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Inceptions of biomathematics
from Lotka to Thom
HUGO A.VAN DEN BERG

ABSTRACT
Mathematical biology occupies a special place at the interface between the physical,
mathematical and life sciences. Is this interface merely a meeting point for dabblers
venturing out of their own proper domains to work on problems of mutual interest?
Or is it an incipient science in its own right, with its own particular character, prin-
ciples, and practices? The past century has seen vast advances in the application of
mathematical and physical ideas and techniques to biological problems, in the process
transforming many of them almost beyond recognition. Nonetheless, the question of a
biomathematics as a new kind of science remains open, despite several fascinating, if
sometimes problematic, attempts.

Keywords: biomathematics, history of science, thermodynamics, evolution, homeosta-
sis, morphogenesis, catastrophe theory

Mathematics makes invaluable contributions to numerous fields of scientific research:
the intellectual discipline and the power of formal apparatus allow knowledge and in-
sights to be uncovered that would otherwise have remained hidden and unattainable.
The role of mathematics is essentially a creative one, not just allowing scientists to
tie together the loose strands of the web of knowledge, but actively generating new
hypotheses and lines of enquiry.

Despite these boons, the various sciences differ markedly with regard to the ex-
tend to which they avail themselves of the benefits that mathematics has to offer. On
the one hand, having grown up together with mathematics1, physics is probably as
thoroughly ‘mathematised’ as possible or perhaps desirable2. Other fields are more
resistant to mathematisation, attempts being tentative and problematic, and in any case
often viewed with suspicion or contempt in a culture whose leading lights have thus far
always managed without any knowledge of mathematics3.

The life sciences represent an interesting intermediate case, with various disci-
plines and practitioners straddling the spectrum from full acceptance and integration
of mathematical thought, all the way to a reluctant and grudging use of maths as a
handmaiden—in our digital age of big data, no one can fully escape her clutches. To
be sure, applications of mathematical ideas and techniques to problems in the life sci-
ences predate the launch of Science Progress in 1916. Still, the 1910s can be regarded
as a time when various strands were coalescing into a distinct subject. The past cen-
tury has seen major triumphs and breakthroughs that have come to define the character
of mathematical biology as a modern academic discipline, for instance in the fields of
neuroscience, molecular biophysics and pattern formation, ecological interactions, the
physiology of growth and metabolism, and bioinformatics, to name but a few high-
lights.
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However, does an array of successes, no matter how successful, add up to a sci-
entific discipline in its own right? Perhaps we have, here: a physicist who decided to
make a biological entity the object of study, there: a mathematician who takes inspi-
ration from biological situations without being overly concerned with the biological
realism of every last assumption, and there again: a biologist who tries her hand at
ordinary differential equations. In other words, there are enterprising physicists, math-
ematicians, and life scientists peeping over the interdisciplinary fences and venturing
out, but without these efforts necessarily amounting to a proper science. At what point
does mathematical biology acquire its own spirit, its own life, its own definite and
clearly expressed physiognomy?

The question seems pertinent since some of the biggest successes (for instance in
electrophysiology, biomechanics, and active matter) naturally fall within the purview
of classical physics. Still, the mathematisation of biology remains to date a work in
progress, and it is therefore only to be expected that the first major advances are made
where the tools lie most readily at hand, and not at the ‘deep end’ where all is murky
and unsettled.

In this historical sketch of the development of biomathematics over the past century,
I will focus on the efforts of those who did jump in at the deep end. In doing so, I will
barely touch upon the remarkable success stories of mathematical biology, and omit
most of them altogether; for these the reader is referred to any one of several excellent
textbooks4–8. I believe there is something of value to be found in pioneering efforts
even if they were problematic or outright failures: the scientists pursuing them were
driven by unique visions of what biomathematics might become, as a science with its
own proper identity.

Early stirrings: the spectre of explosive population growth

The 13th-century mathematician Fibonacci (Leonardo of Pisa) introduced the series
2, 3, 5, 8, 13, 21 . . . representing the number of rabbits at various points in time, start-
ing with a single breeding pair. This ‘rabbit model’ was meant as a whimsical word
problem couched in terms of leporids (inspired perhaps by their legendary fecundity),
rather than a serious model of population dynamics9.

Nonetheless, Fibonacci’s rabbits do share with more realistically structured models
a rather alarming property: that of eventual exponential growth, which will obtain
whenever each individual behaves, on the average, in the same way as every other one,
and can do so unfettered by resource limitations, i.e. exhaustion of nutrient supplies
and space10; this latter assumption will never hold good indefinitely in the real world.

Several late-18th century thinkers11,12 already recognised that exponential growth
must ultimately be incompatible with the finite and limited availability of resources.
Thus, an exponentially growing population will encounter harsh checks on its expan-
sion sooner or later, for instance in the form of fierce competition and famine. Human
populations are by no means exempt from such checks; whereas Condorcet imagined
that enlightened reason would curb and regulate humankind’s procreative impulses ac-
cording to the environment’s capacity for subsistence11, Malthus was much more pes-
simistic in his assessment12. In our own day, advocates of food security frequently
vaunt their ability to double (or quadruple, etc.) global food production, blithely (or
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disingenuously) neglecting to mention that exponential growth at any positive value
will catch up quickly with the most outrageously optimistic promises. Food security
lies in stationarity, not in raising the ceiling at which the reckoning will come. In any
case, a connection between biological phenomena and mathematical progressions had
been forged.

Evolution: the quintessential theory of biology?

If one phenomenon unites all living things and, perhaps, uniquely characterises life
itself, it is evolution13,14. Populations of biological organisms are subject to pressures
that favour certain genotypes by virtue of the possessors of those genotypes converting,
at a greater efficiency, a portion of their environment into more biomass associated with
those ‘favoured’ genotypes. Furthermore, populations occasionally undergo fission, or
give rise to offshoot populations that settle other areas and ecosystems. Thus, over
time scales that are much longer than those of individual life histories, a development
of new biological forms and functions takes place. Charles Darwin’s great insight was
that these selective processes alone suffice to account for the diversity we perceive in
the natural world, and can help us understand how the structures and processes we
encounter have come about14.

To relate what happens at the time scales of life histories to what happens over
evolutionary time is certainly a grand, deep challenge, and it is certainly not prima facie
absurd to look upon this as a quantitative challenge, taken up with great enthusiasm by
several generations of mathematical biologists since Darwin. For instance, the study
of genetical systems in an evolutionary context has been much advanced by Fisher15,
Hamilton16, and Maynard Smith17. Darwin presaged that much progress would come
from the mathematicians, since those ‘thus endowed seem to have an extra sense’18.

If evolution is in some sense the soul of biology, its universal principle, might not
the same be true of mathematical biology? We may find that the challenges posed
by evolution call for a genuinely novel mathematical approaches, or a kind of formal
thinking that is sufficiently distinct from other mathematical disciplines to emancipate
biomathematics as a field in its own right. Notable developments that appear to be in
such a spirit include adaptive dynamics and evolutionary invasion analysis19,20 as well
as Rice’s algebra of evolution21, itself building on Price’s theorem which relates the
rate of evolution to the correlation between (suitably normalised) fitness and pheno-
type, up to what may loosely be termed the heritability of the trait(s) considered22,23.

An intuition common to these modern approaches is the idea that one should focus
on the flow on a suitably defined manifold (phase space) as the essential mathematical
structure of interest. Linking the qualitative features of this flow back to the underly-
ing functional biology remains an open problem, whose essence is that the only thing
which persists in deep time are the genes, not as molecules, but as patterns (aperiod-
icities) in these molecules; the rub is that the mapping from genes to fitness goes via
development and involves all aspects of organismic and ecological biology. It is clearly
non-trivial—worse, we do not even know what it would mean precisely to come to
grips with this mapping in a generic or universal setting. Despite periodic claims and
promises to the contrary (such as the recent ‘systems biology’ hype which is now near-
ing its end), the genotype-to-phenotype problem has thus far proven resistant to all
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lines of attack.

Lotka’s vision of a universal ‘thermodynamic’ law of living things

Alfred Lotka contributed to Science Progress in 1920, four years into its centennial
existence, commenting on the explicit connection between population dynamics and
evolution. He noted that both could be subsumed in a common framework, that of gen-
eral dynamical systems, and that population dynamics can be recovered via a time-scale
argument in which the ‘evolutionary’ degrees of freedom are ‘frozen out’; he discusses
the conditions for stability of any equilibria24. Ironically, Lotka is best known today
for a predator-prey model in which the equilibrium is unstable and the system exhibits
a limit cycle, which is none other than the oscillation described by Condorcet, where
overpopulation leads to scarcity, which then leads to underpopulation and abundance25.
His focus in 1920 on stable equilibria derives from the fact that local linearisation of
the equilibrium point permits a Lyapunov function that may be regarded as an analogue
of the thermodynamic functions which govern the dynamics of chemical systems and
which endow their evolution with direction, i.e., irreversibility. At the time, such func-
tions, which had recently been introduced by Gibbs26 and are interrelated via Legendre
transforms, serve to encode the First and Second Laws of thermodynamics and furnish
criteria for spontaneity in terms of their extrema.

The idea of would-be thermodynamical potential functions for living systems was
much in the air at the time, since life might either be somehow exempt from the physical
and chemical laws that govern the non-living world, or its adherence to these laws
might have an important bearing on how these laws were to be conceived. After all,
vitalism had only recently been banished from scientific thought, and thermodynamics
was still finding its feet in a world where the existence of atoms and molecules was yet
to be universally accepted.

Biological exceptionalism found solace in the age-old idea of progress in evolu-
tion: the notion that living things can be arranged in a hierarchical chain of being, a
scala naturæ which had figured as the governing principle of systematics from Aristo-
tle onwards, to Linnaeus and Lamarck27. The latter injected evolution into this chain
by supposing that there was an active principle, la force qui tend sans cesse à composer
l’organisation 28: life strives towards higher orders of organisation, or, as we might say
today, towards higher complexity. If Lamarck’s pouvoir de la vie is not to be the vis
vitalis by any other name, it must be related to a unique property of life over evolu-
tionary time scales. Natural selection comes to mind here. But how is evolution to be
construed as an entropic force? Do such question lead us to discover the essence of
mathematical biology, or are we pursuing a sterile analoguey29?

A crucial misunderstanding, then as now, is the perceived entropic cost of attaining
higher levels of organisation. In fact, at any levels above the macro-molecular (e.g,
tissue, anatomy, neural organisation), the entropic cost of biological organisation is
well-nigh negligible13,30, a point that is often ignored, possibly because of the facile
metaphor of entropy as ‘disorder’ that dominates textbook treatments31. Most of the
entropic cost is at the level of biopolymers and macro-molecular aggregation, and here
it is paid by exchange of matter and energy with the environment. The puny additional
entropic cost of organisation at higher levels is redeemed in the same way, and the
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Second Law is never violated. Lotka was well aware of this, and it occurred to him
that the principles of thermodynamics, whilst inviolate as far as living systems are
concerned, are insufficient to derive universal dynamic laws for living systems.

If we are looking for laws that constrain the range of possibilities for such a uni-
versal ‘bio-dynamics’ we should look beyond classical thermodynamics: As Lotka32

put it, mechanism is all-important. Perhaps this is the problem whose resolution would
define the soul of mathematical biology: to characterise and exhaustively categorise
these mechanisms of life, understand what unites them and develop a systematic way
of accommodating their variety.

Lotka appears to have been thinking along such lines. Following Gibbs’26 lead, he
felt that something akin to a statistical treatment must be appropriate to living systems,
certainly at extended scales of time and space, even if the basal units (‘particles’) are
individual organisms rather than molecules or atoms32. If there is to be an analogue
to statistical physics, then there should also be a counterpart to the thermodynamic
limit and we could hope for the emergence (when passing to this limit) of a new law
of thermodynamics, one that applies specifically to living systems. This would have
to be named the Fourth Law, since Third is already taken by a law dealing with the
entropy at absolute zero. Lotka’s Fourth Law would have given Lamark’s28 pouvoir
de vie a rigorous grounding, and it might even lead us to reconsider the definition of
life itself, since, the Law being fundamental, if anything X is amenable to a similar
statistical treatment and the passing to the limit would be subject to it, then surely X
should qualify as a living system.

Lotka felt that the Fourth Law ought to concern the flux of energy through or-
ganisms and ecosystems. His argument was that natural selection favours efficiency
with regards to the extraction of energy from the abiotic environment33. Thus, if total
biomass stays constant (even while the species that make up this biomass are replaced
by new ones), the flux of energy through that system increases. If physiological inno-
vation leads to an expansion of the biomass that is found in a fixed unit of environment,
we should again find that the total flux of energy increases through the ecosystem as a
whole.

Stoichiometric constraints and homeostasis

The life sciences would look very different today—the undergraduate curriculum would
be as mathematised as that of physics—had Lotka’s Fourth Law made any inroads.
Alas, it was not to be. One stumbling block is that energy efficiency per se is not nec-
essarily or generically the quantity that is targeted by natural selection. Factors such as
the raw abiotic energy supply and the available biological variability must be taken into
account33; the simple, elegant principle crumbles in the face of myriad details which
vary considerably between different evolutionary scenarios.

It is tempting to remedy the problem by recasting entropy-type arguments in terms
of information. This would make sense in view of the central role played by DNA,
life’s repository of information. Moreover, information theory itself seems to beg for
this leap, its central quantity being formally similar to statistical-physical entropy and
its name being the same34. The essence of information is restriction of a realm of pos-
sibilities, an action that can anthropomorphically be viewed as choosing or exerting
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guidance, where it is understood that these terms are to be stripped of any teleolog-
ical connotations34. This was propounded by Guilleminot as the principle, akin to
Lotka’s Fourth Law, that furnishes the additional constraints left open by the First and
Second Laws35. Wilhelm Ostwald, a dominant physical chemist of Lotka’s day, ob-
served that the problem is essentially one of stoichiometric freedoms and constraints.
That is to say, we should couch the problem in terms of the various biochemical trans-
formations that make up the organism’s metabolism: these reactions each occur at a
certain rate and the problem is one of reducing the freedom in the assignation of values
to these rates36. The Second Law (which, incidentally, was misunderstood by Ost-
wald37) certainly imposes constraints on this assignation, but more is required to attain
uniqueness. Ostwald believed that the organism coordinates these rates so as to ‘satisfy
advantageously’ its energy requirements, and that this principle provides the looked-for
further constraint36.

Further progress was made by August Pütter, who observed that a subset of the
rates under consideration describe exchanges with the environment; such exchanges
must be mediated by a surface and thus the scaling relationship between biomass and
surface area provides an additional constraint38. Pütter thus arrives at a growth curve
(biomass as a function of age) that applies universally to all organisms satisfying the
underlying scaling relationship; this curve is nowadays better known under the name of
Ludwig von Bertalanffy39, who promulgated a ‘General Systems Theory’ which built
on the ideas advanced by Lotka40.

An important, if tacit, idea in the Pütter-Bertalanffy model is that of homeosta-
sis, specifically the implicit assumption (macro)chemical homeostasis with regard to
the composition of the organism. Such compositional homeostasis imposes constraints
on how uptake and excretion fluxes of matters are to be coordinated41. Organisms
do maintain fairly constant ratios between the biogenic chemical elements that make
up their matter, and organisms also maintain approximately constant ratios between
classes of macromolecules (DNA/RNA, proteins, lipids); key metabolites in the cy-
toplasm and nutrients in the blood plasma are similarly maintained within certain
ranges41. Nonetheless, a certain degree of variation is commonly tolerated, particularly
as regards the accumulation of nutrient reserves. In ourselves, we can observe this as
the spectrum ranging from morbid obesity to starvation, whereas in micro-organisms,
reserve inclusions may constitute a substantial portion of the volume occupied by the
cell42.

Allowing for such variations, we arrive at a ‘mosaic homeostasis’ theory in which
the organism is decomposed into a relatively small number of components, each of
which is assumed to observe strict compositional homeostasis43. In doing so, we find
that we need to supply additional constitutive relationships, which may be thought of,
in unabashed anthropomorphic terms, as expressing the relative urgency with which
the organism strives to restore homeostatic balance for each of these components43.
Obversely, in the limiting case where the ‘homeostatic drives’ for each of these com-
ponents is allowed to be arbitrarily strong, we recover the Pütter-Bertalanffy model.
In any event, even the mosaic model does not uniquely specify the rates of individual
biochemical transformations, but rather delimits a null space that is consistent with the
various macro-chemical constraints on the fluxes.
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Homeostasis and control

Bertalanffy’s General Systems Theory40 shares common ground with the ‘cybernetic
theory’ advanced in 1948 by Norbert Wiener44 and with modern control theory which
has become an integral part of engineering45. From an etymological point of view,
‘cybernetics’ should be something like the lore of guidance and Lotka’s quandary was
essentially one of properly characterising this guidance. Cybernetics and control theory
deal with the architecture and dynamic behaviour of control loops45. On the sub-
cellular level, the biological correlates of these loops are second messenger signalling
cascades that drive the central pathway of DNA→RNA→protein, whereas on the inter-
cellular level, these correlates are the neuronal, paracrine, and endocrine connections
between organ systems and centralised information processing stations8.

The mathematical description of control at all levels of organisation loops has be-
come a major activity in mathematical biology7,8,46,47, and we may ask whether this
activity is merely the fruitful application of principles developed elsewhere (e.g., con-
trol of vehicles or manufacturing processes) to similar problems in the biological arena,
or whether the latter has peculiarities that set ‘biocybernetics’ apart.

To explore these issues further, let us consider the mammalian body as a mosaic
homeostatic system, whose compositionally constant components are (i) the body such
as it would be on the verge of starvation; (ii) muscle mass; (iii) glycogen stored in liver,
myocytes, and the kidney; and (iv) lipids stored in adipocytes47. The muscle mass is
tightly controlled around a value essentially governed by the mechanical demands on
it (in fact the control is sufficiently tight that muscle mass and near-starvation mass are
often grouped together as a single component, the lean body mass), whereas the lipid
mass is allowed to vary over a wide range to accommodate fluctuations in the calorific
content of the diet; the glycogen stores exhibit an intermediate of control tightness.
In other words, the components exhibit varying degrees of tightness or slackness as
regards their tendency to be restored to ‘nominal’ values.

A naive control engineering approach to this might be to postulate three control
loops (a myostat, a glycostat, and a lipidostat) that guard the ‘set points’ of the three
components. However, the (neuro-)endocrine system exerts control by adjusting the
values of effector quantities such as physiological fluxes, biochemical transformations,
membrane permeabilities, appetence, and the like, and many of these effectors affect
multiple components simultaneously. As a result, the control loops become inter-
twined, and conflicting demands on the effectors can compel the system to end up
in a ‘frustrated’ state. This phenomenon of frustrated states holds the key to under-
standing certain features of the system, which otherwise seem baffling, calling for a
formal framework that is structured around the frustration phenomenon48.

Another issue that sets the biological setting apart from that of engineering is an
ontological one: we may observe that the muscle protein mass is more stringently
controlled than the lipid reserves, but what dictates these degrees of strictness? The
engineer is a conscious, forward-thinking entity, motivated by clear optimal productiv-
ity targets. The analogueous actor in the biological system is natural selection, and a
satisfactory account would include selective pressures, and how these give rise to the
degrees of tightness or slackness present in control loops. This is a fascinating prob-
lem: dynamical variations on a time scale typically much shorter than the organism’s
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lifetime induce minute fitness variations that exert their influence on the evolutionary
time scale, which is much longer than the life times of individuals13.

Growth and form: morphē for Lotka’s hylè

The Pütter-Bertalanffy model is based on a biovolume/surface area scaling relationship
(Flächenregel 49), which means that its curve applies universally to all organisms that
adhere to that volume/area relationship over the course of their growth; this turns out
to be a class that includes almost all multicellular animals41. Outside this class, we can
still follow through the argument that leads to the Pütter-Bertalanffy model as long as
we can formulate some scaling relationship satisfied by the organism of interest as it
increases in biomass. Thus we obtained a generalised Pütter-Bertalanffy theory which
is virtually universal, ranging over all known kingdoms of life41.

However, in order to derive these scaling relationships, we need to capture in for-
mal terms how the organism acquires and changes shape over the entire course of
its development. Questions of morphology (shape, geometry) are largely neglected
in the line of thought predicated on thermodynamics and stoichiometry, as pursued
by Lotka, Pütter, and Bertalanffy. However, there is another line of enquiry, which
we can also let commence one hundred years ago (with apologies to earlier precur-
sors), with the seminal work by D’Arcy Thompson, On Growth and Form 50, a science
monograph that has the rare distinction of standing as a fine work of literature as well.
Thompson presents many examples of how the shape and organisation of organisms
are profoundly moulded by physical phenomena such as diffusion, fluid mechanics,
and surface tension, combined with mechanical constraints of the genre that is more
typically considered by architects and structural engineers.

Thompson appears to have been a kind of closet vitalist, regarding organisms as
made up by ‘vital plasma’—a generic living putty that responds to the physical forces
imposed by the organism’s environment. To this charming and somewhat dreamy point
of view, with its distinct fin-de-siècle aura (similar ideas were advanced by Francé51),
we may oppose the more positivistic idea of DNA as a blueprint, an all too popular
metaphor in contemporary accounts, positing that morphology, physiology, and every-
thing else is spelled out in the four-base language of the genes.

However, organisms are neither mystical putty nor edifices specified in a one-to-
one manner by a molecular blueprint. In multicellular organisms, the genes specify the
molecules that allow cells to communicate and determine their place and role in the
development of the organism52. For example, biochemical gradients instruct cells to
adopt certain gene expression states, or move along such gradients; the genes specify
the surface receptors that bind to these diffusive factors, or that allow cells to join up in
the tightly coupled sheets or bundles that form the body’s epithelia, muscle cells, ner-
vous structures and so on52. Thus, there is an iterative interaction between genes and
biomechanics that allows the organism to develop, all the while maintaining physiolog-
ical functionality during all stages throughout its development. If a simplistic slogan is
required, perhaps its should be that genes work with the forces of physics, not against
them.

This give and take between biological and physical drives found a crystal-clear for-
mal specification in the work by Alan Turing on morphogenetic gradients and pattern
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formation53. Turing built on ideas advanced earlier by Waddington54 and Delbrück55.
The great merit of the Turing model was that it demonstrated, by means of a con-
crete example, how the interaction between diffusing molecules (‘straight physics’)
and cells responding to the local concentration of these molecules (‘straight biology’)
gives rise to biological patterns. From a mathematical point of view, a system in which
instability is driven by diffusion is remarkable because diffusion is the paradigmatic
smoothing operation; this is certainly true in the realm of linear equations, but Turing’s
reaction-diffusion model features non-linear the cellular dynamics, supporting excita-
tory behaviour56.

Stripes and spots on animal skin are the most obvious candidates for biomorpho-
logical patterns governed by a Turing-type dynamics. However, similar mechanisms
may be equally important in the more fundamental patterning, such as basic ontological
segmentation, the patterns of ossification in developing limbs, and the regions devoted
to various processing tasks in the brain52. Turing’s original model lacked robustness
(that is to say, it is sensitive to parameter variations) as well as certain phenomena
such as cell proliferation and migration; incorporation of the latter in fact removed the
first shortcoming as well57. A remarkable achievement of the extended model is that
it explains the increase in the number of stripes as the animal grows, a phenomenon
observed in certain species of angelfish57.

Although more than half a century has gone by since Turing first proposed the
model, a convincing correlation between the mathematical actors and biological enti-
ties (e.g. diffusing morphogens, their receptors, and the genes encoding them) remains
to be found; moreover, alternative mechano-chemical pattern generating mechanisms
have been proposed58. In particular, local cellular behaviour both responds and con-
tributes to the physico-chemical forces and processes to which the tissues are subjected.
This interplay still remains far from being completely resolved and understood; the sig-
nificance of Turing’s work is that it was the first major concrete exemplar of how local
biochemistry, including genetics, can work together with global physics to produce the
spatio-temporal organisation that we call an organism’s ontogeny or development. This
is what Waddington54 termed epigenetics (not to be confused with the modern sense
of heritable chemical modifications of DNA).

Biomechanics on all scales of life

Besides inspiring later developments, On Growth and Form 50 has another important
intellectual legacy, viz. that of the application of physical and mechanical principles to
living systems. Structural engineering concepts such as stress, strain, Young’s modulus,
and so on59, have proved to be invaluable in the understanding of the anatomical and
micro-anatomical organisation of all kinds of living beings. For instance, the trunk and
branches of a plant must support the leaves without buckling or breaking under wind
loading, which defines minimal dimensions for a plant of a given height60.

The mammals, as a taxonomical group, span a remarkable size range with gross
overall similarity of the skeletal organisation. However, a shrew skeleton cannot sim-
ply be scaled up to give that of an elephant, as it would be far too fragile. Such dis-
proportionalities are accounted for by scaling laws. Small and large animals share the
‘intrinsic’ properties of tissues, which are governed by the characteristics of molecules
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and cells that are virtually the same across the taxonomic diversity. Thus, we seek a
theory that accounts for differences in ‘extensive’ variables whilst keeping ‘intensive’
variables constant.

Traditionally, power laws where quantities x and y are linked by a relationship of
the form y ∝ xη (for some constant η) have been popular choices; and once a power
law is adopted as a reasonable formula, it becomes imperative to explain the scaling
exponent η in terms of the underlying physics, physiology, or biochemistry. Such allo-
metric regression tends to overlook the inconvenient truths that (i) a great many mono-
tone functions, when plotted on double-logarithmic scaled, take on an almost-linear
appearance; and that (ii) allowing for the random scatter typical of a biological data
sets that are routinely subjected to such analysis, we should expect that minor devia-
tions from linearity (and often even major ones) are completely obscured. The search
for η is predicated on the premise that y ∝ xη is essentially correct, and this assump-
tion is considerably weaker than generally believed. Bas Kooijman gave examples of
data sets that appear to fit a straight line perfectly on a log-log plot, and nonetheless fit
equally well to the graph the entirely different formula he proposed41. If nothing else
this can serve as a reminder that even excellent agreement with the data need not imply
any support for the theoretical curve that was fitted (Kooijman accordingly defends his
formula on the basis of a priori arguments41).

In the example of mammalian long bones, bone dimensions have been linked to
body mass via power laws, with various arguments in favour of different values for the
exponents61,62; it quickly became clear that different groups of mammals seem to have
different best-fitting exponents63, and advanced models are based on specific details
regarding the animal’s stance62. The gains come at the cost of sacrificing what might
be the main appeal of allometry, which is the idea that the posited power laws owe their
universality to fundamental structural-mechanical constraints.

One of the most famous allometric laws is the named after Kleiber64, which states
that metabolic heat production scales as body mass to the power 3/4. There are too
many competing explanations to list here (their multitude should in itself negate most
if not all of them); among the influential ones are McMahon’s argument based on mus-
cle diameter61 and West et al.’s argument based on the branching structures of vascular
trees65, which was later disputed66. In any event, Dodds et al.67 found the vaunted
universality of Kleiber’s law lacking, as different parts of the curve are better approxi-
mated by different exponents. Again: a great variety of relationships will appear only
slightly curved when plotted on a double logarithmic grid, and thus one easily mistakes
any such relationship for a power law.

Biomechanics has now matured into a major field, accommodating insights from
fluid mechanics68 and extending the static considerations we have discussed to loco-
motion and flight69,70. Materials science and fluid dynamics meet in the physics of the
cardiovascular system, where non-linear elastic behaviour of the blood vessel walls is
central to an understanding of the system’s ability to respond to fluctuating loads and
demands71,72. Moreover, striking improvements in spatiotemporal resolution in the ex-
perimental study of intracellular processes have allowed the application of structural
and dynamical mechanics at the molecular scale. Active macromolecular complexes
can be treated much like the girders and pulleys of macroscopic engines, and this has
thrown new light on the movement of individual cells73–75 and of chromosomes within
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the cell during cell division76,77.
The interactions between various components of macro-molecular machinery sus-

pended in the aqueous environment of the cytoplasm give rise to new states of matter,
active polar cells78 in which a slew of surprising new dynamical phenomena occur79.
These developments would appear to go beyond physicists applying the tools of their
trade to problems in the life sciences: it is rather a matter of a domain of unique physi-
cal phenomena demanding the development of a novel set of tools.

Thom’s general programme for biomathematics

In the broad context of Waddington’s epigenetics idea, the Turing model is a proof of
principle: a minimal exemplar (and all the more laudable for that). But what would be
the general features of a formal theory that supports the broader context? The pedes-
trian approach would be to formulate the relevant dynamics as a set of differential
equations, as many as it takes, and employing a supercomputer to evaluate a numerical
approximation of the solution in time and space. Simulating a massive model on a
supercomputer can be invaluable, provided that each of the components of the model
is well-attested. Otherwise, one has merely created an inscrutable in silico entity that
may or may not have any bearing on the original organismal system of interest. This is
where these projects often fall down, occasionally not before having extracted billions
of public funds in support80. Perhaps we can save ourselves time and effort, and more-
over gain a better understanding, if we first explore the ‘deep’ mathematics that lies at
the heart of such models, considered as a class—however vague: a prolegomena to any
future Waddingtonian epigenetics theory.

This was the attitude taken in the 1960s by René Thom, a mathematician who had
garnered the Fields Medal, which is the most prestigious award in the mathematical
sciences, for his contributions to differential topology.81 Thom was struck by the re-
markable robustness of development: the embryo gives every appearance of a dogged
determination to develop into the eventual organism, in spite of perturbations (e.g. ex-
posure to teratological compounds). In Turing’s model, the reliability of the outcome
is built into the mathematical structure of the dynamics: the model exploits the ran-
domness of diffusion, but is not beholden to it. Something like this, Thom realised,
must be true of all once-and-future mathematical models of development; being a pure
mathematician, he resolved to abstract this elusive something and study it in its own
right.82

Thom’s vision was the diametrical opposite of merely throwing off-the-shelf math-
ematics at a biological problem until it surrenders. He was concerned with mathemat-
ical biology as a proper biological mathematics. In other words, he was looking for
brand new ways of mathematical thinking, both motivated by, and suited to, funda-
mental biological questions. Thom’s focus thus chimes with the general question of
what, if anything, would allow mathematical biology to stand as a distinct discipline.

If we think of cell fate, state of differentiation, and so on, as a state x and of the
physico-chemical drivers (e.g., morphogen concentration in time and space) as a co-
state µ, then Thom proposed that we focus on pairs (x0,µ0) where the qualitative
dynamics of x changes in the neighbourhoods of the attractors of the dynamics. At
such points, called critical or singular points, a slight perturbation of µ can provoke a
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qualitative change in the dynamics of x, for instance, instead of tending towards x0, the
state x is suddenly moving to a different attractor x1 which may very well be located
nowhere near x0. This sudden, discontinuous alteration of the flow of x was termed a
catastrophe. Away from the singular points, the system’s behaviour is so uninteresting
as to barely deserve much consideration: slight perturbations of µ only lead to slight
perturbations of x; all is smooth and boring.

The global picture that emerges is one in which there is any number of attracting
states (cell fates, etc.) which are separated by the boundaries in (x,µ)-space made
up by the singularities. In keeping with this picture, Thom proposed that ontogeny
(development) unfolds as a sequence of discrete events each of which is marked by the
coordinate point (x,µ) crossing one of these boundaries. A topological (quantitative
dynamics) analysis in the close vicinity of each of these catastrophic events is all that
is required to understand the deep structure of ontogeny.

In the neighbourhood of critical points (x0,µ0), Thom observes that the dynamics
must be of a certain canonical form. There will obtain a generic correspondence be-
tween whatever model one may have started with and the appropriate canonical form,
expressed in some convenient mathematical format. In this sense the precise formula-
tion of the model does not matter all that much. The correspondence only holds good
in the neighbourhood of the critical point, but this is not problematic since the dynam-
ics at non-critical points is relatively unimportant. Moreover, Thom claims, given the
dimension and co-dimension (i.e. the dimensions of x and µ), there is only a finite
number of such canonical forms. This means that there is a definite list of cases to
enumerate and work out. Once we have completed that list, we will have resolved the
essential structural-dynamical features of ontogeny.

If such a research programme—an intrinsically mathematical research programme—
can be completed, we will have obtained two complementary views of developmental
biology: one is the global perspective afforded by the catastrophe theory as proposed by
Thom, and the other is the bottom-up perspective where life scientists work to identify
the genes, receptors, signalling molecule, transcription factors, and so forth that con-
stitute the nuts and bolts of the Thomian machinery. The biologists thus appear to be
relegated to a second-fiddle role in Thom’s grand scheme of biomathematics, and the
prospect cannot have done much to entice them to master the requisite mathematical
skills81.

Thom’s proposals seem to be similar in spirit to other attempts at a deeper, more
abstract biology, such as Boolean networks as a general framework for ontogeny83.
Thom’s ideas also resonate with the modern view of evolutionary dynamics, construed
as a sequence of evolutionary invasion events, similarly situated at topologically priv-
ileged points of the relevant phase space13,19,20. In fact, Thom may well have been
thinking of phylogeny as much as of ontogeny: his word for development is mor-
phogenèse intended in the widest sense possible82. Whereas his motivating examples
seem to be drawn from ontogeny and embryogenesis, his scope encompassed evolu-
tionary dynamics as well as, ultimately, all of the natural sciences82.

As regards the mathematical research programme he initiated, Thom himself only
accomplished its goals for low-dimensional cases, and only for a severely restricted
class of dynamics81,84. Nevertheless, the scope he set might have done for biology
what Newton’s Principia did for physics, had the programme not fallen on hard times,
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in the late 1970s. Thom is thought to have provoked mathematicians with his reliance
on conjecture84 and he can hardly have done his cause much good among life scientists
by claiming that only the mathematician has the right to be intelligent85. Sadly, the
coup de grâce was administered by a media offensive with outlandishly fraudulent
claims for the catastrophe theory86,87. These deplorable antics were outside of Thom’s
control, and catastrophe theory sank under its own hype, to be eclipsed by the advent of
chaos theory81,84, Thom’s extremely worthwhile insights were lost—perhaps they may
yet be recovered by a renewed interest within the life sciences in singularity theory.

Impasse or crossroads?

In broad brushstrokes, we might view the practice of mathematised natural science
as tackling particular problems with bespoke formal structures, models, which can be
seen as instantiations of theories. Equivalently, we may think of theories as general
prescriptions for models. In addition, we seek general or fundamental principles that
interconnect the theories and provide continuity between them.

Even though a scientific discipline will appear quite variegated and diverse in the
day-to-day practice of the models, one may sense the presence of the underlying the-
ories and the principles that unite them. Such a sense is prevalent in physics but
conspicuously absent in biomathematics (unless one takes the view that the latter is
a subsidiary of the former in any case). Is this absence to be deplored or merely a
manifestation of ‘physics envy’29? The dyed-in-the-wool pluralist would argue that all
that really matters is the level of praxis, and that deeper theoretical connections are the
icing on the cake. The pluralist’s position is bolstered by cultural differences between
the biological and mathematical sciences. Biologists tend to focus on particular sys-
tems (organisms, cells, molecules) and sometimes appear to view all of biology from
the privileged vantage point of their own favourite system, whereas the mathematician
seeks to strip down a problem to its bare essentials, eschewing details and resolutely
throwing out all that is not relevant. Thom’s provocative remarks can be seen in this
light: as attempting to shock biologists into a radically different way of thinking.

But why should biologists adopt this new way of thinking, if it sits so uneasily
with their prevailing working culture? Whenever we sense that seemingly unrelated
problems are manifestations of the same underlying problem, we feel the urge to solve
that underlying problem once and for all—such is the impetus for all mathematics.
What is gained is not just the efficiency of a general solution, but also an global sense
of direction. Study of the deeper theoretical structure does suggest novel hypotheses,
leading to otherwise unavailable insights and knowledge. There can be little doubt that
this is as true for the life sciences as for the more mathematised natural sciences. This
drives the search for an essence of biomathematics; it is more than an idle intellectual
exercise. The past century has witnessed the floundering of overly ambitious schemes,
but promising glimmerings as well.
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