ( − )
√
 − 

 0

Hence,  ∈  ()→  is convex and therefore, 

 is also convex. ¥

Computing P (b = ):

For  ≥ 3, one can use the following general argument

P (b = )

= P
¡
0  0 ∩ 1  1 ∩ 2  2 ∩  ∩ −1  −1 ∩  ≥ 

¢
= P

Ã
 ≥  |

−1\
=0

  

!
P

Ã
−1\
=0

  

!

= P
¡
 ≥  |−1  −1

¢
P

Ã
−1\
=0

  

!

Provided that 0  0 , the latter writes

P (b = ) = P

Ã
 ≥  |

−1\
=1

  

!
P

Ã
−1\
=1

  

!

= P
¡
 ≥  |−1  −1

¢
P

Ã
−1\
=1

  

!
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Moreover,

P

Ã
−1\
=1

  

!

= P

Ã
−1  −1 |
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!
P

Ã
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!
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¢
P

Ã
−2\
=1

  

!

Therefore,

P (b = ) = P
¡
 ≥  |−1  −1

¢ −1Y
=2

P
³
   | −1  −1

´
We need then to compute the various conditional expectations

P
¡
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¢
=

−1Z
0
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 ( (−1)) 

=
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2
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2
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!
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where, as previously introduced,  is the standard Normal density function, Φ is the

standard Normal cumulative distribution function and15

 (−1  ) =
ln



+

−2

2


(+−1)−Φ−1()

√
−


√
−−1
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−

−2

2


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
√
−1

15In the first expression, we replace  by its explicit value.
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Moreover for any  ≥ 2 we have:

P
³
   | −1  −1

´
=
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0
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¢
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=
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Φ (− (−1  )) exp
Ã
− (−1)

2

2

!
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