Original citation:

Armstrong, David J., Pollacco, Don and Santerne, A.. (2017) Transit shapes and self organising maps as a tool for ranking planetary candidates : application to Kepler and K2. Monthly Notices of the Royal Astronomical Society, 465 (3). pp. 2634-2642.

Permanent WRAP URL:

http://wrap.warwick.ac.uk/83690

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.

Copies of full items can be used for personal research or study, educational, or not-for profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

Publisher's statement:

This is a pre-copyedited, author-produced PDF of an article accepted for publication in Monthly Notices of the Royal Astronomical Society following peer review. The version of record Armstrong, David J., Pollacco, Don and Santerne, A.. (2017) Transit shapes and self organising maps as a tool for ranking planetary candidates : application to Kepler and K2. Monthly Notices of the Royal Astronomical Society, 465 (3). pp. 2634-2642 is available online at: http://dx.doi.org/10.1093/mnras/stw2881

A note on versions:

The version presented here may differ from the published version or, version of record, if you wish to cite this item you are advised to consult the publisher's version. Please see the 'permanent WRAP url' above for details on accessing the published version and note that access may require a subscription.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

Transit Shapes and Self Organising Maps as a Tool for Ranking Planetary Candidates: Application to Kepler and K2

D. J. Armstrong ${ }^{1,2 \star}$, D. Pollacco ${ }^{1}$, A. Santerne ${ }^{3,4}$
${ }^{1}$ University of Warwick, Department of Physics, Gibbet Hill Road, Coventry, CV4 7AL, UK
${ }^{2}$ ARC, School of Mathematics \mathcal{E}^{2} Physics, Queen's University Belfast, University Road, Belfast BT7 1NN, UK
${ }^{3}$ Aix Marseille Université, CNRS, Laboratoire d'Astrophysique de Marseille UMR 7326, 13388, Marseille, France
${ }^{4}$ Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal

Accepted. Received

Abstract

A crucial step in planet hunting surveys is to select the best candidates for follow up observations, given limited telescope resources. This is often performed by human 'eyeballing', a time consuming and statistically awkward process. Here we present a new, fast machine learning technique to separate true planet signals from astrophysical false positives. We use Self Organising Maps (SOMs) to study the transit shapes of Kepler and K2 known and candidate planets. We find that SOMs are capable of distinguishing known planets from known false positives with a success rate of 87.0%, using the transit shape alone. Furthermore, they do not require any candidates to be dispositioned prior to use, meaning that they can be used early in a mission's lifetime. A method for classifying candidates using a SOM is developed, and applied to previously unclassified members of the Kepler KOI list as well as candidates from the K2 mission. The method is extremely fast, taking minutes to run the entire KOI list on a typical laptop. We make Python code for performing classifications publicly available, using either new SOMs or those created in this work. The SOM technique represents a novel method for ranking planetary candidate lists, and can be used both alone or as part of a larger autovetting code.

Key words: planets and satellites: detection; planets and satellites: general; methods: data analysis; methods: statistical; methods: miscellaneous; binaries: eclipsing

1 INTRODUCTION

Transit surveys both from the ground and space have been the most successful method of discovering planets to date. Instruments such as SuperWASP(Pollacco et al. 2006), HAT/HATnet (Bakos et al. 2004), KELT (Siverd et al. 2012), Kepler (Borucki et al. 2010), K2 (Howell et al. 2014) and CoRoT (Auvergne et al. 2009) have found thousands of transiting exoplanets with a wide range of parameters. The lightcurves produced by these instruments are searched for planets using techniques such as the BLS algorithm (Kovacs et al. 2002). Lists of planetary candidates are produced, with some selected for further followup observations. While such lists contain many true planetary signals, they also contain instrumental signatures and astrophysical false positives such as contaminating eclipsing binaries (e.g. Almenara et al. 2009; Santerne et al. 2012, 2016).

[^0]The process of selecting the best and most likely real candidates to progress to further observations is a difficult one. Typically human inspection is used to select the best candidates (e.g. Pope et al. 2016), a process which can be both time consuming and subject to biases. Some recent methods have been developed to address this problem (McCauliff et al. 2015; Coughlin et al. 2016), and we aim to present an enhancement to these here. We introduce a novel technique designed to separate planetary signals from false positives using the shape of the transit signal, utilising Self Organising Maps (SOMs, Kohonen 1982, 1990; Brett et al. 2004; Armstrong et al. 2016). Both investigations of the transit shape (e.g. Thompson et al. 2015) and SOMs have been used in the astrophysical literature before, but not as yet in combination. Here we apply SOMs to space-based data from the Kepler and K2 missions, as this data is both public and provides a large number of known planets for testing. In the future we aim to explore the applicability of the technique to ground based surveys.

SOMs are a machine learning technique first introduced by Kohonen (1982). They have been used in astronomy for estimating galaxy photometric redshifts (Carrasco Kind \& Brunner 2014), identifying variable stars (Brett et al. 2004; Armstrong et al. 2016) and investigating active galactic nuclei (Torniainen et al. 2008). Machine learning in general is a promising area only beginning to find application to the exoplanet field. Recent uses include the automatic selection of candidates using random forests (McCauliff et al. 2015), and the automatic choice of planetary atmosphere components to include in models using deep neural networks (Waldmann 2016). Mislis et al. (2015) explored the use of random forests in planet detection, but did not test their method on lightcurves showing significant out of transit variability, and concentrated on white-noise simulated lightcurves. In the current age of increasingly large surveys with previously unseen quantities of data, such automated techniques will prove necessary to fully exploit observations, for example in identifying planets, variable stars (Richards et al. 2012; Masci et al. 2014; Armstrong et al. 2016) or other interesting objects. The ability to automate parts of the planetary discovery process will allow the removal of biases introduced by human intervention, making future statistical studies easier to perform and more robust.

We present this technique both as a standalone ranking method for planetary candidates, and as a potential stage in the candidate selection process, suitable for combining with more complex methods. It is simple in concept and computationally cheap. The technique is described in Section 3, and methods of using it to classify candidates detailed in Section 4. We apply the SOM to planet candidates from the Kepler and K2 missions, demonstrating its use and ranking those candidates, in Sections 5 and 6. Strengths and weaknesses of the technique are discussed in Section 8.

2 DATA

2.1 Kepler

Data from the Kepler satellite was used to provide a large set of already classified planets and false positives for testing. We are also able to classify currently unclassified candidates (see Table 2). This data spans approximately 4 years, with a cadence of 1766 s . Additional data with a shorter cadence near 1 minute is also available for some targets; we ignore this to maintain a uniform sample. We use the set of Kepler Objects of Interest (KOIs) available on the NASA Exoplanet Archive as of 17th May 2016. We download the Data Validation (DV, Wu et al. 2010) lightcurves directly from the archive ${ }^{1}$. These are the lightcurves used to detect the KOIs, and so we deem them the most relevant for testing this method. There were 6384 total dispositioned KOIs with DV lightcurves available. These include 2247 confirmed planets, 1785 candidates, and 2352 false positives. Transit parameters (period, epoch, duration) are taken from the archive.

To prepare the transit shapes for entry in to the SOM, each lightcurve is phase folded at the given ephemeris. We then cut to a region of phase within 1.5 transit durations of

[^1]transit centre, making a 3 transit duration window. This region is binned down to 50 points, which we find gives a suitable resolution on the transit shape, and allows for uniform shape comparisons across KOIs with very different numbers of data points in transit. KOIs with few transits, such that any bin is left unpopulated even after phase folding, are ignored, leaving 6350 signals. Multiple planetary systems do not have other signals removed before phase folding and binning; we find that this has negligible effect on the SOM, and hence demonstrates its resilience to additional signatures both detected and undetected.

$2.2 \quad$ K2

We also apply the method to data from Kepler's successor mission K2. In this instance a substantially smaller number of candidates is presently available, due to differences between the missions and the relative youth of K2. K2 observes single fields for ~ 80 day campaigns, of which 8 have been released to date. The cadence is the same as Kepler. We use the list of candidates presented in Crossfield et al. (2016), providing 184 objects including 108 planets and 21 false positives. We used ephemeris and transit durations as provided in that work. There are many options for detrending the raw K2 data; we utilise the EVEREST pipeline (Luger et al. 2016) here, downloading data using the command line tool provided in that work.

K2 data were prepared similarly to Kepler. Due to the shorter baseline available with $K 2$, fewer data points are often available for a given transit signal. The result is that 50 bins proved to be too many in several cases, leading to many targets with empty bins in the 3 transit duration window. We trialled smaller numbers of bins, finding that 20 bins was adequate for the SOM to perform. In cases where bins did not have any datapoints falling in their phase range, we linearly interpolate between nearby bin values.

2.3 PASTIS

We utilise simulated lightcurves for both testing and analysis of the SOM. These were generated with the PASTIS code (Díaz et al. 2014; Santerne et al. 2015), which produces lightcurves for various astrophysical scenarios while constraining the false positive probability of planetary candidate signals. The ability to simulate lightcurves for different scenarios allows us to test degeneracies in the SOM method. Here we create 1000 systems each for the 6 following scenarios: Planets (P), Eclipsing Binaries (EB), Eclipsing Triples (objects consisting of an eclipsing binary and companion, ET), Planets transiting the secondary star of a binary (PSB), Background Eclipsing Binaries (BEB), and Background Transiting Planets (BTP). Each system was drawn from the set of priors given in Table 1. 10000 noisefree points were simulated within one orbital period, providing a phase curve for testing or injection into real data. The phase curve was smeared to account for the Kepler and K2 long cadence exposure time.

Table 1. Priors used to draw simulated systems for testing

Parameter	Prior
Non Scenario Specific	
P	Jeffreys 0.3d to 100d
$e, P>10 \mathrm{~d}$	Beta as Kipping (2013)
$e, P<=10 \mathrm{~d}$	0
ω	Uniform 0 to 360°
i	Uniform in sini, must transit
Target Star	
Mass	Normal $1 \pm 0.15 \mathrm{M}_{\odot}$
[Fe/H]	Normal $0 \pm 0.2 \mathrm{dex}$
age	Normal $5 \pm 2 \mathrm{Gyr}^{a}$
distance	100pc
LD coefficients	Claret \& Bloemen (2011)
Planet	
R_{p}	Power law in $R_{p}^{-2}, 1 R_{\oplus}$ to $2.2 R_{\text {jup }}$
M_{p}	Normal, Expected mass $\pm 50 \%$
albedo	0.1
Bound Star	
Mass	IMF of Kroupa (2001)
age	Fixed to target star
[Fe/H]	Fixed to target star
Background Star	
Mass	IMF of Kroupa (2001)
[Fe/H]	Uniform -2.5 to 0.5 dex
age	Uniform 0.1 to $13.7 \mathrm{Gyr}^{a}$
distance	Power law in $D^{2}, 200 \mathrm{pc}$ to 8 kpc
interstellar extinction	$0.7 \mathrm{mag} / \mathrm{kpc}^{b}$

3 SELF ORGANISING MAP

A Self Organising Map (SOM) is an unsupervised machine learning algorithm. It finds clusters in the data given to it, without needing labels for that data to be preassigned. We will briefly describe the method here. For a more detailed overview, we refer the reader to Armstrong et al. (2016) or Brett et al. (2004).

A SOM consists of an N-dimensional array of 'pixels', in this case with periodic boundaries. The number of dimensions is unimportant here, but the number of pixels must be high enough to represent adequate variation in the input data for the task at hand. A good rule of thumb is to make sure you have a a few times more pieces of input data than pixels. Each pixel is a template with the same form as the input data, and is initially randomised. At the end of training, each pixel will resemble a significant pattern in the input data (a typical planetary transit or binary eclipse for example), allowing such patterns to be investigated.
'Training' the SOM occurs over a set number of iterations. In each iteration, each piece of input data (here a single transit signal) is compared to the set of SOM pixels. The best matching pixel is determined, via the minimum Euclidean distance between the input data and pixels. That pixel and those near it are altered to become slightly closer to the piece of input data under consideration. The level of change allowed is determined by the learning rate, α. Pixels are altered based on their proximity to the best matching pixel, determined by the learning radius σ. Both α and σ decay during the course of the training, allowing finer levels of detail to emerge.

In our case we are feeding phase folded, binned transit lightcurves into the SOM, prepared as described in Section 2. As such, each SOM pixel will have 50 values (20 for K2), which form a template binned transit shape. The goal is to separate the input signals into groups of similar shape, and see if such groups have any power in distinguishing true planets from false positives. We utilise the SOM code provided in the PyMVPA Python package (Hanke et al. 2009) ${ }^{2}$. We use 500 training iterations. We set $\alpha=0.1$ initially, with a linear decay to zero through the course of the iterations. We set $\sigma=20$ initially (the radius of the SOM) and to decay exponentially as described in Armstrong et al. (2016). The values and decay forms of α and σ do not have a strong effect on the SOM's performance (Brett et al. 2004).

For the Kepler data we use a 20x20 2 dimensional SOM consisting of 400 pixels, on 6350 KOIs. As only 184 candidates are available for $K 2$, we reduce the size of the SOM to 8 x 8 and reduce σ accordingly. We choose 2 dimensions for ease of visualisation.

4 CLASSIFICATION

Once training is complete, a given candidate transit shape can be placed on the SOM by finding the best matching SOM pixel. The location of this pixel, (x, y), and Euclidean distance to it, can be extracted. The challenge at this point is to classify the pixel itself, and hence the candidate under consideration; a priori, we do not know if the pixel represents a planet transit or false positive. The pixel may also be unable to distinguish between the two. Here we consider two key cases. Firstly, when a large sample of classified objects is already available (i.e. Kepler, Case 1), and secondly earlier in a mission lifetime, when few or zero candidates have already been classified (i.e. K2, Case 2).

4.1 Case 1: Late in Mission Lifetime

In this case, a large sample of already dispositioned signals is available. We place the sample of Kepler KOIs on the trained Kepler SOM in Figure 1, and show example trained SOM pixel templates in Figure 2. It is clear that the SOM has power in separating confirmed planets from false positives. Note that the key distinction is between V-shaped and Ushaped transits, something that will be discussed in Section 8.

To classify a candidate signal into one of the two groups, we follow the following method. Firstly, errors on the input signal must be considered. We account for these using a Monte Carlo procedure, whereby each input signal data bin is independently adjusted by a random offset drawn from the Normal distribution with mean zero and standard deviation the bin error. The signal is then repositioned on the SOM, and the process repeated for 1000 iterations. In this way lightcurves with poorly defined transits can cover a range of pixels on the map, covering the map regions the lightcurve is compatible with within its error. This returns a distribution of SOM pixel locations, $\left(x_{i}, y_{i}\right)$, with i the Monte Carlo iteration index.

[^2]

Figure 1. Trained SOM using higher SNR Kepler KOIs. KOI signals are plotted on their best matching SOM pixel, with a random offset between -0.5 and 0.5 added to each point for clarity. Planets are magenta, false positives green. The boundaries are periodic.

Figure 2. SOM pixel templates extracted from the SOM plotted in Figure 1. Clockwise from top left the templates are from pixels $[1,8],[5,10],[14,3]$ and $[11,17]$. The top two templates are from regions dominated by validated planets, and the bottom two templates from regions dominated by false positives.

The disposition of each candidate signal is then calculated as follows. For each SOM pixel, we take the proportion of already disposition signals within it that are planets, and the proportion that are false positives. Each SOM pixel in the distribution $\left(x_{i}, y_{i}\right)$ then moves a candidate signal towards either planetary or false positive status based on the pixel's characterization (see Figure 3). We further weight each SOM pixel on the number of known signals within it, meaning more well characterised pixels are given increased classification power. The weights W and proportion of of dispositioned signals in pixel (x, y) which are planets, $\alpha_{\text {planet }}(x, y)$ are found by

$$
\begin{equation*}
W(x, y)=\sum_{o}\left(x_{o}=x, y_{o}=y\right) \tag{1}
\end{equation*}
$$

Figure 3. Proportion of dispositioned KOIs within each SOM pixel which are true planets, from the SOM in Figure 1. Clear grouping is seen. White pixels are those where no dispositioned KOIs are found.
and

$$
\begin{equation*}
\alpha_{\text {planet }}(x, y)=\frac{\sum_{o=\text { planet }}\left(x_{o}=x, y_{o}=y\right)}{W(x, y)} \tag{2}
\end{equation*}
$$

where o is an index representing each already dispositioned object. The output statistic is then calculated by

$$
\begin{equation*}
\theta_{1}=\frac{\sum_{i}\left(\alpha_{\text {planet }}\left(x_{i}, y_{i}\right) W\left(x_{i}, y_{i}\right)\right)}{\sum_{i}\left(W\left(x_{i}, y_{i}\right)\right)} \tag{3}
\end{equation*}
$$

Values of θ_{1} above 0.5 represent planets, and those less than 0.5 false positives. The closer to unity θ_{1} is, the more likely a candidate is to be a planet. We stress that this is not a posterior probability (and hence cannot be used for validation of planetary candidates), although it is related. Calibration may be possible in future to make θ_{1} more closely resemble a probability, but the statistic would nevertheless be subject to various biases discussed in Section 8. The conversion of θ_{1} into a true posterior probability is beyond the scope of this work, as it would need to consider factors such as galactic pointing (and hence crowding) as well as the myriad other inputs to common validation codes such as Blender (Torres et al. 2010), PASTIS (Díaz et al. 2014; Santerne et al. 2015) and vespa (Morton 2012). An example of the usage of this case is given in Sections 5.1 and 6.1.

4.2 Case 2: Early in Mission Lifetime

In this case, a candidate list may have been produced but large numbers of confirmed or validated planets are not yet available. This is the situation where ranking candidates may prove the most use; it is important to select the best candidates to observe for radial velocities for example, without wasting limited telescope resources.

We cannot use the above statistic θ_{1}. Here we adapt θ_{1} to make use of simulated transit signals, created using PASTIS in Section 2.3. The distance between each SOM pixel and each simulation is calculated, using the sum of the squared difference between each bin, considering only

Figure 4. Summed distances between the Figure 1 SOM pixel templates and simulated planetary signals D_{P}, as defined in Equation 5. Low distances represent a good match. Here the grouping can be seen without relying on already dispositioned KOIs. The 14 largest distances have been masked for clarity.
the bins specifically in transit. The average distance of a pixel to each scenario's (e.g. planet, eclipsing binary, background eclipsing binary) simulation set is taken. The planet scenario distances for the Kepler SOM of Figure 1 are shown in Figure 4. As such we calculate the average distance for each set of simulated lightcurves D_{S}, where S labels the type of scenario under consideration, by

$$
\begin{equation*}
D_{S}(x, y)=\frac{1}{n_{S}} \sum_{s} \sum_{b}\left(T_{\mathrm{SOM}}(x, y, b)-T_{\mathrm{S}}(s, b)\right)^{2} \tag{4}
\end{equation*}
$$

where $T_{\text {SOM }}(x, y, b)$ is the value of bin b in SOM pixel $(x, y), T_{\mathrm{S}}(s, b)$ is the value of bin b in the simulated lightcurve s of scenario S, and n_{S} is the number of simulated lightcurves in scenario S. Next, we calculate the average distance of each SOM pixel to the planet-like and false-positive like scenarios, as

$$
\begin{equation*}
D_{\mathrm{P}}(x, y)=\left\langle D_{S=\text { planet-like }}(x, y)\right\rangle \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{\mathrm{FP}}(x, y)=\left\langle D_{S=\text { false positive-like }}(x, y)\right\rangle \tag{6}
\end{equation*}
$$

where planet-like scenarios are the P and PSB scenarios from Section 2.3. We ignore the BTP scenario as the simulated transits are extremely shallow and hence generally uninformative. False positive-like are the EB, ET and BEB scenarios, also from Section 2.3. The output statistic is then calculated as

$$
\begin{equation*}
\theta_{2}=\frac{1}{n_{i}} \sum_{i}\left(\frac{D_{\mathrm{FP}}\left(x_{i}, y_{i}\right)}{D_{\mathrm{P}}\left(x_{i}, y_{i}\right)+D_{\mathrm{FP}}\left(x_{i}, y_{i}\right)}\right) \tag{7}
\end{equation*}
$$

where n_{i} is the number of Monte Carlo iterations performed. The values of θ_{2} have the same properties as θ_{1} above. Examples of this case are given in Sections 5.2 and 6.2.

4.3 Testing with PASTIS

Given the set of simulated transit signals, it is possible to test this method for degeneracies. We perform this test by injecting the simulated signals into the Kepler DV lightcurves, and creating binned phase folded transits as described in Section 2. We increase the depth of simulated transits such that each signal is at least marginally detectable. This ensures each simulation contributes information to the SOM; boosting the depth is possible as the purpose here is to test degeneracies between different scenarios rather than to find specific recovery rates. We then train a SOM with these simulations as the input data. We follow the Case 1, proportions based method of classifying to attempt to separate the injected groups. The results are shown in Figure 5. Some success is found for all scenarios, but two clear groups are formed within which scenarios are degenerate. One is of scenarios where the transiting object is a planet (P, PSB, BTP), the other where the transiting object is a star (EB, $\mathrm{ET}, \mathrm{BEB})$. Some mixing between these two groups is seen towards the top right of Figure 5; in this region the scenarios used have typically shallower and hence less well defined transit shapes. We conclude that the method distinguishes stellar eclipses from planetary transits successfully, but cannot exclude false positive scenarios involving planets (background transiting planets for example). This behaviour is expected, as such false positive are among the hardest to identify, and motivates the planet-like and false positive-like groups used in the Case 2 method. Furthermore transits with low SNR can be confused; this is expected to be a problem for candidates where even the binned transit has a poorly defined shape, and is allowed for in Section 4 using the bin errors. The exact success rates seen in Figure 5 have no relevance to the success of the method on real data, as they are inherently functions of the distributions of simulated lightcurves used. The results here are only informative in so much as they highlight degeneracies between true planets and some false-positive classes found when using this method. Testing the method's results on real data is performed in Section 5.

5 APPLICATION TO KEPLER

5.1 Case 1

We take the Kepler transit signals as prepared in Section 2. We found best results from training the SOM only on the higher signal-to-noise (SNR) transits, and use a cut at 30 in the SNR parameter given by the NASA Exoplanet Archive, leaving 3078 KOIs. The SOM is then trained as described in Section 3. Note that we can obtain classifications for all signals, despite only training on a subset. The locations of all the Kepler signals on this SOM are shown in Figure 1, with examples of the SOM pixel templates underlying the map in Figure 2.

We will apply both classification methods to the Kepler data. The proportions of planets and false positives in each SOM pixel are shown in Figure 3. The SOM was unaware of the disposition of each signal before training. Hence we can use every input transit to test the method. We apply Equation 3 to the Kepler signals and show a histogram of the resulting statistic in Figure 7. Values of θ_{1} greater than 0.5

Figure 5. Confusion matrix showing the true class and predicted class for each simulated scenario described in Section 4.3. Lightcurves are classified using the method described in Section 4.1. Correct classification lies along the diagonal. The proportion of lightcurves in each scenario which lie in each box is shown. Only proportions greater than 5% are shown for clarity. Confusion is typically between the three planetary scenarios (Planet, PSB, BTP) or between the three stellar scenarios (EB, ET, BEB). Typically shallower scenarios such as BTP are less well classified.
represent planets, with the strength of the result increasing as θ_{1} rises. 1923 of the 2227 dispositioned planets are classified correctly, and 2093 of the 2391 false positives, making an overall success rate of 87.0%. The success rate rises to 91.7% when considering only the higher SNR KOIs used to train the SOM. Taking only objects with 'well-determined' classification (4188 of the 4618 dispositioned KOIs, defined as θ_{1} greater than 0.6 or less than 0.4 for planets and false positives respectively) improves the results for all KOIs to 89.8%, and the results for higher SNR KOIs to 92.8%. Confusion matrices for this case and the others tested are shown in Figure 6. We note however that the aim of this method is to rank candidates rather than classify them; Figure 7 is more useful for gaining an understanding of the method's success for this purpose, through the distribution of θ_{1} for planets and false positives.

5.2 Case 2

Although we expect Case 1 to work better where possible, it is interesting to compare to Case 2 (using simulated lightcurves for classification, although not for training). We use the same SOM as Section 5.1 to classify the Kepler KOIs using Equation 7. The resulting histogram is shown in Figure 8. Note that θ_{2} is generally unable to fully use the parameter space between 0 and 1 , because even SOM pixels heavily dominated by planets still have a finite distance to false positive simulated lightcurves and vice versa. 3638 KOIs are classified correctly, making a success rate of

Figure 6. Confusion matrix showing the dispositions given to candidate signals, using a threshold in θ_{1} or θ_{2} of 0.5 to classify a signal. Matrices are shown for Kepler (top) and K2 (bottom), and for Case 1, θ_{1} (left), and Case 2, θ_{2} (right). Each box shows the total number of signals classified. P represents Planets, FP False Positives.

Figure 7. θ_{1} statistic for the Kepler KOIs. Top: true planets. Bottom: false positives. The lighter shaded histograms show the whole sample, while darker shades represent the higher SNR KOIs.
78.8% Considering only higher SNR KOIs as above increases this to 88.9%, nearly as effective as Case 1, while retaining 3572 of the 4618 dispositioned KOIs. Considering only 'welldetermined' classifications increases these results to 84.6% and 93.9% for all KOIs and higher SNR KOIs respectively, equivalent to Case 1. A side effect of θ_{2} not using the full 0 to 1 space is that the distribution of θ_{2} is unbalanced; more planets are classified correctly than false positives, as can be seen in Figure 6 (top-right). This may be a desired outcome, if for example it is more important to maintain planets than

Figure 8. As Figure 7 for θ_{2}.
remove false positives. The balance could be adjusted by using different thresholds of θ_{2}, as necessary. We note that these success rates will likely change from mission to mission, but do represent the effectiveness of the method, and a good test of comparison between classification cases. It is possible that future developments may improve them, such as using different and physically motivated numbers of each simulated scenario.

5.3 Results

The results for the Kepler KOIs are given in Table 2. This Table provides a ranked list of the undispositioned Kepler candidates, which we hope to be useful to anyone considering selecting targets for followup. It can be combined with other diagnostics, such as those provided on the NASA Exoplanet Archive, or codes. It is important to be aware of the biases involved in this selection. Firstly, as demonstrated in Section 4.3, false positives involving planetary transits are not distinguished. Secondly, as the SOM separates false positive signals primarily on V-shape, grazing planets will likely be classified as false positives. While this is regrettable, grazing planets are difficult to follow up, and are relatively few in number.

Several KOIs dispositioned as Planets are given low θ values, in both θ_{1} and θ_{2}. We examined by eye the cases where θ_{1}, the most successful method, was unable to classify planets successfully. 80% of the 301 failure cases either showed a very low SNR signal ($\sim 40 \%$), or no signal at all ($\sim 40 \%$), implying that either the planet is too small to be detectable using 50 bins, or that the ephemeris provided by the archive wer erroneous. The remaining 20% were clear transits with a V-shape, and hence are likely grazing planets as discussed above. We investigate the effects of SNR on performance by considering the ratio of planets classified correctly as a function of SNR. We estimate SNR by taking the difference between the average out-of-transit and average in-transit bins, divided by the standard deviation of the out-of-transit bins. The dependence of performance on SNR is shown in Figure 9, and shows a clear decrease at low SNR. We also tested against planetary radius as given by the NASA Exoplanet Archive, and found that for low plan-

Figure 9. Fraction of successfully classified planets as a function of SNR, as defined in Section 5.3. A clear drop off at low SNR is seen. Bins are spaced evenly in $\log (\mathrm{SNR})$ space, and contain between 4 and 555 KOIs each. The error bars represent the Poisson counting error on the number of samples in each bin. 12 KOIs with the lowest SNR were not detected, are not shown for clarity.

Table 2. Output statistics for Kepler KOIs, sorted by θ_{1}. Full table online.

Kepler ID	θ_{1}	θ_{2}
005297298	1.000	0.800
004275191	1.000	0.699
003351888	1.000	0.799
003935914	1.000	0.699
008219268	1.000	0.811
010723750	1.000	0.800
009818381	1.000	0.814
008552719	1.000	0.797
005780885	1.000	0.782
007869917	1.000	0.795
010418224	1.000	0.800
007515679	1.000	0.799
\vdots	\vdots	\vdots

etary radius a decrease in performance was seen (as expected given the SNR decrease which accompanies low radius). We found no other dependence on planetary radius.

6 APPLICATION TO K2

6.1 Case 1

We apply the SOM to K2 similarly to Kepler. K2 transits are binned down to 20 bins rather than 50 , but we find encouragingly that the method is still effective. We do not make any SNR cuts for training the K2 SOM, due to the lower number of signals.

The location of K2 signals on the trained SOM is shown in Figure 11. The grouping is less clear due to the lower numbers, although it is apparent when considering the distances to the simulated lightcurves as described in Section 4.2, and shown in Figure 12. The results of attempting to

Figure 10. θ_{1} statistic for K2. Top: true planets. Bottom: false positives.

Figure 11. As Figure 1 for the K2 sample. Blue points represent validated planets, green validated false positives and red undispositioned candidates.
use Equation 3 are shown in Figure 10. For the planets θ_{1} performs well, but due to the low numbers of confirmed false positives the histogram for these is poorly populated. The success rate is reasonable, with 104 of the 108 planets classified correctly and 16 of the 21 false positives, giving a 93% success rate overall. Given the low numbers of false positives however this is potentially spurious. Furthermore, in the case of upcoming missions such as PLATO (Rauer et al. 2014) or TESS (Ricker et al. 2014), even this low number of dispositioned candidates will not be initially available.

6.2 Case 2

As such we turn to Case 2. The results of applying Equation 7 to the $K 2$ signals are shown in Figure 13. These have a similar success rate to Case 1 , but require no already known candidates and are more robust. While still poorly populated and hence hard to test, the histogram of θ_{2} values for the false positives has a clearer distribution towards the low end, as desired. 102 of the 108 planets are classified correctly, and

Figure 12. Summed distances between the Figure 11 SOM pixel templates and simulated planetary signals. Low distances represent a good match, and highlight the grouping seen.

Figure 13. As Figure 10 for θ_{2}.

15 of the 21 false positives, representing similar performance to Case 1. As the calculation of θ_{2} does not depend at all on the low number of known false positives, we believe it to be more reliable in this instance.

6.3 Results

The results for the $K 2$ candidates are shown in Table 3. Users should be aware of the same caveats as highlighted in Section 5.3.

7 CODE AVAILABILITY

The code used to create and train the SOM is already part of a public package, PymVPA ${ }^{3}$. To make using this method easier for readers, we make available code to classify a Kepler or

[^3]Table 3. Output statistics for K2 objects, sorted by θ_{1}. Full table online.

EPIC ID	θ_{1}	θ_{2}
201445392	1.000	0.774
201295312	1.000	0.770
201324549	1.000	0.773
201713348	1.000	0.755
201247497	1.000	0.803
201549860	1.000	0.781
201565013	1.000	0.811
201565013	1.000	0.794
201596316	1.000	0.801
201596316	1.000	0.754
201345483	1.000	0.743
201702477	1.000	0.797
201613023	1.000	0.754
\vdots	\vdots	\vdots

K2 lightcurve using our pre-trained SOM, along with convenience functions for users to create their own SOMs. This is available on github ${ }^{4}$, along with documentation describing its use.

8 DISCUSSION

SOMs have proven to be effective at separating true planetary signals from false positives, using only the shape of the candidate signal. The source of this discriminatory power is made clear by Figure 2. In short, transiting planets produce U-shaped transits, whereas most stellar eclipses are V-shaped, primarily due to the different radius ratios involved in each case. This difference is well known; it forms a key part of planetary candidate selection in most current surveys. To date however, the choice of whether a candidate is too V-shaped to continue observing has typically been made by humans, with the subjective biases and inconsistent thresholds that that implies. 'How V-shaped is too V-shaped?' is a question often answered on a case by case basis. The SOM provides an opportunity to standardise, quantify and speed up this process. We expect the SOM to be useful either as a fast pre-screen of a given candidate list, or as input to a more comprehensive autovetting code which incorporates other inputs such as secondary eclipse detections.

It is possible for true planets to give V-shaped transits. This occurs for grazing transits, where only part of the planet occults the stellar disk, as well as for near-grazing planets and short period planets observed at a very long cadence. As such, in removing V-shaped signals we are removing some true planets. This problem is common to both human selection and the SOM. While it would be preferable to maintain all planets, losing some at the expense of the majority of false positives is generally considered worthwhile given limited telescope time. Furthermore, grazing transits are difficult to model, as they present a degeneracy between radius ratio, impact parameter and inclination which is easier to separate in the full transit case.

[^4]A potential issue in our development of the SOM arises from the Kepler KOI sample. The majority of this sample have been dispositioned using validation (e.g. Morton et al. 2016), without separate observations of the planetary mass. This process relies on finding the false positive probability of a candidate, using its galactic pointing, local crowding, transit shape and host star parameters. As we are relying exclusively on the transit shape, one of the key validation inputs, there is a danger of bias in using the validated sample to confirm the method. We have mitigated for this by marking 'confirmed' planets (those with detected masses) separately in the SOM. Confirmed planets follow the same groupings, supporting our conclusions. Furthermore, testing with PASTIS (Section 4.3) successfully and independently checked the effectiveness of our method. We note that the success of the SOM demonstrates the power of the transit shape alone in the validation process, at least to the point of separating stellar eclipses from planetary transits.

In a reversal of the main goal of this work, it is possible to use the SOM to identify eclipsing binaries and triple stars. Catalogues of eclipsing binaries (Armstrong et al. 2016; LaCourse et al. 2015; Armstrong et al. 2015) are useful science products of planet surveys, with the most recent catalogue for K2 using SOMs to identify the binary stars in the sample. Eclipsing binaries provide one of the only direct tests of stellar evolution models, and can even host planetary systems themselves (e.g. Doyle et al. 2011).

We have developed this method with the aim of separating astrophysical false positives from true planetary signals. In doing this we ignore candidates produced due to instrumental noise and apparently periodic noise patterns. These can be removed with other techniques; looking for clusters of candidates in epoch space for example. Here the SOM can also contribute. Firstly, noise-candidates do not typically show a transit-like shape. As such, they will have a large distance from even their best matching pixel on the SOM. This can be used to separate candidates. If noise-candidates are included in training the SOM, they will develop their own region on the map, one which does not resemble any simulated astrophysical lightcurve; again, this can be utilised. If all such non-matching candidates are designated false positives, the planet sample will be preserved.

9 CONCLUSION

A new method for identifying the best planetary candidates for followup has been developed, tested, and applied to the Kepler and K2 datasets. The SOM replies only on the transit shape, and can achieve accuracies of near 90% in distinguishing known Kepler planets from false positives. We apply the technique to the unclassified Kepler and K2 candidates, and hope the resulting rankings will be useful to the community.

This method adds to the developing body of techniques for automatic vetting of planetary candidates. SOMs can contribute both as a quick initial screening step and as a part of larger autovetting codes. Such codes are beginning to become available for K2 (Coughlin et al. 2016), and we intend to apply this method in combination with similar techniques in the future. Autovetting is a growing field, and will become increasingly important as new missions such as

TESS and PLATO begin to produce data. The unprecedented large data volume of these missions will require automatic techniques to maximise their effectiveness. In addition to followup efficiency, automatic techniques allow faster and more detailed studies of completion rates in planetary surveys, allowing statistical studies to be made more easily and more robustly. We expect developments in this field to progress rapidly from now on.

ACKNOWLEDGEMENTS

We would like to thank the anonymous referee for providing useful comments on the manuscript. D..J.A. acknowledges funding from the European Union Seventh Framework programme (FP7/2007- 2013) under grant agreement No. 313014 (ETAEARTH). This publication was aided by the international team led by J. Cabrera on 'Researching the Diversity of Planetary Systems' at ISSI (International Space Science Institute) in Bern. Part of this work was supported by Fundação para a Ciência e a Tecnologia, FCT, (ref. UID/FIS/04434/2013 and PTDC/FIS-AST/1526/2014) through national funds and by FEDER through COMPETE2020 (ref. POCI-01-0145-FEDER-007672 and POCI-01-0145-FEDER-016886). A.S. is supported by the European Union under a Marie Curie Intra-European Fellowship for Career Development with reference FP7-PEOPLE-2013-IEF, number 627202. This paper includes data collected by the Kepler mission. Funding for the Kepler mission is provided by the NASA Science Mission directorate. The data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS526555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX13AC07G and by other grants and contracts.

REFERENCES

Almenara J. M. et al., 2009, Astronomy and Astrophysics, 506, 337
Armstrong D. J. et al., 2016, Monthly Notices of the Royal Astronomical Society, 456, 2260
Armstrong D. J. et al., 2015, Astronomy and Astrophysics, 579, A19
Auvergne M. et al., 2009, Astronomy and Astrophysics, 506, 411
Bakos G., Noyes R. W., Kovacs G., Stanek K. Z., Sasselov D. D., Domsa I., 2004, Publications of the Astronomical Society of the Pacific, 116, 266
Borucki W. J. et al., 2010, Science, 327, 977
Brett D. R., West R. G., Wheatley P. J., 2004, Monthly Notices of the Royal Astronomical Society, 353, 369
Carrasco Kind M., Brunner R. J., 2014, Monthly Notices of the Royal Astronomical Society, 438, 3409
Claret A., Bloemen S., 2011, Astronomy and Astrophysics, 529, A75
Coughlin J., Mullally F., Mullally S., Colón K. D., Barentsen G., Quintana E. V., Burke C. J., Barclay T., 2016, American Astronomical Society Meeting Abstracts, 228

Crossfield I. J. M. et al., 2016, eprint arXiv:1607.05263
Díaz R. F., Almenara J. M., Santerne A., Moutou C., Lethuillier A., Deleuil M., 2014, Monthly Notices of the Royal Astronomical Society, 441, 983
Doyle L. R. et al., 2011, Science, 333, 1602
Hanke M., Halchenko Y. O., Sederberg P. B., Hanson S. J., Haxby J. V., Pollmann S., 2009, Neuroinformatics, 7, 37
Howell S. B. et al., 2014, Publications of the Astronomical Society of the Pacific, 126, 398
Kipping D. M., 2013, Monthly Notices of the Royal Astronomical Society: Letters, 434, L51
Kohonen T., 1982, Biological Cybernetics, 43, 59
Kohonen T., 1990, Proceedings of the IEEE, 78, 1464
Kovacs G., Zucker S., Mazeh T., 2002, Astronomy and Astrophysics, 391, 369
Kroupa P., 2001, Monthly Notices of the Royal Astronomical Society, 322, 231
LaCourse D. M. et al., 2015, Monthly Notices of the Royal Astronomical Society, 452, 3561
Luger R., Agol E., Kruse E., Barnes R., Becker A., Foreman-Mackey D., Deming D., 2016, eprint arXiv:1607.00524
McCauliff S. D. et al., 2015, The Astrophysical Journal, 806, 6
Masci F. J., Hoffman D. I., Grillmair C. J., Cutri R. M., 2014, The Astronomical Journal, 148, 21
Mislis D., Bachelet E., Alsubai K. A., Bramich D. M., Parley N., 2015, Monthly Notices of the Royal Astronomical Society, 455, 626
Morton T. D., 2012, The Astrophysical Journal, 761, 6
Morton T. D., Bryson S. T., Coughlin J. L., Rowe J. F., Ravichandran G., Petigura E. A., Haas M. R., Batalha N. M., 2016, The Astrophysical Journal, 822, 86

Pollacco D. et al., 2006, Astrophysics and Space Science, 304, 253
Pope B. J. S., Parviainen H., Aigrain S., 2016, Monthly Notices of the Royal Astronomical Society, 461, 3399
Rauer H. et al., 2014, Experimental Astronomy, 38, 249
Richards J. W., Starr D. L., Miller A. A., Bloom J. S., Butler N. R., Brink H., Crellin-Quick A., 2012, The Astrophysical Journal Supplement Series, 203, 32
Ricker G. R. et al., 2014, in SPIE Astronomical Telescopes + Instrumentation. SPIE, p. 914320
Santerne A. et al., 2015, Monthly Notices of the Royal Astronomical Society, 451, 2337
Santerne A. et al., 2012, Astronomy and Astrophysics, 545, A76
Santerne A. et al., 2016, Astronomy and Astrophysics, 587, A64
Siverd R. J. et al., 2012, The Astrophysical Journal, 761, 123
Thompson S. E., Mullally F., Coughlin J., Christiansen J. L., Henze C. E., Haas M. R., Burke C. J., 2015, The Astrophysical Journal Letters, p. 46
Torniainen I. et al., 2008, Astronomy and Astrophysics, 482, 483
Torres G. et al., 2010, The Astrophysical Journal, 727, 24
Waldmann I. P., 2016, The Astrophysical Journal, 820, 107
Wu H. et al., 2010, Software and Cyberinfrastructure for Astronomy, 7740, 774019

[^0]: * d.j.armstrong@warwick.ac.uk

[^1]: ${ }^{1}$ http://exoplanetarchive.ipac.caltech.edu/

[^2]: 2 http://www.pymvpa.org

[^3]: ${ }^{3}$ http://www.pymvpa.org

[^4]: ${ }^{4}$ https://github.com/DJArmstrong/TransitSOM

