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Introduction 

(iv) 

This thesis aims to provide an introduction to the modular represent

ation theory of algebrB;ic Chevalley groups. Chapter c!> 1i contains the 

general theory so far knOVffi, most of which is due to Green [6] who sets 

up the modular theory. in the more general context of co-algebras. In p 2 

the decomposition matrix is discussed. In particular, its reliance on the 

p-restricted part is made as explicit as possible. The general results 

obta. ined are applied; to the A1 ,A2 and B2 ce.ses. Chapter ~ J provides the 

simplest example of the theory, that of the group SL(2~K), K an 

algebraically clo'sed field!. of char. p * O. The structure of the Weyl module 

reduced modulo p is given in (3.2). This was done independently of 

Cline [5]. In: (303) the structure of the affine ring K[SL(2,K)] is, 

analysed, which provides the setting for (3.5) where the injective 

indecomposable modules are found. Section (3.6) gives the Cartan invariants 

and blocks, their nature in general being conjectured at the end of' the 

thesis. 



~ 1 THE MODULAR REPRESENTATION THEORY OF ALGEBRAIC CHEV ALLEY GROUPS. 

(1.1) Preliminaries. 
Let K be an algebraically closed field and G a linear 

algebraic group. Then G is a closed subgroup of GL = GL(n,K) for some n. 
n 

Let '3- = :r(G,K) be the commutative K-algebra with identity of all functions 

G -7 K under pointwise operations. 

(1.1a) The Affine Ring R 

G possesses an affine (co-ordinate) ring R = K[G) 

of regular functions. R is a finitely generated K-subalgebra of ~ and 

arises in the following way. 

Let K[GL) = K[t .. ,b)where ~ .. ,b E 3- 1~i,j~n, are 
n lJ lJ 

defined by ¥ ij:x I-? xij ' ~:x t--->, (det~tfor all x = (Xi) € GLn• 

Then there exists an exact sequence, 

O~'J(G)~K[GL 12..; K[G]----7 0 
n 

where L : f~ fl G restricts functions to G, ker1: = J (G) and 

G = f xE GLn : f(x) = 0 V f E.'J (G)). Regular functions can be described as 

follows. Define f ~:r to be finitary if it satisfies the property, 

f(XY) = L: f.(x)r(y) 
. I 1 i 
(.(, 

all 
, 

x,y E. G where f.,f. E. Rand 
1 1 

I is finite. Then a function is regular if and only if it is finitary. 

For suppose f is finitary. Then from (1.1.1) f= I:r.(1)f.cR. 
i.fI 1 1 

Conversely, if r is regular then it must be finitary, since ~ .. , bare 
lJ 

clearly so. This, of course, is a restatement of the fact that group 

multiplication is a morphism. 

(1.1.1) also shows that R is closed under left and right 

translations. For if feR then R f = 2: f: (x)f. E R, and 
x 1 1 

L f = 2:: f. (x)f'. E. R. Hence R may be regarded as a 2-sided KG-I:lodule x 1 1 

with right translation as left G-action and left translation as right 

G-action. 

(1 .1 b) R-moclules 

a K-basis 

Suppose that V is a (left) rational KG-module having 

Then, by definition, the functions a .. :G~K in 
lJ 

1 



the equations 

(1.1.2) xv. = 
J 

~ a . . (x)v~ 
i E I ~J 1. 

(iEI, xcG) 

all belong to R. The matrix A = (a .. ) is called the invariant matrix 
~J 

of the representation. V is said to be locally finite if A is column 

finite and it is easy to show that this definition is independent of the 

basis chosen for V and is equivalent to the statement t hat every cyclic 

submodule of V is finite dimensional. By a (left, right, 2sided) 

R-module we understand a locally finite rational (left, right, 2-sided) 

KG-module. A R-homomorphism is simply a KG-homomorphism. It is 

i~mediate from local finiteness that every irreducible R-module must be 

finite dimensional. 

(1.1.3) Proposition R is a 2-sided R-oodule. 

Proof We prove R is a (left) R-clOdule. Let r € Rand m be minimal 

such that, in the above notation, 

R r x 

m I 

= ~ f.(x)r. 
i=1 ~ 1. 

all x E: G. 

Clearly it suffices to prove that KGf is finite dimensional (i.e. R is: 

locally finite). In fact we show tClat (f) . b ' . . ~s a as~s. 
~ ~=1 ••• m 

By 

minimality of m, (f. ) 
~ 

is a linearly independent set. Similarly 

is a linearly independent set and hence there exist Y1.'. y mEG such 

that (f~(y.)) is non-singular. This means that fi may be expressed 
~ J 

as a linear combination of the R f and 50 belongs to KGf.# 
Yj 

The category of R-modules and R-homomorphisms is closed to taking 

submodules, quotients and sums. Also the Krull-Schmidt and Jordan-

Holder theorems hold in this category, as do standard theorems on 

complete r educibility. 

Henceforth we assume R-modules to be left unless 

otherwise stated. 

2 



(1.1c) The Coefficient Space 

Let V be an R-module with functions a .. E R 
l.J 

defined as in (1.1.2). Then the coefficient space cf(V) of V is the 

~subspace of R spanned by the CIi .•• 
l.J 

(i, j E r) •. This is independent of 

the basis 

(1.1.4) 

(V)iE.I 

aij(xy) = 

chosen for V. Since 

we see that cf(V) is a 2-sided R-submodule of R. In fact~ 

(1.1.5) Proposision Let V be an R-submodule of R. Then cf(V) is 

the least 2-sided R-submodule of R containing V. 

Proof Evaluating xv. = La Si. •• (x.)v. at the identity gives 
J i E r l.J l. 

v . (1.:x:) - ~a: ... (x)v.(1). That is v. =- 2:v:.(1)a .. Ecf'(V). 
J l.J J J 1. 1.J 

Hence V ~ cf(V) • 

Now let VI be any 2-sided R-submodule of R containing V. 

Then L _I V. =- L v.(x)a.. 'tJ j E.I" x ~G. 
x J i E. I 1. l.J 

As in the proof of (1.1.3) we find that all a .. EW since W i s a 
l.J 

right R-module. Therefore cf(V) ~ W. II 

More generally we remark that any R-module V may be embedded in a 

direct sum of copies of cf(V) via the map v. ~(a;..) I. 
l. l.r r€: 

(1.1.6) Theorem (Burnside) 

Let V be an irreducible R-module of K-dimension d. 

rrhen, ( i) V is isomorphic to a submodule of R. 
d 

(ii) cf(V) = e v. where each V. ';tV 
i =1 l. l. 

(iii) cf(V) contains all copies of V in R. 

(In f act (ii) is the cla ssical Burnside theorem. Since (iii) follows 

imoediately from (1.1.5) we prove part (i) only.) 

Proof of (i) Let V be as in (1.1.2) with III == d. 

For each r =- 1, •.•• ,d the K-map e : V ~ R defined. by 
r 

e (v.) =. a . . 
r J rJ 

(1 ~ j ~ d), is a R-homomorphism. 

3 



Since V is irreducible e is either 0 or a monomorphism. But 
r 

~ :: 0 implies that a . :: 0 
r rJ 

(1 ~ j ~ d), contradicting the non-singularity 

of (a .. ). Hence e is a 
l.J r 

R-monomorphism. 

(1.1d) The Socle of R 

If V is an R-module, then the socle ~(V) of V 

is the sum of all the irreducible submodules of V. Hence cr(V) is the 

unique maximal completely reducible (c.r.) submodule of V. 

(1.1.7) Theorem (i) Let fV~~AGA be a full set of irreducible R-modules. 

Then cr(R):: EB cf(V,). 
").f;/\ 

(ii) If · cr(R):: ID VIoL with fWac1O(E:A a set of irreducible R-modules, 
cx6A 

then for each AG", the set A;t:: fatE A : Wei. ~ VA} contains exactly dim V). 

elements, and r. ViC(:: cf(V;t)' 
Ol. Eo A}.. 

Proof (i) Clearly ~(R) C l: cf(VA) using (1.1.5). But by (1.1.6(ii)), 
').E:.A 

cf(V}.. ) is a sum of irreducibles. Hence O-(R):: L. cf(V,,). 
}.E:.A ""-

Directness follows from the Jordan-Holder theorem. 

(ii) Let C'A:: L. W«., then a(R) :: r C,t. Now by (1.1.6), c}. C; cf(V,t) 
cxeA" 

for all A€. A. Comparison with (i) gives C.\:: cf(Vi\.). Hence the result.,v 

Finally a result on c.r. module s. 

(1.1.8) Proposition V is a c.r. R-mollule if and only if cf(V) ~ cr(R). 

Proof Let V be c.r. , then V:: .E VoL with VO(. irreducible. 

Hence cf(V):: E cf(V",) ~ oCR). Conversly if cf(V) ~ O'(R) then cf(V) 

is c.r. But as already pointed out in (1.1c), V can be embedded in a 

direct sum of copies of cf(V). Hence V is c.r. 

R. is said to be semisimple if oCR) :: R. By (1.1.5), 

cf(R) :: R. Therefore (1.1.8) gives R semisimple if and only if ev~ry 

R-module is c.r. 

(1.1e) Injective R-modules (Green (6)) 

An R-module I is said to be inj ective if whenever 

V,W are R-modules with VC;;W and e: V"-?I a R-homomorphism, then 

* there exists an extension e : W ~ I of e. 



;.;....--=----;:::7--::.:::..:::- -_._.;: ~ ~ - .. -~ ....... -

It is routine to show that finite direct sums and direct summands of 

injective R-modules are injective, and that an injective submodule of 

an R-module V is complemented in V. What is not quite so obvious is 

the fact that a direct sum of injectives is injective, but we do not 

prove this here. The following proposition shows that injectives are 

characterised by their socles. 
, 

(1.1.9) Proposition Let 1,1 be injective R-modules. Then every 
, 

hom. (isom.) 9: cr(I)~CT(I) extends to a hom. (isom.) 
ICC , e : I~I • 

I >Ie t 

Proof The R-map e: cr(I)---')o-(1) e>..-tends to e : 1--'>1 by 

injectivity of I. Suppose e is an isomorphism. 

. monomorphic since 
>:< ~~ 

(kerf) ) = kere n U (I) = o. 
~~ 

, 
Hence 11 = D (I) has a complement 12 in I • 

I , 
i.e. I = 11 $ 12 and so a(1) = U(I1 ){f)0-(r.2)· 

I >(I 

But er(1) = e (er(I))C;: 0-(11). Hence 0-(1
2

) = 0 

i.e. e*' is injective. 1/ 

>« 
Then e 

and so 

is 

12 = O. 

Let V be an R-module and I an injective R-module . Then I is said 

to be an in,jective cover of V if there exists an R-map e : V -" I which 

induces an i::;omorphi sm cr(V) -7 a( I ). 'I' k Llap e is nece3sarily an 

embedding, and it is an easy consequence of (1.1.9) that I is unique 

up to isomorphism. 

(1.1.10) Theorem (6) Every R-module has an injective cover. 

The proof of this importan.t r esult rests on Braueis idempotent lifting 

process and will be omitted. 

It is immediate that an injective cover of an irreducible module must be 

indecomposable . In fact, 

(1.1.11) Proposition There is a 1-1 correspondence between the 

isomorphism classes of injective indecomposable R- modules and the 

isomorphi.sm classes of irreducible R-modules given by I ~O'" (I). 

Proof Because of (-1.1.9) and the above r emark we need only show that 

the socle of an injective indecomposable I is irreducible . 

5 



- - - - - ----- --. ... ~ --

Suppose not, then (J" (1) == V1 ro V 2. where V
1

' V 2 are non-zero. 

Let 11~ 12. be injective covers of V1 ' V2. resp, Then I is 

isomorphic~ to 1
1
• $ 12 since they are both injective covers of 0" (1). 

This is a contradiction. 

In a manner to be elucidated in (1~6.1) R may be 

de composed uniquely into a direct sum. of inj ective indecomposables, and 

the proof of this depends crucially on the following, 

(1.1.12) Proposition R is an injective R-module. 

Proof Let V be an R-module. Then. it is easy to verify that the map" 
~; 

( (f) == f 0 f,. where 

{ : R ~ K is given by ~ (f) == f( 1,)., is a K-linear isomorphism. 

Let V ,W be R-modules with Vc;;. Wand e: V -7 R any R-map. 

Extend ~e in any way to a K-linear map 0£. : W-? K. 

el 
, 

e'lv Let : vY ~R be the unique R-fl1.ap such that f e = oJ. • Then is 

an R-map IT --'>R, and f (8\v) == (re)lv =ollv = {,9 

Hence e'\v ::: e .1/ 

This completes (1.1) and attent i on will now be r estricted 

to G a Chevalley group. 

(1 . 2) The Chevalley Group [1J , [15) 

Let fl be a simple complex Lie algebra with Cartan: suh-

a l gebra h and associated root syst em l? with Weyl group VI. f 
contains a fundamental syse m 6. and a s et ~ + of positive roots. 

>Ie . 

h ffi t the IR- s pa ce ge nerated by 6. , becomes a Euclidean space of dimension 

1 ==- I ~\ (the rank of g) when e quipped with the positivE! definite inner 

product ( ,) dual to t he Killing form. Le t X de note the full 

l a tti.ce of we i ghts in h*1R and X+ the subset of dominant weights. 

Then X has a ba sis consisting of the fundamental domina nt weights 

f ~ \ (relative toA) a.nd is endowe d with a partial order ~ ., 
i i =1, •.• , 1 

where A ~ JL whenever" - p is a non- negative i nt egral combinat ion of 

fundamental root s . 

.6 

I 

I 
I 
Ij 
Ii 



--......,.-:-:;,------_ •. ,---- -------- --

Let 11 be a representation of Ji on a ~-space V of dimension 0. 

The n given an algebraically closed field K and an admissible Z -form 

V7J.. of V, a Chevalley group GlC = GV K can be constructed as follows. , 

Let l x
r

' hs: rE ~, sf l::.. \ be a Chevalley basis of Ji and set 

a closed subgroup of GL(V
K

) = GL(n,K). Thus GK may be viewed as a(semi-

simple) algebraic group so the results in (1.1) apply. 

Certain subgroups of GK turn out to very important in the 

representation theory. Let ur : SL( 2,K) --"> GK, r E.I, be the homomorphism 

which maps (1 to) (10) o 1 ) t 1 

be the ima ge of' 
(
to \ . 
o tJ 

onto x (t),. X (t) 
r -r resp., and let 

Then we define subgroups 

1:.+ U = <. x (t): r t ~ " 't. E: K ) ,. 
r 

H =- <. h (t): S E b., t: E. K "> and 
s 

u =- <.:x: ( t ): r E ~ -" t E. K) where l :: ~+ U ~
r 

h (t) 
r 

U,U are unipotent groups and H is a to r us i n GK• B = HU is a Bore l 

sub gro up a r.d G
K 

= ( B, N :: NG( H)) is a B. N pair with ~,V \...yl g t'()UP W = NIH 

and root syste m ~ • 

He nceforth we a s sume that GK is a univer sal Chevalley group of type Ji 

ov e r K. This means pre cisely that X may be identified with X(li), the 

*. 
group of r a tional characters of H. Hence h IR may b e ide ntified with 

'" H \R :: X(H) 0 IR. Some i mplications of this re striction a r e that H :i s 

'" isomorphic t o a direct product of' 1 copie s of K a nd that .ii,h are 

t he Lic a l gebra s o~ GK,H resp. 

(1.3) The Socle of R and the irreduc i ble R-modules, R =- K[G1J • 

Her e a nd throughout the r e mainde r of ~1, Ro :: Ko[GKl 
Q 

wher e K K 
0' P 

a r e a l gebraically clo~ed fields of 

charact eristic 0 and cha r p t- 0 r e sp. 

-, 



Let V be an R-module, and for A £ X(li) define 

(1.3.1) 
:\ 

== f v (;; V: hv : : A (h)v, all hE H) Then V == if) V'). V . 
If' A is such that VA t- 0 then it is called a wei~ht of V and we let 

1T V denote the set of weights of V. Now Vi acts on X(H) thus: 

for wE: W, W(A)(h) = A (w1h w). Hence and d ' __ 1 d' Vw('A) 
~m V' = ~m 

In particular 1T V is Vi-invariant. 

( 1 .3.2) Theorem [15J 

Thus ()' (R ) = R o a 

R a 
is semisimple. 

but we point out that this is not true for 

The Irreducible R-modules 

R • 
p 

The irreducibles are knovm completely and we state the 

fundamental result at once. 

(1.3.3) Theorem B 51 Let V be an irreducible R-module. Then, 

(i) There exists a unique B-fixed line L in V with corresponding 

character ~ which is uniquely det ermined and dominant. All other 

( ii) 

( i i i) 

wei ghts of V are of the f orm Jl < A 

called a highest we i ght vector. 
I 

Any non-zero vector in L is 

V~V if and anI:; if their corre sponding dominant characters~ 

called highest weights, ar e equal. 

Every i\ E': X+ i s the highest weight of some V. 

We remark tha t a s i mila r theorem holds for irreduci ble 

8,- modules. 

(1 -3.4) Corollary Let V be a n irreducible R-mod ulc . Then 

EndR (V) = K LV' wher e L V i s the identity map on V. 

Preof Clear, since V i s absolut el y irreduc i ble by t he theorem. 

Let f V(~ )) II c X+ denote a full set of i r r educible 

Ro-module s and ( M(I.») i\ E: X+ a full set of irreducible Rp -modules. Then 

t hey may be r ealised a s follows. · Let V be an irreducible 15.-module of 

hiehest wei e:ht i\ with admi ssible ;I-form V'" Z. Set 

Then V(~) ~ V'). K • 
, 0 

ha~ a uniq ue ma ximal 

Su ppose furth er that VI.,Z is minimal, then v~ K 
, P 

R -submodule th t:! quotient by which is 
p 

8 



Let V be an irreducible R-module. Then V is finite dimensional 

(see (1.1b)) and may be embedded in R by (1.1.6(i)). Wenow describe the 

most natural copy of V in R. Let (v.) 
1. 

be a basis of V adapted so 

is a highest weight vector, and l et (a .. ) be the corres}londing 
l.J 

invariant matrix. Then, 

(1-3. 5) Pro'Oosition Let V be as above with highest weight It • Then 

there is an embedding of V in A",K. = [ f'E: R: Lb-:- f = A (b-)f, all b .f B-)) 

where B- = U H., with image KGa111• 

As a co"rollary we see that V(A) and A . are isomorphic as R - modules 
~rK 0 o 

by complete reducibility~ 

Steinbergs Tensor Product Theorem 

The nature of the irreducible R -modules is known in more 
p 

detail. In order to give a description we me ntion that R admits a ring 
p 

endomorphism Fr. called the Frobenius endomorphis~. which takes each 
t h co-ordinate :t\mcti on t o its P - pOoler. If (If,f') i s a r a tiona l 

repr esent a tion defined over the prime field t h en VFr denot es 
~r ~r 

the Hu- module a ffordin g ~oFr. V'"' h rts ·.i nva rian t rno.trix AJ. -;: 

(a~j) \'lh er e A= (a i ;i ) i s th e invariant ma t rix of V. 

(1.3.6) Lemma (i) If V is an irreducible R - 'module of highest weight 1\ 
p 

then ~r is irreducible of highest weight pA ~ 

(ii) If V is an R -submodule ofR , then Fr(V) = vPr
r p p 

In view of (ii) we always let Fr act exponentially. 

(1.3.7) Theorem (Steinberg~6]) 

n-1 . 
Let " = L: ". p~ where 

i::O 1. 

( r:J.." is the co-root of c( ) • Then 

n-1 . 

o ~ ( ~ ., J) < p for all ol. E: D. 
1. 

M(~) = ® M(~. )Frl. i=O 1. is the irreducible Rp -module of highest weight 1\ • 

111 
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Hence if 0'"). is the invariant matrix of M("), then 

Fr 
(5 = cr· X (J. X 

A ~o "1 •••• X 

The Socle of R 

n-1 Fr 
0: 

" n-1 
(Kronecker product). 

Combining the results so far in (1.3) with (1.1c) and (1.1d:) 

we have, 

(1.3.8) Theorem (i)Let V be an irreducible R-module of highest weight 

A as in (1.3.4) and dimension dA,K. Then cf(V) is 

10 

the 2-sided R-module generated by a
11

, and is isomorphic 
a dir ect sum o f 
to~ dA,K. copies of V. Moreover cf(V) contains all 

copies of V in R. 

(ii) R = cr(R) = (9 cf(V(,,», 
o 0 ItE X+ 

<r(R ) =- ffi cf(M(~)) and the se decon:positions are 
p ?ex+ 

unique in the sense of (1.1 .7( ii». 

1 .J+ Redu~t ion llo <'!.'~ 

We r e t ain the notation of (1.1 a ) a nd put ~ .. = 't:(~ . .). 
~J ~J 

G
K 

i s ge nerat ed by un.i.po t ent el em(:mts ( s ee 1.2), hence 't(b) = 1 the 

identity of R" and R = K Lt . ] . 
~J 

Define a ring hOl'lOI;.orphism )l : R -'P R ® R 

by )l f(x,Y) = f (XY), 

Note tha t from (1.1.1), 

( Le . f is tht: co-norphism to l:lultiplica bon in GK). 

jJ-f = Z f . ®f: 
iE-I ~ ~ 

with 
I 

f.,f.E.R. 
J. ~ 

n 
Also by (1.1. 4, ) u.'t .. = ~ 1:. ®L . 

/- ~J r =1 J.r rJ 
('Y) 

Let K = KO' and set LO =- Z[ t'i). Then by (t) 

Also LO is fr ee a s a Z-module, since it may be ide~tified with a 

Z-subalgebra of the free Z-module Z[U-) ® z[Hl €J Z[U] • 

No 'll let K = K and 
p " F p 

the Galois field of p elements. 

Then II L c L ® L 
r p p p p a nd the obvious ring epimorphislIli e: LO ~ L

p
., 

In:.lkes the f ollowin@; diagram commute. 



La 
)10 

) La ® La 

91 1 ells 
L ? L ® L 

P' )J.p P P 

Hence if A == (a .. ) is an invarianrt matrix for Ro l.J 

such that Ol •• E. La, then e (A) == (e (a .. )) = (a: .. ) 
l.J l.J l.J 

== A is an invariant 

matrix: for L 
P • 

Now let V be an RO-module. Then there is a free Z

submodule LO(V) of V " ca.lled ant La-lattice" which has~, Z-basis 

( vi) i € I 
(ii) the 

such that (i) (vi) is also 8), KO-basis of V, and 

a .. E La • 
1.J 

invariant matrix .A. = (81.ij) 

Define V::: LO(V) ® K • 
P' 

aifforded by (v. ) 
1. 

Then V is an R 
p 

has co(~fficient51 

-module: with 

invariant matrix. A. = (a;: .. ) 
1.J 

ai'i'orded by the basis vi == vi ® 1K • 
P 

V is; called the'reduction mod p' of V. The structure of' V depends 

upon the choice of La-lattice but we do have IT V = 1T V ' multiplicities; 

count-ed. 

Remark As the notation indiCates,. we do not specr:ify the choice of L -a 
lattice in the reduc'Uon unless it is essential to: the argumen:t. 

With notation as in 
d 

"'\,.KO 
Then La (V( ,),).} ~ L 

i=O 

(1.3), l e t 

z( v. ® 1K ) 
1. a 

have basis f v. : 1 ~ :i:. ~ d KJ 
1. A "-1) 

is an La-lattice and VA K = V(}J 
,. P 

has ~, unique top composition factor M(').). yeA) is th<;;;n cyclic,. generated 

by ''1'0 ® 1 K where, Va is a highest weight vector of weight A in 
p 

yeA), and also indecompoaable. In the next section we discuss the 

composition factors of V"QT. 

1.5 The Decomoosition Numbers 

Define d:\,J1 to be the composition multiplicity of M)u) 

in mY. The integer,s d:\jL ar e well defined (since 1f V = 1f if) and 

are called the decomposition D.llmbers of R. 
rin g of the 

in the Grothendiec'kl category of' . 



R -reodules we see at once that the deoomposition matrix D = Cd.'},,) x+ 
P Tl~E 

oan he put in unitriangular form,. The relationship 'between those A,. jJ.. 
>II.: 

satisfying d~}L f. 0 can be described in terms of the geometry (Ifn ,.W
p

) 

where W is a certain subgroup of the affine Weyl group to be defined 
p 

presently. 

To this enre let p be a po&itive integer, usually taken to be 
, , 

the reduc'tion prime. Define the p-diagram. r to be the union of all 
p 

( .:c. v ~) 
hyperplanes of the form H = l xc~ : (x,c£) :: np, ct.E~ ,n~ Z • 

d. ,.np -ill 

* A p-alcove is defined to be a component of l1R .... rp. Let s 
oL ,np 

denote 

the 'reflection 5: (x) = x. - « x.,OI.V ) - up) 
01., np 

in the hyperplane H 
"',np • 

Then W is defined to be the group generated by all such reflections. 
p 

In particular r
1 

is the Cartan-Stiefel diagram and VI the affine Weyl 
1 

group;: r 0 is the infinitesimal diagram and W 0 = W. In r 0 the alcoves 

which are unbounded, are the Weyl chambers. X+ is contained in the 

closure of the fundamental Weyl chamber and the fundamental dominant weights 

lie on its w·'llls.. We call X ... :: fA C; x+ : o · ~ Cl.,. or) <'. p,. 
p 

oL EA) the 

p-re stricted region of X*. It i3 well knO"Nn that X+ 
p 

contains ~ 
[X:t. ) 

p-a lcoves where XI is the root lattice. Finally we not e that VI 
P 

is 

simply transitive on p-~looves. 

Now the main general results known about D are two conjectures 

of Verma [17]. The first asserts that the so called Harish-Chandra p- :inciple~ 

is true , i.e. d~ ~ 0 only if 

(1.5.1) p..-if e = W(A + ~) for some WE. W , where 
p 

i3 the half SUm of 

positive roots. This was proved by Humphreys [7] for p> h, the Coxeter 

number of 1> , a nd. for general p in type A (G = 3L 1) by Carter-Lustz.ig. 
n n+ 

uJ. In fa~t Humphreys proved that the highest weights of the composition 

factors of an indecomposable R -module a r e r elated in the above way, but 
p 

we know that vCi\.) is indecomposable. The second result,a refinement of' 

the first, states that if d¥ F 0 

v/
1 

r • ••• ,"N
k 

E. Vip such that 

then there exist r efl ec·tions 

(1 • 5. 2) ::\ + p ~ w 1 O. -+< ~ ) ~ w 2 w 1( A + P ) ~ ••••• ~ wk···· W 1 (;t + ~) = f + ~ • 



This was proved by Jantzen{i. 01 for ~ of type A anti a few other cases 
n 

of small rank, again for p> h. We attempt to gain further information 

about D in § 2. 

1.6 The Injective Indecomposables 

Let 1(1\) be an injective cover of M(,,). Then by (1 .• 1.11i) 

(I(A)) A E X* is a full set of injective indecomposable R -modules. 
p 

Copies of these injeotives are distributed in R in a way given by the 
p 

following. 

(1.6.1) Theorem [61 (i) There exist R -submodules I(~). of R , 
P t9 J. P 

1 ~ i' dA :: dim M(A), such that Rp = i\fx+ (I(A) 1!B •••• G:l I(A) d" ). 

This decomposition extenJ.s that of cr (R) in (1 .3.8(ii)) , 
p 

o-(I(A).) =: M(A). and r(A)J.' ~ I(A). J. ). 

( ii) If R = El) JOt 
P o.t€.A 

is any decomposition of R a$ a direct sum of 
p 

indecomposable R -submodules Ja p 

A'). :: f oi € A : Jot ~ r (A)) contains 

of R ,then for each 
p 

elements . 

the set 

Proof (i) Recall that 

exacly cii\. 
d~ 

cf(M(~)) :: m M(A.) . 
i=1 J. 

in (1.3.8(ii)), with 

!lr( /J. ~ M(i\). Let I (A)! he an inj ective cover of' MeA). • Then since J. J. J. 

R 
P 

is inj ective (1.1.12) we have 2 injective covers of 

Rand ID I(I\)! • Hence there is an R - isomorphism 
p '\ ~ J. P . 

I\,J. 

cr (R ) viz : 
p 

rp: ED I(A) ! -4 R • 
). P 

Defining r (A) = rp (I CU !) 
i J. 

proves (i) • 

(U) It is easy to show that. cr(R
p

) ::: fD O(J()(). But Jc( is injective 

iniecomposable and so cr(J~) is irreducible. An application o~ (1.1.7(ii)) 

give s the r e sult. 

RelJl3.I'k The theorem holds trivially for RO be ing identical with (1.1.7). 

1 .7 Cartan Invariants 

... 
Define the Cartan invariants C' ~ , for i\, J1 €oX , to be the 

composition multiplicity of My,t) in I(A). We shoi'r that these integers 

depeni solely on the decomposition numbers. 

1'3 



For R -module s V,W let (V yoW) == di~ Honn (V,W) • 
P P P p 

(1.7.1) Theorem [6] (i) Every injective Rp-module arises as the reduction 

mod p of an injective RO-module. 

(ii) Let V be an R -module. 
p 

Then for f1 e. x+ ,. (V ,.I~) ) P is the 

mul tipl:iici ty of M~) in V. 

(iii) Let V be an RO-module and I an injective RO-module. Then 

(V ,I) 0 = (1/ "I)p • 

We suppress the proof,. but use the theorem to reach our ob~ective. By 

(i) there exists an injective RO-module Ip such that ~ ~ I~). 

From (ii') and (iii) to d.J..p == (V'GJ ,I(.u.» p == (V(~) ,.I)1) 0 • 

But by complete reducibility this i s Just the multiplicity o~ V(A,) in 

I,u.. It :f"ollo'NS that d"Jl is the mul tiplici ty of V'(IT in. I (p.) and 

in turn,. 

c' == L. d1f, dl»u. ( = (I(l) ,If,,» by (ii) ). 
¥ ~EX+ " r ~ p 

In gener a l the Cartan invariants will be infinite. In fac 't, evidence in 

case s of low rank suggests that they are either zero or infinite. 

Equat ion (1.6.3) is then interpret ed to mean. that c'~ t- 0 if' antI only 

+-
if there exists a. )JE:X such that d l1A.:/; 0, ~).l :f:. O. \'lith this in mind,. 

the Carta n matrix C = (c¥) ha s the form> C = t D•D • 

1.8 Blocks 

+ 
Weights A., Jl (X are said to b e adjacent if either 

( I Yt) "I(~» :-f. 0 or both. 
p Hence by (1.6.3),. 

A ,It ar e adj'acent # C' *' 0 • 
F ¥ 

Therefore , since dn = 1. , d1U- :f. 0 implies the adja cency of A and jJ- • 

+ An equivalence r e l ation ~ on X is then defined by A ~)l if there 

eX:l s'ts a finit e seque,nee ;I. = JlO" }l1 ,. •••• ,).In =p. in X+ such that 

II If are ad,jac-ent 1 ~ i~' n. Hence we have a partition, ..... i' ri-1 

(1. 8.2) X-II = 
. , 

U B). ,wher e 
I\E.B 

f BA1 i\E B is the set of equivalence classes. 

ul1d0r ~ and B is so me set of class r e presentatives i n X+. We call 



+ (1.8.2) the block partition of X and the classes B). blocks. 

For a conjecture on blocks see P 63. It is evident from (1.6.3) and 

(1.8.1) that the following is true. 

(1.8.3) Proposition The Cartan matrix C may be put in the form 

C = where C). are(indecomposabl~ matrices .. Also 

D =- where 
I , t 

DA are indecomposable and C~ = DA.DA • 

The rows and columns of C~,DA are indexed by B). • 

Now for each A € B, define the block components RA, 

e 
R =- L 

). ).J.€. B). 

d).L 
( e 1(.1.1.).) c.f. (1.6.1). Then 

(1.8.4) R 
p 

i=1 ~ 

The main result on block components run$ as follows. 

(1.8.5) Theorem [6] Let I\EB. 

is an indecomposable 2-sided R -submodule of R 
p P • 

of R by 
P 

(ii ) The de composit ion (1.8.4) is a r efinement of any decompo sition of 

R as a. direct sum of 2-sided R -::mbmodules. 
p p 

(iii) RA =- L: cf(I~)). 
)l € B:

A 
We leave the proof except to say that (iii) is an easy consequence of (~) 

anel (1.1.5). 

RCJn3.rk For p = 0 , equation (1.8.4) is prt:C'isely that of (1.3.7(ii)) .. 

Finally we mention that any R -module V has a decomposition 
p 

V :: E9 W with cf(W .... ) C R.... • V i s said to belong to the blo-:lk B"l 
~€.B 'A "1'\ 1\ 

if this: decomposition is trivial. i.e. if cf (V) CR. 
A 

1.9 Char acters 
finite dimensi o nal 

Let V be a ' /.. R-modul e and define the character X V of V 

by XV(x) = TrV(x) , all x € GK • Clearly Xv E R. By virtue of the 

fuct that Xv-e x) =- XV( xs ) where Xs is the semisimple part of x, 

Xv is determined by its values on H. Denote by z[x1 the integral group 

ring of X with multiplication given by [~1. [Jll =(A. * }l] . 

Then from: (1 .} .1) we see that X V may be represented formally 



where ny \u-) :. dim VJJ.. 

The Weyl group W act s on X , and so on z[xl , this action extending 

Z-linearly to 'liN. Thus w [A1 = [wAl for wE W. Hence from the remarks 

following (1.3.1) and the fact that lfV :.1fV· ' the following is clear:

(1.9.1) Pronosition (i) Xv = L: w X; € z[xl W where 
wEW 

X; =- Z + ny~) [P-1 • 
).lElTV() X 

(ii) x.v =- Xv . 
(iii) Xv s w =- XV·XW • 

15 

(Note: -strictly speaking, in (i), mv~) should be multiplied by the factor 

ISt~~}-l.) 

Let X(A) :: X
V

(;\,) ~ . Then Weyl [91 showed that X (A,) could be written 

a s a quotient of a lternating c lements, 

G(~)/ 
X (A) = /G(O) 

d K = dim V(~) = 
A, 0 

where G(AJ = L, detw [w(A. +p) J , and:. that 
wf. VI 

The mult i plicities m().,)!) of V)J in V(A) may be ca.~culnted from the 

formula o~ Kosto.nt or by the method of Freuclenthal [91. 

The a.ction of Fr on Z [X] is giv en by D.l Fr 
== [A] P = [p;\.1 • 

X _3r =- X ~r = .[, ny(J.t) [P}lJ • 
V- . )lEX 

Hence for a n n -module V, 
P 

n-1 . 
Now set <t' (~) =: X M(A) and suppose tha t A = LA. pl. with Ai E X+p • 

i=O l. 

Then froI':l Steiubergs theorem (1.3.7), 

Letting 

wher e 

n-1 Fr i 
~ (i\) == 1f ~ (A . ) • 

i=O l. 

~ (A) =- X 1(A.) , we have the following set of equationo·, 

X (,,) ::: 2: d,\ q> (;!) 
).l~ A ... ).1 

~(,,) =- E d).1-AXva.) 
)H1 

l (,,) ~ L, + . c
111 

<Q (p.) 
).I..E:.X oy-

dAft 'C·:\j.t are defined a s in (1. 5) a nd (1. 7) • 



Let X(~K) denote the character ring of ~K .with multiplication as in 

(1.9.1(iii)). Then~ 
cha r a ct e r s of t h e 

(1.9.5) Proposition Thelirreducible R-modulesform a Z-free basis of 

X(G
K

) • 

Proof {X ().») A € X+ is a Z-free basis of Z [xl W. C [21 Ch VI) 

Hence if K = KO we are done. But since D is unitriangular, 

<P (A.) = L: X'lll X Vi) where C ~.AJ =. D -1. This' means'· that (¢> C).)) '\ E X+ 
).l~A 'y- r 1\ 

i s a Z-free basis of X( G-K ). II 
P 

The characters, indeed the dimensions, of the modules M(A) 

are not known in general. However, as in (1.5), if 

<t> (~) =- 2: a().~) X 9-t) with a(A.~) Eo Z, then a(:\,)1) =J: 0 only if 
~ 

)J.EW .l, where W • . A =' W(:t+p) -p ,WtVl ,/lEX. 
p p 

:B'or more inf'ormation on the char acter formula see J ant zen (1 0] • 

• • 
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§ 2. On The Decomposition Matru 

In this section' we are primarily concerned with the essentially 

combinatoric problem of finding the decomposition matrix D given its 

p-restricted part (d )~ X+' X~· That this is possible was observed ¥ 1\ E- py>fc 

by VermaB 7). We begin by discussing a certain matrix fundamental to our 

l!lethodJ. 

2.1! The Pseudo - Decomposition 

All weights appearing in this section will be dominant. 

From (1.9.4) we have , and since D is unitriangular~ 

<Q OJ = L X'I,IL 'Xv (p.) 
).l!. J. "t -

n-1 
Let K = L K. pi " K. C X+'. The we form the R-module 

'=0 ~ ~ p 
~' n-1 

N(K) = V(\<O) ® V(1<1 )Fr ® ••••• ® V(K n_1 )Fr with character 

n-1 i 
\V (K) = IT X Fr (K,) 

, 0 1. 
It is not irreduoible in general. 

~= . 

(2.1.1) Proposition 

unltriangulo.r. Hence 

unitriangular and D = D'.T • 

where 

where 

T = (t K)1-) is 

D' = (ll ) is, 
A~ 

We call D' the pseudo - decomposition matrix. Before we can prove 

(2.1.1) we need a 

L emma «' (~) I\'~) :: L. b~ (lJ) <P (») Vii th b (») E: m, b~u. (A +p.) == 1. 
» ~ ? + JL Y'" "JL or 

Proof <p CU ~ (y.) == K~ ~;l.K ~}l-c 1 (K) . :t. (-r) == K~1. ~AI( ~}l-r nK-c(O() 'X (eL) 

'f: ~ Jl -r !rJ1 
where the coeff i cient nK-c(ot) of 1. (oL) i n :t (K) . X (-c:) is zero unless 

ol 'K + -r, and n (K+':) == 1. 
1:,'1( 

= Z X1.1< ~JL"C nK-c(cl) dol)! () ())) 

of I{> ())) i s' zero unless lJ :!G at ~ K+""C' ~ A+ jJ-. 

wher e t he coefficient 

The coefficient of <P (i\ H1) i s ~ ~ n (A +u) d - 1 b 
r A~)J-f ~ r ").+jL,7. +}L _. • r; 

Proof of ( 2.1.1) If ~ 

n-1 . 
== .E I< • p~ 

i =O 1. 

+ K . €: X ,then 
1. p 

18 



If each )). E. X+ , then Steinbergs theorem gives 
J. p 
n-1 . 

(1') 

n-1 
1T 
i::.O 

where )) = L)). pJ. ~ K and we are done. But it is possible to have 
i=O J. 

+ + "" + )) . E. X, ).l. ~ I< . € X and yet )). '1'- X • Let t be the least i such 
J. J. J. P J. P 

that this happens. 

Then 

Then 

If ~:= n-1, write 

k: Fri 
If') (" ):= Tf 11'1 (» -1 . ) 
T v n -1 Tn' . -" ,'" J.;v, 

k 

)) -1 = L: 
n i=O 

i + 
)J 1'P .)) 1 .E.X. n-,J. ,. n-~J. p 

n-1 Fri ) 
and again we have 1T <p ()) i = ~ (ll) • 

i=O 
+ 

If t < n-1 , write )) t =» t, 0 + » t, 1 p, » t, 0 E. X P • 

t t+1 F t F t+1 
~Fr (»t) t{)Fr (V t .t.1):= C{) r (l>t,o) «(>(»t,1) CP(l>t+1)) r 

cP ()) t 1) <P ()}t+1):= L. ben l' (0 by the l emma. 

, f ~ »t: I'" »1:.+1 

Now 

n-1 i . n-1 
If cp Fr (».) = L: cy.t) If 

J. }l. ~» i=O i=O 

F :L 
cp r ~i) , Hence 

+ 
Now t+1 is least such that flt+1 l/:. Xp , and j.1 ~» ~ K • 

Continuing this process given the desired r e3ult. · II 

(2.1.2) Corollary (of the above proof). 
n-1 

If ~ is of type Ai ,A
2

, or B2 then t = If d 
k)l i=O I(i).ti 

Proof This follows immediately from (1') a nd the f a ct that in these cases 

+ + 
if A €: Xp and d1U:f 0 then )l E Xp • 1/ 

Vie now focus attention on the pseudo - decomposition and first demon3trate 

tha t for this reatrix the Harish - Cha ndra property holds for all prime s p. 

Write O(.-v ft if 01. and ~ lie in the same orbit of W. This relation 
p 

is clearly an equivalence relation. 

( 2.1 -3) Proposition A =1= 0 implies 
).K 

Proof Let ..n. (,.) = f K : A~I< to). Then 

A+pIVK+p. 

:( (A) = 1: ~"K 'P (K) , 
k6.n(;n 

anr1 on substitu~ing the Weyl character formula and mmltiplying through by 

the denominator in the right hancl side containing the highest power of p 

Wt. obtain, 
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~ detS [S(:\ +p») • 
SEW 

where E1 ,.E~ E Z [pX] 

E = 1 

and 

Hence for cancellation to occur there must exist a sequence 

(,1.) <3'. 
k. , •••• ,K E.n (A), not necessarily unique, such that 

(1) em ,\ , () KO +e"'kO +.~ "" ......... 1<0, +-p IV 0\0 +P for each K~J1- A • This implies that 

K + P ...... " + p from the very definition of W p. 

If we now assume that d~ t 0; implies A -rp '>J }l+P for A E x; ,. then 

tlO i= O. implies k +p ...... » +p. For from (i') in the proof of (2.1.1) Vie 

have t~ *' 0 if all ill t O. 
K.)). 
~ ~ 

In particular 

KO .... P ""»0 +p , giving K+p .... »+.p. II 

and hence 

This, together with (2.1.3), extends the Harish - Chandra property to D. 

2.2 Determination of DI. 

Vie retain the notation of (1.5) and add to it the following. 

Let (Q 0 - ' f p-alcoves in x; 1. Then f'or CY E: W, C €: (Q. there are trans

~ cr cP in pX uniquely defined by the condition O"'(C) + &" 0' cP lations ,. ,. 
The maps bCT: Ci1 --'> (Jl r defined by ~CT: C ~ C) + ~ cr cp are , 

permutations of (Jl. Let C €: elL denote the p-a lcov e 

{ ~ £. H: : n ..... p <: (A ,el) .<: (n"' .... 1)p , CiE. ~+) n E. Z ) and 
-ill ... ct ~ 0 ) 

A ('" v );+ 
C = (" E.}L : nco( p. <: O. ,0(. ) , (l'k + 1) p ,0( € ~ ,n., E 7. ') -m .... ~o:) 

its upper closure. 

Then we have a partition x+ + f = U C. 
P CECQ 

( ~~ . 2a ) 'fhe Iteration Procedure 

For ~ = A (i) + 

Fri til 

'\ ct.) pi e X+ ,1 E. X+ . 
/\ 1\ 1 define m p' 

'X.. i (::\) = 'X. (), til) X ( A ) • Then if ~ E X;2, (2.1.1) and (2.1.3) imply 

tha t X. (It) may be writt en in the form, 

( 2 • 2. 1 ) X (A) = ~ I:l. (::\ ,w) X. 1 (w.:\) D. (~,w) E z. 
wE. Vi 

p 

We call this the gener ating equation for D'. Let A. = ~O + A1 P , 

If' w = tpoCTE. W with ttX, O"'E:W then 
p 
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Now the essential point about the generating equation is that it may be 

considered as an identity in Z[X] with ~0,.A1 as indeterminates. 

Furthermore p may be treated as an integer variable. Hence if 

}.o + (> T :to + (> £ C,: (1) implies that ~ C~ ,w) :: A(A' ,w). Extend the 
A A 

action of ~ to C,. S (A +'-~) :: o-(A+p) + '0" Cp " A+f€ C. 
~ ~ ,. 

Clearly we have -1 ~ (b~(A +e) - e ,.J.) .( p, C1' e VI, OI.cA, A t: x;. But if 

(~O"(A+r) -p~O() =-1 for some 0( T then X(~(TG\+e) -r) =0 since the 

element s 0 of W 
0(,-

will fix: He nce we my write 

~() •. ,w) :: fdA' ,w) Thus there are I (Q 1 = Iwl 
-iX:~ 

.... 
If .:to +rE.C essentially different types ot' generating equation. 

we write l\. CA o 'w), or b.(C ,-w), for ..6. ("A, w) . 

Let denote the linear map i 
0" . x. = p x and 

1. 

"\ -1 oi set .i\:: (j. 1 (). . • 
1. 1.-

Then if A E: X+i+1 
P 

the cha nge of variables 

i 
P ---'>p " 

( 2. 2.2) 

Remarks 1. 

2. 

ti~ 
~o--»A.ti)' At ~ A. in ( 2. 2 .1) y ields, 

X(A) = L. 6(J,w) X.(cr. 1wcr~11 .A) 
wEW 1. 1. 1.- 1.-

P cr. 1 
w 1.- E: Wi . 

P 

, A might not,_ of course,.. be a weight but clearly 
1. 

.... 
b. ( iA, w.) =' ~ (C , w) if i A + P E. C. 

Suppose nm ... t hat A E: x+ n 
p and define (w 1 E. \V by t f~' . =1 -1' w , u-/1. , ••• ,n p. 

0-. 1 
\''0., • ~ = (w 1.- .1)(5.)' Let 

er, 1 
f - f ( , ) _ , 1.- ( ) 

1.' "\ - 1.'"\ w" •••• , w 1 - w. • w. 1 <.i 1)" 
,1\ ,1\ 1. n- 1. 1.+ + 

•••• (wn-1 )<.n-1) • A , VI j C wIT' i ~ j , n-1, 0 $ i ~ n-1, W 0 :: 1 .• 

Then, iterating ( 2. 2 . 2) for i :: n-1 ,n-2 , •.• ,1 successively yields, 

=22 L: 
n-1 n-1 i 

( 2.2.3) X(A) IT t::.. (i (fi+1 ,?)Ci+1)'wi ) "IT X Fr (f.(i) ) 
w1 wn- 1 i=1 i =O 1.,~ 

(fn,'A = J. f(O) 
, O,}. = fO ,A) 
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(2.2b) Conversion into Pseudo - Characters; 

The aim of this section is to put (2.2.3) into the form 

(w'.) 
of (2.1.1). To this end define e i ~ €: Wpi ,. 1 t; i ~ n~1 ,. hy 

Hence if 

"\ 0.+1) i+1 Th + A P • en 

f .(;D c X+ ,. t ~ i ~ n-1 ,. then 
~,A p 

n-1 i. tw:1' ('Irn-1' 
IT XFr ( f.

ti
) ='I'(~1. ••• Pn-1 • A) 

i::O ~,A \. 

(i) + 
Now suppose that fi,A $ Xp' for some 1. Then the following method will 

n-1 F i li) 
enable IT X r (f. ~) to be expressed as a linear combill8.tion of pseudo-

i=O ~, ..... 

characters. Firstly we may assume that f .(i~ E. X+ ; for if not then use 
~,f\ 

of the formula X (V) == det ()1, (cr,:v) , (jE-.W, will r ectify the situation. 

(i) 
Let t · be the least i such that f. i\ 4- X+.. Then the generating 

~, p 

() -V (f it) ) equation 2.2.1 will express ~ in the form, t-,.i\ 
It) ""\t Fr() + X(ft ,.J.) = 6.:!:.I\.(K O)X K1 ,. K=KO +K1P, KOE.Xp'. 

K 

Utilising the product formula X (1<1) X (f
t 

t1t+~ ) ::: 2: X(cL) , 
+ ,.,. eX 

n-1 i 
IT )CFr (f.U) can be expressed as n linear co~bination of certain 
i=O ~,i\ 

n-1 i . 
1T XFr (-r.) 
i=O) ~, 

with t .... 11 as the least i such that 1:. $ X+ • 
~ p 

Continuing this process gives the desired expr es sion in t erms of pseudo-

characters. 

FinaJ.ly we note that (2.2h) is required in addit'ion to part 

if and only 

(w i+1) 
~ i+1 ••• 

1+1 
p ' X,. where 

if there is an i 
(wj) (wn_1) 

su.ch that e i •.. ~ n-1 • A. and. 

lie in different translates of X+i+.1 
P" 

via. 

(2.2c) Determination of .the Generating Equation 

Let A€:X+2, and X(~) :: L: A ('~f-)'X1Y-t) li S in (2.2.1). 
p }H.? 

(&) 
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Then writing X1.~) = X.~o) X Fr~1) and substituting the Weyl formula 

(1.9.1), 

~ detST [s().+e) -+;- Tpp] ; .E 6(l.,P) L: detST [S~o+~) -+;- T~1+~hJ:J 
S,T €. W ).H.'). S,T E. W I 

(2.2.5) Hence (r. S)y = ( l: S)Z where Y = L. detT [~+p+ Trp] 
S€.W SEW T€.W 

Z ::: L 6 (A ,)1) 2: detT [TY-tO+(» + ~1,*(>h).) 
jJ- T€W 

As remarked in (2.2a), (2.2.5) is an identity in :l0"~1 where A =~O+A1.P. 

Let .n. (:\) = f J1 : A (J~ ~)l) f= 0·1 • 

(2.2.6) Con.jecture The set f T}u o*e) + }u 1 ,+~) p)).l E 1i(J.) ,.T E. W. 

is contained in the convex linear subspace of X with vertices 

fA +(* T~p·) T €. W· 

23 

Henceforth we assume (2.2.6), which implies that the equation Y =, Z holds. 

Moreover if Y = Z" then the coefficients (A (). ~~) appearing in it will 

be precisely those of (2.2.1). Since ho(J..,'A) '= 1 we have, 

L det'f [A+t'+ Trp) - L. detT [T(~o*r) * (It+~hl] 
TEW T~W 

= La A ().,;V La detT [T~o+(» -+;- (}11+r)p] 
)H. Jill) T , W 

Choose the highest weight, together with its sign, which appears in the 

left hand side after cancellation. Since T~ o+~) <. }10+ ~ when T if:. 1 , 

it must equal A (A,P) [}l+~+rp) ,. some )1.E].O'). Now subtract 

L, A (). ,.y.) [Ty,tO+p) + ~1'+r)p ] from each side and repeat the operation. 
TfW 

The pro~edure is continued until the left hand. side vanishes. The 

coefficients (A (:\,p)) thus extracted are those required. 

This . algorithmic procedure admits a graphical interpretation 

for types of small rank which will be illustrated in (2.3). 

~.3 Applica tion to types A1,A2,B2 

(2-3.1) Theorem . Let £ be of type A1 ,A2~B2. For A. E X;.2 define 

+ 
)lo T EX , P 

and 



(ii) A. -++- e + Tpp == T\,uOrT + t» +. ~1 ,.T 11- P )p'. Then 

'X. CO = E 'X..1 Y-tT) +- X1 ,. where X1 == 0, I = At "A2' 
4-T E.W 

11 = .~ ):1 ())i 'A) ,. »i A distinct" for ~ == B2· , 
~=1 r , 

Furthermore if i A +E* T~p : T E: w1 C X;2 , then all weights above are 

dominant. 

',' 2~ 

Proof The equation Y = Z of (2.2.5) has a solution, and from it the theore~ 

follows. Conjecture (2.2.6) also holds. This will be demonstrated later 

in the A A cases. The 4- e~ra terms appearing in the B2 case can 
l' 2 

be deduced from (2.3.2) and (2.3.3). 

(2.3.2) Theorem (Braden[31 ) 

)J. =)l T' TE.W)., 
1 1" 

Then if ~ satisfies (i) A. +r E.C~ (ii) fA +t>+ Tt>p : TE Vlj c. x+. 

(iii) 

IT = 1 
:\jL 

('A 0 +r ret) :1= p " 

i f JL E. D(A) 

== Q otherwise . 

~E.l1- (iv) (A
1
,J.) :F p-1 , ate}1- we ha.ve 

The corollary follow s f rom (2.3.1) and (2.3. 2). The r eader should now ' 

consult FI G 1, configurat ions I and II , and FIG 4-, whi ch exhibit the set 

D(A) i n the A2 and B2 cases . Note that each}!T occurs in a different 

translat e I:.r of x; and)lT i s the highest weight of D(A) occuring 

in 2C,.r. All other el ements of D(A) 
, .. 

are obtained by filling up the 

transla.tes XT in the obvious: sense. We now tabulate some numer i cal 

im'orma t i on. 

I 
, 

I 
I 
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1lJ2. \ I.o.CA)\ IO().)1 

A1 1; Z 2-

A 2:: 2- 6 9 

B2 4- 12 20 

( i ) i of type A1 

(2.3.2), iiUJ remains irreducible for 
+-

From AeX • Hence 
p 

modular and pseudo-characters are the same. Identify weights with integers'. 

We first prove (2.3.1) following the method of (2.2cr). Suppose 

A 7 A. 0 +- A 1 P ~ A 1, :J: O. 

L. detT [A oil- 1 +- Tp] = [A. -+!· 1 +. p'l - [A +- 1, - pJ (11) 
Tew 

[~ +- 1 +- pJ is the hi ghe st weight, hence we s ubtract 

[U
O 

-+! 11) -+! C~1 1 -+! 1)p) -[-(')'0'" 1) + ('At1)rlfrom (1) giv i ng r emainder 

[-(Ao + 1.) + (:\1 +- 1,) pJ - [J. +- 1 - pl (2) 

Tr ). 0 -+! 1 ::: p , we nrc f inished. If not then [p. +- 1, + p:1 = 

[ -{A 0 +- 1) +- (:\1 -I+- 1 )p] is the highest we i ght in (2) a nd subtracting 

[ -(A o +. 1.) +- (A
1 

+- 11)p] - [-(p - ~O - 11) +. J. 1P] from (2) gives zero. 

Diagramatically, 

+ 

'-+ 1- P 

+ 

}L-rl+p 

+ , 

Hence 'X. (">'0 + A
1

P) = X(~o) XFr(~1) +. %(p - 2 -A O) 'X.Fr(~1 -1) 

a nd -D. (;l.) = f:\.}l) wher e }L occurs i f and·. only if :1 0+ 1 F p a nd 

A1 f 0 and )l :: w.A, W = 2A1P O(-1)E. Wp (see ( 2.2.1». 

In particular X (A) ::: IQ (';\) + It' IJ.L). 
This pr oves ( 2.3.1) a nd ( 2. 3 .3). 

We now perform the iter a t i on of ( 2.2a). 
l1) 

By definition r i is t he identity, 

and ol~ = e. 6 W i is given by 
\ 1 1 P . 

"\ CT i -1 "\ ,ti+lIpi+1 __ "\ _ 2("\ . + 1), 
t> i· 1\ :=. W • A. ti +1) + 1\ J\ 1\ ill 

i f a nd only if Aut 1. #- pi, Ai t- o. 

where f .• A is defined 
1 



2.6 

In other words e i 0. + 1) is the reflection of A of> 1, in the highest multiple 

of pi l es s than A + 1, provided A + 1 
i 

is not a multiple of p and 

~i F ~i+1 • If 'A = ~ti.+1) , then (2.2.2) reads,. 

'XC\) == Xi('A) + X.i(~i:;\) , fi.). = (pi - 2 -\) + (Ai - 1i )P~. 
Iterating as in (2.2a) a nd using the fact that ?L(-1) = 0 gives~ 

n-1 . 
(2.3.4) Theorem If A = L: A. • p~ " ).. E x· then 

i=O ~ ~ P 

d. ::. 1 
¥ 

when y. == ~ i.· •• r it· J., 1. , i1 ~ •••• ~ it ~ n-1 • 
1 . 

== 0 otherwise. 

A1 
(ii) <p (A) ::. r. 

i1 =0 

( p? == identity). 
~ 

An-1 

L. 
i =0 n-1 

1· ~ s ~ t. 

i 1+··· .+i 1 (-1) n-
i 

"\.I ( n-1 
A. e n-1 • A). 

Part (ii) is an easy consequence of (i). In particular we see that there 

are at most 
n-1 

2 composition factors of V(?J '" each occuring with mult-

iplicity 1. 

Remarks 1. ( 2.3.L .. (i» was origim.lly proved, though in a rather different 

form , in[1 8") following a method of Srinivasan(14) • 

2. For different de scriptions of the numbers d s ee 
A).L 

Examole A = 138, P = 5. 

~E'l ~3 

- • - I-I · • • 

(? 2 (~+ 1.) :::: P3(A+' 1), hence P2' ~1 r 2 do not occur. 

V(138) = M(138) • M(130) • M(110) • M(108) + M(88) ... M(80) 

A.+I 

. I- • 

~ (A) == X().) - "X.«(>1°'A) - 'X.(~3°'A) + X(P3 r 1°'A) + X(r;o'A) - X(P3 ~ f.J..) 
i. e . <Q (138) == X(138) - X(130)' - X(110) + X(108) + X(128) - X(120). 



(ii) ! of type A2 

I::. = {o( 1, " 0(2' and i ~ 1 ' ~ 21 are the fundamental dominant 

weights defined by (Pi'~;) =b ij , i,j = 1,.2. 

represented by the point (r,s). 

27 

Each J. = r~t 
+ 

~ =-i cX
1 "0(2' 

+ S'Pzt:X is 

e = 0i11+ 0(2·1 and therefore r consists of a regular hexagonal 
p 

\attic~. Every p-alcove has an equilateral triangle of side p as 

boundary and X+ contains 2 p-alcoves CO,C1 • Let 0 ~ CO. 
P 

We first determine the matrix T of (2.1.1). Define 

(> i ,. £'1. I' i ~ 0, by {> i·). =- $~, mi· A ,. mi = « A +r:ir~, f!V) 

• A, (f 0 = identity). 

Proposition 

over all subsets S 

Proof From' theorem ( 2.3.2),. 

=- It' (A) + ~ {s • :U 
(>,.p 

- <P (A) 

n-1 i 
Hence Ip (~)= IT X Fr (Ai) = IT (It> (').i) 

i =O i E. I 

Therefore 'P ().) == L. <l' ( A (S)) , 
S£I 

where the sum is 

if A € C I ", C ... 0 
1 '\ \ 

if A Eo x; ..... c., . 

It is easy to check that A(S) is as given in the proposition. 

As far as the generating equation for D' is 

concerned, the method of ( 2.2c) may be represented by the diagram3 on the 

next page. Each vertex labelled T6W (~S3) in the figures represents 
( \ 

the weight )IT + P + P p aml forms the dominant vertex of a hexagon with 

ccntre ()11 T .., e ) p and radius )1.0 T +- ~. The number of positive a.nd , , 
negative 5i5ns at each vertex of every such hexagon are equal. These have 

becn· deleted foI' clarity. In terms of co-ordinates the weights)iT are 

as be lol" . 
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" " ;l. o+e E Co AO+{'E:.C1 
'1' 

Jio "T )l1 T "uOT ).l1 T , ,. , 

1 (rO'sO) (r1 ,s1) (rO'sO) (r1 ,S1) 

T1 (p-2-r
O
,r

O
+SO+1) (r1-1,s1) (p-2-rO,r

O
+sO+1-p) (r1-1 ,s1 *1) 

T2 (r O*sO+1 ,p-2-S0) (r1 ,s1-1) (rO+SO+1-p,P-2-S
0

) (r1+1,s1-1 ) 

T3 (p-2-5
0

,p-2-rO) (r
1
-1,s1-1 ) (p-2-s o-2':r) 

0' " 0 (r1-1,s1-1 ) 

T1 'r2: (p-2-(r
O

+s
O
+1),rO) (r1 ' S1-2) (p-2-(r 0+Sb +1- p) ,r 0) (r

1 
,8

1
-1) 

T2T1 (s~,p-2-(rO+sO+1» (r
1
-2,5

1 
) (SO' p-2-(r o+Sb+1- p» (r1-1,si) 

If A +0 E:. r , it is evident from the above table that for some T E:. VI, 
0" P 

OlE.A , . ()-Lo T"J) =-t, giving X~O T) = O. We list the cases for , , 
which this occurs. 

,. 
(a ) 

(b) 

AO+{l €. CO .... COC He,p i.e. ;. T::TT,TT 
1 2 2 1. 

1\ 

Ao+ e €. C
1 

..... C
1 

• 

(i) A 0+ (l E. H 
c:i i ,P 

i.e. 

(ii ) 

If Pi T If. X+ , . then either X ~1 T) =- 0 or , p , 

" ( 2 . 3 • 6) ( i) A 0 .... P c; CO; T = TiT 2.~ s 1 = 0 ; T = l'l1 ' r 1 = O. 
A. 

(ii) A6+E>€ C1 ; T = T1 , 81+1 = p; T =T
2

, r
1

+1 =p. 

In (i), X,(r1 ,-2) =, -X(r1-1,O) X(-2, s1) =-X(O"S1-1). 

using X. (l.) =- detS X.(S.A) S €. W (f) 

In (ii), X(r1-1,p) = X(r1-1,0) x,Fr(0,1) +. X(r
1

,p-2) -X(0,p-r
1
-2) 

X(P,s1-1 ) = X(0,s1-1) X Fr
(1,0) + X(p-2'S1) -X(P-2-S

1
,0) 

using the generating equation and (t). 
+ : X (A), A E X 2,. , can now be expressed as a linear combination of pseudop 

ch!:lracters. 
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T. 
Def1' ne Il J lIT' • > 0 J' 1 2 3 by \. €VI~,~ , :=" 

T, 
~ p 

r . J • 
~ 

= s • 
01. • ,n ... 

J ~J 

where is defined only if 

and n .. 
~J 

is not a multiple of i 
p , j l =- 1,2. Note that 

\' 

T . . • 
f? i 3 = ~ i (see (2.3.5)). Let C~ ,c~ denote the p1-alcoves in X;i with 

o E c~. Let ~i denote the lower closure ci u (Ci - Ci) of ci, 1 = 0,1. 

T T T T 
Then define D .1 2.,. P . 2 1 by 

\ ~ ~ 

TT T T TT TT 
12 . 2 3 2. 1 _ 13 

~ i .. A := ~ i Pi ·;\, ~ i • A - (> i Pi • A , 
T1T2 Ti T2 T2T1 T2. T1 r . . A. = p. p. • A , P ~ •. A := ~; . . p.; • 
1 1 ~ ~ ~ ~ 

Restating information al ready obtained i n terms of t hese operators, we have, 

(2.3.7) Proposition Le'l:; A E X+2. Then X (A) = L x. (p T J .. ) . 
P TEW 1 1 

If p~.A E. X;2 then Xi (t'~ .J..) = 'P (p~ .1). 

T T 
If e 1 • J. f X;2 then: either Xi (~1 .J..) = ° or 

(1) (2.3.6(i» holds, in which case 

T1 T 2 _ T1 
Xi (p 1 .'A) = -'P(ri ~ 1 .1), Ai = (r1 i=- 0,.0). 

rr
2
T

1 
_ T2 

Xi ( Pi·:\') := -' \I'(~1 Pi .1), Ai = (O,.s1 f 0), or 

(2) (2.3.6(ii)) holds , in which case 

.1) 

Ai = (r
1 

,.p-1.) r 1 = 0rp-1 •• 

T2 T2 _ Tl1 
Xi (~1 .It) = 'P (~1 .).) +' IfJ(~1 Pi 

T 

• '). ) - 'P (~1 P 1 1 (> 2: .?J 

Ai = (p-1 , .5
1

) 51 =- O,p-1 • 

I~ Ai := (p-i,p-i) then the terms 

do not appear in the above. 

, + 
(2.3.8) Corolla£Y If A~+~E.C1 ' ').e:-X2, then 

_ iT2 
P 

d - 2 if (i) }l=~i~1 .A, Ai =- (r :f O,p-1). 
~ 1 

_ 'f 2T1 
( U ) J! • A Ai = (p-1, 5 j: 0). or = ~ 1 ~ 1 , 1 
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The reader should now consult FIG 1. in which 16 basic configurations are 

+ represented. Note that, for?' € Xp2 , d~" 2. Performing the iteration 

of (2.2a) and combining it with (2 • .3!.5) we have, 

n-1. -Ir 

( 2.3.9) Theorem If A = L: A. p ~ , A. Eo X , 
. 0 ~ ~ p 
~= 

C\ . ,.el) t 0,p-1 
~ 

1 ~ i 4n~1, then. 

+ 
all 0( E ~ 

- ~-I - it • • • • • r n-1 E> n-1 r n 

where 1:'. ~ Wand p. mayor may not occur. 
~ ~ 

=. 0 othe~.,.ise. 

Remark ~he condition in (2.3.9) is slightly stronger than necessaI~. 

See FIG 2 for an example of (2.3.9). Most weights decompose im such a 

regular' pattern with the configurations I and II of FIG 1. providing 

the basic motif e ' 

If the method of (2.2b) is required then, in aJddition to 

the above, the formulae 

'X.(1 ,0) X. (;\1,12) = X(A1+1 ,A2.) -II- X().1-1 ,l,2+1) .... X.(A1 ').2-1) 

X(O,.1) X(A
1

,.'A.
2

) = X(A1 "A2-1r1) + X().1 +1 ,'A2- 1 ) .... X(A
1

-1 ,l.~ 

suf'fice to derive the d:~ e See FIG 3 for an e::mmple of an irregular 

decomposition. In that example 
T1 

= p-1 ,. 10+ (l ~ C 1 ,. so P 1 .. A , A 
lie in different translates of 2 

p. X and (2.2b) is needed. 

Finally we give 2 corollaries which follow from the analysis of the 

) c X"'2 case and the iteration of (2.2a). 
p 

n-1 . 
(2-3.10) Corollary If A = L. A .P~ , then cl'111(.2n- 1 • 

i=O ~ 'r 

. ( 5) n-1 With Pi"~i as in 2.3. , then dl.}l = 2 if ()'i,rV
) =p-1, 

1 " i ~ n-1, and )l = r 1 (i 2 r 2. •••• ~ n-1 ~ n-1 en." A 

(2.3.11) CorollaEY ~ remains irreducible if and only if 

).+~Ecri(P') for some i~O, where P = lA+E>: AE.X; ,V(A) = M(A») 
",.. , + 

:=: (C OUC
1 

..... C1)f"\X • 

( ... ) ~ f't B 
~~1 ~ 0_ ype ~ 
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This case lends itself to treatment similar to that;. carried 



out for ! of type A
2

• We omit the details but remark that, as in 

(2.}.9), d is 1 or 0 for most weights 
~ 

• 

, 32 
\ 

Remark Recently Jantzen ~1) has given a form of the generating equation 

with the coefficients in z[x)Fr, for general Lie type. 
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fIG-i. 



~: 
34-

A2 ). :: ) 0 + ).1 P + A 2P 
2 

,P :: 5 , :\ 0 + f E. C 1 ' A 1 :: (1,1), A 2 :: (3,3). 

Flc, 2. 
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P 3 THE UODULAR REPR::!:SENTA'rION THEORY o}' SL( 2 , K) 

Throughout, K is an algebraically closed field of characteristic p F 0, 

G is the special linear group SL( 2,K) and A = K[G] , t }le a.ffine ring of G. 

(3.1) The Group SL(2,K) •. 

G is the universal Cheval l ey group of type A1 over K. 

( see 1.2). The Lie algebra g used in the construct ion of G is 3-

dimens i onal, consisting of the 2 X 2 matrces over C with trace O. 

The root system ~ =- ~o(,- 0(\ and the fundamental system b. = ~ .. = f ot~ • 

Xy. the full lattice of weights, consists of integral multiples of the 

fundamental dominant weight ~ =- t .cX) and is thus identified with Z. 

As an affine algebraic group G has underlying set 

l (x1 , x2 ' ~,~) :: x1 x4 - :x2. 73 =- 1) cIt. The unipotent subgroups 

U,U a nd the maximal torus H of G have the form~ 

U = .(, u(t) = (1 t) 
. O .~ 

H : - < h( t) =- (t-0.:.) : 
o t' 

t E.K ) 
,y ,.~ .. =- K ,_ 

U- : < u -( t) :. (1 0) : t E. K > ~ K+-. Gis generated by the groups U, U--. 
t - 1 

X(H) ,_ the group of rational characters of H, is isomorphic to Z a.nd so 
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to X •. The pair (B,N), where B is the Borel subgroup HU and N = NG(H), 

is a B.N pair with Weyl group W =- £ I, $ =. ( ° 1)) and root system ~ • 
-1 ° 

As such G has a. Bruhat decomposition,_ 
. 

G = B U BsB into double cosets of B. 

The structure of ~ (or ~ .• ) 
max m~n 

We begin with ,a. description of the modules in the title. Let x,y be 

2. 
a basis of C •. The natural action of ~ = slZ on Cx +-Cy can be 

extended to the polynomial algeba C [x,y] by derivations.. The irreducible 



ii-:-module V). of highest weight A can then be realised as the subspace 

of C [x,YJ consisting of the homogeneous polynomials of degree A in 

and The vector '>.-i i has weight " -2i, and 
A is a highest x y. :x;. y v ==x 

0 

weight vector. Let (e,f ,h\ be the standard Chevalley basis of ii and 

Uz be the Z-module <:!}.r, f..r 
+. 

:: rE:Z ) •. Then the minimal admissible 
. r~ r~ 

(~-invariant) Z-f'orml of V 

'10- ' r 
LX.Z·· = <!. '. rt 

-fI, . 
r E Z).. Set 

is a Z-basis 

" 
(v.). . .., 

~ ~=O', ••• , 1\ 

i s V~izn = u'zv = U.
Z
- v where 

A, 0 ~ 

i v.=· f v. 
~ i .1 0 

of V
min 
A,Z 

(.It) ~ -i i Then Vi = i . x Y and 
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Now ~ ~-i i 
Zx: Y is also an admissible Z-form. It is clearly 

i:::O 

the maximal one and is denoted by 
max 

VA,Z •. These extrem::tl Z-forrns are 

max 
r el ated by the fact that VA,Z is isomorphic to the dual of 

~; 

To see this, define the basis (w .. ) of V" by 
i i=O , •.• ,1. A 

w. ( v'l .. ) =- (-1) i ~ ..• 
1. ,,-J ~J 

Then with the f ollowing act ion on 

'" 

:-

(If)(v) = - f (lv) ,. It.8 ,. v €: V').. f f V" ' we find thnt w is a 
A 0 ' 

highest weight vector and ~ Zw:. 
~ 

an admissible Z-f orm, the maximal one . 
i =O 

The g-isomorphism identifying in V is then given by the map 

A-i i w .. ~ x. Y • (Nn . a mi G i b le Z- f or ms are d et cl. up t o oi l a t r.tio n .) 
l. 

be any admissible Z-form of V" . Then it is easy 

to shOlv that Vmin eVe vIDax • 
'A,Z "'Z ~,Z 

VOJ = 'T,\ • ® K can be mad.e into a 
/\ ,.Z 

K[G1-module under the action : 

u(t)(v ® 1
K

) =- Z t-r ( e.rv ® 1
K

) 
r~O r~ -

u - ( t)( v ® l.K) =- L: t
r 
(fr v ~ lK) 

r~O rl 

Now the K[G1 :modules . V"()J min ' yeA) max are defined to be v~:·~ ® K, 

max 
VA ,Z ® K r esp. ~, has K-basis m1.n [v'K = v.®lvJ 

l., J.. n. 
and vtIT 

max. 



has K-basis 

is as f'ollows. 

( /Q\ 1 : 0.< i ~ A).- The G-action on each module 
{ wi,K == wi W -K 

It 
- ~ (j) j-i u (t)v. K== L.. . tr, v. K. 

~, .. ~ - J, 
J==~ 

" 
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(3.2.2) 
i 

u(t)w. K = 2: 
~, j=O (D i-j 

t w. K ; 
J,. 

- ~ (~-i) u (t)w. K.= 6 ,,_. 
~. j=i 1\ J 

j-i 
t. w. K • J,. 

Reoarks 1 • VITY min and vrxYmax are indecomposable. 

2. VW ~ (VTIT. )~ 
rmx m~n, 

3. i.'f"\\. has a unique maximal proper K[G1-submodule 
V\Alm~n 

(contained in the sum of' the weight spaces except the 

highest one). the quotient: by which is M("). Hence ~ V\J\)max 

has M(I.) as its unique irreducible submodule., 

, . t . . • Vmd.n -4 Vmax 
The l.n.) ec l.on ~i\,.Z - ~,Z ~ ,Z gives a homomorphism 

i : ~ . ~ V{A)ma_ ,. with ker i~ as the maximal proper 
~ m~n A 1\ 

submodule of VW min and im iA == M{A) • 

We are nolV in a position to set about determining the structure of ~ 
max 

( and hence by 2. above,- VDJ. ). 
m~n 

Let ( m..; = IV. K : 0 ( i' A) be the K-basis of vm described t... 1., !laX 

above. Then: thanks to (3.1.1)" the G-action is described by the equations 

u(t)m
i 

:::.f: (l.J'.) t
i

- jm
J
" • 

J=O . 

( ii) 
~-2i 

h(t-)m. == t m .• 
~ 1. 

A-i 
sm. =- (-1) m..... 

~ ,,-~ 
(iii) 

We seek the G-invariant subspaces of' L: 
i€V 

KIn. 
~ 

where V == (0,1 , ..• ,l) . 

Since the weight spaces are 1-dimensional, such sullspaces will be of the: 

form, Sr =- L, Km'. " rev. 
i € r ~ 

., 



Call I s;ymmetric. if i€I implies " -i E. I • 

I complete if iE-I and (~) :f0 implies j E. I • 

Equations (3.2.3) imply that I 
is a complete symmetric set •. For future 

reference we state the following well known lemma without proof •. 

Then (~) 1= 0 <=9 (~~) :/=: ~ ~ jk~ i k ,. 0 ~ k' n-1, • 

If F 0 ,. write j ~ i .' (~J'.) 

Recall from (2.3.~) that if 

d.~f- :: 1 

:: 0 otherwise. 

Direct· calculation gives the following,. 

o ~it . <: p " then 
~ 

(3.·2 .. 5) Proposition Let D~ = f f :: d').f :f:. 0'1. Then j-tfD;\ if and only 

if there exists a t : such that 

where OJ ~ i1 <: • ~ •• <. i 2t ~ n-1. and. ~ i2J" ~ 0, ~ A " *' p-1 for 1i ~ j ~ t , • 
~2j-1 

(Note; that ~ 0 is the identity)., 

Remark For another desoription of the elements of D see the proof of 
~ 

(3.5.3) . ' 

Let e:, (;. - 2i) i:O ~ V be defined by e (k) _ 'A-=-k~, 
2. 

inde :< of th e 
shows that e assigns to a weight of ~nax thelcorresponding basis 

n-1 " 
vector .. Let r == Eo. P-iP~,. O~Pi <. p,. O,· ~i' n-1. ,. and let 1f = 
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n UCp.) "the set of weights of M>u-) • Then 1f = [fl-' 2k: :: k ~ f~" 
Let e denote the image of T~ under e .. Then we see that e( \ is 

~ I ~I 
a symmetric set but not necessa.rily complete. In ' particular,. 

9(,,) = ~ i , : (~) :f 0 j and S9(,,) ~ M("). (= KtrrzrO) by (1.3.3).) 

Now suppose that Sr is a submodule., Then clearly ea.ch composition 

factor of Sr is a composition factor of ~.' Hence r = U B(l.!) for 
, )It.1\ r 

some subset /\ of D
A

• Henc~ I must be symmetric\ and only completeness 

ne'ed be considered. Now let ICJl) ,. fl f. DA ,be the smallest set in V 

containing ~(A -f) and admd.tting a submodule.. Thenl SIV-t)= KGmfL .' 

Trivially,. SrllJ = Sr + S.r" SII\J = ,Sr" S,r and ICJ ~ SrCSJ .. 

We see that the submodule lattice is genera.ted by ta.king all unions of 

elements of the set f i~) J flE. D" ,. which will now be determined. 

Let JJ. :: p, •••• P. • A E D then from (3.2.5), 
/ \ J.1. \ J.2t A 

(3.2.6) 
t i 2j -1. h 

i 2j_1, 
A~ = 1: ( ~ AhP' + ) p 

2 j=1 h::J.2 , 1 
J- ' 

Using the fact that (? k. A has p-adie expansion represented by the vector 

(P-2-Ao ' p-1-\, ..... , p-1-Ak_1 , Ak-1, Ak+1 ' •••• ,.A
n

_
1 

) we easily find 

that the f-i in the expansion f = L: fLiPi are given by,. 

,. f. = A. 
l.2· ~2·-1 ' J J' 

ll. =- A. otherwise. r l. J. 

• 

(3 .. 2.8) Lemma e( consits of all)) :::L:"2J.pi , 'f-) l. 

II h ' ))h <" P if h ~ C}u) , 

such tha.t 

o ~»h ~ Ah otherwise, but )) h 1- Ah . for h = i
21

-
1 

' i
21

• 

Re call that if 9() is contained in a complete set r,. then I must 
If. 
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contain all integers i~» for each ))£e~). Hence by (3.2.8) }'-

is complete if and only if c9L)" p i.e. f == ~. ' Since every subset of 

C(l1) J::Ja.y be realised as some C(Y), it is clear that 1(11) == u g where 
I r )) (J») 

the union is over all )} E..DI\ such that C(}}) C C0-) • 

The a bove considerations yield immediately the following result. 

Theorem Let f 

where a nd I~ is the set of 

t , 
all weight s )) == ( TI f· 1· ..• ~. ]). A 

1=1 J1~ Jnl , 

1, ~ 1 ~ t, and n
l 

is always even
7 

except when i1 == 0 in which case n1 may be even or odd. 

(Not: at ion : the product of r eflections should be 

before ~ j if i < j. Also the set 

rea d with e i occurring 

j ) may be empty ). 
nl,l) 

We have then that every submodule of VWmax is of the form Sr == 2: Km.-i , 
iE-I ... 

where I is a union of sets I>u) given above , and every s uch SI is 

a 3ubmo(lule. 

The Loewy Series 

We now seek a series of submodules 

such that V == 0 and 
0 

V. 
X; 

V . 1 J-

== CJ( k ). 
V. 1 J-

This is called the Loe'!E:l. s eries of V(~) max. 

Putting ST. =- Vj , we get To == ¢ and Tk == V • 
J 

The n clearly V = 
1 

0" (S ) ::. M(~) 
V 

Let T j ::. U 8()l) 

S ))~/\j 
If ' k i s an irruducible submodule of 

M(I\.) 
~ 
/;;(;. ) 

isomorphic to M().» " 

then I = em u e(ll) must be comptet e . Hence C(») must have no non-
, 

trivial subse'ts i.e. Ic(»)j == 1.. Since C ( f> i ~ i+1 • ~ ) == i i 1 we have 

1\ 'J = (A ,f· ~. 1.:\ 
r.. ( ~ ~+ : 0 ~ i ~ n-2} and 

n-2 
V ::; M(I\.) +- 1: M( P . o. • A) • 

2 i =O \ ~ \ ~+1 



In fact we have~ 
n-1 . 

(3.2.10) Theore~ If' A = L: A. p~ ,. 
. 0 ~ 

O~ A . ~ p ,. then the Loewy series 
~ 

~= 

of VCIT IIBX is o C V
1 

C V , C •••• CV = mT ' ,. where 
2' n max 

5 
V 

s+1 == M(A) + L. M( Tf and the sum is over al~ sequences 
1=1 

1:~k~s . ' 

In ad,dition,. if i,+ 1 = i l .+1 then e. 1 () . is dele'ted in the product 
.L- . • ~l + \ ~JL+1 

and if then p" = 0 some i." the whole product is deleted., 
\ ... \ i+1 

Proof By induction on s. The theorem is true for s =- 0,1 by the above. 

Suppose it is true for all 0 ~ i , s Then it is easy to see that 

U C(») is pecisely the union of all s ubsets of [0,. 1, ••• " n-25 of 
'i> cAs 
order less than s. Now if » E: 1\ 1 ...... A th en I claim that 

s+ s I C (» ) I = s'. 

For if not then there, will exist subsets of C(») of order greater than 

or eqtUl.l to s l' and he nce completeness of T s U 9())) will not be s atisfied. 

5 
But if a nd only if l) (IT ) 1 = o. . 0 . +1 • 1\ ,. 

i=1 \ ~l \ ~l ' , 
This completes the proof. # 

(3.2.11) Corollary The Loewy factors of VW max are given. by " 

V. 
X-

V. 1 J-

j-1 

= 2: M( IT ~ i . t> i +1·' A ) 
1=1 1 1 

where the sum is over all j-1 

element sequences 0 ~ i 1,< ••• ~ i j-1 ~ n-2 . ' 

V 
In particular,. % 

V n-1 , 

submodule of V(A)max· 

= M( f n-1 • ). ) and V 
n-1 is the unique maximal 

Re marks 1,. Since VWmin = VC;O:ax the structure of VCO
min 

can easily 

be found from the above theorems. For if ~ has a max 
composition series o C V1 C V

2 
C ••• C V = vw- ,. then 

n max 

V""W. has composition series Ol C W
1 

C ••• C. VI = V(A). ,. IDln , n mln 

where W
n

_
k 

= (V n.--)* • 
\~- further if Vk = ~ then Vk J

k 
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~ ~ ~ w . = s . ::: L.J K v. where v. is of weight ,,- 2i and 
n-k V-Jk i~V-Jk ~ ~ 

V =. f 0" ••• ,.A) • 
2. For a natural embedding of the module s SIy.t) in K[G-] s ee (3.4-.6). 

An Example ) = 40 , p = 3. 

~1.A = 36 , f2· A = 30 , ~3·). = 12, ~1 P2·). = 28, ~2 ~3·1 = 4-, ~1 t'3·J..= 10, 

~1~2~3·A = 0. 

From (3.2.9), U6) = i)., e'1· l1 ' \30) ='P, e1· 1 , f2· 1 , ~1 ~2·A3, 

\' 2)= D~ , I(28) =f)., ~1 P2·~q, 14-) =fA, P2~3"J..~, IOO) =f)., ~1P 2·;t, 

~ 2 ~ 3· A , ~ 1 P 3" A ~ , 10) = fA, ~ 1 • A , P 2 P 3 • A. , P 1 ~ 2 P 3 • A ~ • 

. . 

A 

Ito) 

The Loewy serie s o C Vi C V
2 
eVe V

4 
= VW is marked on the l att i ce 

3 max 

di a gr a m, and is in a ccordance wi th theorem ( 3. 2.10). 



3-3 The Affine Ring ;. Submodules and decompositions. 

Let a, b,. c, dl denote the coefficient functions on G 

given by g = (a(g) beg») 
6{g) d(g) 

so that ad - be . = 1 

Then from (1.1 a)" the affine ring A = K[G.] =- K[a'.,. b., e, d] • 

Hence we may express any f E. A as a polynomial 

A may be regarded as a 2-sided A-module ' .' with the action of g EGan 

f € A. given by~ 

g.f =R f (~:x.~f(xg» 
g. 

f. g. =- L f (: x: Ho:r( gx» • 
g 

Bo:th actions are K-linear and multiplicative, and hence the actions of 

U,H,U on a, b, ' c, d, tabulated below for future reference, . determine 

the action a f G on Ar 

= (!-tc ~~a) (~ ~~~ 

(~ ;) 

(~ ~) . 

(~ ~) 

(~ ~) = (
a t a +b) 
c tCiid 

(~ ~) . 
(~, ~) 

(~. ~) . 
(~, ~) =

(~ ~) 

(a:tc b~td) 

(3.3.2) 
(

0:. b) = 
e d· (

a+tb b) 
e+td d (

a. b ) 
- ta+<r tb+d 

Recalling equations (3.2.2) we see that there is a commutative 

diagram V(r'f ~ A max 
\ncj ~ 

M(r) 

with e J!Q (left) A-monomorphisms and e (w. K) = ar-ibi • Also if; (M(r» 
~, 

= KGa
r 

has K-basis f a r-ib
i :(D#=o). Note that a,b couldequally 

well be replaced by c,d respectively. The K-basis [a,b) of V{1[ 
max 

affords the natural representation of G, 

0- 1 = (a b) . 
. c d 

, cr • 1 • with invariant matrix 

of V( r) affords cr ,. the 
max r 

th 
r 

45 



symmetric power of (5 (g) is sometimes called the th 
0'1 " r induced r 

matrix of g [13J· 
2 

b
2 

) e. g. 

(2:~ 
ab 

0- = ad+bc 2bd 2 
d2 cd 

The entries of the invariant matrix (5 r will, of course, be homogeneous 

polynomials of degree r in a, b, c, d. with integral coefficients. 

Let 

by 

be the invariant matrix of the representation of G afforded 

n-1 
. Then if r = E 

i=O 

i r.p 
l. 

Steinbergs theorem gives 

Fr Frn~ 
(j' ( r) = (J" X (5 r X····· X 0' r 

, rO 1 n-1 
(Kronecker product). 

·' 

So me notation Virite A r f or the character A : 
r (

t 0.\ ~ t r 

o f') 

of H. Then the group, of r ational characters X( H) = (Ar : r f Z J ~ Z. 

Let 11 r = (r" r-2, •.•• , -r) be the set of we i ghts of vrrT and 

Hence r € 1T(n) ~ n €: 1T • 
r 

We now introduce a grading on A R S follow s . Consider A a s 

a right A-module and l et 

A(n) = (fEA: Lhf = An(h) f , all hE H). 

Then A(n) is a l eft A- submodule of A, a nd 

(3.3. l l-) A = ffi A(n) 
nE Z 

Sin'ce A is inj ective (1.1.1 2), i t f ollow!> that each A(n) is an 

i nj ective l eft A-module . Using equat i ons (3.3.1) we fi nd thn·t 

wher e the sum i s over a .l l l." J" k l~ 0 
- '" r such ' that 

(i + j) - (k + 1) = n • 

Trivially A(r). A(s) = A(r + s) , and so A is graded. 

(3.3.5) 
, 

FoT' any f ixed ). 1 ' A2~ 0 Lern~a , 

S (J. 1 ' ~ 2) = ( a ibjckal 
i + j = A1 ' k + 1 = ~2) i s a linea rly 

inrlependent set. 
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). -i. i 1 -1 1 
Proof Since a 1 b c 2 d has weight (1

1 
+ A

2
) - 2(i + 1) and 

elements of different weight cannot be linearly dependent, it suff'ices to 

prove that 
"4- A -i i A -1 1 
~ A. 1 a 1 b c 2 d = 0 

i+l=s 1, 

implies t. = 0 • 
1,1 

Assume s ,11 ) A2 • 

vThere );1 = ); s-l 1 
. , 

Then 

But A is an integral domain. Hence we need only consider 

I.): albs-\s-ldl = 0 • 
1 

Applying this last equation to the group element we find that 

A = O. Factoring by d and r epeating the operation a sufficient 
o 

number of times gives all Xl = 0 • 
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The proof is similar for the cases A1 ~ Si ~~2 ' ) 2 (, s ~)1 and s ~\,. A.2 • II 

(3.3.6) The action of G on a monomial is given by, 

We observe that i+j and k+l are kept fixed. 

Let ~1 = r + n , A = r - n where r f IT(n) Then (3.3.5) and 
2 2 2 

(3.3.6) show that N(r,n) = Z 
f E SeA 1 '~2) 

Kf is an A-submodule of A 

with K-basis S().1,i\2) • 

By definition, A(~) = L N(r,n). 
rETI(n) 

In fact is; a 

filtration of A(n) • Since for every s~O there is an inclusion 

L : N(r ,n) -) N(r + 28, n) given by L (f) = (ad - bc)Sf 
s s 

A(n) = U N(r,n) 
r€.TI(n) 

Henoe 

Define Her) to be the K-span of all monomials in A of degree r. 

is a 2-sided A-r:Jodule and A = L: H(r) 
r~O 



As above we have inclusions 

A = 

L : H(r) -')0 H(r + 2s) , and hence 
s 

U H( 2i) ffi U H( 2i + 1) •. 
i~O i~O 

The following result will be needed in (3.6). 

Suppose 
k i k. 

r c 1T (n) , r = L. r. p , n = L: n. p ~ 
i=o ~ i=O ~ 

~1i = r. + n. 
I 2 ~ 

= r - n 
i 2 i' 

Then there is a diagram.. " 

V(~1 )max ® V(~ 2)max ~ N(r,n) 

and set 

L\ 
k r cP Fri 

M(~ 1 ) ® M(~ 2 ) ® N(r. ,n.) . ~ 

B i =O ~ ~ 

vher e L is inclusion, such tha t : 

( i ) tp is un A-isomorphism. 

( 21 ) If 0 ~ A 1 . , A 2 . < p, 0 ~ i ~ k., then e is a n A-isomorphi s m, 
, ~ ,~ 

cp a n A-monomorphism , and the diagram comout e s • 

be bases of V(~ ) vC ). ) us in ( 3 . 2 . 2) 
1 max ' 2 ma x 

Then comparison of the equations in (3. 2. 2) a nd (3.3.6) show that 

A
1

-m m A
2
-1 1 

lp : v m ® WI ~ a. b c d is an A-cap, a nd by definition of N(r ,n) 

an A-i~omorphism. 

( ii ) The candi tion 0 ~ :.\ 1 . 
,~ 

, ). 2 . <. p implies tha.t 
, ~ 

N(r .. ,n.) =: M(A
1 

.) ® M(~2 .) 
:l ~ ,~ ,~ 

by (i). St~ inbergs theore m (1.3.7) then 

es t ablishe s an A-isomorphism e which may be r egarded a s a compo3ite o~ 

isomorphisms , 

k 
). -m In. A -1 1 P 

10\ ( a 1 k kb kc 2k kd k) '\ 
I6J , ,., her e m ~ ~I ' 1 ~ 11 2 . 
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(See (3.3.2) et. seq. ) • 

Now it is easy to check that if 

k 

by ~ : f 1 ~ f~ ® • • •• 0'lI f~ 

f. E:N(r.,n . ) 
~ ~ ~ 

K-linearly is a.n A-isomorphism, with image 

which makes the diagram cOlIlmute.1 

then the map ~ defined 

and extended 

).1-1I1 m A2-l 1 
Ka. bc d 

Attention will now be focussed on the decomposition of A 

into injective indecomposables. Define a set T(n) by the rule, 

r E T(n} ~ n E. T "the set of weights of M(r). 
, r 

(3-3.10) Lemma A(n) contains a copy of M(r) if and only if r € T(n) • 

Moreover this copy will b e unique and equal to KG-c T where r,n 
r +n r - n --2 2 c =. a c 

r,n 

Proof From (1.3.8(i)), cf( M(r)) = KGarKG. Since U B is dense in G,. 

r KG 'C"' Kar-i i . . a ::: L.. c, g~v~ng 
Hr 

cf( U(r)) = $ KGar-ici • 
i~r 

\ 
This is Burnsides 

r-i i 
decomposi t i on (1.1.6( i i)) ,because KGa c is i somorphic to M(r) by 

(3 .4-.7( ii )). The lemma f.ol l o'll s f rom t he fact that cf(M( r )) contains all 

copie s of Mer) in A (1.1.6( 1i)). I 

Let M(r,n) = KG-c be t he unique copy of M(r) in A(n) 
r,n 

for r G T(n), ahd I(r,n) i ts i nj ective cover. Recalling (1.3.8) and 
EP 

(1.6.1) we have, o-(A) = L. ( ffi H{r,n)). 
r~O nET 

This decomposition extends to A, 

(3-3.11) A = Le
( 

r~O 

r 

ffi I ( r, n)) • 
nET 

r 
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We note that f I (r) ?t I(r,n); r.)O is a full set of i nj ective indecomposables 

by (1.1.11), and that 

A(n) = @ I(r,n). 
rc:T(n) 

Our picture of A i s now quite extensiv e , but ther e r emains the problem 

of findinG t he A-submodule s I( r ,n) of A. Much of the r emainder of 

thi s chapter will be devoted to its solution. 



We end this chapter by saying mor e about the pr ecise nature of T(n). 

Clearly T( n) == T( -n) ,> so we may assume wi t hout loss of generali ty that 

k-1 i 
n == L: n.p 

1. i=O 
O~n . .(p • 

1. 

( 3 . 3.13) Proposit i on T( n) == U S(c{) 
« 

where 

S(o{) = (r : C< . ~ r . <: p t 1. 1. 
, r . E.TI(c{.)) 

1. 1. ) 
, and ~ var ies over all sequences 

0( = (0(.) . 0 1 
1. 1 = , . , •••• given by 

0(. = n . ,n.+1 implies 01. 1 = n . 1, p-n . 1 ; 
1. 1. 1. 1.+ 1.-+' 1.+ 

eX. • = p-n., p- n. -1 i mplies 0( . 1 == n . 1 +1 , p-n . 1- 1 
1. 1. 1. 1.+ 1.'" 1.+ 

o ~ i ~ k-1 • 

I f c{ k-1 = nk_1 , nlc-1 +1 , t hen 0( 1 = 0 , l? k . 

I f c{ k-1 = p-n
k

_1 , p- nk_1 - 1 ,. t hen eX k = •••• :=.. Col =- p-1 , 0( = 1 m- 1 m 

0( 1 =- 0 f or any m such t hat 1 > m ~k • 

( If 0<.. == P , delet e the sequence in which it occur s ). 
1. 

and 

k Since 0 ~ n <. p , we seek all r epresentations of Proof n i n t he f orm , 
. k 

n = 2: E ( i ) o<.. p 1. +. ~ p 
l. 

E (i) = 

i 
where b =. 0 if L: f ( i) 0<. . p :) 0 

1. 

b = 1 otherwise . 

=.1. , 0 ' ex . <. p . 
1. 

( implyi ng: c{ k- '1 .:) 0) 

Put t i ng the ri ght hand side i n p- adi c f orm and comp ring coeffi ci ent s with 

those of' u , it i s easily seen that t he sequences (0£.) in t he proposition 

art: the only ones that can occur. Clearly n can be expres sed as above 

in at mo st l · differ ent ways in 1-1 corre spondence with t he sequences 

( E ( i ) ) • Further the uni on over ct. i s di sjoint si nce the sequnces 

( 0( • mod 2) ar e all distinct. II 
1. 

Th . 3equence s ()(. such that S(o£.) C T(n) may be descri bed 
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i h ratively a :J follows . Co nsider n as havi ng i nfinit ely many p- adio 

coeffic~e nt s nI l but finitel y many bei ng zer o. For r easons which will beoome 

= 2: 
m 

appar ent l at er l et S n ( p- ,\) r t'!present t he firs t m+1 t erms 
m (01. ) i =O 

, 
w'ith S(O(. ) C T(n) i n al l sequenc s ()(. and 0( = n , n +1 

m m m 

It is not hard t o see that , using (3 . 3 . 13) , 

( 3 . 3.14) S = Sm-1 ( p- nm) + S ' ( p-n -1) wher e s · i s given by m m-1 m 1. 



, , 
S. = S .n. + S. 1.(n.+1) 

1 i-1 1 1- 1 
1 ~ i .;; m+1 , with initial values 

, 
So = p-nO ' So = ~ r 

Notice that the exclusion condition ~. = p is accounted for, beoause 
1 

the corresponding product in S will become zero.. Hence by making m 
m 

arbitrarily large, we may reco,ver all sequences 0( with S(Ol) C. T(n). 

Finally there is an interesting identity which will be encountered again 

in (3.5.4). 

Corollary (3.3.15) 

S 

Let 

= m 

ttm)= 
m+1 p 

m i 
L. n.p 

i::O 1 
then 

- nOn) . 
Proof By induction on m. The claim is true for m=O clearly. 

Suppose the result holds for all i < m. From (3.3.14),. 

Eliminating 
, 

S 2' m-

, 
S = ( p-n ).S + (p-n -1).S 

In' m m-1 m m-1 , , 
S = n .S + (n +1) S m-1 m-1 m-2 m-1 • m-2 

t 

(ii) 

Sm-1 = nm_1oSm_2 + (nm_1+1) • (Sm_1- (p-nm- 1)·Sm_2)· 
(p-n

m
_
1

-1 ) 

B h th ' S (p-n) S -- ~m (n) ( m-1 1 y ypo e515, - • Y -nh.._1)- p- m-1 • p - n m-1 m-1 m-2 \ .lU (m-2 

= (p-n -1).n 
m-1 ~m- 2 ) 

, ( m-1 ) ( ) 
Hence Sm_1 = nm_1 p - ~m-21 + nm_1 +1 .n<m-2) :: rbn-1) 

Substituting in (i) yields the r esult. II 

3.4 Restriction to the Borel subgroup • 

In this section we find the socle of I(r,n) ( and 

hence A(n» as a K[Bl-module. Though not essential in the sequel it 

is instructive nnd r el evant to (3.5). 

The simple K[B]-module 5 are given as follows. For 

each r E Z , let ~ E X(H) 
r 

>I&
be extended to A. B: B ~ K 

r,. 

:: ;I. B(hu) = ~ (h) all b ~:a, r, r 

thus : 

where b = hu is the Jordan decomposition. Then l A r,B : r t z) is the 

set of all rational representations of B. Say n left K[B]-reodule V 

is of type A , if V = Kv where v -F 0 and ra B 
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( 3 .4-.1 ) all bE B 

Call such a v a B-vector (of weight I' ) and l et IJ) denote the space 
I' 

of such. Then t23 is a right A-sublllodule of A .. 
I' 

Let AU = f ftA : Ruf = fall UtU5 ' :#1' = f f€:A : Rhf = J.r(h)f, hfH) 

Then these spaces a re right A-submodules of A and ~ = AU()J:l: • 
I' I' 

Using (3.3.1) we find that AU =- K[a,c] and #- = L. K aibjckdl 
I' r 

where the sum is over all i ,j, k,l:;:'O such that ( i +, k) - (j + 1) - r. 

Hence ~r = ~ 
i+k=r 

K aick , and we have proved, 

(3.4-.2) ' Proposition The space of all B-v ectors of type I' in A(n) has 

dimens ion 1 if r£lT(n) , being spanned by 

dimension 0 otherwise. 

( 3.4-.3) Corolla£Y (J B A(n) = L 
rE.TI ( n) 

Kc' 
r,n 

L!:£ !:E. 
2 2 c = a . c 

r,n 

, cr B N(r ,n) = L 
s € TT(n) 
s:~ I' 

Kc 
s,n 

In particular it follows that 0-G A( n) is rnultiplicity f r ee , a , fact 

which has alr eady been obs erved in (3. 3 . 12). Co r.1bining ( 3 .3.12) with 

( 3 . 4-.3) we see that there must exist a partition, 

n(n) = U 1T (n) with C5 B I ( r ,n) = L. K c 
r t. T (n) r s € 1T (n) s , n 

:r 

The following lemma is immediate from the above . 

(3.4-.4-) Lemtnal, (i) I' €:T(n) ~ re1T( n ) a nd KG .c is simple. 
r,n 

( ii) Given :r E. T( n) , 3 e1T (n) ~ c' € KGc: • 
r r,n ~,n 

Part ( i) of course wa s giv.en by ( 3 . 3 .10). 'rhis now prompts investiga'tion 

into the structure of 

Let 

KGc 
r,n 

~1 A2 
c = a c wher e r , n 

A1,A2~0. Since UB is dense in G, 

Henoe we cons ider 

KGc = lCU-c 
r,rl r,n 

= ~ tl+m y 
1 I,m ,m 



Put y. = ~ Yl ' then u-(t).c = 
J 1 . ,m r,n +m=J 

Hence the set f Y j f 01 forms a basis of 

the matrix (t
j

) is invertible.) 

r 

L. 
j=O 

j 
t y .• 

J 

KG-c ' 
r,n 

(y . E KG-c 
J r,n 

since 

Since f Yl m :f 0) is a linearly independent set (3.3.5), we have , 

Y j :f O. # (~) . (~) f 0 

Therefore the set i j 
distinct elements in 

for some I,m 

: y. t 0) i s precisely the subset 
J 

fl + m : 1~~1' m~A2) • 

of 

Remark Since (A.;\) == lE:
j 
(l)'(~) we have (~) :f 0 implies y.:f O. 

J 

Also Yj =t- 0 ** Yr - j + 0 and YO' Y
11 

Now it can easily be checked t hat (Y j ) 

, Y~ 2 'Yr are a lways non-zero. 

sutisfies the same equations as 

the standard basis of V(r). (see (3.2.1». Hence KG-c is a factor m1n r,n 

module of vrrr . (or equival ently the dual of a submodule of vrrr ). mln max 

rn-1 
Let r = L: ~ pol 

o( :::{) 

" ~ where r = ~ ~d P , 

(3.4.5) Proposition 

t 
where ~ = ( 1T 

~.Al. 1=1 

tel: ))«? p) • 

( see (3 . 2» 

(Remarks : 1. If we define (CIt 1 : 1 , 1 ~ t) by Va( = p-1 i { ol ' i
l 

+ o{l 

=t- p-1 ol. = i l + 1 + 0(.1 then r i
l
' f i

l 
+1 = f i

l 
P i

l 
+1-i"0l1 • 

2 . If 'Vc( = p-1 , 0 ~ 01. < i1 ,then 0 0 - 0 
" i 1' \ i1 +1 - . \ i1 +1 

3. If i 1 +1 +cs. = il+1 t hen (' i 1 +1 +CII
1 

~ il+1 .is delet ed from f). .. Az.' ). 

Proof We r equire to show that S == r(u ) for then 
A1 '~2 T11 '~2 

( see remark following (3.2.11», 

';f KG-c • r,n 
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The proof is suggested by considering the case t:::1. 

Suppose )). ) P , 
~1 

» = p-1 
ol 

i 1 ':: 01. 'i1 + 0(1 

otherwise. 

Then r. ==» . - p, ro(. = 0 i1 < 0(. ~ i1 + 0(,1 
~1 ~1 

r - )) + 1 r_, ==)J otherwise. 
i1 +~ +1 - if"~ +1 ' go ol 
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Therefore S = f a = L a"pi : a.~)).1 ::. ( a : a. <: p, a.~ 'P. otherwise) 
~1 ,). 2 .... ~ ~ ~1 ~ ~ 

U (a : a. ~ p, a.'». otherwise). 
~1 ~ ~ 

If P ~ a. ~». then a. == p +. I< , . 0 ~ K ~ )) i - P = r i • 
~1 ~1. ~1 1 1 

Hence 

aD( 'ro( otherwise1 U { a : aOi. ~ ro( 1 
::: I( P. , Pi +c:i +1· r ) by (3. 2. 8) a nd (3. 2.9). II 

\ ~1 . \ 1 1 

* We note that the subset of distinct elements of f (KGc ) : n E.1Tr~ is 
r,n 

precisely the set ~ SI~) :)-l €. Dr 1 . 
}H: Dr is of the form ji ::. J\1').2 

This follows from the fact that every 

Le t v. :. ie r- ,n) : r€TI(n), nEZ a nd KGc ~ vrrr . ) 
r,n rn1n) 

m = t ( r , n) r €.lT( n}, n E Z and KGc irreducible) r ,n ) 

and «> U 'IT (n) X ~ n) ~ Z~ x Z~ 
n€:Z 0 0 

deno te the bij ection 

11") • ( ) t--l> ( !:.!ll !.:!!) \ • r ,n 2 ' 2 

C3 .4. 6) Corollary ( i) C\' 1.9- = t 0'1 '~ 2) : ~ 1<* + ~ 2 Ii) p-1 , 

( ii ) ~1'l. = ! C\1,:\'2) : A1~ + J. 2p.'P-1} 

C3.ll-o 7) The orem 0' BI (r, n) = L 1<c 
sEBer) s ,n 

where B(r) = f s : d 
sr :1=0) • 

We r equire to prove that Tr (n) = D(r) • 
r 

Proof 

By (3. 3 .10), (3.4.1,,), s e 1T (n) ~ M(r) =- KGc is a subrnodul~ of KGc • 
r r,n s,n 

But by ( 3.4,. 5), this is true if and only it M(r) is a top composition 

A1 + A2 ::. s. This in turn is true if and only 

H~nce IT (n)~B(r). 
r 

Now . n t ,. rU'l of weight!) the decoopos i tion Vern) =: ~ d M(r) y ields the 
mr 

partit ion Tr : ' U 
m r t D 

m 

T 
r 

This partition han a'dual', Tf(n) = U 
rE.T(n) 

BCr). 



Hence 1T (n) = B(r) , since we already mow that n (n) = U 1T r(n)./1 
r r ET(n) 

Summary The decoopositions in (3.3) and (3.4) will now be summarised. 

Let I = (r,n) : r€.1f(n), nEZ) denot e the tableau,. 
1T 

4 

3 
IT(2) 2 4 
11 (1 ) 1. 3 
1T( 0) 0 2 4 

IT( -1 ) 1 3 
1T( -2) 2- 4 

3 
l~ 

• 

th I th 
wi th n row n(n) a nd r 

f (r, n) : r €. T (n), n f z). The n 

A =. ffi A(n) 
nEZ 

, 
11 , a nd column IT c 11T the subtableau 

r 

:: ill ( U N( r ,n)), (r,n)E\r (3.3.7) 
n r 

= e I (r,n), (r,n) E I T (3.3.11) 

cr G-A = (9 KG-c' (r,n) E I T (3.3.10) 
r ,n 

(jA -B - ED Kc 
r, n 

(r,n)EI
lf 

(3.1+.2) 

The th n row of ITrI1T gi ves the corresponding decompositions for A(n). 

Finally by (3. 4 .7) ther e is a partit i on" 

n(n) = U B(r) a nd f or rET(n), 
. rET(n) 

(JBI ( r , n) : . L: Kc , S E B ( r) • 
s,n 

3. :;) The In.j ective Indecomposable s. 

We now construct the inj ective indecomposable modu1~ s 

I (r,n) of (3: 3.11). ' Thi s is done by using certain finite dimensional 
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indecompo sable A-module s utilised by J eya kuma r (12) in fiding the principal 

indecomposables for SL(2,q)r 



Let o ~ r <. P', = r'- n where 
2 , 

r = 2(p - 11) - r. 

Consider the A-module V :: V(A1 ) r,n 

Following an argument of Humphreys [8) , V may be identified with r,n 

the same modulo conanical identifications, the composition factors of 

are those of the yes) for which yes) occurs as a constituent of 

Vo.
1

) ® VO'2). Now consider the indecooposable direct summand J(r,n) 
I 

of V in which the highest weight A1 + A 2 = r occurs. Clea.rly 
r,n 

V 
r,n 

I 

M(r) is a compo!3ition factor of J(r,n). All other composition factors 

have highest wei ghts in t he sa.me orbit of Vi as r. 
p Hence the 

ClcbGch-Gordan expansion of V (~1) @ yeA) ~hows t hat J(r , n) has 
, 

composition factors M(r), M(r), M(r) when r 1= p - 1 and M(p - 1) 

when r = p - 1. The modules J( r, n) , 0 ~ r .( p, are the aforementioned. 

monules of J eyakumar. (Actuully he consider ed only the case n = -r, but 

the modul~s J(r,n) are all isomorphic for lixed r.) 

Cle~rly V conta.ins a unique co y of V(r'). which muat 
', n m~n' 

be generated by a vector of wei ght r. Vfith trivial modifications the , 
construction in [1 21 shows that V( r' ) min h s an essentially unique 

extens i on by M(r) in V • Hence we have an s. e . s ." r,n 

o ~ V-(r"r-r,"t"')min -) J(r,n) ~ M(r) ~ o. 
, 

Let t.p : V --->; N(r ,n) 
r,n r,n 

be the A-i somor phism given by (3 • .3 .9) 

identify J (r,n) and with its i mage undt:: r 'P • 
r,n 

The following propositlon is a n easy consequence of the above 

considerations together with (3.3. 10) a nd ( .3 . 1 .... 2). 

(3. 5. 2) Propo si ti.on (i) XJ(r,n) :: X( r ) + X(r'), r t p -1. 

= X(r), r :: p - 1. 
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( u ) J(r,n) ~ has a unique maximal submodule K(~c, isomorphic to V( r') . • 
r,n ml.n 

( iii ) 0' nJ( r , n) - Kc + Kc , • r ,n r ,n 
('v) O'GJ( r ,n) = KGc r,n· 



(Note also that J(r,n) will be i50morphic to its dual.) 

m-1 . 
Let r = L. r.p~ 

. 0 ~ 
~= 

Then for r EO T(n) 

where 

define 

o ~ r. <:. p, 0 ~ i , m-1 • 
~ 

m-1 - i 
J (r,n) == ® J(r.,(l(.lr , 

m i::.O 1- ~ 
where 

W
;th r c..TT(oI.) S;nce J(r ...J) is contained in N(r'. ,.d..) ,-... . ~ ..... . ,....... .. ., 

~ ~ ~ ~ .... .... 

(3.3.9) shows that there is an embedding , 

'Ip(m) : J (r,n) --? N(p-1. r ,n). 
r"n lIt ~ m 

m-1 . 
n == 1:: 0(.. p~ 

i=O ~ 

(Recall e-:. r == 2(pm - 1) - r.). Identify Jm(r,n) with its image under 

tm) -
\fJ r,n· 

C3.5.3) Proposi~ (i) x ( ) == L X ( s) ,_ where 
J m r,n SEBer) 

( -1 ) m 
B ( r) :: t s E B ( r ) : .s ~ ~ ru · 't') • '1 0 n s S u f!l e r . oF p -1 in the p 0 0 f s m . . ~ 
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(ii) (JB Jm(r,n)::. L Kc 
sEBer) 3,n 

lIt 

o f ( i ) . n d (ii ), wh ich mny eo. i l y 

( iii) 

Proof 

(J J (r, n) -=: !\Gc- • 
G m r ,n 

be adapt e d t o the c ase r i - p -1 

Recall from ( 2 .3.4-) the followinB id ntity in z[xl, 
o me i .] 

(1) X ( s + tp) = X( s)(X( t )lr + X(p - 2 - 3;)( X(t -1)lr 

where s ,. t E. Z and t he ,10ma in of dt:finition of X is 

extended from X+ to X. 

m-1 
Let r = L. r.pi 

i =O ~ 
O~ri<p, and let I be any subset of (0,1, ••• ,m-1) • 

The n ;1J
r 

(t\'ei+1 )-1. r :: L: r '.pi + L r.pi 
.... ~ if I ~ i~I ~ 

We now prove (1) by incluction on m. Fi'C"st note that 

m-1 i 
x. J (r n) = )T (X(r i ) + X(r~»Fr by C3. 5 . 2(i». 

m' ~=O 

H ~nce ( i ) is true for m :: 1,. Suppose it is t't'ue for all k, 1 ~ k < m. 

From (1) we obtain, 

(3) 2: Xe s + rmpIO) +- Xes + r'pm) = r. 'X.(s)(X(r) + XCr/»Frm 
S 

m m m s 

where the sum is over all 5 E. B(r) • 
m 

Now I clo.i.m that ~ X (pm - 2 - s ) == O. 
s £ B(r) m 



;. 

t 

L i L i 
Let I 

= SI' say, and let I be the complement s ::. r.p + r.p 
iE-I 1. if.I 

1. 

of I in f 0,.1 , ••• , m-11 ::. I • m 
Then clearly, 

Hence X (p~ - 2 - SI) ::. X ( -, (pm - Sf)) = -X(p~ - 2: - St)· 

This proves the claim, for (2) implies that B(r) m = l SI : Ie. lm 1 . 
(with the conventions of (3. 2 •10)). 

Invoking the induction hypothesis, equation (J) now prove s (i) for k ::. 1!11, 

thus completing the induction. 

(ii) This is an immediate consequence of (3.5. 2(iii), (3.3.9(ii») and the 

fact that B(r)m ::' f SI : 1C1m1 a s in ( i). 

(iii) Using (3.5.1) it is clear tha t Jm( r ,n) has a unique maximal sub-

module , the quotient by which i3 isomorphic to M(r). But by its 
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construction, J (r,n) 
m 

must be isomorphic to its dual, and so have a unique 

minimal submodule M(r). Applying (3 . 3 .10) gives the r esult. 

Alternatively,. ( iii) follows from (ii) and (3.3.10), since if s€T(n) (\ B(r), 

with r E T(n), then s = r . II 

Remarks 1. The B-v ctors of type s - s - I i n J (r, r) 
m 

are of a v~ry 

s i mple form. 

for i E. I ; 

L t 

= r. , 
~ 

'fhen ~ 1 i ::. p - 1., " 2i = P - , 1 

A 'l' = 0 oth rwise . 
, ;t 

-1 
We now decompo se N (0 • n n) into til direct sum of 

\. in ' 

m ind compo sable A-modules , where n <. p • 

(3. 5.4) Th orem 
m For n <. p , 

-1 m. NCr m.n,n) ::. ~ J Cr,n) 
r E. T(n) m 

m 

wher e T(n) m = f r E. T(n) : r ~ pm J . 

Proof Si nce J m (r, n) C N( e -~. r, n) " we h ve inclusions 

C) ( -1 
~ r.::.!!: J m r,n ---> N r m·n,n) 

2 

is isomorphic to V(pllf - 1) €I V( pO - 1 - n) 
max 

_. r 
i 



and so has chara cter X (pm - 1.) X (pm - 1. - n). 

X(pm, - 1) X(pm - 1 _. n) = L Xes), 1f(n)m = fSE.lT(n) : s'p-~.n) 
5e.1T(n)m 

= L L X ( 5) since 1f(n) = 
r € T(n) 5 e. B(r) 

m m 

= L. X, , by (3.5.3(i». 
r t T(n) J (r,n) m m 

U 
rE.T(n) 

B(r) , 

Since ~G Jm(r,n) is irreducible (3. 5.3(iii », the sum must be direct 

and so we have the theorem. 1/ 

Remarks 1. Comparing dimensions in (3.5.4) and dividing by 

equation pm - n = Sm-1 of (3.3. 15). 

m 
p , gives the 

2. J (r,n) 
m 

may be iden.tif'ied with the indecomposable direct 

summand of V(pm - 1 - (!::t.!!.» max ® V(pm, - 11 - (r-n» 
2' T max 

containing the highest weight 2(pm - 1) - r. 

We now come to the main r esult. 

(3.5.5) Theore ll11 If n < pt t hen I(r,n) = U J (r,n) • 
m~t m 

Proo'!' First observe that the union makes sense . By (3 . 5 .2(iv», K 1:. 

i a submodule of J ( O,O). (1. is the identity of A). Hence f or m~t 

( 3 . 3 .9) show s that Jm(r,n) is a s ubmodule of J
m
+

1
(r,n) in A(n). 

Let J = U J (r,n). 
r ,n m~t m 

Then I claim that l:: J is a direot 
r€.rr (n) r,n 

sum. For suppose f1 + f2 ti) 
+ •••• + f = 0, wh ... r e f. f. J (r, n) • 

s ~ m
i 

k = mnx(m . ) then f. € J} (rti),n), 16 i ~ s '. Hence each f. = 0, 
~ ~ c ~ 

Now if 

59 

since L, Jk(r,n) is direct by ( 3. 5.4). Clearly ffi J CA(n). 
rET(n)k reT(n) r,n 

On th ... o'ther hand (3 . 3.7) gives A(n) = U -1 (3.5.4-) N(~ .n,n), and 
m +0 m 

gives N(i~.n,n) C ffi J . Hence A(n) = m J 
r f. T(n) r,n 

rE.T(n) r,n 

But O" G J = KGc and so we must ha.ve J = I (r,n). II r ,n r,n ' r,n '/ 

Remark In [1 2) i t is shO'Hn that the restrictions of the .A.-modules 

Jm(r,-r) 'to the group SL( 2, pm) are proj ective indecomposable 



o 
\0 

The Inject i. ve. In dec.omfoso.bles (see Th. ("S· 5".5)) 

N m ( f\) : N ( 1 ( P -1) - n. 0') , T{ n)m = i r;. r~ \ ....• \J where I: n.(p ,rn~t 

r 
I{r..n) e 

r 
I( 'i .0) & '. . . . e 

i 
r(r.· .n) G 

ll:: 

i 
E9 I( rio ' n) @ ••. m I( rl. ~ n) ~ .... .. . '.', ~r 

Atn) 

r i i i i i 
N (0) = T"" (r; .Il) $ T ('i,Il) m .... $ T ... (~ ,r)) ~ ... m T,n('i n) m .. ~ T (r . • n') 

(7\ In I:: . 1;+1. >. jf'I l,., 

i i i i i 

i i i i r 
N l(n) ': J

H1
(r., n) Ell 1"81(r;. .fl) m . e JH1 ( rLI:, , ole . . . $ J. 1(r: . n) 

1;+ 
e+ ll::+l 

t i i i 
N to) = ~(r;)n) e Jt:( 'i,n) $ .. . . e JI;. (r. ,0) 

I: l" 



for r =1= O. When r = 0 however, a factor module must be taken. A full 

set of P.I.M.s for SL(2,p~) is thus obtained. 

Theorem (3.5.5) is illustrated on the page following it. 

3.6 Cartan Invariants and Blocks. 

In this section we dtermine the Cartan invariants c~ 

and the blocks .. as defined in 1.6 and 1 • T. 

Suppose that for A, u. EoX+, c' =I- O. Then (1.7.2) says 
I ~ 

+ that there exists a VEX such that · d)lA =F 0, d)lfL =F O. Hence there are 

sequences 0' i1. ~ •••• ~ it. " 0 ~ j1 ~ •••• " js such tha'!; 

given any sequence k <: k11.( •••• ~ ~ ,. 

B(~) f'\ B~). This proves,. 

Let k.:: max( i
t

,.5 ). TheIl1 
5; 

-1 -1, 
~k •••• ~k • V occurs in 
. 1 ~'t 

(3. 6•1,) Proposition If C'lfL * 0 then CAfl must be infinite • 

Moreover c' :t 0 . if and only if there exist sequences of integers. 
A)-l 

0. ' i1 <: •••• (. it ,. 0~j1' <: .···.(js s uch that 
'\ -1-1, I\ =ej····e· p····e··u.· 1. J s \ lot lot I 

The next result gi ves the block partition of X*. ( see (1. 8 . 2)). 

(3. 6•2) Theorem x+ = U B. is the partition of X'" into 
i~O lo,.n 

O<:n<.p' 

__ l -j (i) ) 
blocks Bi,n ( e i+1. np - 1 : j ~ 0 , where 

-j 
~ i+1 denotes the 

jth_fold iteration of 
-1 

~ i+1" In particular the blocks B. are infinite 
lo,..n 

in number. 

Proof Let At x ... , th . ( 3 6 ) . en slonce •• 2 is clearly a partition, A E B. . lo,n 

for some i ~ 0" 0 <: n <: p. The p-adic coefficients of A then satisfy 

A 0 = ••• = Ai = P' - 1 , ). i + 1 t p, - 1\ . Hence if d~ =#= 0, then by (3.2.5) 

there must exis'!; a j ~ 0 such that" u p j '\ /. = \ i+1 • I\. • 

This sho"NS that if d..~ :f:: 0, then A a nd p- must belong to the same set 
, . ~ 

B. lo ,n 

But 

Now A,p E:X+ are adjacent if and only if c~:f:: 0 (1.8.1). 

c :f.: 0 
AjL 

if and only if d»'l:f. 0 and d.. :f 0 
" 'lip. 

+ for some }) E: X which 



i mplies r by the above, that A and )l belong to the same • 

Henee 

B. ). ,n 

B. 
i,n 

is a union of blocks. 

On the other hand suppose that A'JL belong to the same set 

Then assuming A ~)J- , We have Jl = 0 .5
1

., A 
\ 1.+ , 

f or some j ~ o. 

Hence there exists a sequence LlO == A, 111 = 0)..+1.,A , ••• " H == 0 j .. A = u. I r \. rj+1 \i+1 I~ 

such that d =t= 0, O~t:~j. (see (3.2.5)). 
)it, J1t-+1. 

But d :J= 0 
}!t J.lt +1 

i mplies that Hence by (1.8.1,), 

belong ta the same block. Thus B. is a block and we are finished.q 
l.,n 

The matrices C and D can now be decomposed in accordance 

wi th (1. 8.3) . 

Finally a proposition concerning block components. 

(3.6.3) Proposit i on Let H1. (H2) be the sum of the block components 

cont aining the even (odd) weights. Then, 

A ::: H1i l!) H2, , wher e H1 = . ~ 0 H( 2i) , 
1.,. 

Proof Clear f rom' (1.8. 5(ii )) and (3. 3. 8). II 

H2 == U H( 2i+1 ,). 
i>,.O 



Conjectures • 

Let : VCf) irreducible) Define So to be the intersection 

of S with x; but excluding the Steinberg weight (p: - t) r . 
Define Si l' i~O, by Si + ~ = pi(So + p) • 

Conjecture 1. 
. 

S = U 
i~O 

S. 
J. 

Con,jecture 2. (The Block Conjecture). 

The set S is an indeX!: set for the blocks, and 

is the block partition. 

Con,jeoture 3. The Cartan invariants c ar e either infinite or zero. 
~ 

All of these conj ectures have been proved for I of t ype A ... Using the 

material of (2.3) it is not hard to see that they are all true for ~ o~ 


