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Introduction

This thesis aims to provide an introduction to the modular represent-
ation théory of algebrgic Chevalley groups. Chapter é;t contains the
general theory so far known, most of which is due to Green-[6] who sets
up the modular theory in the more general context of co-algebras. In §52
the decomposition matrix is discussed, In particular, its reliance on the
p-restricted part is made as explieit as possible. The general results
obtained are applied to the A1,A2 and 32 cases, Chapter5§3' provides the
simplest example of the theory, that of the group SL(2,K), K an
algebraically closed field of char. p # 0. The structure of the Weyl module
rcduced modulo p is givenm in (3.2). This was done independently of
Cline [5]. 1Im (3.3) the structure of the affine ring K[SL(2,K)] is
analysed, which provides the setting for (3.5) where the injective
indecomposable modules are found. Section (3.6) gives the Cartan invariants

and blocks, their nature in general being conjectured at the end of the

theSiSo



&1’ THE MODULAR REPRESENTATION THEQORY OF ALGEBRAIC CHEVALLEY GROUPS.

(1.1) Preliminaries.
Let K be an algebraically closed field and G a linear

algebraic group. Then G is a closed subgroup of GL = GL(n,K) for some n.
Let F =3(G,K) be the commutative K-algebra with identity of all functions
G — K under pointwise operations.

(1.1a2) The Affine Ring R

G possesses an affine (co-ordinate) ring R = K[G)

of regular functions. R is a finitely generated K-subalgebra of F and

arises in the following way.
j’g ed 3 1£1i,j<n, are

Let K[GLn] = K[Xij’ S] wheII‘e Xi
3 < s 8 H ) 3 €
defined by § i3 XX 45 x> (detx) for all x (xij) GL .

Then there exists an exact sequence,
0 — J(e)— k[eL - x[6) — o
where T : fi—>f|, restricts functions to G, kert=J(G) and
G = fxé GLn s £(x) =0 Vij(G)} . Regular functions can be described as
follows. Define feF to be finitary if it satisfies the property,

(1.1.1) £Gy) = 2 £,(0€(y)  a11 x,y€G where £,,f,€R and
cel

I is finite. Then a function is regular if and only if it is finitary.
For suppose f is finitary. Then from (1.1.1) f = ZI fi(‘l)f'iéR.
LE

Conversely, if f is regular then it must be finitary, since Xij,S are
clearly so. This, of course, is a restatement of the fact that group
nultiplication is a morphism,

(1.1.1) also shows that R is closed under left and right
translations. For if f€R then R f = 5 f'i(x)fie R, and
Lf = 2 fi(x)flieR. Hence R may be regarded as a 2-sided KG-module
with right translation as left G-action and left translation as right
G-action.
(1.1b) R-modulés

Suppose that V is a (left) rational KG-module having

a K-basis ("i)ieI' Then, by definition, the functions aij:G ~»K 4n



the equations

{1.1.2) xv, = Z a, . (x)v. (eI, xeG)
Jojer W 7

all belong to R. The matrix A = (aij) is called the invariant matrix

of the representation. V is said to be locally finite if A is column

finite and it is easy to show that this definition is independent of the
basis chosen for V and is equivalent to the statement t hat every cyclic
submodule of V is finite dimensional., By a (left, right, 2sided)
R-module we understand a locally finite rational (left, right, 2-sided)
KG-module, A R-homomorphism is simply a KG-homomorphism, It is
immediate from local finiteness that every irreducible R-module must be
finite dimensional.

(1.1.3) Proposition R is a 2-sided R-module.

Proof We prove R is a (left) R-module. Let f€R and m be minimal

such that, in the above notation,

m
Rf = i§=}1 fi(x)f‘i all xeG,

Clearly it suffices to prove that KGf is finite dimensional (i.e. R is

locally finite). In fact we show that (fi)' 1 is a basis. By

l: .Olm
minimality of m, (fi) is a linearly independent set, Similarly (f;)
is a linearly independent set and hence there exist y1...ym€(} such

/
that (fi(yj)) is non-singular, This means that f, may be expressed

i
as a linear combination of the Ry f and so belongs to KGf./f
J

The category of R-modules and R-homomorphisms is closed to taking
submodules, quotients and sums., Also the Krull-Schmidt and Jordan-
Holder theorems hold in this category, as do standard theorems on

complete reducibility.

Henceforth we assume R-modules to be left unless

otherwise stated.



(1.1¢c) The Coefficient Space
Let V be an R-module with functions aij€R

defined as in (1.1.2). Then the coefficient space cf(V) of V is the

K-subspace of R spanned by the &'i,j (i,jEI). This is independent of

the basis (vi)ieI chosen for V. Since

() o) = 2 ey Qe ) x,y €6,

we see that cf(V) is a 2-sided R-submodule of R. In fact,
(1.1.5) Proposision Let V be an R-submodule of R, Then cf(V) is
the least 2-sided R-submodule of R containing V.
Proof Evaluating xv, = >, & .(x)v, at the identity gives
J jer Y7

(1.x) = .(1). That is v, = L1 )a, € 6BV )
v (1ex) = ey (D)v,(1) 5= 2w €cr(v)

Hence V<cf(V).

Now let W be any 2-sided R-submodule of R containing V.,
Then L ,v. = Z. v.(x)a.. v jel, x€eG,

b, T i ij
iel

As in the proof of (1.1.3) we find that all aijéW since W is a
right R-module., Therefore cf(V)SW. »

More generally we remark that any R-module V may be embedded in a
direct sum of copies of cf(V) via the map viH(a’ir)

rel’
(1.1.6) Theorem (Burnside)

Let V Dbe an irreducible R-module of K-dimension d.
Then (i) V is isomorphic to a submodule of R.
H

d
(i1) cf(V) = ® V:.L where each Vi"=’v
i=A1

(iii) cf(V) contains all copies of V in R.
(In fact (ii) is the classical Burnside theorem. Since (iii) follows
innediately from (1.1.5) we prove part (i) only.)

Proof of (i) Let V be as in (1.1.2) with |I| = a.

For each r =1,....,4 the K~map er ¢ V—R definéd by

_ <ig . y i sm.
gr(vj) - (1€ j<d), is a R-homomorphism



Since V is irreducible Br is either O or a monomorphism. But
Br = 0 implies that 8.y = 0 (1< j<d), contradicting the non-singularity
of (aij)’ Hence Br is a R-monomorphism.

(1.1d) The Socle of R

If V is an R-module, then the socle o (V) of V
is the sum of all the irreducible submodules of V, Hence o (V) is the
unique maximal completely reducible (c.r.) submodule of V,

(1.1.7) Theorem (i) Let fvlhe/\ be a full set of irreducible R-modules.
Then o(R) = @ cf(Va).
AeA

(ii) 1If o(R) = a?A W, with fWJy j @ set of irreducible R-modules,
then for each AeA , the set Aa =fu€A : VI, = VI} contains exactly dim VA
elements, and 2, W = cf‘(Vi).

ouzA1
Proof (i) Clearly o(R) & EA of(V,) using (1.1.5). But by (1.1.6(ii)),
cI‘(Vl) is a sum of irreducibles. Hence o(R) = 2. cf(VA).

AeA
Directness follows from the Jordan-Holder theorem.

(ii) Let C, = J, W, then o(R) = ©C . Now by (1.1.6), C. € cf(V.)
A wen, A A » 3 A
for all Ae A. Comparison with (i) gives C, = cf(Va). Hence the result.y

Finally a result on c.r. modules.

(1.1.8) Proposition V 1is a c.r. R-module if and only if cf(V) < o(R).

Proof Let V be c.r. , then V= XV, with V, irreducible,

oL
Hence cf(V) = & ef(V,) € 0(R). Conversly if cf(V) S o(R) then cof(V)
is c.r. But as already pointed out in (1.1c), V can be embedded in a
direct sum of copies of cf‘(V). Hence V is c.r.
R is said to be semisimple if O(R) = R. By (1.1.5),
cf(R) = R, Therefore (1.1.8) gives R semisimple if and only if every

R-module is c.r,.

(1.1¢) Injective R-modules (Green [6])

An R-module I is said to be injective if whenever
V,W are R-modules with VEW and 0O :V-—>I a R-homomorphism, then

%*
there exists an extension B : W—I of 8.



It is routine to show that finite direct sums and direct summands of
injective R-modules are injective, and that an injective submodule of
an R~module V is complemented in V., What is not quite so obvious is
the fact that a direct sum of injectives is injective, but we do not
prove this here. The following proposition shows that injectives are
characterised by their socles.

(1.1.9) Proposition Let I,I' be injective R-modules. Then every
hom, (isom.) D :O’(I)—->O’(I') extends to a hom. (isom.) 0" : I—>T .
Proof The R-pap D :G(I)—w(l') extends to O 2 I—>T by
injectivity of I. Suppose D is an isomorphism. Then 9* is
monomorphic since (ker9*) = ker-B*_ﬂ o(I) = o.
Hence I, =:9*(I) has a cowplement I, in 1.
i.e. I'= I1® I, and so O’(I') :O’(I1)(BO'(I2).

But cr(I') =0 (o(1)c o (I,). Hence 0(12) =0 and so I, =0,

* 13 .
i.e. B is injective. y

Let V be an R-module and I an injective R-module. Then T is said

to be an injective cover of V if there exists an R-map f:v->1 which

induces an isomorphism O (V)=>0(I). The map O is necessarily an

enmbedding, and it is an easy consequence of (1.1.9) that T is unique

up to isomorphism, |

(1.1.10) Theorem [6) Every R-module has an injective cover.

The procf of this important result rests on Brauer's idempotent lifting

process and will be omitted,

It is immediate that an injective cover of an irreducible module must be

indecomposable. In fact,

(1.1.11) Proposition There is a 1-1 correspondence between the
isomorphism classes of injective indecomposable R-modules and the
isomorphism classes of irreducible R-modules given by I<¢>o (I).
Proof Because of (1;1.9) and the above remark we nced only show that

the socle of an injective indecomposable I is irreducible.

5 |




Suppose not, then o (I) =V, @ V, where Vs V, are non-zero.

Let I1, 12 be injective covers of V1,V resp., Then I 1is

2
isomorphic to I, ® I, since they are both injective covers of O {1).
This is a contradiction.

In a manner to be elucidated in (1.6.1) R mmy be
decomposed uniquely into a direct sum of injective indecomposables, and
the proof of this depends crucially on the following,

(1.1.12) Proposition R is an injective R-module.
Proof Let V be an R-module. Then it is easy to verify that the map

* y X
¢ = Homy (V,R)——)HomR(V,K) defined by & (f) =¥ of, where

I :R—K is given by ¢ (f) = £(1), is a K-linear isomorphism.
Let V,W be R-modules with VEW and 0 : V—R any R-map.
Extend 29 in any way to a K-linear map oo : W—>K,
Let GI : W—>R be the unique R-map such that fgl = o, Then e'lv is
an R-map V—>R, and f(@lxv) = (fé)lv =oliv = &0
Hence 9'\V = B -/

This completes (1.1) and attention will now be restricted

to G a Chevalley group.

(1.2) The Chevalley Group 1 , [15)

Let g be a simple complex Lie algebra with Cartan sub—
algebra h and associated root system @ with Weyl group W. E
contains a fundemental sysem A and a set 9° of positive roots.
-};ﬂ%’ the [R-space genecrated by & | becomes a Euclidean space of dimension
1 = 1sl (the rank of g) when equipped with the positive definite inner
product ( , ) dual to the Killing form. Let X denote the full

lattice of weights in Em and X

the subset of dominant weights.

Then X has a basis consisting of the fundamental dominant weights

{ﬁ :.3 - 1 (relative toA) and is endowed with a partial order &,
2 youny

where )\>,/L whenever A -}l is a non-negative integral combination of

fundamental roots.




——

Let T be a representation of g ona C-space V of dimension mn.
Then given an algebraically closed field K and an admissible Z -form

V2 of V, a Chevalley group Gy = GV,K can be constructed as follovs.
Let éxr, hs: re §, sc—AX be a Chevalley basis of g and set

xr(t) = exp tTr(xr), L =VZ®K. Then Gy = (xr(t'): re é, t€KY and is
a closed subgroup of GL(VK) = GL(n,K). Thus G may be viewed as a (semi-

simple) algebraic group so the results in (1.1) apply.
Certain subgroups of GK turn out to very important in the

representation theory., Let wu 2 SL(Z,K)-—*:C—K, re®, be the homomorphism

which maps 1% 10 onto xr(t), x_ (t) resp., and let h_(t)
01/ \t1 r ¥

be the image of (t O) . Then we define subgroups
0t

c
if

<x (t): re®", teky, H=<h(t): sea, tEK> and

o
i

(Xr(t‘): r€§-, t €XY where —Q = §+U @Q

U,U are unipotent groups and H is a torus in GK‘ B = HU 1is a Borel

subgroup and GK = (B,N = NG(H)) is a B.N pair with Weyl group W = N/H

and root system § .

Henceforth we assume that Gi{ is a universal Chevalley group of type g

over K, This means precisely that X may be identified with X(H), the

.
group of rational characters of H. Hence ElR may be identified with

»

Hp = X(H)® IR. Some implications of this restriction are that H s
£

isomorghic to a direct product of 1 copies of K and that g,h are

the Lie algebras of GK’H resp.

(1.3) The Socle of R __and the irreducible R-modules, R = K[G.J) .

S

]
=

Here and throughout the remainder of §1 5 Rc> O[GK]

: a
and Rp = Kp[GK-} where Ko’Kp are algebraically closed fields of

characteristic O and char p $# O resp.




Let V be an R-module, and for A € X(H) define ’
(1.3.1) v2 = {vev: hv = A (h)v, all herl} . Then V=0 v"\ . |
If A is such that V» # 0 then it is called a weight of V and we let

TTV denote the set of weights of V. Now W acts on X(H) thus:

for wew, w(A)(h) = A (w'h w). Hence W =wan and @in V' = dim VW(;\)
In particular TTV is W-invariant.

(1.3.2) Theorem [15) Ro is semisimple.

Thus o'(Ro) =R but we point out that this is not true for Rp.

The Irreducible R-modules

The irreducibles are knovwn completely and we state the
fundamental result at once.
(1.3.3) Theoremps] Let V be an irreducible R-module. Then,
(i) There exists a unique B-fixed line L in V with corresponding

character ) which is uniquely determined and dominant. All other

weights of V are of the form ’1<)\ . Any non-zero vector in L is

called a highest weight vector.

]
(31) v¥v if and only if their corresponding dominant characters,

called highest weights, are equal,

(iii) Every A€ X" is the highest weight of some V,

We remark that a similar theorem holds for irreducible
g-modules.
(1.3.4) Corollary Let V be an irreducible R-module, Then

Endp (V) = KLV, vhere L. is the identity map on V.
Proof Clear, since V is absolutely irreducible by the theorem,

Let {V(?\ )}7\6 g+ denote a full set of irreducible
Ro—modules and (M(A ))3 eyt @ full set of irreducible Rp-modules. Then

they may be realised as follows. Let V be an irreducible g-module of

highest weight A with admissible 2-form V;\,Z' Set VA,K = A,Z® K.
Then V(@) ¥ V?\,Ko' Suppose further that VA,Z is minimal, then V2 K

has a unique maximal Rp—gubmodule the quotient by which is 1(Q).



Let V Dbe an irreducible R-module. Then V is finite dimensional
(see (1.1b)) and may be embedded in R by (1.1.6(i)). Wenow describe the
most natural copy of V in R. Let (vi) be a basis of V adapted so

that v, is a highest weight vector, and let (aij) be the corresnonding

invariant matrix, Then,

(1.3.5) Proposition Let V be as above with highest weight A . Then

there is an embedding of V in A . ={ Fe€R: L_f = A (b)), all b€ B}
2,K b ’ )

where B = U H,, with image KGa1m.

As a corollary we see that V(A) and A are isomorphic as Ro-modules

.

by complete reducibility.

inbergs T r Product Thegre

The nature of the irreducible Rp—modules is known in more
detail, In order to give a description we mention that Rp admits a ring

endomorphism Fr, called the Frobenius endomorvhism. which takes each

g = ; . th ) .
co-ordinate function to its p“" power. If (V,p) is a rational
Al
revresentation defined over the prime field then V}r denotes

™

. 5 . g Fr . . . I
the Rn_module affording gefr. V ¥ has-invariant matrix A° =
P - . . 3 . <
(aij) where A=(a14) igs the invariant matrix of V.

(1.3.6) Lemma (i) If V is an irreducible Rp-module of highest weight A
then V'T is irreducible of highest weight pA .
(1) If V is an R -submodule of R, then Fr(V) .
In view of (ii) we always let Fr act exponentially.
(1.3.7) Theorem (Steinbergfg] )
‘ n-1 .
Let A = o Xip” where os()\i,uv)<p for all o €A
i=0

(o is the co-root of ). Then |,

n-1 i
- F :
M(A) = i§0 M(A,)"F  is the irreducible R -module of highest weight ¢
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Hence if 0, is the invariant matrix of M(}), then

n-1
O. =0, X o‘Fr X sees ¥ O_Fr (Kronecker product).
A X A An-1

The Socle of R

Combining the results so far in (1.3) with (1.1c) and (1.1d)
we have,
(1.3.8) Theorem (i)Let V Dbe an irreducible R-module of highest weight

A as in (1.3.4) and dimension d Then cf(V) is

2K
the 2-sided R-module generated by a

11°
a direct sum of .
to] d) x copies of V. Moreover cf(V) contains all
b

and is isomorphic

copies of V in R,

(1) B, = O®) = @ orv()),
AEX

O‘(Rp) = @_'_ cf(M(A)) and these decoxpositions are
Aex

unique in the sense of (1.1.7(i:i.)).

1.l Reduction Modulo p

We retain the notation of (1.1a) and put "Cij = T Xij)'
Gy is generated by unipotent elenents (sce 1,2),hence T (§) = 1 the
identity of R, and R =K ['cij] . Define a ring homomorphism /U. : R—>RO®R
by /uf(x,y) = f(xy). (i.e./l is the co-morphism to multiplication in GK).

] 1]
Note that from (1.1.1), ME = Z £, ®f, with f.,f €R,
iel

B

Also by (1.1.4) /‘thij = Tir ®Trj )

r=1
T =3 — o —
Let K = Ky, and set L, = z[rij] . Then by (¥) M L,C L) ® Ly -
Also LO is free as a Z-module, since it may be identified with a

Z-subalgebra of the free Z-module 2z[U7)g z[H) © z[u] .

p

Then },pr c Lp@ Lp and the obvious ring epimorphism 0O : Ly —> Lp

How let K =X and L = Fp[tij‘) » ¥ the Gelois field of p elements,

makes the following diagram commute,
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Mo
Ly =y B B By
81 1998
j Ae— Rl 1
p Mo p j

Hence if A = (aij) is an invariant matrix for R (i.e. M= AB®A),
such that 2 5 eLO, then D (A) = (0 (&ij)) = (a'i,j) &=k is an invariant
matrix for L .

Now let V Dbe an Ro-module. Then there is a free 2Z-
submodule LO(V) of V , called an Lj-lattice, which has a Z-basis

(Vi)iei such that (i) (v’i) is also a K -basis of V, and

(ii) the invariant matrix A = (axij) afforded by (vi) has coefficients

a. €L . Define V=L (V)®K . Then V is an R -module with
ij 0 0 P P

invariant matrix A = (;ij’) afforded by the basis ;i =v, ® 1K .
b

V is called the 'reduction mod p‘ of V. The structure of V. depends
upon the choice of Ly~ attice but we do have TTV ="ITV , nultiplicities:
counted.

Remark As the notation indicates, we do not speeify the choice of LO-

lattice in the reduction unless it is essential to the argument.

With notation as in (1.3), let ;™' have basis fv, r1¢icd o)
d} % ’ + AyKO
)
Then LO(V(-A))=Z ¢ Z(vi ® 1K ) is an Lo-lattice and V. = V(A)
1=0 0 A’Kp

has a unique top composition factor M()). V(AS is then cyclic, generated

by 7y @ 1K where v, is a highest weight vector of weight A in
p
v(a) , and also indecomposable, In the next section we discuss the

composition factors of Voo .

1.5 The Decomoosit.ion Numbers

Define dkp. to be the composition multiplieity of Msu.)

in V(A). The integers d;\}‘_ are well defined (since TTV = TT;,—) and

are called the deconmposition numbers of R.

Ping of the
Since V(}) = 2.d MS}A) in the Grothendieck[category of
pea®




a))u)

can be put in unitriangular form. The relationship between those A, 1t

R_ =rmodules we sce at once that the decomposition matrix D = ( +
P },}1 eX

N
satisfying d]\}x# 0 can be described in terms of the geonmetry (I’{R ,Wp)
where Wp is a certain subgroup of the affine Weyl group to be defined

presently.

To this end let p be a positive integer, usually taken to be
the ‘reduction prime\. Define the p-diagram Pp to be the union of all
hyperplanes of the form Ha,np= (er.; : (x,0’) = np, oLEE,n.eZ} .

W
A p-alcove is defined to be a component of I’{R\f'p . Let s, . denote

’

" . — - Y = 3 P
the reflection s&’np(x) =x = ((x,ot') - np) in the hyperplane }fx,np

Then Wp is defined to be the group generated by all such reflections.
In particular P1 is the Cartan-Stiefel diagram and W 1 the affine Weyl
=W, In F the alcoves

0 0
which are unbounded, are the Weyl chambers, X" is contained in the

group; ro is the infinitesimal diagram and W

closure of the fundamental Weyl chamber and the fundamental dominant weights

lie on its walls, We call X; = flex* 2 O~$(A,ozl)<p, oeeA) the

p-restricted region of X'. It is well known that X contains IJ} <]
P [Xed

p-alcoves where X' is the root lattice. Finally we note that Wp is
simply transitive on p-alcoves.

Now the main general results known about D are two conjectures
of Verma [17]. The first asserts that the so called Harish-Chandra p ineiple

is true, i,e. d, # O only if

(1.5.1) H+e :}LW(A+Q) for some weWp, where o is the half sum of
positive roots. This was proved by Humphreys [7] for p>h, the Coxeter
nunber of § s and for general p in type An (¢ = SLn+1) by Carter-Lustzig.
[4] . In fact Humphreys proved that the highest weights of the composition
factors of an indecomposable Rp-!nodule are related in the above way, but
we know that m is indecomposable., The second result,a refinement of

the first, states that if 4. # 0 then there exist reflections

A

Wy ge ey W) € Wp such that

(1.5.2) ;\+P 3 w1(} te ) > W2W1(X + P )3 R wk....w1(;\ +9) =)1+e .

T2
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This was proved by Jantzenfi 0] for $ of type A and a few other cases

of small rank, again for p>h. We attempt to gain further information

about D in @2.

1.6 The Injective Indecomposables

Let I(Q) be an injective cover of M(A). Then by (1.1.11)
fI(k)} Agy® isa full set of injective indecomposable Rp—modules.
Copies of these injectives are distributed in Rp in a way given by the

following.

(1.6.1) Theorem [6) (i) There exist Rp—submodules I(A)i of Rp 3

®
1¢i<d, = ain M(2), such that R = ;\:‘Zf @A), © ... ®IR), ).

This decomposition extends that of O'(RP) in (1.3.8(ii)),
o (1(2),) = ¥@); amd IM); = I(A).

(ii) If R = ® J<>¢ is any decomposition of R as a direct sum of

indecomposable Rp—submodules Jy, of Rp , then for each A€ xt the set

AJ\ .—_fueA : J, = I(;\)} contains exacly d) elenments,
d
p
Proof (i) Recall that cof(M(R)) = @ I‘m)i in (1.3.8(ii)), with

i=1

M(A)i 2 M(A). Let I(A)i be an injective cover of' M(A)i . Then since

Rp is injective (1.1 .12) we have 2 injective covers of O’(Rp) viz @

Rp and ©® I(?\)j!_ . Hence there is an Rp~isomorphism

o 4
p: ® I(X):!L*-"Rp . Defining I(;\)i = ¢(I(A);;.) praoves (i).
(ii) It is easy to show that O'(Rp) = ®0(J,). But J  is injective

indecomposable and so o(J,) is irreducible. An application of (1.1.7(ii))

gives the result,

Remark The theorem holds trivially for RO being identical with (1.1.7).

1.7 Cartan Invariants

Def'ine the Cartan invariants cx)_l , for 2 - ex+, to be the
composition multiplicity of M(u) in I(A). We show that these integers

depend solely on the decomposition numbers.
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For R -modules V,W let (v,w)p = dim Hom, (V,W).

P p
(1.7.1) Theoren [6] (i) Every injective Rp-module arises as the reduction
mod p of an injective Ro-module.
(ii) Let V be an R -wodule. Then for pext, (V,I(u)), is the
multiplicity of M(u) in V.
(iii) Let V be an Ry-module and I an injective R,-module. Then
(V,I)O = (‘-}r’-i.)p L4

We suppress the proof, but use the theorem to reach our objeetive., By

0

(i) there exists an injective Ry-module Iy such that T)L*:' Igp.).
From (ii) and (iii) , 4, = (TR)LIW), = (V(2), T, -

But by complete reducibility this is just the multiplicity of V(A) in
I}‘l . It follows that dl,u is the multiplicity of m in I()_L) and
in turn,

(1.7.2) = Db G (= QIR by @),

In general the Cartan invariants will be infinite, In fact, evidence in
cases of low rank suggests that they are either zero or infinite.
Equation (1.6.3) is then interpreted to mean that c@u # 0 if and only

o+
if there exists a Ye€X such that dy, # 0, d»p. # 0. With this in mind,

the Cartan matrix C = (ca}l) has the form C = tD.D .

1.8 Blocks
Weights A, }L€x+ are said to be adjacent if either
(T[(]),.I(}L))p #0Q0 or (I@),I(X))p # 0 or both., Hence by (1.6.3),,

(1.8.1) A, are adjacent & #0 .

CZ)J.

Therefore, since d, = 1y d%u. # 0 dimplies the adjacency of A and p .

An equivalence relation &> on X" is then defined by A &> if there
- s 13 - _ . +

exists a finite sequence A =Hor Myreeeesp = dn X" such that

Moo My, are adjacent 1< i<n., Hence we have a partition,

(1.8.2) p U B)‘ ‘, where
AeB

fBA} AeB 18 the set of equivalence classes.

: " . +
under € and B is some set of class representatives in X , We call
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(1.8.2) the block partition of X" and the classes B. blocks .

A
For a conjecture on blocks see P63. It is evident from (1.6.3) and

(1.8.1) that the following is true.

(1.8.3) Proposition The Cartan matrix C may be put in the form

c= ® ¢ where C. are‘indecomposable matrices. Also
P\ A
AeB
D= @& D where D. are 'indecomposa'ble‘ and C, = 1;D D, .
A A A A7
A€B
The rows and columns of CA ’DA are indexed by B, .
Now for each A€B, define the block components RA of Rp by
® du
Ro= 2 (@ I(,) cof. (1.6.1). Then
A A 1
)J.EB1 i=1
(1.8.4) R_= ® R, .
P e A

The main result on block components runs as follows.
(1.8.5) Theorem [6] Let AE€B,

(1) R, is an indecomposable 2-sided Rp-submodule of Rp .

(ii) The decomposition (1.8.4) is a refinement of any decomposition of

Rp as a direect sum of 2-sided Rp-submodules.

(iii) R, = 2, cf(I()).
A )xeB'A
We leave the proof except to say that (iii) is an easy consequence of (i)

and (1.1.5).
Remark For p = 0 , equation (1.8.4) is precisely that of (1.3.7(ii)).
Finally we mention that any Rp-module V  has a decomposition

V= © W with ef(W.) C R, . V is said to belong to the block B
aep 2 7 A A

if this: decomposition is trivial, i.e., if cf(V)C R

1.9 Characters

finite dimensional
Let V Dbe a'[ R-module and define the character xv of V

by xv(x) = Trv(x) , all xeGK . Clearly XVER. By virtue of the
fact that Xv(x) = Xv(xs) whefe x, 1is the semisimple part of x,

XV is determined by i.ts values on H., Denote by Z[X] the integral group
ring of X with multiplication given by [1] . [ ) =[2 +}1]

Then from (1.3.1) we see that XV may be represented formally



X [ here ) = dim V&
v T pex m, () Cp) where m(u e

The Weyl group W acts on X , and so on z[x) , this action extending
Z-linearly to ZW. Thus w[A} = [wd) for weW. Hence from the remarks
following (1.3.1) and the fact that TT V , the following is clear:-
(1.9.1) Provosition (i) Xy = 2 w X{; € 2[X)7  where

(ii) XV "X{f .

(i11) Xy gy = xv'xw

(Note : .strictly speaking, in (i), mvgy.) should be multiplied by the factor
Is*cawm'l.)
Let X(A) =X

as a quotient of alternating clements,

(1.9.2)  X(Q) G(M/G(O) where G(Q) = 2, detw [w(d+p)] , and that

we W

(1.9.3) & ¢ =dmV@) = T (re)

70 “G_E* (?,d)

The multiplicities m(},)x) of V*in v(Q) may be calculated from the

Q) Then Weyl [9) showed that X ()) could be written

1l

formula of Kostant or by the method of Freudenthal [9].
The action of Fr on Z[X] is given by L'A]}r ___l-“P = [pa) .

Hence for an Rp-module Vs X‘V.Fr = X‘E;r = #Z mv(}-l) [p}l.] "
n-1

Now set @ (;\) = XM(:{) and suppose that A= Z A. p with Aie K; -

\

Then from Steinberés theoren (1 5551},

@) = TT c?(?\)
Letting § Q) = I(A) » We have the followinrg set of equations,
(o) XO) = 2y, 000
A) = dyaX
Q) = }EX Cap O

where d?\}z ,c)‘)1 are defined as in (1.5) and (1.7).

16




Let X(GK) denote the character ring of G

K -with multiplication as in

(1.9.1(ii1)). Then
( ) > characters of the
(1.9.5) Proposition The}( irreducible R-modules form a 2-free basis of

X(¢) .
Proof {Y(A)} 5.4+ isa Z-free basis of z2[x]" ([g) Ch VI)

Hence if K = KO we are done, But since D is unitriangular,

o) = »Z;.’t X%}L X () where (Xlﬁ) =D, This means: that {@ ()} rex

is a Z-free basis of X(GK e v
P
The characters, indeed the dimensions, of the modules M(A)

are noi;. known in general, However, as in (1.5), if
o) = 2 a(x,}‘) X (u) with a(?\,)x) €Z, then a(d,pn) + 0 only if
Jn

L€ WP.'/\ , where w.A = w@d+p) =p , wewp, A€ X,

For more information on the character formula see Jantzen[10] .

17



§2. On The Deconmposition Matrix

In this section we are primarily concerned with the essentially
combinatoric problem of finding the decomposition matrix D given its

p-restricted part (d ) . That this is possible was observed

WA € 4 o pex
by Verma.ﬁ?]. We begin by discussing a certain matrix fundamental to our
nethod.

2.1 The Pssudo — Decomposition

All weights appearing in this section will be dominant.

From (1.9.4) we have X Q) = Z d @91) and since D is unitriangular,

QM) = 2 1, X (b)  where <x >—n

Let K = Z Kipi , Kie X; . The we form the' R-module
iz ) n-1
)
N(K) = Vikoi ® Vv K, T®enee ® VfKn_ﬂ e with character

n-1 i
Y (k) =TT XF!‘ (Ki) . It is not irreducible in general.

(2.1.1) Proposition y (K) }*ZS:K tk)xqu‘) where T = (tK)L) is
>, A \P(K) where D' = (A ) is
K<A AK

unitriangular. Hence X(Q)
unitriangular and D = D'.T .

We call D' the pseudo - decomposition matrix . Before we can prove

(2.1.1) we need a

Leia @ (1) @(u) = 2 b () @®) with B (»)en, baﬂ(l»«p) =

vsx-\-):. v
Proof @A) ©(p) = «% Yx X}W'X(K) X(w) = K% X X}u: n () X ()
TEU T

where the coefficient n“t(a) of X () in X (k).%(x) is zero unless

L€k +T, and n_ (K+x) =
™

Z’ AK }J-‘C K‘t:
of @ (V) 1is zero unless YV < o & k+x & l-o-}:..

(o) d, q)(y) where the coefficient

The coefficient of @ (4 +}J.) is Y @A+ }1)

B P Avpdr -

, then

’

Proof of (2.1.1) If Kk = 3 K,p Ky exs




n-1 Fri
p (k) = S, d e ;) - )
s

K.V. 1
"-—0
V. K. b S

e

n-1 i
. F
, then Steinbergs theorem gives TIO Q r (vi)-.-.q;(»)
j=

where v = )] vipl ¢ K and we are done. But it is possitle to have

If each V. eX+
1 P

v.ex", v_sk,ex+ and yet v.d-'_X+'. Let t be the least i such
i i i P 1 p

that this happens.

i. +
k Fri =] Fr
Then @ ())n_1) = T._].-o (i (vn-1 ,i) and again we have 'ITO @ ()) ) =o®).
1 1=

. _ +
If t<n-1, write )Jt _»t,o + vt’1p § vt’OeXp .

t t+1 t t+1
then " 1) @77 Opy) =@ O o) (00, ) 00N .

Now q)(vt,1) (P(\)tM) = Z b(§) P () by the lemma.

f< v, +vw

n-1 Fr L n-1 .
enc ) = c(u) i = ; 1, =1.
Hence ;n‘o " (v, }l (u Tr cp ();1 M i}:fz’) MsP T, c(v)

Now t+1 1is least such that ).Lt”é;Xp , and JEVEK .
Continuing this process gives the desired result. y
(2.1.2) Corollary (of the above proof),

n-1

Ir § is of type A1 ,A2, or B2 then tk)L .“-:o a }1

Proof This follows immediately from (¥) and the fect that in these cases
if )ex; and 3, #0 ‘then pex; .y

We now focus attention on the pseudo - decomposition and first demonstrate
that for this matrix the Harish - Chandra property holds for all primes p.
Write «~f if o and ﬁ lie in the same orbit of ‘»‘:'p. This relation
is clearly an equivalence relation,

(2.1.3) Proposition AAK # 0 implies ;\“‘P” K+p .

Proof Let (X) = iK . AAK b2 0} . Then x (A) w Z’ AAK ‘P (K)
—— . KEe (A

and on substituting the Weyl character formula and mmltiplying through by
the denominator in the right hand side containing the highest power of p

we obtain,




2. dets [s@+p)) . E, = 2, A 2, detT [T(Ko+e)]. E;

Sew Ke a@ TEW
K EK
where E1 ’E2E z[px] and Z/E =y (K-Ko) &

1
Hence for cancellation to occur there must exist a sequence

R pPEde y k%% a (a), not necessarily unique, such that

m , “ 3 ¢
Ky *p~Ky +p ~ ----~K‘§ +p .u]\o +p for each ke n (A). This implies that

K+p ~ A +p from the very definition of Wp.

§ s ‘ +
If we now assume that dA}L # 0 implies ')H-p ~p+p  for ;\eXp ,» then

ty, # 0 implies K+p ~»+p . For from (¢) in the proof of (2.1.1) we

have tK‘v + 0 if all d;K + 0. ;n particular dK % # 0 and hence

ii 00
KO L R giving K+p~V+p . )

This, together with (2.1.3), extends the Harish - Chandra property to D,

2.2 Determination of D',

We retain the notation of (1.5) and add to it the following,
Let @ = ( p-alcoves in X;} . Then for oeW, Ce @ there are trans-
lations So,cp in pX uniquely defined by the condition o°(C) + SG’Cp
C}(; . The maps So, :@—> @ , defined by So_ : C —g(C) +So_ oP are
)
permutations of @ . Let Cel@ denote the p-alcove

{3{5}{‘; : ndp<(7\,uf')<(n°‘+ 1)p ,o¢6§+, n_ e Zaoz and

A * v +
C = SAeH‘R 2 ndp.<(}\,ot)$(r&+ 1)p ,«e§ y € gaz its upper closure, |

Then we have a partition X 4 P = U ¢ . |
3 Ce@ |
(2.2a) The Iteration Procedure |

_ i i + +, .
For A = Xm+ A pEX , )mﬁ Xpl, define '

R
XM =XA )X (A%). Then if Aex;z, (2.1.1) and (2.1.3) imply
that X () may be written in the form,

(2.2.1)  XQ) = ZAaQ,m X, (w2 A Qe

wew
p

We call this thé generating equation for D'. Let A :AO + ;\1p ’

)\0’7‘16}(; and A, +p€C. If w=tpeoel with teX, CeW then



Fr

Xalnd) = X5 Qg +p) ~p) X (o) +8 =55 ) (1)
Now the essential point about the generating equation is that it may be
considered as an identity in Z[X] with 7 0,)1 as indeterminates,
Furthermore p may be treated as an integer variable. Hence if
]0 B 1(') +peC, (1) implies that A (A,w) = A(A',w). Extend the

- A . e A
action of So- to C, So_(l’re) = 0‘(?\+(>) +S.D.’Cpt - }4—(.76 Ce
Clearly we have =1¢% (Sa_('l\*"e) il ,c‘l’) <p, CEW,xeD, A EX; . But if

(SO-OH'C’) -0 ,&) = =1 for some & , then X(gu_(} +p) -—e) = 0. since the

element s
y

AQ,w) = A()‘,w) if )O +Ps ](') +p 6. Thus there are @) = vl

X A

o of W will fix So- (X+Q). Hence we may write

A
essentially different types of generating equation, If ;{0 +(’EC
we write A()Q,w), or A(C,w), for AQA,w).
an »” .
Let 0, @ Hp —>I denote the 1i = p-
e }{R I[R ¢ e the linear map O,x = p'x and

set A = 0' Zy (g). Then if 2} eX;in the change of variables

% W .
PP XO-*AQ) ’ A1 -> A in (2.2.1) yields,
(2.2.2) XM = X a(d,m X (o, wa' .2
{ -1 1_1
weEW
P
Remarks 1. w ewpi .
9, il might not, of course, be a weight but clearly
A
A(i')\,w) = A(C,w) if i"\ +p €C.,
Suppose now that Aex'n  ana define {w\‘ weW , by
p B I=1 00001 2 p’
my A= (r Ny e Teb £, =1, (n, o 50 o, 5
(i\. - Al ° (i) i,l 1 ’0'0.’ n1 ——Wi .Wi+1 (i+1)..
- ' i s j ‘ ad ~. s =
....(wn1m_1) eAd, W Ve 16J¢0, ign-1, wy =1,
Then jterating (2./_.(_) for 1 =mn-1,n-2,...,1 successively yields,

2.2,3)  X(A) = L P
(2:2:3) ) % wi:_1 Tl'1 AL 2 )gagem) ;Lro i (fih,)x)
)

(fn’.A = ’A b fo’x = fO,A)
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(2.2b) Conversion into Pseudo - Characters

The aim of this section is to put (2.2.3) into the form

™3)

of (2.1.1). To this end define P € Wp:. y 1€ig&n-1 , by

(A c. ; X n-1 (") \
il i-1 G+h i+ Z @ _i n-1
- - = ° & [ Th - eee [ .
X s 1(:u.-f.—ﬂ 1 P e D f:L,AP 61 en 1 A
i
Hence if f u’l (3 X+ 1< i€ n-1, then
’

n-1 . @)
(2.2.4) W'xFr (£5) =pley Tooe g™ A)

Now suppose that £, @ ¢X+ for some i, Then the following method will

i,A
S S
enable T]' ¢ (f ) to be expressed as a linear combination of pseudo-
. @
characters. Firstly we may assume that fi ;\e x* 5 for if not then use
>

of the formula X (V) detO“X(O‘,\)), O €W, will rectify the situation.

il

1)
Let t be the least i such that fi(l_,\é.x; . Then the generating
3
)
equation (2.2.1) will express X(fttta) in the form,
¥
w Fr +
pACHEY _Z 2XKQ X (), K=Ky + KD, KX, -
&+

Utills:mg the product formula X, (K1) X (ft-+-1 P ) = g, X (),
n—4

'ﬂ' X tﬂ ) can be expressed as a linear combination of certain
TT 'X, .' with t+ as the least i such that <, ¢X .
i=0 S

Continuing this process gives the desired expression in terms of pseudo=—

characters,

Finally we note that (2.2b) is required in addition to part (a)
(wi\ ()

) 55 ‘s an 4 ot |
if and only if there is an i such that Pi rer Py . A1 and
s ("
0 e p M7 . ] lie in different translates of X;i+1 via
141 n-1
p X, where J']T‘:LA k 2 ki i+, ;\( +1""’wn—1))(j+1) ,vrj) + O

(2.2¢) Determination of .the Generating Equation

Let )exz,ana XQ) = ZA()\)L)’X (W) as in (2.2.1).
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Thén writing X1 su.) = X( o) xFrSu.1) and substituting the Weyl formula
(1.9.2),

Z detST [3(14-(;) + Tep] = Z A('/\,}.L) . TZ:ewdetST [39-‘0"‘?) + T§u1+q)p]

(2. 25) Hence ( 2, S)Y = (Z, S)Z where Y = Y. adetT D*P*‘ Tep]
SEW SEW TeWw

Z = ZA(A ,)l) Z detT [Tgu.o-{'e) + le.;,.e)p)
= TEW
As remarked in (2.2a), (2.2.5) is an identity in 10,11 where 1 =10+11p.
Let SL(\) =fp: aQpn #0} .
(2.2.6) Conjecture The set § T(u +p) + 9L1+e)p)}le}"1.(l),mew.
is contained in the convex linear subspace of X with vertices
{A+er Tep} p ey
Henceforth we assume (2.2.6), which implies that the equation Y =2 holds.
Moreover if Y = Z, then the coefficients (A (A ,)l)) appearing in it will
be precisely those of (2.2.1). Since A(Q,d) =1 we have,
Z detT [1+e+ Tep) - Z, detT [TQ "'f’) + (1 +9)p]

Ty
¥ A(;\)l) Z det? [T(u +o) + (u, +p)p] -

ne 0
Choose the highest weight, together with its sign, which appears in the

left hand side after cancellation. Since T9.|0+e) < e when T 1,
it must equal A (A }O [}U'e*'ep] y Some }lef).(l). Now subtract

>, A ( ,)1) [T9.10+9) + (}11+€)p] from each side and repeat the operation.
TeW

The proecedure is continued until the left hand side vanishes. The
coefficients (a (A ,}1)) thus extracted are those required.

This algorithmic procedure admits a graphical interpretation

for types of small rank which will be illustrated in (2.3).

2.3 Applicetion to types A1 ,A2,B?

(2.3.1) Theorem Let ® ve of type A :AZ:B For AGX;2 define

= + c:TeW! b i ext and
{1o Pop * M1 P ] o () MPo,r &%y
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(i1) l-ke+ Tep =T9,|0 m +9) + §u1 7 +(>)p-, Then

pAeY =TEZ,W9L1 (up) + X; ,where X =0, B =a.

' — . t f - B .
’)61 i§1 X1 (yi,l) 5 »i,k distinct, for E "

Furthermore if f] +p+ Tep ¢ T&W} - X;Z , then all weights above are
dominant,
Proof The equation Y =2 of (2.2.5) has a solution, and from it the theorem
follows. Conjecture (2.2.6) also holds. This will be demonstrated later
in the A1 ,A2 cases. The L4 extra terms appearing in the B2 case can
be deduced from (2.3.2) and (2.3.3).
(2.3.2) Theorem (Braden [3) )
B
V(a) = MQ2) + M(s;“’np.l) if there exist «e3' ,0€IN  such that

Let § be of type A ,A B, and Xex; . Then

: A X . i ique.
su,np'a <A and sot,np A e = (¢ ,n will then be unique.)

therwise V(A) = M(A) .

2

0 be the pz—alcove in X" whose closure contains 0.

Let C

(2.3.3) Corallary Let & Ve of type 4,,A ,B, and define, for lex;?_

s
the set  D(A) = {p=pgrpp 3 Po‘—"f, » PoShor r Pt = My ot @
mod. wp i }11 =)J1.,T . TE.W} -
Then if A satisfies (i) 2+e€C§ (i1) fA+p+ Top : TeW X',
(iii) (Xo*-e,d\-l) D, “e?é*(iv) (11,07.') + p-1 , «e®  we have
dx} =1 if peD(A)

= 0 otherwise.
The corollary follows from (2.3.1) and (2.3.2). The reader should now -
consult FIG 1, configurations I and II, and FIG 4, which exhibit the set
D(A) in the A2 and 32 cases, Note that each }-LT occurs in a different

translate XT of X;

and Mp is the highest weight of D(1) occuring
in X, . All other elements of D(1) are obtained by 'filling up the
translates X‘]: in the obvious sense. We now tabulate some numerical

information.
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@l el 1ol
A1 1 2 2
e 2 & 9
132 L 12 20

(1) § of type A1

From (2.3.2), Vhi remains irreducible for A ex; . Hence
modular and pseudo-characters are the same. Tdentify weights with integers.
We first prove (2.3.1) following the method of (2.2c). Suppose

o + 0.
2, detT[A+1+Tp]=[}+-1+p-)~[1+1.-p] (1)

TEW
[}\ + 1 + p:l is the highest weight, hence we subtract

[QO + 1) + (]1‘ + 1.)p] -[—(lo+ 1)+()\‘+1)ﬂfrom (1) glving remainder

[-Qy+1) + Q) + 1)p] - [A+1 - p] (2)
If ;\O + 1 = p, we are finished, If not then [}J. + 1 + p] =

[.(;\O +1) + (;\1 + 1)p] is the highest weight in (2) and subtracting

[-Qo +1) + (11 + 1')P] - ["(P "10 - 1) +11p] from (2) gives zero.

Diagramatically,
s -
+ —
- +
A+l-p A+l prl+p A+l+p

F F
Hence X (',\0 '*"X1P) =XQO) X r(11) + X(P -2 "7\0) X r(11 - 1)
and (1) = {A,u} where p oceurs if and only if A+ 1 #p and
A, #0 and p= WeAd , W = 211po(-1)ewp . (see (2.2.1)).
In particular X () = @(A) + @ (u).
This proves (2.3.1) and (2.3.3).

1
We now perform the iteration of (2.2a). By definition eLi) is the identity,
and Q(V.nz e eW i is given by
i i p :

€i-47 * A

1
if and only if ldf 1 #p, Xi # 0.

Auﬂ‘pi“ =) - 2(1(’1) +1), where ei.')\ is defined
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In other words ei(:{ + 1) is the reflection of A+ 1 in the highest multiple

of p' less than A+ 1, provided A+ 1 is not a multiple of p- and

p; ¥ By ¢ IF A= )Cm) , then (2.2.2) reads,

XQ) = XA« XyloyD) 5 pyed = (B - 2 -2y + Oy = D

Iterating as in (2.2a) and using the fact that X(~) =0 gives,

n~1 g
(2.3.4) Theorem If A = Z lipl ” 'Aie X; then

i=0
3 : = s esee 5 @ i ecoe £n-l.
(i) d;\}m_1 when p = ei1 elt A s 144, ¢ <i, &0~

e #€i+1 1<s<t,
s s

= 0 otherwise.

A4 An-1 Tobeeeotl B i,
(i1) @Q) = -Zo core Z_ (1) X(pyoy eeee®y +A)-
1= tn-17

( P(i) = identity).
Part (ii) is an easy consequence of (i). 1In particular we see that there
are at most 2n—1 composition factors of *T(iT , each occuring with mult-
iplicity 1.
Remarks 1. (2.3.4(i)) was originally proved, though in a rather different
form, in[18) following a method of Srinivasan(1l).
2, For different descriptions of the numbers d see (3,2.5).

A
Examole A =138, p = 5.

P|?193 Pz‘e] 9‘93 93 9. 2‘0"
. - Lol o .
— } { - T
3¢

92(A+ 1) = ()3(2\4» 1), hence €55 04 0, do not ocour,

V(138) = M(138) + M(130) + M(110) + M(108) + M(88) + M(80)

() = XM - Xy X = XlpsoA) + Xlpgpyq.d) + (22 - X5 5eR)
ice. @ (138) = X (138) - X(130) = X(110) + X(108) + X(128) - X.(120).
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(i1) ¢ of type A,

A = {0(1 & 0(2} and if},‘, P?_z are the fundamental dominant
v .

i i = L. = 1.2,
weights defined by (Pi" oLJ. ) gij’ i, .
Each } = rp1 + spzex is represented by the point (r,s).
§ ={o¢1 5 «2, e= u1l+ u23 and therefore Fp consists of a regular hexagonal
'1attice‘. Every p-alcove has an equilateral triangle of side p as
boundary and X; contains 2 p-alcoves CO’C1 . Let OeCO.

We first determine the matrix T of (2.1 «1). Define

ei ’_P-i.” iao’ by ?i-;\ = Se’miol » mi = ((2 +e)m’eV)
By = %o ,m+p" ° A, (g, = identity).
n-1

i +
(2.3.5) Proposition Let A= > A,p A€ X
1=0 P

Then Wy (A) =,SZ o(A(s)) , A(S) = Esei?i“ .1, where the sum is

over all subsets S of I =ii : 214‘-? eC1, Osisn-ﬂ "

Proof From theorem (2.3.2),

X,(X) = Q(k) + Q(Serpc k) if 16 C‘;= C1\e

= @) if Xex;\c; .
-1 i i ]
Hence \P('/\)=t3fr XFr (1-1) = 1T (Q(Ri) e ‘P(Se . ;\.))Frl 1l Q(l’)Frl.
i=0 iel Sl i¢r
Therefore Y (A) = 2. P(A(S)) , A(S) = 2 (s .2 )p‘fL + Zl.pi .
seI jes ©P 1 i¢g *

Tt is easy to check that A(S) 4is as given in the proposition.

As far as the generating equation for D' is
concerned, the method of (2.2¢) may be represented by the diagrams on the
next page. Each vertex labelled TéeW (¥ 83) in the figures represents
the weight )I'L‘ + @ +pp and forms the ‘dominant vertex of a hexagon with
S ()11 T + e)p and radius #O,T + @ . The number of positive and
negative signs at each vertex of every such hexagon are equal. These have

been deleted for clarity. In terms of co-ordinates the weights j.LT are

as below,.
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+ +
Let ):)O +21p 3 10 = (ro,so)éxp 3 21 = (r1's1)exp o

)04.—9&60 10+ee'c‘:1
* P, Py e Ho 2R
L (rgs50) (zy55) (rgs50) (r),s,
i (p_g_ro,ro+so+1) (x-1 -1 ,51) (p-2-r0,r0+so+1 -p) (r1 -1,s, +1)
i (ro+so+1 ,p_z-so) (r1 »8, =1 ) (ro+so+1 -p,p—2-so) (r1 +1,8,-1 )
'1'3 (p-z_so,p-z-r-o) (r,=1,s,~1 ) (p~2—s0,p-24ro) (r‘l -1,s,~1)
T,T, | (p-2=(rgrsgt),rg) | (7y58=2) | (p=2=(rgrsyi-p),r) [ (x,,8,-1)
ToTy | (sgep=2-(rgrsgr1)) | (ry=2,8)) | (sg,p-2=(rprspet-p)) | (r;=1,s,)

]
]

— 5T = =711 =T0T,T, .
1 s‘,(1,0"1‘2 S.>:2,0’T3 %,0 = T2t = ThT,

If )0+95Y‘p , it is evident from the above table that for some TeWV,

0., We list the cases for

v o _
neEA ()LO’T,.oL) = ~1, giving 'X‘SP'O,T)
which this occurs.

(a) Agte € ’(‘;0\ C,C H i.e. T bs+2=p 3 T =TT ,T T

P>t 2" 2%t
(b) 10+e€.?}1\c1 "
(i) 104,9 € Hd1 ,p 1eE0 r0+1 =p ;T = '1‘1 ,T3
11 € H .c . v+l = 3y T =
(ii) 1O+P &0 ice. 5, P T2’T3 "

+ . N
If M4 T#—Xp , then either ')(,911,,1,) =0 or

)

A
(2.3.6) (1) Ag#p€Cy s T =TT, s, =0;T =21 ,r =0.

= gy ¥4
(ii) AgteecC, 5T =T1, s,#1 =p 3T =T2 , T, +1 =D
In (1), X(r,=2) = ~X(r;=1,0) 5 X(-2,5) = -%(0,s,-1).
using X (A) = detSX(S.A) SeEW Q)

In (1), X(r;=1,0) = X(r,;=1,0) X77(0,1) + A(r,,0-2) -X(0,p-r,-2)
X(p,5,-1) = X(0,5,-1) X77(1,0) + X(p-2,s,) - X(p-2-3,,0)

using the generating equation and “@).

PACY) y A€ X;Z’ , can now be expressed as a linear combination of pseudo-

characters.
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T
Def'ine e eWpl y 120, § =1,2,3 by
2, " (i
eiJ I w g Moo= ((2+€)uﬂux) , Where eiJ is defined only if
“j’nij 1) J
T ;
9 J % 91*1 and Dy is not a multiple of pl, j =1,2, DNote that

(313 =05 (see (2.3.5)). Let C(J)' ,C,JI' denote the pl-alcoves in X;i with

. ; i i Al .
Oe CS; . Let C) denote the lower closure Cl v (Cl ~ Cl) of C 4, 1=0,1,

-1 1
T,T T.T

Then define 911 2', 912 ¢ by

TTs 5 Tl .

9} 7\—9 A, 0T eA s ee SA, ep), €S

T T T T T T Tos il

12 2 21 2 i
€1 ZA =00, %0, 0,° WA =070y . L () S8
Restating information already obtained in terms of these operators

s, we have,

(2.3.7) Proposition Let AeX'2. Then X(A) = Zx o7 ) .

TEeW
If (’f o | ex;'z then %1(6’? A) = ‘P(Prf ).
If E’? At x;?. then either x1(9'1f A =0 o
(1) (2.3.6(i)) holds, in which case
5T, S
X, (o, S =-v@Ey0q A, Ay =(r #£0,0).

T o,
x, (e, A) = =vE 0N, Ay s (0,8, # 0), or
(2) (2.3.6(ii)) holds, in which case
T, R, 1T, T
X1(91 N = vl N p@ie, F N -w@E, %8, D

= (r ,1:)—-1) r, = 0,p=1.

7T, T
x (91 A) = ‘*’(?1 A +p@e,” D) -v@ e, D, N
1 = (p—‘},s‘) By = O,p-1.

T T
It A, = (p~1,p-1) then the terms ¢ (p, 912—52 ) andp(, e, B, N

do not appear in the above.
(2.3.8) Corollary If A +eeC , xex;Q , then

d»‘: 2 if (1) M —e1 911 2 k A1 = (I‘1 ¥ O,p-1).
TT
or ('L:L) }«L =’é1 9121 . X ’ A1 = (p"1’51 # 0)0

30



The reader should now consult FIG 1. in which 16 basic configurations are

represented, Note that, for 'AEX';Z " d%ué 2. Performing the iteration

of (2.2a) and combining it with (2.3.5) we have,
n-1

; +
(203.9) Theorem If 1 = Z Aipl y }iexg ’ (li’dy) % Orp-1 all o€ §
i=0

1Si$n-1, then
\ = ’l'; . 1‘1 — Ta-i -
a, =1 when P =0, 0 PpPp -+ *Ppq1Pribp *A

where T, € W and Fi may or may not occur,
= 0 othewise.

Renark The condition in (2.3.9) is slightly stronger than necessary.
See FIG 2 for an example of (2.3.9). Most weights decompose im such a
regular pattern with the configurations I and II of FIG 1. providing
the basic motif.

If the method of (2.2b) is required then, in addition to
the above, the formulae
X(1,0) X (A 0,) = XO+,R,) + XA -1,0,+1) + X (4, 0,71)
X(0,1) XA, A = XA A1) + XA+ A1) + XA ~1,%,)

2

suffice to derive the dl,u. . See FIG 3 for an example of an irregular
T

decomposition, In that example (X1 ,uvz) = p=1, Xo+geC1 , SO 911 oy T |

It

1

-+
lie in different translates of Xp2 by p2X and (2.2h) is needed,
Finally we give 2 corollaries which follow from the analysis of the

e X;Z case and the iteration of (2,2a).

n-1 .
(2.3.10) Corollary If A = 3 X.p" , then 3¢ il
i=0
173 - . _ n_1
With Pyr 0y 28 in (2.3.5), then dkp." 2 if ()‘i’ev) = p-1,

1<4i¢n=1, and U =9, 505 ¢ 4 Cp-18p = A
(2.3.11) Corollary V(A) remains irreducible if and only if

X+Qec‘i(P) for some i2>0, where P = i9\+p : 1&)(; " V@A) = M(A)}
A ~ g +

(ii1) & of type B,

31

This case lends itself to treatment similar to that carried



out for ¢ of type A o* Ve omit the details but remark that, as in

(2.3.9), dA is 1 or O for most weights .
L

Remark Recently Jantzen [1 1] has given a form of the generating equation

- . ¥y
with the coefficients in Z[X) ¢ for general Lie type.
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5 B3

A2 : Some configurations for (dx}x)l ex;z,};.ex+

/>>>>\<</>>\<<<</>>>>\ /\ <<</>>>>>
\AAYS A/ NNNNNNINNINN NN /
NN\ N /NN /\/\Y VAVAVAVAVAVAN 4»4)4?4»4»
\VAVAVAVAVZ. . VAVAVAVAYAY, >b<><a<>.a AN ><><>§<>
V\V  \NVaNAANN/ FAVAVAVAVAVAVAYAY
N NN NNANANANNNN\/ </>\ /\ z\ "N \NANNNNN N />
/>>>>>>>>>>>>>.>>>>>>>>>>>>\ \VAVAN

/
f
v X >\<<A\ \<<<<<</D>>
N\ / \ \ "
/Av\ /X\/\,\/C\/\A\/@/\v\/w\,\/\ SOAANLNANNANNNNNNNNN
\VAYZ S AVAVAVAVAVAVAVAVAY AVAN) X2V TAVAYAYAVAYAVAVAVAYAVAVAN
V V'V N/ /N NN N NANAN DN NN NNNN NN/
ORI KIRRIHII KRN
\AN NV N NAAN NN NNNN AVAVAVAVAVAVAVAVAVAY

ric 1.



s " Bl

A re ey, Ay = (1,1), 2, = (3,3).

yP =5

2

Ao # A,p + AP

):

Az:

O IOOCOOOOKAON
N OO
AN ADRAAAT A >§§¢0<9$N9
VAVAVAVAVAVAV.VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV
LIS BN ISP OTIIN
S A N
e
00 . \, /n/\/uuuo/i.w I\INu\ \n\'oo .W«\A/V%/\@%: A \/
000 / - 0..,,.. ..u..\ :%awmﬁﬁrb A fb‘b‘b@b@w

JAVAVAVAN //KﬂﬂﬁﬁEﬁﬁﬁW\hﬂﬁﬂ
/

Vv
QUSRNSSR

\VAVAVAVAVAVAVAVA./X/VAVAVAVAVAVAV VA NVAVAVATLN

NVAVaVAVANAVAVAV. N, VAVAVAVAVAV AUV XLV VAVAY 1.

NV NN NN N NN NN

|/|/\ / \ sl/\l. /\ /

000 >&/AX>>>\/\.\ VAV.VA
VAVAVAVAVAVAY \/\/\,,\../\,.\4\./\./>>\.v.<.

FIG 2.
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5, }0 ""e 6013 21 = (3’4)1 12 = (3,3)-

s D =

Ao + 4,0+ A0

A=

A2:

A 000%0&0%%«1»«04«400%»Wo‘»ﬂ\d»»»»dgﬁﬂ,0
OO TN
4»4»4»4»4»1»<><><><><>4»4»”4»4»1»’“4»4»5’

4»4»4»1‘»4»4»45»4»4»4»44»4»4»4&)4»”4»4
\VAVAVAVAVAY N SYAVAVAYAVAVAVAVAVAVAVAVAVAVAVAVAVAY

,ﬁ%%m K UROOOOOAK
: AVAVANVAYANAVANAN Vi N DNV NAVAYAYAY \VAVAVAV;

o

&o® \WAYAVAVAYAV N /\/\/
\VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV
\ViVAVAYAYAVAVAVAVAVAYAVAVAVAVAVAVAVAVAVAVAVAV
NoOOEEEESOAOOONREEL
\ / \ /0\%s\ /2
</>>>A./>>>>A <v>>>\ />>A<./.>>.>u>.>§

/ oo v ® \. \0/
\/ \/\/V \/\V\/ AN oﬁ%b
\VAV/ Am\g\%\w\\f?‘ A\<,>M\W.Au VAVAYA
\ /.. \ ' s \ N
./>X\<.</>>>\<</\< \VAVAVAVAVAVAVAVAVAVAVALN

Fi¢ 3.
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2

2

+

The dots represent the elements }LT’ TEY.

F16 4.
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§>5 THE _MODULAR REPRESENTATION THEORY OF SL(2,K)

Throughout, K is an algebraically closed field of characteristic p £ 0,
G is the special linear group SL(2,K) and A = K[G], the affine ring of G.

(3.1) The Group SL(2,K).

G is the universal Chevalley group of type A1 over K,
(sce 1.2). The Lie algebra g used in the construction of G is 3-
dimensional, consisting of the 2X2 matrces over C with trace O.
The root system $ =:io(,-—o(.\$ and the fundamental system A = [ fo(% .
X, the full lattice of weights, consists of integral multiples of the
f‘undameﬁtal dominant weight ﬁ = %06, and is thus identified with 2.

As an affine algebraic group G has underlying set
i (x1, Xp» Xg5 x1+) e 13 C K*, The unipotent subgroups

U,U" and the maximal torus H of G have the form,

U= <ult) = (1) = beED YK, H= () = (£9) @ vex) YK

]

- - - + -
U = <u (t) =1 0> :t€X> T K, Gis generated by the groups U,U ,
1

X(H), the group of rational characters of H, is isomorphic to Z and so
to X. The pair (B,N), where B is the Borel subgroup HU and N = NG(H)’

is a B.N pair with Weyl group W = SI, S = (0 1)3 and root system b,
-1 0

As such G has a Bruhat decomposition,

(3.1.4) G =B UBsB into double cosets of B,

(3.2) The structure of Vmsmax (or vh;min')

We begin with a description of the modules in the title., Let x,y be
a basis of Cz. The natural action of g = §_];2_ on Cx + Cy can be

extended to the polynomial algeba C [x,y] by derivations. The irreducible
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g-module V., of highest weight A can then be realised as the subspace

p)
of C[x,y] consisting of the homogeneous polynomials of degree A in

x and y, The vector }r:’\—lyl has weight A -2i, and v, = 2 da g highest
weight veetor. Let fe,f,h\ be the standard Chevalley basis of g and

W ve the Z-module <

. : rez*>. Then the minimal admissible

e, £
rl rl

. ) , io yhin _ -
(mz-lnvarlant) Z-form of V  is ?t ” Wy = v~ where

Z o A
- - & —_ i = x) 1"j. X
'UZZ.,_ <§| :reZ ). Set v, = -f{I Ve Then vy —(i : y~  and
. Z -basis of len .-
Cidig,..o 0 380 * R

A-i i o
Now Z, Zx¥ ‘y* is also an admissible Z-form. It is clearly

ma.x

AZ'

the maximal one and is denoted by These extremal Z-forms are

related by the fact that }x‘naz is isomorphic to the dual of V;lln .
=%
To sce this, define the basis (Wi)izo,. A of V., by

A
. &
wi(v7\~j) = (-1)* gij' Then with the following action on V) :-
&
(1) (v) = -f(v) , leg ,.;\veVA . fe.v;\ , we find that w_ is a
highest weight vector and Z Zw:i an admissible Z-form, the maximal one.
i=0

The g-isomorphism identifying V;\M)Z( in V. is then given by the map
b

W Sy, (NB. admissible Z-forms are detd.up to dilatation.)
i

Let V;\ 7 be any admissible Z-~form of VA . Then it is easy
2

nin

to show that V 2 C V C.mezc . VA =V ® K can be made into a
Ax A, A2

KfG] -module under the action 3

u(t) (v @ 1) = Z 5 (ev®1 o

V() (v® 1) =Z (7 ® 1)

r20 r!

Now the K[CG]-modules V()

nin ? V(A)max are defined to be Vm]'; ® K,

A,

yRex
K WwiMe (= 1 =
7\ 7 ® K resp Vu;min has K-basis (Vi,K = vi® '1"1{} and Vi?i;max



has K-basis E“’ =w. ®1, ¢ 0€1i< )} «~ The G-action on each module
i,K i~ X

is as follows.

(3.2.1)

(3. 2:2)

Remarks

We are now in a position to set about determining the structure of vu;m&

j 2 2 s .
oy = 5 (48) By s w0y = 2 (1) $

: 2
1 . s s - A-' i
u(t)wi,K = Z (1) g ij,K H u (t)wi g = Z (2_3) £J lw"

’

-

3=0

vzl;min and Vixsmax are indecomposable.
X

(; ~ zs

vzmx'(vl'\min.)

( ) i maximal XIG b
V(A min has & unique maximal proper f]-su module

(contained in the sum of the weight spaces except the

33

highest one), the quotient by which is M(A). Hence fo;max

has M(}) as its unique irreducible submodule,

The injection i;\,z s V;m:; ——#V;mi']zc gives a homomorphism
i, V) i V())max y with ker i) as the maximal proper

submodule of VZ)Smin and im i, = MQA) .

X

(and hence by 2. above, Vusmin Je

Let

{ n, =w gt 0€i<A) be the K-basis of V(A),,, described

above, Then thanks to (3.1.1), the G-action is described by the equations,

(3.2.3)

(1)

(ii)

(iii)

i . -
o 1 1=J
u(t)mi = ; (J) t my
, J=0
5 o
h(t)m, =t Ay
i i

A-i
sm, = (-1) Moy *

We seek the G-invariant subspaces of Z Km:.L where V = (0,1,...,3\} .

i€V

Since the weight spaces' are 1-dimensional, such subspaces will be of the

form. S

1=

>

i€l

Km, , ICV .
1



40

Call I symmetric if i€I implies A-iel .
I complete if i€l and (3) 40 inplies je€I.

Equations (3.2.3) imply that is a complete symmetric set. For future

I

reference we state the following well known lemma without proof.

n-1 k n-1 Ie
(3.2.4) Lemma Let i =3, i,p° 0<i,<p, § =3 §p 0<j, <p .
=0 k=0

Then (3) £0 @(3@ £0 & §<i, OSk€n .

If (1) £0 , write j<1i .

J
) n-1 s
Recall from (2.3.4) that if A = 5, A,p , 0€A,<p, then
i=0
= = ceveoeoe . . 'S. se e i =~ .
d.;\}t 1 when/u ei1 elk A ’ 1 11< <1k<n1

n

0 otherwise.

Direct caleculation gives the following,

(3.2.5) Proposition Let D, =()4: a £0} . Then €D, if and only

.
if there exists a t such that
" i j-‘l i
h
}l=€ioovooei 'X=A_22( Z;Ahp *pz‘]-rl)
1 2t e h=i2j-‘1

where 0<i, <....<i, <n-1 and ).12;; o, iy 1¢ p1 for H<i6t .

(Note: that ¢ o is the identity)..
Remark For another description of the elements of D2
(305.3).

A
Let O = {?\ - 213 320"V Dbe defined by B (k) =”\_':__k-' Then (3.2.3(ii))

see the proof of

A index of the
shows that O assigns to a weight of vh;mx thelcorresponding basis

n-1

vector. Let /x = Z; ).Lipi » 04}1.1<p s 0<€i<n-1 , and let 1},_:
i=0



41

TT M(,Il) , the set of weights of Mgu). Then 1}1 .—;f};. -k & ke 3'

Let 9( denote the image of T},_ under f . Then we see that 6@ is
o)

a symmetric set but not necessarily complete. In particular,
1) #0) U, (=10
= $iz 0{ and S =MQ). (=KUm by (1.3.3).
Oy = £1= (3) # Bl 3 )
Now suppose that SI is a submodule.. Then clearly each composition

fact S. is a composition factor of . Hence I = U B, . for
or of I D Sv }.l(-_/\ 9_13

some subset A of Dl’ Hence I must be symmetric and bnly completeness
need be considered. Now let I]\ZQ.L) > /ueD;\ , be the smallest set in V
containing (2 -}L) and admitting a submodule, Then Si(u)= KGm}L -

Trivially, S =8; +8 S .—.-.SIn S; end ICJ & 8.C SJ .

IvJ J?* "Ind
We see that the submodule lattice is generated by taking all unions of

elenents of the set ii'su.)} /LED » Which will now be determined.
A

Let /_x = Q3 P4 .“,\ED'A then from (3.2.5),
1 2t

T ST S
(3.2.6) Ap= 3, ( 55 Ap +p )
N S )

Using the fact that ek")‘ has p-adiec expansion represented by the vector

( p-z—)o, p""1-21,0-oo-, p—1_%k_1,Ak-1’)k+1’oo'o,ln~1 ) we easily find

i :
that the M in the expansion ).L = Z}lip are given by,
(5'2'7) : = p"'2“'). y = } -y = p-1i —2 »
)*125_1 1p5eq /"‘:12j e Mn h

i S. e 1"51:.
123_1411 1231 5 J

}1. = . otherwise.
i i

Put cgu) = 1 <U1 stfiﬂ‘“ 1ogeqt Vaeenen, 121-% ” (3.2.6),(3.2.7),give

(3.2.8) Lenmma 9(}0

Xhévh<p if heC(u) ,

consits of all » :Z))ipi such that

< : = i
0$))h\ Ah otherwise, but Dh¢1h for he=i s i

21-1 21"

Recall that if 9( is contained in a complete set I , then I mnust

0



contain all integers i< ) for each ))69( y* Hence by (3.2.8) M

is complete if and only if CS}.L)= gS i.e. }L =A. Since every subset of

cgu) nay be realised as some C(Y), it is clear that ISM) = )l_)) 9(1)3 where
the union is over all V¥ E,D;\ such that C(y) C Cgu_) "

The above considerations yield immediately the following result.

e Let L = p. eeeep. «AED . Th
(3.2.9) Theorem Le }L (.)11 ()121; \ en

isu) = i Q(m where 90))—_—. {}_:2)_) + k ¢ k%))} and I}l is the set of
)’(-_I}L .

all weights Y = ( T Py 1 ++e- P p ) « A

' =1 i *

Jnl’
i ; j i 1€1<t is
121_14 .]1:’14 eeee ’ ‘]nl,lé 1oy ’ » and iy & always even,
except when 11 = 0 in which case n, may be even or odd.

(Not ation : the product of reflections should be read with e oceurring

before e,j if i<j . Also theset {j1 EAREE jv lz may be empty ).
>

o
We have then that every submodule of vh;max is of the form SI = Z Kmi 5

’ iel
where I is a union of sets ISu) given above, and every such SI is

a submodule.

The Loewy Series

We now seek a series of' submodules VoC V1.C "”Cvk = szsmax’

. v, L
such that VcJ =0 and J/ = o' ( }/ ) .

V=1 51
This is called the Loewy series of Viﬂ)ma‘ .

Putting Ssz Vj , we get To = ¢) and 'Ik =V .
Let T, = () 80’) . Then élearly V1 = o‘(sv) = M) i.e. /\1 :{ﬂ .
SJ Vé/\j
If I/ is an irruducible submodule of SV/ isomorphic to M(D) ,
M(2) M)

then I = Qmu 9(:1) must be complete. Hence C(Y) must have no non—
trivial subsets i.e. IC())), = 1. Since ¢( PP i1 ed ) = 512 we have
n-2

/\? = f';\,eigiH.X : OSisn-e} and v2 = MQA) + 3 M(?i?im'n .

) i=0



L3

In fact we have,
n-1 .

(3.2.10) Theorem If A = 57 A ip1 , 04)i< p , then the Loewy series
i=0

of mex is 0CV, CVZC....CVn:VZ;\;max, where

S

Vs+1 =MA) + 2M( TT s P35 41° A ) and the sum is over all sequences
I=1 1 1
S i i e e i e . . S o
0 11<12< <1k<n2, 1<€kss
In addition, if i1.+' 1 = il+1 then ei P is deleted in the product
1 1+
and if then Py = 03, SOme i , the whole product is deleted.

Proof By induction on s. The theorem is true for s = 0,1 by the above,
Suppose it is true for all 0<i<s . Then it is easy to see that

U c(y) is pecisely the union of all subsets of {O, : JA- n—23 of
YeA
S

order less than s. Now if V€ /\s+1\ /\a then I claim that |C(»)| = s.
For if not then there will exist subsets of C(Y) of order greater than

or equal to s, and hence completeness of Ts V) 90)) will not be satisfied.

S
But |C(V)| = if and only if v = ) . i .. < n-
u ‘ ()’ g 1 Yy (T]——ell'eil+1') A - OS11< <is\n 2.
This completes the proof. jp

(3.2.11) Corollary The Loewy factors of v(;\jmax are given by ,

' J-1
J/V - Z MO TT i . Pi+1° A )  where the sum is over all J3=1
=1 1=1 1 i

elenent sequences 0€i,<...<i. < n-2.

J—1

: v
th partieular, n/v = M( P ® A) and Vv is the unique maximal
n-1. n-1

submodule of V(}) mang*

; T, =) e -
Remarks 1. Since V(}) .. A max the structure of V(} min con easily

be found from the above theorems. For if Vhsmax has a

cox?positi0§ series 0 C v, C V2C ceeCV = Vh;max y then

Viﬁimin has composition series o CW1 C ...cwn =Vi;-1 smin ”

*
) (v
where W__. —( }/) . further if V, =5

Vi

then
Jk



' Z ' ight A - 2i a
W =8 = K v. where vi is of weigh i an
R e
= k
v = {O,.oo.’.}} .

2. TFor a natural embedding of the modules Sigﬂ) in K[G] see (3.4.6).

.A-n Examgle )\= 40 , b = e
€1o>\= 36, 62.1= 30, e3.}= 12, £4 92.1= 28, 9293,1= L, 91 93.1_.: 10,

0102035 4= 0
From (3.2.9), {36):‘1’ 91’:\3 ’ 1(30)20’ 91'1 ’ ?2'1 » €4 ?2'l3 :

o= Dy > Togy=fhs 04 2o A3 Ty =fhs paes- A Too A £4p 22 »
020525 0405°) s To=ths €425 @205 A0 0400052 -

e TOD = VI 0y

3
V.
€.0.03 e.03
2
( .
02
66 80y 2 -
¢ N o))
(213 93 6.0y 153
130 J> 00> ("" V2 ¢ T(o)
@ ¢ee
©) (3 €02 Ll
C
&0y
9.?1. = e‘
T30 b 1028 S T
0 i X
PI4o =V,
M(40)
)
The Loewy series 0 C V‘l C V2 'q V3 C V1+ = Vhsmax is marked on the lattice

diagram, and is in accordance with theorem (3.2.10).



3¢3 The Affine Ring ; Submodules and decompositions.

Let a, b, c, d denote the coefficient functions on G

given by g = (a(g) b(g)) , so that ad - be =1 .

c(g) a(e)
Then from (1.1a), the affine ring A = K[¢] = K[a, b, ¢, 4]

Hence we may express any f€A as a polynomial

i, J k.1
f=2lijklabcd , }\ijklel«:.

A nmay bBe regarded as a 2-sided A-module, with the action of gé&G on

f€A given by,

g.f =R.F (2 x—£(xg))

fg=1f (3 xE(ex).

o
Both actions are K-linear and multiplicative, and hence the actions of
U,H,U" on a, b, c, d, tabulated below for future reference, determine

the action o £ G on A,

(3.3.1) (t o) (ab _ (tat‘b ab t 0\ _ [ta tb
ot)* \ca te t'a cda \ot) ™ \te t'a
(1 t (a b) _ (a ta+b ab 1 &\ _ /a+tc b+td
01)° \cad te+d cd/* \01) c
(1 0 (o. b) - (a+tb b) (a b 1 0\ _ a b
t1/° \ca c+td d cd/ " \t1) " (ta+c tb+d)
(3.3.2)
Recalling equations (3.2.2) we see that there is a commutative
: £,
diagram V(r 5max A

nc] /

M(r)

with 6 , @ (left) A-monomorphisms and 9(wi r-i,i

K =& b . Also @ (M(r))
= Kta® has K-basis far_l i ( ) F 0) . Note that a,b could equally
well be replaced by c,d respectively. The K-basis ia,b} of Vh;max

affords the natural representation of G,

6*1 tEr—> g = (g“ 8, 2) with invariant matrix

8oy Epp

o (a b). The K-basis (ar-ib13 of V(r) affords o°_ , the r°h
e d max r

L5
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symmetric power of 0‘1 5 O'r(g) is sometimes called the rth induced

matrix of g [13).

€.8. a2 ab b2
c_ = 2ac ad+bc 2bd
2 2 2
c cd d

The entries of the invariant matrix o‘r will, of course, be homogeneous
polynomials of degree r in a, b, ¢, d. with integral coefficients.

Let O-(r) be the invariant matrix of the representation of G afforded

by M(r).
n-1 3 )
" Then if r = Z: rip , Steinbergs theorem gives
i=0
n-1
Fr Fr
(03 =
f) O’r X O P X oeees X 0. (Kronecker product).,

0 1 n-1

r

(3.3.3) Some notation Write )r for the character Xr: t O)n——zst
0 t'

of H, Then the group of rational characters X(H) = {;\r ire Z} ¥ z.
Let Tfr = (r,. r=Ryssiny —r} be the set of weights of V(r) and

T(n) = irez:r.’.n’r"nez 3 Hence re[(n) & nell .
5 5 20 r

We now introduce a grading on A as follows. Consider A as

a right A-module and let
A(n) = {reas nf= A (Wf, all nex).
Then A(n) is a left A-submodule of A, and

(3:3a4) A= © a) .
neé€z

Since A is injective (1.1.12), it follows that each A(n) is an

injective left A-module. Using equations (3.3,1) we find that

A(n) :Z,K :;Li‘o‘jckdl , where the sum is over ail i, j, k, 1»>0  such that
(i+j)~(k+l)=n.

Trivially A(r).A(s) = A(r + s) , and so A is graded.

(3.3.5) Lemma For any fixed )1, A.20

2
i g k.1 ;
3(21, 12) = (a—l-b]c d i+ J :;l,l, k+ 1 = 223 is a linearly

independent set.



AL i )2-1 1
Proof Since a b c d has weight ()1 + }2) - 2(i +1) and

elements of different weight cannot be linearly dependent, it suffices to

- X 1.1
prove that Z * : lc d =0 * GK*

b} 3 b
i+l=s i1

implies *i q = 0.

’
-s A-s s
Assume s 4)1 ; )2 . Then a ! c < Z %1 albs_lcs_ldl =0

vhere %1 =X
But A is an integral domain. Hence we need only consider

Z'l- ls-ls—ll =0 .

Applying this last equation to the group elenment (1 1> we find that
-1 0

S-l,l .

}’ = 0, Factoring by d and repeating the operation a sufficient
o

number of times gives all il =0,

L7

The proof is similar for the cases )g1 < s:,s;\z ’ Agéss% and s>,X1, )(2. V/d

(3.3.6) The action of G on a monomial is given by,

J * - -
u(t).elpickal = 37 Z grb (s (‘Q ( ) alt I pyl=p
ot—()p-O
_ 5 g J oot .
u (t).alb‘] = § Z toL+F ( ) ( > i dvet k pdl+ﬁ .
ol = OP p
We observe that i+j and k+l1 are kept fixed.
Let }1 =r+n, ;\,) =r=-n, where réTr(n) . Then (3.3.5) and
2 < 2

(3.3.6) show that N(r,n) = ZA Kf is an A-submodule of A
£es@,,1,)
with K-basis S()1,22) .

By definition, A(n) :-EZ N(r,n) . In fact {N(r,n)}re-n'(n) is a

filtration of A(n) . Since for every s20 there is an inclusion
L * N(r,n) — N(r + 2s, n) given by Ls(f) = (ad - be)5f . Hence

(3.3.7) A(n) = U N(r,n) .

re
Define H(r) to be the K-span of all monomials in A of degree r.

Then H(r)= @ N(r,0) 1is & 2-sided A-module and A = J, H(r) .
o€l r>0



® c

®(

As above we have inclusions Ls : H(r) — H(r + 2s) , and hence

(3.3.8) A= U H2i) @ U H2i+1) .

i>0 i»0
The following result will be needed in (3.6).

(3.3.9) Proposition

k . k .
i
Suppose rell(n) , r = 2, ripl ya= 2> n,p and set
i=o i=0
11=r;n,}2=r;n, }\1i=r.;n. " )2i=r;ni, 0€idk .

Then there is a diagram ,,

® VA . — + y  N(r,n)

X1 max

k Fr
¥k, ® uQR,) - > @ N¥r,,n,)
: i=0

wvhere L is inclusion, such that :
(1) y is an A-isomorphism.

(i) If 04]1,1 5 }2’i<p , 0<i<k , then D is an A-isomorphism,
® an A-monomorphism , and the diagram comrutes .,
Proof Let (v ), (w) be bases of V(R ,‘mm , V(A Ap) 08 in (3.2.2)
Then comparison of the equations in (3.2.2) and (3.3.6) show that
A,-mm 12-1 1

\p:vmaw '—»a1bc d

1 is an A-map, and by definition of N(r,n)

an A-isomorphism .
(i) The condition 0< X, ., A, .zp implies that
1 o0 Byt
N(r.,n,) =¥Q, .) ® ¥, .) by (i). Steinbergs theorem (1.3.7) then
171 1,1 2,1
establishes an A-isomorphism © which may be regarded as a composite of
isomorphisms ,

11-m n A -1 1

Vm® Wl

A=l 1 (1 )p* 1 p }\ Ao0”

20 Odo® oo ®C 2k k dk ! > 10 0 O 2 0 o®..tl
A Ty }2k-lk 1k pk
a b “c d ") 4 where m(x, 14)2

107, Mo Ay m )P mp©
— a be d — b "®....8a b

48
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(See (3.3.2) et. seq. ) .

Now it is easy to check that if f‘ieN(ri,ni) then the map @ defined

i %
by @ :f © fg ®.... 0 fi — f1.fg.....f§ and extended

A,-m m }2-1 1
K-linearly is an A-isomorphism, with image Z Ka b e a ,
m4)
1
14A2

which makes the diagram commute. /
Attention will now be fo‘cu.ssed on the decomposition of A

into injective indecomposables. Define a set T(n) by the rule,

reT(n) & ne,Tr , the set of weights of M(r).

(3.3.10) Lemma A(n) contains a copy of M(r) if and only if reT(n) .

¥oreover this copy will be unique and equal to KG—cr n* where
3

Proof From (1.3.8(i)), cf(M(r)) = Kéa'KG. Since U B 1is dense in G,

aTKe = 2, Ka© Tot , giving cf(¥(r)) = @ xca™ *e' . This is Burnsides
i<r igr

-1 i
c

dccomposition (1.1.6(1i)) , because Kca® is isomorphic to M(r) by

(3.4.7(i3i)). The lemma follows from the fact that cf(M(r)) contains all
copies of M(r) in A (1.1.6('11)).//

Let M(r,n) = KGe | be the unique copy of M(r) in A(n)

’

for reT(n), and I(r,n) its injective cover. Recalling (1.3.8) and

(23]
(1.6.1) we have, o =2 ( & ur,n).
r?0 neT
r
This decouposition extends to A,
: D
(3.3.11) A=2 ( D 1ie,n) .
r20 ne€ Tr

We note that fI(r) ¥ I(r,n)] ryo 18 8 full set of injective indecomposables
by (1.1.11), and that

(3.3.12) ‘ | A(n) = @B 1I(r,n) .

reT(n)

Our picture of A is now quite extensive, but there remains the problem

of finding the A-submodules I(r,n) of A . Much of the remainder of

this chapter will be devoted to its solution,
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We end this chapter by saying more about the precise nature of T(n).

Clearly T(n) = T(-nr), so we may assume without loss of generality that

k-1 .
1
n=.2 nP 0¢n;<p .
i=0 .
(3.3.13) Proposition T(n) = y S(et)  where

S) = {r: « ¢ry¢p, rieﬂ(qi)g , and ol varies over all sequences

e (di)i=0,‘1 yoooe given by
oy = By,PR, 3oy = ni,ni+1 implies Ni+1 =N 4sPn H
- - - - 3 ] = o o S .
oL 4 = DBy ,PTRy 1 implies . , ni+1+1 P D, 1 O<sick- .
= th =0, 1>k.
If o1y D g 2Py + en o 5 2k

1

it
T

-’ - e —1 - = eeee = = -
If O(k_1 p nk"'1 ' P nk"’1 ’ then o(k o(m_1 p-1 s le and

o(l =0 for any m such that 1>m3>k .
(1f &£, =Py delete the sequence in which it occurs).
Proof  Since Oén<pk , we seek all representations of n in the form ,
n= 2, €(d) oL.lpi + Spk , €(i) =+, 0<et, < p.
where §=0 if 2, e(i) OLiPi>O (implying, Xy g2 0)
§ = 1 otherwise.

Putting the right hand side in p-adic form and comparing coefficients with
those of n, it is easily seen that the sequences () in the proposition
are the only ones that can occur. Clearly n can be expressed as above
in at most 2k different ways in 1-1 correspondence with the sequences
(€ (1)), Further the union over o is disjoint since the sequnces
(o mod 2) are all distinct. j

The sequences & such that S(«)CT(n) may be described

jteratively as follows. Consider n as having infinitely many p-adioc

coefficients all but finitely many being zero., For reasons which will become

m
apparent later let Sm = (Z) T (p-ogl) represent the first m+1  terms
&) i=0

in all sequences o« with S()CT(n) and « =n ,n +1 ,
m m’ m

It is not hard to see that , using (3.3.13),

.31 S, = - ' (p-n - *
(3.3.14) m = S,q(p n )+ Sm_1(p n_ 1) where S5; jg given by



S

]
. =8, ,.n, +8, ,e(n,+1) , 1<igm# , with initial values
i i-1 i i-1 3
]
SO:'p-no, SO=DO.
Notice that the exclusion condition Cii = p 1is accounted for, because
the corresponding product in Sm will become zero. Hence by making m
arbitrarily large, we may recover all sequences o with 8S(x¢) CT(n).

Finally there is an interesting identity which will be encountered again

in (3.5.4).

m .
i
Corollary (3.3.15) Let = ig,o n.p" , then
g = m+l
m- P “w
Proof By induction on m. The claim is true for n=0 clearly.

Suppose the result holds for all i<m, From (3.3.14),

]

— - N - = ] ".\‘
Sm = (p nm)'om-1 + (p n 1)'°m—1 (1)
] ]

= oS 8
Bt P B S W HMLE (ii)
]
Eliminating Sm_2 ’

1
Sp-q = PpeqSpep * (nm—1+1) . (Sm-1- (p-nm_1).3m_2).

:p-nm_1-1)
m

By hypothesis, S__, = (p-n _,).S =0 gy (P20 )+ (p

= (p-nm-1—1)°?m-2)

m=-1
Henoe S 4 =n, (P =mg o)+ (n4+t)en =m o

m=

- rtm-Z?

Substituting in (i) yields the result. y

3.4 Restriction to the Borel subgroup .

‘In this section we find the socle of I(r,n) (and
hence A(n) ) as a K[B)-module. Though not essential in the sequel it
is instructive and relevant to (3.5).

The simple X[B]-modules are given as follows. For
each rez , let ;\rex(r{) be extended to }lr'B :B~>K thus :
| }\r,B(b) = ,'lr’B(hu) = )r(h) all beB,
where b = hu 4is the Jordan decomposition. Then fzr,B : PC-33 is the
set of all rational representations of B, Say a left K[B]—module '

is of type X!‘B , if V = Kv where v # 0 and

e . L

51
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(3.4.1) by = A (b)v all bER
r.B
Call such a v a B-vector (of weight r) and let @r denote the space

of' such., Then @r is a right A-submodule of A,

U _ . _
Let A = {feEA:Rf=f all ueU} , #_ = {rea:re =2 (nr, heH}
. U
Then these spaces are right A-submodules of A and Br = AN }}-r .

Using (3.3.1) we find that A" = K[a,c) and # =Tk a'vdofat

b

where the sum is over all 1i,j,k,120 such that (i + k) - (j + 1) = r.
Hence @r = Z, K alck , and we have proved,
i+k=r

(3.4.2) Proposition The space of all B-vectors of type r in A(n) has
b e g -

=
e ]

dimension 1 if rell(n) , being spanned by ¢ =a ¢
dimension O otherwise.

(3.4.3) Corollary O A(n) = x'e}%‘T(n) Kcr,n , O N(r,n) = Z Ke

In particular it follows that O’G A(n) is multiplicity free, a fact
which has already been observed in (3.3.12). Coubining (3.3.12) with

(3.4.3) we see that there must exist a partition,

.ﬂ(xl) = U TTr(n) with O‘}3 I(r,n) - Z K o

reT(n) sETrr(n) s
The following lemma is immediate from the above,

(3.4.4) Lemma (i) reT(n) < rETT(u) and KG.cr i is simple.

’

(ii) Given reT(n), seTrr(n) <> ¢, €Kic .

3 s,n
Part (i) of course was given by (3.3.10). This now prompts investigation

into the structure of KGc .
r,n

11 22
Let cr,n-—a c where r:]1+}\2,n=11-;\2,

Ay»3,20. Since U B is dense in G, KGe

KU e .
r.,.n

.0 s

Hence we consider

W(t)ee, = (a s tb);h(c - ta);\z

Ay A2 1 ’
R O R
: t1+m
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= B () SR

r .
= J
Put y, = Z y , then u (t).c = 3 t, .
J Tem=} l,m r,n $=0 J

Hence the set {yj ¥ 0} forms a basis of KGcr n (yj € KGcr " since

H ]

the matrix (t°) is invertible.)

Since { Y1 ¥ 01 is a linearly independent set (3.3.5), we have
3

Y + 0 @()D(};\ $+ 0 for some 1l,m such that 16;\1, m‘lz’ T g

Therefore the set fj H yj + 0} is precisely the subset Sl of
N

distinct elements in {1 +m 2 1{31, m{)zl .
Remark Since (x'f)ﬁ) = Z ()l‘)(l*> » we have (r)* 0 implies y. # O.
—— J 1+m=j n J J

Also Y +0 & yr-j* O and y,, v Yy, are always non-zero,

» Yoo
LS
Now it can easily be checked that (yj) satisf'ies the same equations as

the standard basis of V(rsmin (see (3.2.1)). Hence Kee is a factor

’

module of Virsmm (or equivalently the dual of a submodule of Vermx).

m-1 5 m-1 o m-1 "
Lot v= & %P Aq =d§) AP s A, Z:% AP 0€n A 50,,4 P
where r = 2, Y, o, 4 =‘Am + :\2(* .
(3.4.5) Proposition (KGcr,n)* ¢ Si(,“l '11) (see (3.2))

t
S =( T ey . Py 44 )er and fi = 1€1&t , 0€i <...<i&m=2
Fad, ™ " 1m Bay Qi S L )

1
IS I

(Remarks : 1. If we define e, * 141€t] by ) = p-1 icegi, +o

1 1 1
#Fp=1 o =i, +1 +o then =0, g >
1 1 911 ()11+1 ell Pll+1 oy
“ IE w3l ORdAdy » S0e8 Ciy @i a1 %04 ug
3. If i, +1+ = i then . : is deleted from o
TRk Tl P (’11+1+dl f’ll 1 }LX.J;
Proof Ve require to show that S = is,u )  for then

gy )
1R St )

A102p

n

(see remark following (3.2.11)),

i
B
o
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The proof is suggested by considering the case t=.

Suppose \Ji1) P, vd = p-1 11<eL 411 + oL1

y, < p-1 otherwise.

Then ri‘| =))i1 -P, T = 0 i1<oL$i1 +¢>L1
T, =V, +1, 1, =v°‘ otherwise,
11+c(1+1 11+o(1+1 .
1 — -
Therefore SM’k2 = { a = Zaip :a.& vil ={a: ai1< P, 8,€ D, otherwise}

< th i .
U (a H ai1> P, ai< vi o) erw:.se}

th a, = + K 0<KgY - =r .
If psa.i1$ ))i1 en 3y P ’ P

S = ${ata<p, i€l +d, , &, < r,
11:>(2 i o 1 1 1 11+o(1+1 11+ot1+1

Hence -1

a,<r, otherwise} U {a 2 a < 1.}

= I 611' €i1+d1+1.r ) by (3.2.8) and (3.2.9). y

=
We note that the subset of distinct elements of f(KGcr n) : neT]'I} is
’

precisely the set ‘Sigﬂ») s }_Lé Drk . This follows from the fact that every

JeD  is of the form u =)1X1’12 T ;\2 = Ty

Let W = {(7-’11) : rell(n), nez and KGcr,n ¥ mming
m = {(r,n) : rell(n), n€z and KGe irreducible} .
and @ : Li?'ﬂ'(n) X in} 3 Z)OX Z?o deno;c the bijection
n f
@ s (8} == (22, 57
(3.4.6) Corollary (i) @V = {(11,;\2) A, +x2#>p-1, O£ §m=2 )
(1) @M = {(adg) 2 Ay *+ 2, 40713

]

(3.4.7) Theorem C’BI(r,n) 2, Ke . where B(r) = fs 2d_# O) :

s€B(r) S°

Proef We require to prove that Tl'r(n) = B(r) .

By (3.3.10),(3.4.4), seTrr(n) & M(r) = Kee_ . is a submodule of KGe
b ’

But by (3.4.5), this is true if and only if M(r) is a top composition

factor of Sfisu ) 11 + )2 = §. This in turn is true if and only
A1y
if e b .2). He < B(r).
Payor, ™ (3.2). Hence T (n)<B(r)

Now in terms of weights the deconposition V(m) =2, dmrr.l(r) yields the

partition T = U T, This partition has a‘dual, TI(n) = U B(r).
m P
reb reT(n)




Hence Tfr(n) = B(r) , since we already know that M(n) = U Tfr(n).//

r ¢T(n)

Summary The decoumpositions in (3.3) and (3.4) will now be summarised.

Let I‘n‘ = ((r,n) : rell(n), neZ} denote the tableau,
. 4
. 3 .
m(2) 2 N .
(1) 1 3 .
T(0) 0 2 L .
T(=1) - 1 3 .
TI(-2) 2 I .
: 3 .

th ¢ th i
with n row [[(n) and r  column Tfr, and ITC I_n the subtableau

i(r,n) : reT(n), nezZ} . Then

A= @B A(n) (3.3.4)
nez
=® (U Nryn)), (r,n)el_ (36347)
n r
= ® I(r,n), (r,n)eIT (3.3.11)
oA = O KG“r,n , (r,n)e Iy (3.3.10)
oph= ® ke o, (rmelp (5.4.2)

)
The n“'h row of IT,.I_“_ gives the corresponding decompositions for A(n).

Finally by (3.4.7) there is a partition,

T(n) = U B(r) and for re€T(n),
reT(n
O'BI(r,n) = ZKcs 0’ s € B(r),

3¢5 The Injective Indecomposables,

We now construct the injective indecomposable modules
I(ryn) of (3.3.11). ‘This is done by using certain finite dimensional
indecomposable A-modules utilised by Jeyakumar (1 2] in fiding the principal

indecomposables for SL(2,q).
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Let rell(n), O0<&r<p, )\1 =r+n, 12=r'-n where

5= 2(p-1) - r.
Consider the A-module Vr =VQ15 ® V2225 (= M(A1) ® MQZ))'

I

Following an argument of Humphreys [8) 5 Vr o Day be identified with

’

and VQ,) ® VQA,) are

vQQ,) ® V(A,) . Since the weights of V_

’

the same modulo conanical identifications, the composition factors of Vr
’

are those of the VZsi for which V( s) occurs as a constituent of

V('/\1) ® V(Az). Now consider the indeconmposable direct summand J(r,n)

]
of V__ in which the highest weight ) 1t | , =T occurs. Clearly
EJ

}.I(r') is a composition factor of J(r,n). All other coumposition factors
have highest weights in the same orbit of \‘."p as !". Hence the
Clebsch-Gordan expansion of V(11) ® V()Z) shows that J(r,n) has
conposition factors M(r'), M(r), M(r) when r #p-1 and M(p - 1)
when r = p - 1. The modules J(r,n), 04 r<p, are the aforementioned
modules of Jeyakumar, (Actually he considered only the case n = ~-r, but

the modules J(r,n) are all isomorphic for fixed r.)

Clearly V!_ "

9

contains a unique copy of mmin’ which nust
be generated by a vector of weight r'. With trivial modifications, the
construction in [12) shows that mmin has an essentially unique
extension by M(r) in Vr,n' Hence we have an s.e.s.,

(3.5.1) B b W{J‘S‘mim —> J(r,n) —> M(r) —> o.

Let ‘Pr,n : Vr’n—% N(r‘.,n) be the A-isomorphism given by (3.3.9)

and identify J(r,n) with its image under .
’
The following proposition is an easy consequence of the above

considerations together with (3.5.10) and (5.'*.2),

(3.5.2) Proposition (1) XJ(r,n) = X(r) + X(r'), r+p-1.

X(r), B i

(ii) J(r,n) "has a unique maximal submodule K('rcr,n isomorphic to V/{ ) .
’ man

(-111) o J(I’,I’l) = Ko + Ke , .
B r,n r,n

(iv) o.J(r,n) = Kie

.
b
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(Note also that J(r,n) will be isomorphic to its dual.)

m-1

Let r = 'Z ripl where 0€r,<p, 0€idm-i.
i=0 i
m-1 Fr:|. m-1 i
i = h = ol .
Then for r e&T(n) define Jm(r,n) - i?O J(ri,oci) , where n 3§o iP

. . . /
with ric-_T]'(oLi). Since J(ri,o(i) is contained in N(ri,di),.

(3.3.9) shows that there is an embedding ,

m)

.
‘P:,n s Jm(r,n) ey N(em.r,n).

(Recall éjn'r =2(p™ - 1) —r.). Identify Jm(r,n) with its image under

(m -
q"r,n' 2
(3.5.3) Proposition (1) XJ (r,n) = X (s) , where
m :3€B(r)m
-
B(r) :{seB(r) : sxsem.r} . We assume ri;#p-1 in the proofs
14 o.J(r,m) = Ke e|of (i) ana (ii) which may easily
(i3) B m'? SGB(r)m s,n )

be adapted to the case ri=p-1

(1) O¢ Jm(r,n)-= KGcrr,n *

some i.]
Proof Recall from (2.3.4) the following identity in Z[ﬁ],

Fr F
(1) X(s+tp) = X)X + X(p=-2=-s)(X(t=1))T
where s,t€Z and the domain of definition of X is

extended from X+ to X,

m-1
Let r = ZE) ripi ; OSri(p , and let I be any subset of (0,1,...,m—11 .
i=
-1 :
~ Then (2) M Cpypyy) or = 2 fpt. X oropt.
i€l ieT * i¢1 *

We now prove (i) by induction on mn. First note that
.4, ’ Fri
X5 (eym = JT (KCed + REVE oy (5.5.2(0)).

Hence (i) is true for m = 1, Suppose it is true for all k, 14 k<m.

From (1) we obtain,

(3) ZX(S + rmpm) + X(s + r:npm) - ZX(S)(X(rm) % X(I‘:n))Frm
| + Z%(Pm = g = 5-,)(%(1«-1“ -1) + X(r:n B 1))Frm

where the sum is over all seB(r)m ¢

Now I claim that Z, X" -2-53) =0,
scB(r)m
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. . ]
Let s = Z r.p- o+ Z ripl = S;, say, and let I  be the complement
jer * i¢T

of I in fO,.1 ,...,m—ﬂ =I. Then clearly,

i i m
S. +84=2 2, (p~1)p +2 Z,(p-ﬂp =2(p - 1).
£ A i€l iel

Hence X (p -2 =8p) =X (- (p" - sp)) = X" -2 - S -

This proves the claim, for (2) implies that B(r)m = { SI : Ic Im3 .

(with the conventions of (3.2.10)).

Invoking the induction hypothesis, equation (3) now proves (i) for k = m,
thus completing the induction.

(ii) This is an immediate consequence of (3.5.2(i11)),(3.3.9(ii)) and the
fact that B(r)m = {SI : ICImj as in (i). ) :

(iii) Using (3.5.1) it is clear that Jm(r,n) has a unique maximal sub-
module, the quotient by which is isomorphic to M(r), But by its
construction, Jm(r,n) must be isomorphic to its dual, and so have a unigue
minimal submodule M(r). Applying (3.3.10) gives the result,

Alternatively, (iii) follows from (ii) and (3.3.10), since if se T(n) N B(r),
with reT(n), then s =r.)

Remarks 1. The B-vectors of type s = Si’ in Jm(r’r) are of a very
A1 Ap
simple form. Let SI =a ¢, Then AH =p=1,

for ieTI ; R1i =T, 7(21 = 0 otherwise,

Agy SE 1=y

We now decompose N( e-:n.n,n) into a direect sum of

indecomposable A-modules, where n<pm.

(3.5.4) Theorem For n<pm, N(e—;.n,n) - & Jm(r,n) ,
reT(n)

where ’I‘(n)m ={ren(n) : r<pm3 .

Proof  Since Jm(r,n) < N(e-:n.r',n) y We have inclusions

b gy Jm(r,n) —_> N((a—:n.n,n) (see (3.3.7)).

—

2

M(p hen,n) is isomorphic to V(pm - 1) @ V(oo -1 - @),
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and so has character X (p" - 1) X(p" -1 - n).

X" -1 XGP -1 -0 = 2 XD, T, = {s€Tln) = scpn.n)

seTT(n)m
- Z Z, X (s) , since [(n) = U B(r),
reT(n)m seB(r)u1 r€T(n)
= 2 X by (3.5.3(1)).

ré€ T(n) i Jm(r"n)

Since O J;n(r,n) is irreducible (3.5.3(iii)), the sum must be direct

G
and so we have the theorem. //
Remarks 1. Comparing dimensions in (3.5.4) and dividing by pm’ gives the

of (3.3.15).

2. Jm(r,n) may be identified with the indecomposable direct

equation pm -n= Sm—1

2
containing the highest weight 2(p" = 1) —r.

summand of V(p" - 1 — (rﬂ))mx ® Vv(p" -1 - (z‘:_g))max
2

Ve now come to the main result,

(3.5.5) Theorem If n<pt then I(r,n) = U Jm(r,n) .
m>t

Proof First observe that the union makes sense. By (3.5.2(iv)), K1
is a submodule of J(0,0). ( 1 is the identity of A). Hence for m>t

(3.3.9) shows that Jm(r,n) is a submodule of Jm+1(r,n) in A(n).

Let J = U J (r,n). Then I claim that z, J is a direct
r,n g W f r,n
m> reT(n) *°
sum., For suppose 1‘1 + f'2 + cees + fs = 0, where f‘ie Jm’(rﬁ),n).

F: 3
Now if k = m(mi) then f. e Jk(rm,n). 1€1<s, Hence each f, =0,

since ¥ J (r,n) is direct by (3.5.4). Clearly B 7 _cA(n).

rET(n)k . I’GT(R) Fatt
On the other hand (3.3.7) gives A(n) = U N(é1.n,n), and (3.5.4)
) m>0 n
gives N(ém.n,n) c 6 J. ,+ Hence A(n) = ® b .
reT(n) 2P reT(n) TP
But Oe Jr,n = KGcr,n and so we must have Jr,n = I(r,n). V4

Remark In [12] it is shown that the restrictions of the A-modules

5 m
Jm(r,-r) to the group SL(2,p) are projective indecomposable
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The Injective Indecomgosables (see Th. (3-5-5)

No(o) = N(2(p"-D-n0) " Tlo), = {r. 5, r ) whete. wed . pak
Aln) = r,n o nne....e I(f{-&,n) e . ..o Ilr .me...8 Ilr ne
” T - PR

| . T ! |

A T h A T T

N_(n) = J ey & J (e ....6 TN e . .. e T Me...e T(r_.0

A '[ A by

T T I T T
N, (0 L0 e JGeMNe .. .0 T r.Ne . . -8 T .0 .0

t+1 e+l

Nk(rﬂ = Z(ﬁ,n) ® —Jk(rz,n) & . . ..0 J(r .,



for r #0, When r =0 however, a factor module must be taken, A full
set of P.I.M.s for SL(2,p") is thus obtained.

Theorem (3.5.5) is illustrated on the - page following it.

3,6 Cartan Invariants and Blocks .

In this section we dtermine the Cartan invariants ci}x
and the blocks, as defined in 1.6 and 1.7.

Suppose that for '/\,).L &X', c-z)l 4+ 0. Then (1.7.2) says
that there exists a vex* such that dm‘ #+ 0, d;”)‘. ¢4 0. Hence there are
sequences 0€i1_< <it , 0% j1< wer o <js such that

= o . = . ®0 e . @ ]) . L t k = % 3 ¥ pe T \
A= @yt Pay Yy 05, Cs, ¢ max(iy, £ )~ Theo

~1 -1 .
given any sequence K<k, < cee. (LL_L > tkl.... ek1. Y occurs in

B(A) N B(w). This proves,
(3.6.1) Proposition If c-l)L.-# 0 then 3 must ba tntlkts,

Moreover 01}1 4 0 if and only if there exist sequences of integers

1
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. . 2 2 -
0€i, € eeea<i, , 0€Jj,<veee<j_ such that A= ceee D . '

t 1 2 L . - L]
1 s 931. er E’lt 911 /“"

The next result gives the block partition of X+. (see (1.8.2)),

(3.6.2) Theorem X' = ikio B,  is the partition of X' into
y
0<n<«p

_ (o= i . 3 -j
blocks Bi,n o £€i+1o(np -1) : J>/03 , where eii1 denotes the
th . . -1
j-told iteration of Rive In particular the blocks Bi - are infinite

y
in number,

&
Proof Let A€X , then since (3.6.2) is clearly a partition, A € B,
L i,n

for some 120, 0<n<p, The p-adic coefficients of A then satisfy
Ag = - =1i =p=1, )gw £ p =1, Hence if d}\)1 # 0, then by (3.2.5)
there must exist a j20 uch that = J

This shows thfat if dl}l. # 0, then A and }L must belong to the same set
+ 3
Bi,n . Now A,.)lex are adjacent if and only if ca}k + 0 (1.8.1),

But N 40 if and only if 4 #0 and dv)L # 0 for some YeX which
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implies, by the above, that A and M belong to the same Bi 5 *
’
Henee B, is a union of blocks. v
i,n

On the other hand suppose that l,}; belong to the same set
J

= ei+1"‘1 f'or some Jj2 0.

Bi,n . Then assuming 1)}1 , we have M

Hence there exists a sequence }LO =2A , )11 = ei”.l 9780801 }'Lj+1 = 913.1'1 =).L

such that 4 £0, 0<t<j. (see (3.2.5)).
Mg Pesa
But d # 0 implies that ¢ # 0. Hence by (1.8.1) p !
YT Y P My g ’ r

belong to the same block. Thus Bi ” is a block and we are :f'inished.//

’

The matrices C and D can now be decomposed in accordance
with (1.8.3).

Finally a proposition concerning block components,
(3.6.3) Proposition Let H1‘ (32) be the sum of the block components
containing the even (odd) weights. Then,

A=H@®H, , where H = U H(2i) , i, = U H(2in).
120 i>0

Proof Clear from (1.8.5(ii)) and (5.5.8),//
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Conjectures .

Let S = fleX* s Vi}l; irreducible} . Define SO to be the intersection
of S with X' but excluding the Steinberg weight (p=1e -

. . 4
Define 8, , i»0, by S; +@ =P (SO +?)’

Conjecture 1. s= U s
i20

Conjecture 2. (The Block Conjecture).

i

The set S 1is an index set for the blocks, and
x"= U  (wi#t A NX")  is the block partition.
i»o P
J\esi

Conjecture 3, The Cartan invariants c;\ are either infinite or zero.

All of these conjectures have been proved for § of type At. Using the
material of (2.3) it is not hard to see that they are all true for & of

type Az.




