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Pacific Islands Mortality 

Summary: 

The depopulation of Pacific islands during the 16th-19th centuries is a striking example 

of historical mass mortality due to infectious disease. Pacific Island populations have not 

been subject to such cataclysmic infectious disease mortality since. Here we explore the 

processes which could have given rise to this shift in infectious disease mortality 

patterns. We show, using mathematical models, that the population dynamics exhibited 

by Pacific Islands are unlikely to be the result of Darwinian evolution. We propose that 

extreme mortality during first contact epidemics is a function of epidemiological 

isolation, not a lack of previous selection. If, as pathogens become established in 

populations, extreme mortality is rapidly suppressed by herd immunity, the Pacific 

Island mortality pattern can be explained with no need to invoke genetic change. We 

discuss the mechanisms by which this could occur, including (i) a link between the 

proportion of the population transmitting infectious agents and case fatality rates, and 

(ii) the course of infection with pathogens such as measles and smallpox being more 

severe in adults than in children. Overall, we consider the present-day risk of mass 

mortality from newly emerging infectious diseases is unlikely to be greater on Pacific 

islands than in other geographic areas. 

Key words: mass mortality, infectious disease, history of epidemics, Pacific islands 
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Introduction: 

Pacific islands were the last places on earth that humans reached as Melanesians 

expanded from New Guinea, and Polynesians voyaged in ocean-going canoes to more 

distant and isolated islands.(1) Over millennia this resulted in great genetic diversity 

between islands but a large degree of genetic homogeneity on any particular island due 

to founder effects.(2) The Pacific islands were also the last area contacted by Western 

explorers on missions of discovery and colonization. Soon after first contact of island 

societies with distant populations was established, lethal infectious disease epidemics 

began.(3) Despite the outsiders often having no obvious illness, epidemics of poorly 

characterized respiratory and gastrointestinal infections devastated isolated Pacific 

island populations, severely dislocating and at times destroying their social systems.(4) 

These events pre-dated the understanding of microbes as the cause of infectious diseases 

such that the collapse of indigenous island populations was often interpreted in racial 

terms. Yet even after the development of germ theory, notions of white superiority 

persisted into the 20th century: “Only a race which has undergone evolution against the 

diseases of crowds is capable of civilization”. (5) This thinking became even more 

evident when the 1918 influenza pandemic caused great differential mortality of co-

located groups with up to a fifth of Samoans dying while New Zealand soldiers were 

relatively spared mortality but not infection.(6) 

Today Pacific islanders have reversed the colonization process to the USA, Australia and 

New Zealand with large growing populations that only show traces of increased 

infectious disease susceptibility.(7) Highly vulnerable Pacific populations underwent a 

rapid transition during the first few generations following entry into the global pathogen 

pool such that their current distinctive health problems (e.g. adult-onset diabetes) are 
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not of an infectious nature. These changes largely occurred during the 19th century before 

accurate enumeration arrived in Pacific islands.(3) 

Figure 1 summarizes the time series data that are available from census records 

between 1830 and 1930.(3) Certain features are attributable to known outbreaks of 

infectious disease, for example a devastating measles outbreak in Fiji in 1875, and 

population losses in Western Samoa as a consequence of the 1918 influenza 

pandemic.(6, 8) Most of the populations for which data are available prior to 1860 – 

specifically Tahiti and Moorea and the South-east and North-west Marquesas - display 

a strikingly similar pattern: a single event involving an initial loss of between 20 and 

70% of the population, followed by a slow period of recovery, in which no similar 

crashes occur. Here we seek to understand the evolutionary and epidemiological 

processes underlying such dynamics. 

We first briefly review the Pacific islands early experience of epidemics caused by 

specific infectious agents: 

Dysentery: Dysentery was often the first large lethal epidemic said to have occurred on 

many Pacific Islands. In 1804 such an epidemic in Hawaii is said to have killed so many 

(estimate range 5000-15000) that the living were unable to bury the dead.(9) Despite the 

description “sour starch water flowed frequently from the bowels” it seems unlikely that 

cholera arrived in Hawaii prior to the first global pandemic and a more likely diagnosis 

would be shigellosis spread from ship’s crews.(10) Shigellosis causing blood and pus in 

stools was a common problem on contract labor ships (black-birders) as described in 

1890 arriving in Fiji from Solomon Islands.(11, 12) Half of those infected died within 4-

10 days with post-mortem examinations showing an acutely 
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inflamed large bowel with black-green deposits. The presence of genitourinary ulcers as 

well severe arthritis in some survivors indicates a post-dysentery syndrome caused by 

Shigella was likely.(11, 13) Dysentery was such a serious problem in sugar plantations on 

Fiji that a special investigation was commissioned in 1910. Prior to the antibiotic era, 

fatal cases were marked by inflammation throughout the small and large intestine with 

“frog-spawn stools”.(14) 

Measles: Measles could be diagnosed from its distinctive skin rash and is known to have 

caused major lethal epidemics when first introduced in Hawaii, Fiji, Tonga, Samoa and 

Rotuma.(8, 15-18) Mortality up to a quarter of the entire population occurred across all 

ages including previously healthy young adults. Measles was particularly dangerous on 

isolated islands because a large proportion of the adult population were simultaneously 

ill leaving few to care for the sick.(19) Severe forms of measles particularly with sub-

acute inflammatory gastrointestinal symptoms were common on Pacific islands.(20) 

Black or hemorrhagic measles was particularly lethal. Sequential measles epidemics 

occurred in Fiji with progressively smaller case fatality rates.(21) High-lethality measles 

epidemics ceased once the most isolated Pacific islands were incorporated into the 

global system of air travel.(22) 

Influenza: Epidemics of respiratory disease often followed the arrival of ships to isolated 

Pacific islands. The clinical diagnosis of influenza virus infection is problematic but the 

association of lethal outbreaks on Pacific islands with influenza pandemics of 1890 and 

1918 indicates the likelihood that influenza was the actual infectious agent involved.(23-

25) Severe forms of influenza with secondary bacterial pneumonia were particularly 

apparent during the 1918-20 pandemic, and contributed to 
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the large mortality differences between immigrants and indigenous Pacific peoples on 

Fiji, New Zealand, Nauru, Samoa, Saipan and Hawaii.(6, 10, 24, 26) In islands 

bypassed by the 1918-20 pandemic such as Niue, New Guinea and Marshall Islands, 

deadly influenza epidemics occurred decades later even when the viruses involved 

were not particularly lethal in other countries.(27-30) Polynesian or Micronesian 

ethnicity was not an essential characteristic as seen during influenza epidemics on 

isolated Aleutian islands near Alaska well into the 20 th century.(31) During the 2009 

influenza pandemic mortality on Pacific islands was not remarkably different from 

other countries globally.(32) 

Smallpox: Because of smallpox’s extraordinary lethality and its distinctive pustular rash, 

quarantine efforts were largely able to limit its ravages within the Pacific to Hawaii, 

Guam, Caroline Islands, French Polynesia and Papua New Guinea.(33) Devastating 

smallpox epidemics swept the northern coast of New Guinea in 1872, 1893 and 1895 

during the German colonial establishment of a plantation economy. In 1854 2000 of 

5000 persons died on the Caroline Islands from smallpox and approximately one-third of 

the population of Guam perished in 1856.(33) Probably the Pacific group most affected 

by smallpox were Australian Aboriginal peoples. Epidemics in 1780s, 1829-31 and 

1860s, likely originating from fisherman arriving in remote areas of the Northern 

Territory, killed an uncounted but large proportion of Australia’s indigenous 

inhabitants.(34) Severe and universally fatal forms of smallpox especially hemorrhagic 

smallpox appear to fit some of the descriptions of these epidemics.(35) 

In an attempt to better understand the Pacific peoples’ rapid transition from crisis 

infectious disease mortality to current infection mortality patterns we have devised a 
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mathematical model. In our model, three hypothetical pathogens arrive in an 

immunologically naïve population. Resistance alleles exist to each of these pathogens, 

and the model can simulate their possible change in frequency. Our model also allows 

us to incorporate a herd immunity mortality feedback, whereby the higher the level of 

herd immunity to a pathogen, the lower the case fatality rate of that pathogen. We 

identify sets of pathogen-specific mortality rates and population starting frequencies of 

protective alleles that are consistent with the 19th century mortality transition of Pacific 

islanders. We show that it is unnecessary to invoke changes in allele frequencies (i.e. 

Darwinian evolution) to explain observed mortality patterns, and that the most 

plausible pathogen mortality scenarios occur in the presence of herd immunity 

mortality feedbacks. 

Methods: 

Summary of approach 

We considered the arrival of 3 new pathogens in a naïve population. We let there be 3 

host loci, independently determining disease resistance to the 3 pathogens, with a wild 

type and a resistant allele at each. For each of the 27 possible host genotypes in the 

population, we used a standard compartmental epidemiological model (consisting of 

linked ordinary differential equations) to simulate the rate of change of numbers of 

susceptible, infected and recovered individuals (see Equations 1- 11 given at the end of 

the Methods). 

We wished to compare and contrast a genetic explanation for the Pacific Island 

mortality pattern with an epidemiological one. To allow for Darwinian evolution, we 

linked the birth rates of each host genotype in the model to the frequencies of the  
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relevant alleles in the surviving population, so that the relative numbers of individuals of 

different genotypes could change in response to selection from the infectious disease 

agent. To capture possible epidemiological mechanisms, we allowed infectious  

disease mortality to be a function of the proportion of the population already immune: a 

herd immunity feedback. The strength of the herd immunity feedback was determined by 

parameter γ (see also equations 1-11 at the end of the Methods). If γ is nonzero, the more 

individuals there are who are immune to a specific pathogen, the lower the mortality rate 

for any given infection with that pathogen. This could occur if (i) an infection has more 

severe effects in adults than in children (the higher the proportion of immune individuals, 

the lower the age of first infection), or (ii) there is a link between rate of exposure and 

mortality, and the more infected individuals there are at a particular point in time, the 

higher the exposure to the pathogen. Both of these phenomena are explored in more detail 

in the Discussion. 

Analysing the behaviour of the model 

We considered scenarios in which the maximum proportion of the population to die in a 

quarter-year interval was ≥20% and <70% between years 0-5, but ≤ 5% between years 

15-20, to have captured dynamics consistent with Pacific Island first contact epidemics 

(figure 2). Critical features of these dynamics are: (i) population loss occurs over a short 

time – consistent with the reports noted in the introduction of epidemics in which so 

many were affected that “the living could not bury the dead”, (ii) within decades, the 

population was no longer subject to such devastating losses – consistent with the 

population recovery pattern exhibited by Tahiti and Moorea (figure 1). We used Latin 

Hypercube Sampling (specifically the LHSdesign function of Matlab version R2014b) to 

ensure a fair sampling of parameter space and explore which combinations of either 
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(i) starting frequencies of protective alleles or (ii) pathogen-specific mortality rates were 

capable of generating these first contact-like dynamics, in the presence or absence of a 

herd immunity feedback effect. 

Parameter values and assumptions 

In order to make this modelling exercise feasible, certain parameter values had to be 

fixed. We set the recovery rate of each pathogen such that the average duration of 

infectiousness was 1.5 weeks (σx = 52/1.5 , see end of Methods for equations which 

completely describe our model). Of the types of pathogens which may have caused 

Pacific Island mortality, the duration of infectiousness for measles is approximately 8 

days, that of influenza, 7-14 days and that of smallpox 7+ days (source: World Health 

Organisation disease factsheets and frequently asked questions http://www.who.int/en/  

accessed July 2016). A diarrhoeal disease such as dysentery could be infectious for 

between 3 days and up to 4 weeks depending on the duration of symptoms. 

Transmission parameters were given the following values fl1 =52, fl2= 121.3 and fl3 

=520, making the basic reproductive numbers of each pathogen: R0(1)=1.5; R0(2) =3.5 

and R0(3) = 15. These values were chosen to lie within the plausible range of values of 

R0 for pathogens that could have arrived in Pacific Islands during the nineteenth 

century, and also to contrast low and high R0 pathogens as potential culprits for the 

bulk of the mass mortality. 

At the beginning of each simulation there were 1000 susceptible individuals in the 

population, intended to simulate a small island community. Individuals carrying no 

protective alleles and infected with pathogen 1 (n=3), pathogen 2 (n=2) or pathogen 3 

(n=4) were added to the population at the beginning of every simulation (time=0), then 
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3, 2 and 4 extra individuals, infected with pathogens 1, 2 and 3 respectively, and with no 

protective alleles, were added at time =15 years. This reintroduction allowed for the 

possibility that the pathogens died out after their initial introduction: a likely occurrence 

in a small population where susceptible individuals are quickly exhausted. The growth 

rate of the population (r) was fixed at 5%, and the average lifespan of the host 

population in the absence of the newly arrived infections was 35 years (μ=0.029). These 

parameters were intended to be plausible for 19th century human populations. We must 

stress that the exact values of these parameters are relatively unimportant. We seek to 

understand the broad phenomenon of a large population crash followed by no further 

such crashes, not to claim that we have precisely represented the dynamics of a specific 

island, for which exact estimates of lifespans in the absence of infectious diseases are 

impossible to obtain. 

Our model makes two additional assumptions: co infection is rare enough that we can 

assume it does not occur (this seems reasonable for pathogens which follow an acute 

course), and immunity is lifelong. This latter assumption is entirely reasonable for 

measles and smallpox, but a simplification for influenza and dysentery. 

The complete model 

Code to implement the model described in equations 1-11 was written in Matlab and 

executed in Matlab version R2014b. As noted above, we consider the arrival of 3 new 

pathogens in a naïve human population. This population has growth rate r and, in the 

absence of infection, individuals die at rate μ. There are three potential disease 

resistance loci in the host, with two alleles at each. There are therefore 3 possible 

genotypes at each locus: 1, homozygous for the wild type allele; 2, heterozygous for a 
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protective allele or 3, homozygous for a protective allele. Each host genotype can be 

described by a 3 digit identifier (ijk). The rate of change of susceptible individuals of 

genotype ijk is given by equation 1: 

Equation 1 

The rate of change of genotype ijk 

individuals with no prior immunity, but infected with pathogen x is given by equation 2: 

dI x,ijk= .- ( n- + P )  x ijk S I x x ,i jk 

dt 

Equation 2 

The rate of change of genotype ijk individuals immune to pathogen x only is given by 

equation 3: 

Equation 3 

The rate of change of genotype ijk 

individuals, immune to pathogen x only and infected with pathogen y is given by equation 

4: 

dIy,,xijk= YR - ( a +  ) I 
y x , ijk y y,x,ijk 

dt 

Equation 4 

The rate of change of genotype ijk individuals, immune to pathogens x and y only is given 

by equation 5: 

dRxy,ijk  (1- (1 - p ).  ).  I + (1- (1- p ).  ).  I - +  
(  )R y,ijk y yy,x,ijk x,ijk x xx,,yijk zx,y xy,ijk 

dt 

Equation 5 

 

The rate of change of genotype ijk individuals, immune to pathogens x and y and infected 

with pathogen z is given by equation 6: 
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Equation 6 

The rate of change of genotype ijk 

individuals, immune to all 3 pathogens is given by equation 7: 

Equation 7 

 
The total number of individuals with genotype ijk is given by equation 8: 
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Allele frequencies at the three loci are determined from the values of Nijk, and the term bijk 

allocates different numbers of the new births in the population to different genotypes in 

Hardy Weinberg proportions. 

Infections with pathogen x occur at rate λx (equation 10) 

Equation 10 

where βx scales the transmission potential of 

the pathogen. 

A proportion, (1 pxijk, ) x of individuals infected with pathogen x die. Mortality rate  x is 

a function of the total proportion of the population immune to that pathogen, i.e. 
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Equation 11 

where  x is the maximum rate at which 

pathogen x kills and γ determines the impact of there already being immune individuals in 

the population (herd immunity feedback). 

px,ijk varies the protection against death from infection afforded to individuals on a 

genotype specific basis. Upon recovery at rate σx, individuals are immune to further 

infection with pathogen x for the rest of their lives. 

Results: 

First contact like dynamics can be achieved in the absence of Darwinian evolution, 

provided the pathogens involved have highly specific properties. 

When we tested the combinations of maximum pathogen mortality rates (θ1-3) which 

could give rise to a first contact like pattern in the absence of any protective alleles, we 

found that such combinations did exist (figure 3a). The pathogen for which R0 = 1.5 

had to have a mortality rate >0.45 , the pathogen for which R0 = 3.5 could have a 

mortality rate between 0 and 0.15 and the pathogen for which R0 = 15 had to have a 

mortality rate <0.08. It is therefore conceivable that epidemiological and ecological 

effects alone can account for a first contact like pattern. 

If herd immunity affects pathogen mortality rate, first contact like patterns can be 

achieved under a wider range of mortality scenarios, still in the absence of selective 

processes. 
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Our model also includes parameter γ, which, when it takes a non-zero value, makes 

each pathogen’s mortality rate a negative function of the proportion of the population 

immune to that pathogen. In the absence of protective alleles, increasing the value of γ 

allows a first contact-like pattern to occur under an increasingly wide range of 

combinations of maximum pathogen mortality rates (θ1-3), as illustrated in figures 3b 

and 3c. 

Marker (1) identifies a region where the pathogen for which R0 =3.5 has a high 

maximum mortality rate (approx. 30%); the pathogen for which R0 =15 has a lower 

maximum mortality rate ( <10%), and the pathogen for which R0 =1.5 can take a wide 

range of maximum mortality rates. Such a combination of maximum pathogen mortalities 

cannot generate a Pacific Island like pattern in the absence of herd immunity feedbacks, 

but is able to when γ≥0.9 (figures 3b and 3c). 

Marker (2) in figure 3c identifies a region where the pathogen for which R0=15 

has a high maximum mortality rate (approx. 23%) and the other two pathogens have 

lower maximum mortality rates (<20%). This mortality scenario is only capable of 

generating a Pacific Island like pattern when the herd immunity feedback is very strong 

(γ=1). 

Darwinian evolution can only contribute to first contact-like dynamics if protective 

alleles start at specific, high, frequencies. 

Three separate loci independently determine susceptibility to death from infection with 

the three possible pathogens in our model. For simplicity, we assume that both 

heterozygotes and homozygotes for a protective allele are completely protected against 

death from infection with the relevant pathogen. When protective alleles are included, 
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therefore, the maximum infection mortality rates (01-3) apply only to individuals who are 

homozygous for the wild type allele at the host locus in question. 

We let 01-3 take values of 0.1 or 0.6, and tested all permutations of these values, 

creating 8 different pathogen mortality scenarios. We then used Latin Hypercube 

Sampling to identify combinations of starting frequencies for the three protective 

alleles which could create first contact like dynamics under each scenario. There was 

no combination of starting allele frequencies which allowed first contact like dynamics 

if neither the pathogen for which R0=1.5 nor the pathogen for which R0 = 3.5 had a 

maximum mortality rate of 0.6. However, under all other permutations, first contact 

scenarios were possible (figure 4a-f). Allowing the frequencies of protective alleles to 

evolve under selection from pathogens does, therefore, extend the range of possible 

pathogen properties which could be consistent with a Pacific Island pattern – in a 

similar way to herd immunity feedbacks. However, as can be seen in figure 4, specific 

assumptions must be made about the starting frequencies of particular protective alleles 

in each case. 

In keeping with our previous observation that a Pacific Island like outcome is 

possible in the absence of genetic effects if the pathogen for which R0 =1.5 has a very 

high mortality rate and other pathogens have a low mortality rate, when 01 = 0.6 but 02 

and 03 =0.1, the only restrictions on the starting frequencies of protective alleles are that 

the allele which protects against the pathogen for which R0 =1 must be at a low starting 

frequency (panel a). Under all other circumstances, more restrictive conditions apply to 

the possible starting frequencies of protective alleles, especially if the pathogen for which 

R0 = 15 has a high mortality rate (03 =0.6, panels c, d and f). If the pathogen for 
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which R0 = 15 has a high mortality rate, the starting frequency for the allele which 

protects against the pathogen for which R0= 15 (s3) must be very high. 

Discussion: 

The exposure of indigenous Pacific Island populations to the pathogens brought by 

European explorers resulted in massive loss of life. What data are available (figure 1) 

suggest there were catastrophic early mortality events in which 20%-70% of island 

populations died, but no subsequent events to match that level of infectious disease 

mortality. Here we have explored two potential mechanistic explanations for such 

mortality transitions: one genetic and one reliant on a herd immunity mortality 

feedback. 

Our model included three hypothetical pathogens, with basic reproductive numbers (R0) 

of 1.5, 3.5 and 15. Among the pathogens described in the introduction, the R0 of measles 

is estimated to be between 12.5 and 18 (36); that of smallpox between 3.5 and 6,(37) and 

the 1918 strain of influenza <4.(38) The R0 of Shigella dysenteriae, a likely causative 

agent of dysentery, is unlikely to be much more than 1.5.(39) 

We found that a first contact like pattern could be obtained without invoking any genetic 

changes, provided the pathogen for which R0=1.5 (arguably dysentery-like) had a 

mortality rate of above 40%, and that the other two pathogens (influenza, smallpox or 

measles-like) had lower mortality rates (below 15% for the R0=3.5 pathogen, below 8% 

for the R0=15 pathogen). As illustrated in figure 2, the pathogen with the lowest R0 will 

have the lowest peak number of infections per unit time in any given outbreak, and the 

peak of infections with that pathogen occurs later than those of pathogens with higher 
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basic reproductive numbers. During the second introduction of all three pathogens, these 

effects are even more pronounced: the herd immunity that exists at the time of the 

second introduction has a disproportionate effect on the pathogen with the lowest R0. 

Ecological interference between all 3 pathogens, as described by Rohani et al is also 

likely to contribute to this phenomenon.(40) If the majority of infectious-disease deaths 

on Pacific Islands were caused by low R0 pathogens subject to such dynamics, the 

mortality transition does not necessarily require an explanation beyond epidemiological 

and ecological effects. 

Including genetic effects did increase the sets of circumstances under which Pacific 

Island like patterns could be observed. It became possible to observe Pacific Island like 

patterns when the pathogen for which R0=15 had a very high mortality rate (figure 4c, d 

and f). However, such scenarios required specific, already very high, starting 

frequencies of the allele that protected against the pathogen for which R0=15. A role for 

Darwinian evolution in the shift in mortalities observed across Pacific islands therefore 

requires that unknown selective pressures were maintaining the same high frequencies 

of protective alleles at specific loci on many disparate islands before any of the novel 

pathogens arrived. We cannot rule this scenario out, but it seems unlikely. 

We also explored the possibility that infectious disease mortality rates are affected by the 

level of herd immunity, by making infection mortality a negative function of the 

proportion of the population already immune to that pathogen. Such a relationship is a 

potential proxy for one or both of the following phenomena: 

(i)  The higher the average age of those infected, the higher the infection  

mortality (adults are more likely to die from infection than children); 
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(ii) The higher the proportion of the population infected at a given point in 

time, the higher the infection mortality rate. 

The former of these effects could be mediated by age, e.g. haemorrhagic smallpox and 

severe varicella being more likely to occur in adults than in children.(33) As for the latter, 

there is evidence that for measles, intensive exposure to infection is linked to higher case 

fatality rates,(41) and it is entirely possible that such a relationship holds true for other 

infectious agents. 

We found that the stronger the herd immunity feedback on infection mortality rates (the 

higher the value of γ), the wider the possible range of maximum mortality rates each 

pathogen could take, and, crucially, scenarios in which the pathogen with the lowest R0 

(R0=1.5) had a relatively low mortality rate became possible (figure 3b and 3c). 

If we assume that smallpox had the highest case fatality rate of all the pathogens 

considered in the introduction, we might tentatively suggest that the scenario indicated 

by marker 2 in figure 3c is the most plausible. Here the pathogen for which R0 = 3.5 

(arguably smallpox-like or influenza-like) has a consistently high maximum mortality 

rate (~30%); the pathogen for which R0 = 15 (arguably measles-like) must have a 

maximum mortality rate around 10%, and the pathogen for which R0 = 1.5 (dysentery 

like) can take a very wide range of mortality rates: suggesting that mortality from this 

type of pathogen (i) is not essential to create first contact like dynamics, given the 

presence of the other two pathogens, but (ii) in no way precludes first contact like 

dynamics. 
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Genotype certainly does affect human susceptibility to infection, and infectious diseases 

undoubtedly represent a powerful selective force. However, our best-studied examples of 

human disease resistance alleles under selection from pathogens - the haemoglobin 

mutations which provide malaria protection – attained their present day frequencies over 

thousands of years.(42, 43) It has been suggested that natural selection could have 

accounted for the known decline in tuberculosis mortality between 1830 and 1950, but 

Lipsitch and Sousa have shown that it is implausible that genetic factors could have 

brought about such changes in the time available.(44) Galvani and Slatkin considered the 

possibility that either plague or smallpox may been responsible for increased frequencies 

of a specific deletion in the CC-chemokine receptor type 5 gene (CCR5-Δ32) observed in 

European populations: the smallpox like pathogen could increase the frequency of CCR5-

Δ32 to a frequency of 10%, but this required sustained selection over 680 years.(45) The 

timescale of the Pacific Island mortality transition is shorter than the timescales 

considered by either Lipsitch and Sousa or Galvani and Slatkin, and the models we 

present here demonstrate that the circumstances under which a genetic mechanism could 

account for a first contact like pattern are restrictive. A herd immunity linked mechanism 

seems more likely and is consistent with a wide range of possible pathogen mortality 

scenarios. If the herd immunity hypothesis is correct, then current Pacific island 

populations are at no higher risk of mass mortality from newly emerging infectious 

diseases than other geographic groups. 
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Figures 

Figure 1: Population dynamics in Pacific Island populations, 1830-1930. Here we 

visualise data from census reports for various indigenous populations of Pacific Islands. 

All reports other than those for Rotuma are as compiled and reviewed by Norma 

McArthur(3); the Rotuma data came from other reports including original documents 

transcribed in 1960s by Dr Alan Howard.(20, 46) To facilitate comparison between 

populations of different sizes, we display each report of population numbers relative to 

the size of the population at the preceding report. Each population’s time series begins 

with a value of 1, at the first time point for which we have a report. Values greater than 1 

indicate that the population grew since the previous report; values smaller than 1 indicate 

that the population shrank since the previous report. The first available Fiji datapoint 

comes from 1879, but Fiji was estimated to have lost >1/5 of the indigenous Fijian 

population over a 4 month period in 1875 due to a measles outbreak (3), so for the Fiji 

time series we extrapolated a higher starting population in 1875. 

Figure 2: Pacific Island first contact-like dynamics within the model. Here we 

illustrate a scenario in which the first introduction of three pathogens leads to a ≥20% 

loss in population size over a quarter year period, but no more than a 5% loss over a 

quarter year period when the pathogens are introduced for a second time. Parameter 

values were as follows: 01 = 0.1, 02 = 0.35 and 03=0.01, and γ=1. All other parameters 

are given in the Methods. No protective alleles were included in this scenario. 

Population size is indicated by a dotted black line; deaths as a proportion of total 

population is indicated by a solid red line; numbers infected with each pathogen are 

indicated by different coloured lines as shown in the legend. 
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Figure 3: Parameter combinations giving rise to a Pacific Island first contact like 

pattern, in the absence of genetic changes but including a herd immunity effect on 

pathogen mortality. No protective alleles were included in this scenario. The maximum 

mortality rates for each of the three pathogens (θ1-3) were allowed to vary between 0 and 

0.75. Latin Hypercube Sampling was used to identify combinations of θ1-3 which gave 

rise to a first contact-like pattern as described in the methods. 25,000 different 

combinations of values for θ1-3 were tested. Panels (a-c) illustrate results for different 

levels of parameter γ, which controlled the extent to which the proportion of the 

population already immune to a pathogen affected that pathogen’s mortality rate. All 

other parameters were as detailed in the Methods. Markers 1 and 2 in panel c indicate 

two key outcomes that only become possible when γ takes values approaching 1. The 

implications of these outcomes for the types of pathogen behaviours capable of 

generating a first contact like pattern are discussed further in the Results and Discussion 

sections. 

Figure 4: Starting frequencies of protective alleles necessary to create a Pacific 

Island first contact like pattern if genetic changes can contribute to a drop in 

mortality rates. We assumed that heterozygosity and homozygosity for each  

protective allele provided 100% protection against death from the relevant pathogen (i.e. 

p1,ijk=1 where i>1, p2,ijk=1 where j>1, etc.). We used Latin Hypercube Sampling to select 

different starting frequencies for each of the three possible protective alleles, where each 

allele could start at a frequency between 0 and 1. 25,000 different combinations of 

starting allele frequencies were tested. Panels (a-f) illustrate combinations of starting 

allele frequencies (s1-s3) which produced a first contact-like pattern (as described in the 

methods) under six different pathogen mortality scenarios. 
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s1 is the starting frequency of the allele that protects against the pathogen where R0=1.5; 

s2, R0=3.5 and s3, R0=15. Values of the three pathogen-specific maximum mortality 

rates, 01, 02 and 03 are given in the title of each panel. In all panels, γ=0. All other 

parameters are as given in the Methods. 
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