

warwick.ac.uk/lib-publications

Original citation:
Chuah, Edward, Jhumka, Arshad, Browne, James C., Gurumdimma, Nentawe,
Narasimhamurthy, Sai and Barth, Bill (2016) Using message logs and resource use data for
cluster failure diagnosis. In: 23rd annual IEEE International Conference on High Performance
Computing, Data, and Analytics (HiPC 2016), Hyderabad, India, 19-22 Dec 2016

Permanent WRAP URL:
http://wrap.warwick.ac.uk/83539

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting
/republishing this material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see the
‘permanent WRAP url’ above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/59715526?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/83539
mailto:wrap@warwick.ac.uk

Using Message Logs and Resource Use Data for Cluster Failure Diagnosis

Edward Chuah‖∗†, Arshad Jhumka∗, James C. Browne‡, Nentawe Gurumdimma∗∗, Sai Narasimhamurthy§, Bill Barth¶
‖The Alan Turing Institute, 96 Euston Road, London NW1 2DB, UK. Email: echuah@turing.ac.uk
∗University of Warwick, Coventry CV4 7AL, UK. Email: {E.Chuah, H.A.Jhumka}@warwick.ac.uk

‡University of Texas at Austin, Texas 78712. Email: browne@cs.utexas.edu
∗∗University of Jos P.M.B 2084 Jos, Plateau State Nigeria, Post code: 930001. Email: N.Y.Gurumdimma@warwick.ac.uk

§Seagate Technology, Havant, PO9 1SA, UK. Email: sai.narasimhamurthy@seagate.com
¶Texas Advanced Computing Center, Texas 78758. Email: bbarth@tacc.utexas.edu

†Singapore Polytechnic, 500 Dover Road, Singapore 139651.

Abstract—Failure diagnosis for large compute clusters using
only message logs is known to be incomplete. Recent availability
of resource use data provides another potentially useful source of
data for failure detection and diagnosis. Early work combining
message logs and resource use data for failure diagnosis has
shown promising results. This paper describes the CRUMEL
framework which implements a new approach to combining
rationalized message logs and resource use data for failure diag-
nosis. CRUMEL identifies patterns of errors and resource use and
correlates these patterns by time with system failures. Application
of CRUMEL to data from the Ranger supercomputer has yielded
improved diagnoses over previous research. CRUMEL has: (i)
showed that more events correlated with system failures can
only be identified by applying different correlation algorithms,
(ii) confirmed six groups of errors, (iii) identified Lustre I/O
resource use counters which are correlated with occurrence of
Lustre faults which are potential flags for online detection of
failures, (iv) matched the dates of correlated error events and
correlated resource use with the dates of compute node hang-
ups and (v) identified two more error groups associated with
compute node hang-ups. The pre-processed data will be put on
the public domain in September, 2016.

Index Terms—Large cluster system; Cluster log data; Corre-
lation analysis; Failure diagnosis; Lustre file-system;

I. INTRODUCTION

Large clusters and supercomputers suffer from occurrence
of faults and failures but generate a massive amount of
monitoring data which can be used to analyze these faults and
failures. Most of this data has been in the form of message
logs. A significant body of research has demonstrated the value
of message logs to detect faults [1], [2], diagnose failures [3]–
[5] and predict faults/failures [6]–[8]. However, the message
logs are incomplete and redundant1, making failure diagnosis
from message logs alone very difficult. Recently, job and
processor level resource use data has become available for
some systems [9]. A recent body of research has demonstrated
the value of performance data to detect faults [10], [11]
and predict failures [12]. While use of message logs and
performance data separately has provided important tools and
methods that help manage the complexity of these systems,

1By incomplete, we mean that the message logs do not contain all the
events needed to establish a complete causal trace path to the failure. By
redundant, we mean that only a small quantity of the message logs is relevant
to the diagnosis of a given failure.

there has been little exploration of the diagnostic benefit of
combining analyses of message logs and resource use data.

The previous work on failure diagnosis techniques which
attempt to combine message logs and resource use data to
diagnose and/or predict impending failures [13], [14] have
shown increased accuracy over use of message logs alone. In
[13], resource use data is used to identify resource anomalies
and provide partial diagnosis of system faults and failures,
and message log analysis is used to obtain a more specific
and precise diagnosis. [14] uses a similar approach to show
that combining resource use and message log analyses shows
indications of impending failures earlier than message log
analyses alone. [15] combines analyses of message logs and
resource usage but the focus is on error detection. [16] is
focused on detecting patterns in failure logs. This paper builds
on and extends the idea. It presents a new workflow for
combining message logs and resource use data for failure
diagnosis and demonstrates its effectiveness.

The TACC Stats [9] monitoring system and Rationalized
message logging [17] resolve resource usage and system
messages by jobs, nodes and time for open-source Linux-based
clusters. Previous work [13], [18] has applied only Pearson
Correlation, but there is little work which show that more
events correlated with system failures can only be identified
by applying different correlation algorithms. To address this
gap, this paper reports on the implementation and evaluation
of a new approach for combining both message logs and
resource use data for failure diagnosis. This approach - we
call the CRUMEL framework - identifies and links patterns of
messages and resource usage with system failures. It evaluates
multiple correlation algorithms. CRUMEL implements a two-
phase approach where: (i) the message logs patterns are used to
categorize errors into groups and diagnose the likely causes of
failures, (ii) the resource use data patterns are used to identify
specific resource use counters associated with the error group.

The benefit of identifying specific resource use counters
which are associated with a group of errors is given as follows:
When Lustre I/O counters and Lustre file-system errors are
strongly correlated on the same day, it shows that Lustre I/O
activity is associated with the generation of Lustre file-system
errors. Therefore, the correlated Lustre I/O counters can then
be used to monitor Lustre file-system errors that eventually

lead to compute node hang-ups. We chose Lustre I/O counters
as Lustre file-system errors and network errors make up the
majority of errors associated with compute node hang-ups.

The innovations and contributions of the CRUMEL frame-
work and its application include:
• CRUMEL formulates, implements and applies a new

workflow for combining rationalized message logs and re-
source use data for failure diagnosis. CRUMEL identifies
patterns of errors and resource use events and correlates
these patterns by time with system failures.

• Demonstrated that the CRUMEL workflow extends and
improves diagnoses over previous research. CRUMEL
shows that more events correlated with system failures
can only be identified by applying different correlation
algorithms.

• Identified Lustre I/O resource use counters which are
correlated with occurrence of Lustre faults which are
potential flags for online detection of failures.

• Matched the dates of correlated error events and corre-
lated resource use with dates of compute node hang-ups.

• Identified two previously undiagnosed error groups as-
sociated with compute node hang-ups. They are process
errors and file-system errors.

The remainder of this paper is structured as follows: We
define the fault model and present the problem description and
CRUMEL framework in Section II. We evaluate CRUMEL in
Section III, review the related work in Section IV and conclude
with a summary and future work in Section VI.

II. MODELS, PROBLEM SPECIFICATION AND CRUMEL

The class of systems to which CRUMEL can be applied
is specified in terms of a generic model of cluster systems
given in [13]. In this section, we describe the fault model to
which our work is applicable. Then, we present the problem
specification and the CRUMEL framework.

A. Fault Model

An illustration of the resource usage, error and system
failure messages by time is shown in Fig. 1. We observed
that soft lockup messages and file-system error messages in
the rationalized message logs are correlated. We also observed
that messages transmitted in a network, i.e., tx_msgs and
bytes written to a file-system, i.e., write_bytes resource use
counters in the resource use data are correlated.

To increase the dependability of such systems, it is im-
portant to tolerate those errors that lead to a system failure.
Knowing the nature of these errors will ease debugging or
maintenance. On the other hand, some data centers may
decide not to deploy failure recovery mechanisms due to their
policies. As such, we do not assume the availability of failure
recovery in our fault model.

Understanding the occurrence of an error from message logs
alone is challenging. In this paper, we capture the notion of an
error when: (i) a message is logged and the message captures
a state of the program that deviates from expectation, and
(ii) there are message patterns and resource usage patterns as

file system
error messages

soft lockup
messages

use data
Resource

message logs
Rationalized

Time

tx_msgs

write_bytes

0

0

0

0

0

0

0

0

Fig. 1. An illustration of soft lockup and file-system error messages,
messages transmitted in a network and bytes written to a file-system.

illustrated in Fig. 1. The CRUMEL framework developed in
this paper seeks to determine the occurrence of these patterns
for failure diagnosis.

B. Problem Specification and CRUMEL Framework

The problem that our analysis targets can be described as
follows: Given (i) a set of resource use data, (ii) message logs
that are incomplete and redundant, (iii) keywords of failure
events, and (iv) name of resource use counters, then identify
the errors which are correlated with the failure and the resource
use counters which are correlated on the date of the failure. To
achieve this, we develop the CRUMEL (Correlating Resource
Usage data and MEssage Logs) framework shown in Fig. 2.

Correlated
events

Resource
Usage Data Message Logs

Resource use
counters

Correlated
Resource
use counters

Data Type
Extraction

Keywords
(failure events)

Name of

counters
resource use

Validation Validation

Unique Unique

Message types

Correlation

CorrelatorCorrelator

MTExtRUExt

Fig. 2. The workflow of the CRUMEL framework. The CRUMEL framework
is composed of two modules: (1) Data Type Extraction, and (2) Correlation.
The workflow automatically process the message logs and resource use data
through the Data Type Extraction module, followed by the Correlation module.
The output of each module are sets of reports which can be used for diagnosis.

Next, we describe in detail, each of the two modules used
within the CRUMEL framework.

C. CRUMEL: Data Type Extraction

CRUMEL targets processing of Syslogs [19], Rationalized
message logs [17] and TACC Stats resource use data [9]. The
Rationalized message log [17] is a special type of message log

that incorporates a logical structure and additional content such
as job-identification to the POSIX formatted logs. TACC Stats
[9] is a job-oriented and logically structured version of the
conventional Sysstat system performance monitor. We devel-
oped a Data Type Extractor module that extracts: (i) message
types from the message logs, (ii) resource use counters from
the resource use data2.

Message Type Extractor: The Message Type Extractor or
MTExt, extracts the sources (the nodes and jobs), times and
message sequences from the message logs and presents these
messages in a form on which standard analysis algorithms can
be applied. An example of an error message is given below:

1975935 Jun 3 07:25:17 i114-204 kernel X <0>%s.
ECC error ECC error K8

The sources of this error message can be identified from
the job (1975935) and node (i114-204). The time that this
error message was recorded can be identified from the times-
tamp (Jun 3 07:25:17). The software associated with this
error message can be identified from the word (kernel)
that follows immediately after the node identifier; in this
example, the software is the Linux operating system kernel.
The description of the event can be identified from this
message constant part - it is a sequence of English-only words
(X ECC error ECC error) that follow immediately after the
software identifier. The message type can be determined from
the message constant part; in this example, the message type
is an ECC error. The data matrix, DMtimebins, contains
histograms of the message types by time-bins. The steps for
extracting the message types and generating the data matrix
are given below.
• Step 1: Split the message logs into logs of individual

hours by individual days.
• Step 2: For each message log, extract the message con-

stant part and store it in a list.
• Step 3: Identify the unique message constants in the list

and obtain the message types.
• Step 4: Count the number of message types by hour for

each day in the logs.
Resource Use Extractor: The Resource Use Extractor

or RUExt, extracts resource use counters from TACC Stats
resource use data and presents the resource use counters in a
form on which standard analysis algorithms can be applied.
In addition to the traditional information collected by Sysstat
[20], TACC Stats records hardware performance monitoring
data, Lustre file-system operation counts and InfiniBand device
usage. An example of a resource use log extracted from
TACC Stats is given below:

1975935 Jun 3 00:00:01 i101-101 llite /work
read_bytes 830958447762 write_bytes 337810667092
direct_read 0 direct_write 0 dirty_pages_hits
47079822 dirty_pages_misses 82604275 ...

The sources of this resource use log can be identified
from the job (1975935) and node (i101-101). The time that

2https://diag-toolkits.github.io/PreprocessedData/

this resource use log was recorded can be identified from
the timestamp (Jun 3 00:00:01). The software component
associated with this resource use log can be identified from
the word (llite) that follows immediately after the node
identifier; in this example, the component is the Lustre file-
system. A second-level component can be identified from the
word (/work) that follows immediately after the first compo-
nent identifier; in this example, the second-level component
is the work directory of the Lustre file-system. The resource
use counters can be identified from the key-value pairs (e.g.
read_bytes 830958447762) that follow after the second com-
ponent identifier. We define a parameter name, param-name, as
a triple which comprises of the software component, second-
level component and resource use counter key; in this example,
the param-name is “llite /work read bytes”. A list of resource
use counters and their components is given in Table I. The
data matrix, DRtimebins, contains histograms of the param-
name types by time-bins. The steps for extracting the resource
use counters and generating the data matrix are given below.

TABLE I
RESOURCE USE COUNTERS AND THEIR ASSOCIATED COMPONENTS.

Component Resource use counters Qty.
Lustre tx msgs, rx msgs, rx msgs dropped, tx bytes, rx bytes, 6

network rx bytes dropped
Lustre read bytes, write bytes, direct read, direct write, 23
/work dirty pages hits, dirty pages misses, ioctl, open, close,

mmap, seek, fsync, setattr, truncate, flock, getattr, statfs,
alloc node, setxattr, getxattr, listxattr, removexattr,
inode permission

Virtual pgpgin, pgpgout, pswpin, pswpout, pgalloc normal 21
memory pgfree, pgactivate, pgdeactivate, pgfault, pgmajfault

pgrefill normal, pgsteal normal, pgscan kswapd normal
pgscan direct normal, pginodesteal, slabs scanned,
kswapd steal, kswapd inodesteal, pageoutrun, allocstall
pgrotated

• Step 1: Split the resource usage logs into individual hours
by individual dates.

• Step 2: For each log entry, extract the param-name and
store it in a list.

• Step 3: Identify the unique param-names in the list and
obtain the param-name types.

• Step 4: For each param-name type in a resource use
log, if the values associated with the param-name types
of two consecutive log entries are different, obtain the
difference and add the difference to the value obtained in
the preceding operation and store the value.

D. CRUMEL: Correlation

Once the time-bin data matrices have been generated by the
Data Type Extraction module, the Correlation module gener-
ates the correlation matrices by computing: (i) the strength
of the relationships between events contained in the time-
bin (DMtimebins) data matrix and extracts a smaller set of
message logs for analysis, and (ii) the strength of the relation-
ships between resource use counters contained in the time-bin
(DRtimebins) data matrix and extracts a smaller set of resource
use counters for analysis. Our correlation module currently
applies two correlation algorithms: (i) Pearson correlation

and (ii) Spearman-Rank correlation. We implemented Pearson
correlation as the base algorithm to identify linear patterns and
Spearman-Rank correlation as the second algorithm to identify
patterns that follow a monotonically increasing function.

Pearson correlation [21] draws a line of best fit through
the data of two variables, and it indicates how well the data
points fit this line of best fit. It assumes a linear relationship
between the data of two variables. Spearman-Rank correlation
[22] assumes a monotonic relationship between the data of two
ranked variables. A monotonic relationship is a relationship
that does one of the following: (i) when the value of one vari-
able increases, the value of the other variable increases, or (ii)
when the value of one variable remains and does not decrease,
the value of the other variable remains and does not decrease.
This assumption is less restrictive than the linear relationship
assumption that has to be met by Pearson correlation. The
possible values for the Pearson and Spearman-Rank correlation
coefficients ranges −1 to 1. A correlation coefficient of −1
indicates a perfect negative linear or monotonic relationship,
a correlation coefficient of 0 indicates no linear or monotonic
relationship, and a correlation coefficient of 1 indicates a
perfect positive linear or monotonic relationship.

We apply the Correlation module on the resource use data
and message logs separately as shown in Fig. 2. The resource
use data and message logs are generated by different open-
source software tools which are used in different ways. For
example, TACC Stats can be activated to record resource use
on the system node or the application, while the message
logging stack logs messages sent by the operating system
kernel, system software and user application. As a result, the
log entries in the resource use data and message logs may
contain different timestamps. Hence, directly correlating the
resource use data with message logs by time requires padding
the histograms since the correlation algorithms require that, the
histograms contain the same number of data points on the x-
axis. However, our objective is not to correlate the resource use
data with message logs, but to identify patterns in the resource
use data and message logs which are strongly correlated.

Once the correlation matrices have been generated, a list
containing the strongly correlated events and a list containing
the strongly correlated resource use counters are generated. To
generate these lists, we use a process that automatically iden-
tifies a correlation threshold rth in each correlation matrix and
the process is given in [13]. We use the correlation thresholds
to extract the strongly correlated events, strongly correlated
resource use counters and their correlation coefficients.

Next, we apply Fisher’s z-transform, the standard technique,
to test the significance of the correlation coefficient [22].

F (r) =
1

2
ln

(
1 + r

1− r

)
(1)

where r is a correlation coefficient. We define the null hy-
potheses as: (i) H0r that a pair of resource use counters are
independent, and (ii) H0e that a pair of events are indepen-
dent. We define the alternate hypotheses as: (i) Har that a
pair of resource use counters are not independent, and (ii)

Hae that a pair of events are not independent. Under the
null hypothesis H0r, F (r) approximately follows a normal
distribution with mean uz = F (H0r) = 0 and standard error
SE = 1√

nr−3
, where nr is the number of time-bins in the pair

of resource use counter-series. Under the null hypothesis H0e,
F (r) approximately follows a normal distribution with mean
uz = F (H0e) = 0 and standard error SE = 1√

ne−3
, where ne

is the number of time-bins in the pair of event-series. Then,
we obtain the z-score for a given correlation coefficient:

zr =
F (r)− uz

SE
= (F (r)− F (H0r))×

√
nr − 3 (2)

ze =
F (r)− uz

SE
= (F (r)− F (H0e))×

√
ne − 3 (3)

A large absolute value of zr and ze, e.g., 2.58 at 99%
confidence level, will reject the null hypotheses in favour of
the alternate hypotheses that a pair of resource use counters
and a pair of events are not independent.

III. CASE STUDY: RANGER SUPERCOMPUTER

Our study of failures is carried out in the context of the de-
commissioned Ranger supercomputer at the Texas Advanced
Computing Center at the University of Texas at Austin. The
Ranger supercomputer was in production for five years from
2007 to 2012. It was a Linux-based cluster of 3,936 compute
nodes and 112 Lustre file-system, login and visualization
nodes. Each node of Ranger generates its own resource
use data and messages. The messages were then sent to a
centralized logging system where the logs are combined and
interleaved in time.. We collected the resource use data and
rationalized message logs for the months of June, July and
August 2011 and a summary is given in Table II.

TABLE II
SUMMARY OF THE DATA COLLECTED ON RANGER.

Resource use data Rationalized message logs
Month Size Qty. lines Size Qty. messages

June 2011 29.8 GB 88,821,351 2.7 GB 10,021,516
July 2011 29.3 GB 92,425,427 9.6 GB 64,822,682

August 2011 29.9 GB 91,502,909 14.5 GB 114,745,476

In this section, we present our analysis of the patterns of
events and resource use associated with the system failures.

A. Compute Node Hang-ups
Compute node hang-ups are one of the most frequent source

of problems for the systems administrators of the Ranger
supercomputer. A compute node hang-up can be identified
from a soft lockup event in the rationalized message logs:
BUG: soft lockup stuck for. In June 2011, node hang-ups
occurred on 7 dates. In July 2011, node hang-ups occurred on
12 dates. In August 2011, node hang-ups occurred on 7 dates.
The dates and distribution of soft lockup events on Ranger are
shown in Fig. 3(a), Fig. 3(b) and Fig. 3(c). We observed that
soft lockup messages were recorded more than 21,000 times
in June 2011, more than 11,000 times in July 2011 and more
than 12,000 times in August 2011.

(a) June 2011. (b) July 2011. (c) August 2011.

Fig. 3. Distribution (log-scale) of soft lockup events on Ranger.

B. Phase 1: Identify the Correlated Events

In the first phase of our study, we determine: (i) which
events are strongly positive correlated to soft lockup events,
and (ii) what are the differences in the correlated events
dates identified by Pearson correlation and Spearman-Rank
correlation. We obtained from the event correlation reports,
the events that are strongly correlated to soft lockup events.
We presented the list of correlated events to the systems
administrators and identify the following errors leading to soft
lockups: (1) Process errors, (2) Network errors, (3) Memory
errors, (4) File-system errors, (5) Page faults, and (6) Lustre
Evict/RPC protocol errors. A summary of the soft lockup dates
associated with the error groups and the error groups identified
by a CRUMEL-instance is given in Table III.

TABLE III
SUMMARY OF SOFT LOCKUP DATES ASSOCIATED WITH ERROR GROUPS

AND ERROR GROUPS IDENTIFIED BY A CRUMEL-INSTANCE.

Error CRUMEL No. of Error CRUMEL No. of
group instance dates group instance dates

Process Pearson 21 Network Pearson + 11
error error Spearman

Memory Pearson 9 File-system Pearson 11
error error

Page-fault Pearson 7 Lustre Evict/ Pearson 2
RPC error

1) Process errors: Information about the name, memory
address, running CPU and state of a process is provided by
a Pid: comm event. From Fig. 4(a), Fig. 4(b) and Fig. 4(c),
we observed that Pid: comm events are strongly correlated to
soft lockup events with scores that range 0.85 to 1 on 21 soft
lockup dates. We observed that Pearson correlation identified
the correlated events on 21 soft lockup dates. We observed that
Spearman-Rank correlation identified the correlated events on
20 soft lockup dates. Our results show that Pearson correlation
identified all the dates when process errors and soft lockup
events are correlated on Ranger.

We manually scanned the messages and identified the names
of the processes associated with the Pid: comm events. The
names of the processes are: sge_shepherd, ipoib, AHFStep,
sshd, ptlrpcd, tacc_stats, mpmc, sge_execd, ll_imp_inval
and sh. sge_shepherd provides the parent process functional-
ity for a single Sun Grid Engine job. ipoib is a protocol that
defines how to send IP packets over an Infiniband network.
AHFStep is a program that initiates the Amiga Halo Finder
software used for cosmological simulations. sshd is a Linux

secure shell daemon that provides secure encrypted commu-
nication between two clients in an insecure network. ptlrpcd
is a thread that takes care of sending asynchronous remote
procedure calls. tacc_stats is a job-oriented and logically
structured version of the conventional Sysstat system perfor-
mance monitor. mpmc is an open-source Monte Carlo package
used for the simulation of liquids, molecular interfaces and
functionalized nanoscale materials. sge_execd controls the
Sun Grid Engine queues local to the machine on which
sge execd is running and executes the jobs sent from the Sun
Grid Engine master to be run on these queues. ll_imp_inval
is an evictor thread that starts when a client request to connect
to a Lustre server is repeatedly refused. sh is the Bash shell
command-line interpreter used in Linux operating systems.
Our results suggest that interactions with these processes have
led to compute node hang-ups.

2) Network errors: Errors in communication between the
nodes can be identified by Connection to service was lost

events, error occurred while communicating with events,
and failed due to network error events. From Fig. 5(a),
Fig. 5(b) and Fig. 5(c), we observed that network error events
are strongly correlated to soft lockup events with scores that
range 0.76 to 1 on 11 soft lockup dates. From Fig. 5(b),
we observed that only Spearman-Rank correlation identified
the network error events on July 26 2011, and only Pearson
correlation identified the network error events on July 6, 7 and
19 2011. Our results show that Pearson and Spearman-Rank
correlation are required to identify all the dates when network
errors and soft lockup events are correlated on Ranger.

The network errors can be caused by high network resource
utilization and unresponsive servers. For example, when a
client node sends a request to connect to an unresponsive
server, the server will refuse the connection. The client then
activates its timeout. When the clients timeout expires, it
attempts a reconnection to the server. When multiple client
reconnection requests are refused by unresponsive servers,
it may lead to the client hang-up. Our results suggest that
network errors have led to compute node hang-ups.

3) Memory errors: Errors in memory access and us-
age can be identified from the following log events:
segfault, system memory exhausted, invoked oom-killer,
out-of-memory and No available memory. From Fig. 6(a),
Fig. 6(b) and Fig. 6(c), we observed that memory error events
are strongly correlated to soft lockup events with scores that
range 0.8 to 1 on 9 soft lockup dates. We observed that Pearson

(a) June 2011. (b) July 2011. (c) August 2011.

Fig. 4. Correlation of Pid: comm events to soft lockup events.

(a) June 2011. (b) July 2011. (c) August 2011.

Fig. 5. Correlation of Connection to service was lost, error occurred while communicating with, and failed due to network error events to soft lockup events.
The events circled in red were identified by Spearman-Rank correlation only. The events circled in black were identified by Pearson correlation only.

(a) June 2011. (b) July 2011. (c) August 2011.

Fig. 6. Correlation of system memory exhausted, invoked oom-killer, out-of-memory, No available memory and segfault events to soft lockup events.

correlation identified the correlated memory error events on
9 soft lockup dates. We observed that Spearman-Rank cor-
relation identified the correlated memory error events on 5
soft lockup dates. Our results show that Pearson correlation
identified all the dates when memory errors and soft lockup
events are correlated on Ranger.

The memory errors are often caused by memory access
violations in buggy software in the Linux operating system.
For example, the job of the Linux operating system oom-killer
is to remove one or more processes in order to free up memory
on the node. However, the oom-killer is vulnerable to memory
leaks and in some cases, these memory leaks may cause the
oom-killer to crash which in turn causes the operating system
on the node to crash. Our results suggest that memory errors
have led to compute node hang-ups.

4) File-system errors: Errors in the file-system can be
identified from the following log events: read_lock_failed,
write_lock_failed and failure inode. From Fig. 7(a),
Fig. 7(b) and Fig. 7(c), we observed that file-system error
events are strongly correlated to soft lockup events with scores
that range 0.8 to 1 on 11 soft lockup dates. We observed that

Pearson correlation identified the correlated file-system errors
on 11 soft lockup dates. We observed that Spearman-Rank
correlation identified the correlated file-system errors on 10
soft lockup dates. Our results show that Pearson correlation
identified all the dates when file-system errors and soft lockup
events are correlated on Ranger.

A hung client that fails to release a read or write lock
on the data it holds can result in a deadlock when another
client attempts to access the same data. In another example, an
inode provides information that a client needs to access files
stored on multiple storage servers. However, when a client
attempts to access information it needs on a corrupted inode,
this information is lost. Our results suggest that deadlocks and
inode failures have led to compute node hang-ups.

5) Page faults: Errors in the interaction protocol between
the operating system’s page-fault handler and the rest of the
node operating system can be identified from the following
log event: do_page_fault. From Fig. 8(a), Fig. 8(b) and
Fig. 8(c), we observed that page faults are strongly correlated
to soft lockup events with scores that range 0.8 to 1 on
7 soft lockup dates. We observed that Pearson correlation

(a) June 2011. (b) July 2011. (c) August 2011.

Fig. 7. Correlation of read lock failed, write lock failed and failure inode events to soft lockup events.

(a) June 2011. (b) July 2011. (c) August 2011. (d) June and July 2011.

Fig. 8. Correlation of page fault events (a - c) and Lustre Evict/RPC events (d) to soft lockup events.

identified the correlated page faults on 7 soft lockup dates.
We observed that Spearman-Rank correlation identified the
correlated page faults on 5 soft lockup dates. Our results show
that Pearson correlation identified all the dates when page
faults are correlated to soft lockup events on Ranger.

A page fault is raised by the hardware when a running
program accesses a memory page that is mapped into a virtual
address space, but not loaded in physical memory. When a
page fault occurs, the operating system page fault handler will
be invoked. The page fault handler must locate a free space
in memory, or choose to free up space in memory for use by
the program data. If the latter (also called a major page fault)
is chosen, it will incur additional disk latency to an already
interrupted program execution. Our results suggest that page
faults have led to compute node hang-ups.

6) Lustre Evict/RPC Protocol errors: Errors in the Lustre
Evict/RPC protocol can be identified from the following key-
words in the log events: evicted. From Fig. 8(d), we observed
that evicted events are strongly correlated to soft lockup events
with scores that range 0.92 to 1 on 2 soft lockup dates.
We observed that Pearson correlation identified the correlated
evicted events on 2 soft lockup dates. We observed that
Spearman-Rank correlation identified the correlated evicted
events on 1 soft lockup date. Our results show that Pearson
correlation identified all the dates when evicted events are
correlated to soft lockup events on Ranger.

The Lustre Evict/RPC protocol is designed to free the file-
system resources that are being held by unresponsive clients.
However, timing mismatches that result from communication
errors between the Lustre clients and servers, a fault that is
well-known to the system administrators, could lead to the
hang-up of client nodes. Our results suggest that communica-
tion errors between the Lustre clients and servers have led to

compute node hang-ups.

C. Phase 2: Identify the Correlated Resource Use Counters

The first phase of CRUMEL is characterized by the identifi-
cation of error groups that lead to compute node soft lockups.
The existence of related error messages in the log files confirm
the presence of errors in the system. However, the objective
of this paper is to understand the occurrence of patterns, i.e.,
correlations that will point to these error messages. To achieve
this, we need to identify and understand the link between the
resource usage counters and the error groups.

Thus, in the second phase of our study, we determine: (i)
which resource use counters are strongly positive correlated
to the Lustre file-system read_bytes, write_bytes and ioctl

resource use counters3, and (ii) what are the differences in the
correlated resource use counters dates identified by Pearson
correlation and Spearman-Rank correlation. The Lustre I/O
activities are recorded by the read_bytes, write_bytes and
ioctl counters. We obtained from the resource use corre-
lation reports, the resource use counters that are strongly
correlated to the Lustre file-system read_bytes, write_bytes
and ioctl resource use counters. We presented the list of
correlated resource use counters to the systems administrators
and identify the following components associated with Lustre
I/O activity: (1) Lustre network, (2) Linux O/S virtual memory.
A summary of the correlated resource use counters identified
by a CRUMEL-instance is given in Table IV.

The lnet tx_msgs and lnet rx_msgs counters record the
quantity of messages that were transmitted in the Lus-

3We focus on these counters as there are no counters that are specifically
related to process errors, which form the majority of errors identified in
Section III-B. Thus, we focused on the next major source of errors, namely
network and file system errors.

(a) June 2011. (b) July 2011. (c) August 2011.

Fig. 9. Correlation of lnet tx msgs, lnet rx msgs, vm pgfault and vm majpgfault to llite /work read bytes on Ranger. The counters circled in red were
identified by Spearman-Rank correlation only.

(a) June 2011. (b) July 2011. (c) August 2011.

Fig. 10. Correlation of lnet tx msgs, lnet rx msgs, vm pgfault and vm majpgfault to llite /work write bytes on Ranger. The counters circled in red were
identified by Spearman-Rank correlation only. The counters circled in black were identified by Pearson correlation only.

(a) June 2011. (b) July 2011.

Fig. 11. Correlation of lnet tx msgs, lnet rx msgs, vm pgfault and vm majpgfault to llite /work ioctl on Ranger.

TABLE IV
SUMMARY OF CORRELATED RESOURCE USE COUNTERS.

Lustre Counter CRUMEL Lustre Counter CRUMEL
counter instance counter instance

read lnet tx msgs Spearman write lnet tx msgs Pearson
bytes lnet rx msgs bytes lnet rx msgs and

vm pgfault vm pgfault Spearman
vm maj- vm maj-
pgfault pgfault

ioctl lnet tx msgs Pearson
lnet rx msgs or
vm pgfault Spearman

vm majpgfault

tre network. The vm pgfault and vm majpgfault coun-
ters record the quantity of page faults in the Linux O/S.
From Fig. 9, Fig. 10 and Fig. 11, we observed that
the resource use counters lnet tx_msgs, lnet rx_msgs,
vm pgfault and vm majpgfault are strongly correlated to
read_bytes, write_bytes and ioctl. Our results show a
strong relationship between: (1) Lustre activity and Lustre
network usage, and (2) Lustre activity and Linux page-faults.
Correlation with read bytes: From Fig. 9(a), Fig. 9(b) and
Fig. 9(c), we observed that Pearson correlation identified the
correlated resource use counters on 21 soft lockup dates.
We observed that Spearman-Rank correlation identified the

correlated resource use counters on 25 soft lockup dates. Our
results show that Spearman-Rank correlation identified all the
dates when lnet tx_msgs, lnet rx_msgs, vm pgfault and
vm majpgfault are correlated to read_bytes on Ranger.
Correlation with write bytes: From Fig. 10(a), Fig. 10(b)
and Fig. 10(c), we observed that Pearson correlation identified
the correlated resource use counters on 18 soft lockup dates.
We observed that Spearman-Rank correlation identified the
correlated resource use counters on 24 soft lockup dates.
However, from Fig. 10(b), we observed that only Pearson
correlation identified a strong correlation between vm pgfault

and write_bytes on July 31 2011. Our results show that Pear-
son and Spearman-Rank correlation are required to identify all
the dates when lnet tx_msgs, lnet rx_msgs, vm pgfault and
vm majpgfault are correlated to write_bytes on Ranger.
Correlation with ioctl: From Fig. 11(a) and Fig. 11(b),
we observed that Pearson correlation identified the strongly
correlated resource use counters on 6 soft lockup dates. We
also observed that Spearman-Rank correlation identified the
strongly correlated resource use counters on 6 soft lockup
dates. Our results show that Pearson and Spearman-Rank cor-
relation separately identified all the dates when lnet tx_msgs,
lnet rx_msgs, vm pgfault and vm majpgfault are correlated

to ioctl on Ranger.

D. Validation

Next, we test the significance of: (i) the correlation coeffi-
cient of the strongly correlated events in each error group, (ii)
the correlation coefficient of the strongly correlated resource
use counters associated with Lustre activity, Lustre network
and Linux virtual memory. We are interested in positive
correlated events and positive correlated resource use counters.
We obtained the correlation z-scores and the summaries are
given in Tables V and VI.

TABLE V
SUMMARY OF THE CORRELATION Z-SCORES FOR THE ERROR GROUPS.

THE SAMPLE SIZE, n, CONTAINS THE NUMBER OF HOURLY TIME-BINS IN
ONE DAY’S WORTH OF RATIONALIZED MESSAGE LOGS.

Error group June 2011 July 2011 August 2011
(sample size, n)
Process error 10.53 ≤ ze 9.17 ≤ ze 9.90 ≤ ze

(15 ≤ n ≤ 24) ≤ 12.13 ≤ 12.13 ≤ 12.13
Memory error 5.03 ≤ ze 7.28 ≤ ze 11.84 ≤ ze
(23 ≤ n ≤ 24) ≤ 12.13 ≤ 12.13 ≤ 12.13

Page-fault ze = 12.13 ze = 12.13 11.84 ≤ ze
(23 ≤ n ≤ 24) ≤ 12.13
Network error ze = 12.13 4.57 ≤ ze 11.84 ≤ ze
(23 ≤ n ≤ 24) ≤ 12.13 ≤ 12.13

File-system error 6.11 ≤ ze 9.59 ≤ ze 9.90 ≤ ze
(17 ≤ n ≤ 24) ≤ 12.13 ≤ 12.13 ≤ 12.13

Lustre Evict/RPC error ze = 12.13 ze = 12.13 -
(n = 24)

From Table V, we observed that the z-scores for all the
error groups range from 4.57 to 12.13. At the 99% confidence
level, under the null hypothesis, z0e = 2.58. Hence, we reject
the null hypothesis in favour of the alternate hypothesis.

Next, we determine the probability of rejecting the null
hypothesis when it is true. From Table V, we observed the
smallest correlation z-score ze = 4.57. We apply a one-sided
test and use the significance level, α = 0.01 for a given
hypothesis test to obtain a P -value. Since this is a one-sided
test, the P -value is equal to the probability of observing a
value greater than 4.57 in the standard normal distribution, or
P (Z > 4.57) = 1−P (Z ≤ 4.57) = 1−0.9999976 = 2.4e−06.
The P -value is less than 0.01, indicating it is highly unlikely
this result would be observed under the null hypothesis. The
P -values we obtained for all the z-scores in Table V are also
less than 0.01, indicating it is highly unlikely these results
would be observed under the null hypothesis.

TABLE VI
SUMMARY OF THE CORRELATION Z-SCORES FOR THE CORRELATED

RESOURCE USE COUNTERS (CORRRUD) GROUPS. THE SAMPLE SIZE, n,
CONTAINS THE NUMBER OF HOURLY TIME-BINS IN ONE DAY’S WORTH OF

TACC STATS RESOURCE USAGE DATA.

CorrRUD group June 2011 July 2011 August 2011
(sample size, n)

Lustre I/O – Lustre network 6.52 ≤ zr 4.56 ≤ zr 4.67 ≤ zr
(n = 24) ≤ 12.13 ≤ 12.13 ≤ 12.13

Lustre I/O – Linux O/S VM 4.46 ≤ zr 4.56 ≤ zr 4.45 ≤ zr
(n = 24) ≤ 12.13 ≤ 12.13 ≤ 12.13

From Table VI, we observed that the z-scores for all the
correlated resource use counters groups range from 4.45 to

12.13. At the 99% confidence level, under the null hypothesis,
z0r = 2.58. Hence, we reject the null hypothesis in favour of
the alternate hypothesis.

Next, we determine the probability of rejecting the null
hypothesis when it is true. The P -values for all the z-scores
in Table VI are less than 0.01, indicating it is highly unlikely
these results would be observed under the null hypothesis.

IV. RELATED WORK

In [23], a method that uses a feature construction scheme
to rank system log messages that are important for problem
diagnosis was presented. The feature construction scheme
evaluates Pearson correlation and Spearman-Rank correlation
based clustering for identifying clusters of messages. In con-
trast, CRUMEL evaluates Pearson correlation and Spearman-
Rank correlation to identify patterns of errors and resource use
in the message logs and resource use data. In [24], a metric that
measures correlations of events and an algorithm called event
correlation graphs are proposed. The algorithm was applied on
the system message logs of two HPC systems and predicted
failure and non-failure events in these systems. In [4], a time-
anomaly correlation approach called SIGs was developed to
infer influences between interacting components in the sys-
tem message logs. In [12], the Wilcox Rank-sum correlation
method was applied on system performance data to monitor
and predict processor failures. CRUMEL complements these
approaches by identifying patterns of errors and resource use
in the message logs and resource use data.

[18] and [13] which are the predecessors of CRUMEL
apply only Pearson Correlation. In Fig. 5(b) in Section III-B,
we showed that the network error event correlated with node
failure on July 26 2011 was identified by Spearman-Rank
correlation only, but network error events correlated with node
failures on other dates in July 2011 were identified by Pearson
correlation only. If Pearson correlation is used as the only
correlation method, the correlated network error event on July
26 2011 would not be identified. CRUMEL has shown that
the errors and resource use are linearly and monotonically
correlated with compute node hang-ups. It also identified two
more error groups associated with compute node hang-ups.
They are: (i) process errors, (ii) file-system errors.

Several tools such as IPLOM [25], LoGs [26],
SLCT/Loghound [27] and SEC [28] have been developed to
automate processing of system message logs. Fluentd4 is an
open-source data collector that process multiple application
logs. CRUMEL complements these tools by processing both
the Rationalized message logs and TACC Stats resource use
data collected on open-source cluster systems.

A number of works have shown that message logs are
useful for classifying log messages into semantic categories
that accurately replicated the manual annotation of messages
[29], and for establishing six groups of errors associated with
compute node hang-ups [30]. In this paper, we confirmed that
the six groups of errors are associated with compute node

4URL: http://www.fluentd.org/

hang-ups. We also showed that Lustre I/O counters can be
used to monitor Lustre file-system and network errors.

V. DISCUSSION

In this section, we discuss one limitation of the CRUMEL
diagnosis framework: correlated resource use counters and
correlated error events. We do not take into account resource
use counters that are not correlated. For example, a popular
application may spawn one process which performs only read
operations and several processes which perform only write
operations to a file-system. When these processes are executed,
they may trigger a spike in the file-system write_bytes

resource use counter which may cause the file-system to slow
and eventually hang. We also do not take into account error
events that occur on non-failure dates. That being said, we
argue that this pertains to the problem described in Section
II-B, i.e., we seek to identify the resource use counters and
error events that are correlated on the dates of failures..

VI. CONCLUSION AND FUTURE WORK

We presented the CRUMEL framework that correlated both
the message logs and resource use data to identify errors and
resource usage patterns. We showed that the new approach to
integration of resource use data and message logs, and the use
of multiple correlation algorithms can identify more events
associated with system failures. The framework confirmed six
groups of errors, identified Lustre I/O resource use counters
that are correlated with occurrence of Lustre faults that are
potential flags for online detection of failures, matched the
dates when correlated errors and correlated resource use
counters are associated with the dates of compute node hang-
ups, and identified two more error groups - process errors and
file-system errors - associated with compute node hang-ups.

In our future work, we plan to extend our analyses of
patterns in resource use and message logs to deal with failure
types other than Lustre file-system and node failures.

ACKNOWLEDGEMENTS

We would like to thank the Texas Advanced Computing
Center (TACC) for providing the Ranger cluster log data.
This research is supported in part by the National Science
Foundation under OCI awards #0622780 and #1203604 to
TACC at the University of Texas at Austin. We also thank Dr.
Zhou Changjiu and Singapore Polytechnic senior management
for allowing the principal author to complete this work.

REFERENCES

[1] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan, “Mining
console logs for large-scale system problem detection,” in Proceedings
of 3rd Workshop on Tackling Computer Systems Problems with Machine
Learning Techniques, December 2008.

[2] A. J. Oliner, A. Aiken, and J. Stearley, “Alert detection in system logs,”
in Proceedings of IEEE ICDM, December 2008, pp. 959–964.

[3] T. Reidemeister, M. A. Munawar, M. Jiang, and P. A. Ward, “Diagnosis
of recurrent faults using log files,” in Proceedings of the 2009 Con-
ference of the Center for Advanced Studies on Collaborative Research,
2009, pp. 12–23.

[4] A. J. Oliner, A. V. Kulkarni, and A. Aiken, “Using correlated surprise
to infer shared influence,” in Proceedings of IEEE/IFIP DSN, 2010, pp.
191–200.

[5] S. P. Kavulya, S. Daniels, K. Joshi, M. Hiltunen, R. Gandhi, and
P. Narasimhan, “Draco: Statistical diagnosis of chronic problems in large
distributed systems,” in Proceedings of IEEE/IFIP DSN, 2012, pp. 1–12.

[6] F. Salfner and S. Tschirpke, “Error log processing for accurate failure
prediction,” in 1st UNIX Workshop on the Analysis of System Logs,
December 2008.

[7] A. Gainaru, F. Cappello, M. Snir, and B. Kramer, “Fault prediction
under the microscope: A closer look into hpc systems,” in Proceedings
of IEEE/ACM SC Conference, 2012, pp. 1–12.

[8] A. Pelaez, A. Quiroz, J. C. Browne, E. Chuah, and M. Parashar, “Online
failure prediction for hpc resources using decentralized clustering,” in
Proceedings of IEEE HiPC, 2014, pp. 1–9.

[9] J. Hammond, “Tacc stats: I/o performance monitoring for the intransi-
gent,” in Invited Keynote for the 3rd IASDS Workshop, 2011, pp. 1–29.

[10] Q. Guan, D. Smith, and S. Fu, “Anomaly detection in large-scale
coalition clusters for dependability assurance,” in Proceedings of IEEE
HiPC, 2010, pp. 1–10.

[11] G. Bronevetsky, I. Laguna, B. R. de Supinski, and S. Bagchi, “Auto-
matic fault characterization via abnormality-enhanced classification,” in
Proceedings of IEEE/IFIP DSN, 2012, pp. 1–12.

[12] F. Salfner, P. Troeger, and S. Tschirpke, “Cross-core event monitoring for
processor failure prediction,” in Proceedings of HPCS DMCC Workshop,
2009, pp. 67–73.

[13] E. Chuah, A. Jhumka, S. Narasimharmuthy, J. Hammond, J. C. Browne,
and B. Barth, “Linking resource usage anomalies with system failures
from cluster log data,” in Proceedings of IEEE SRDS, 2013, pp. 1–10.

[14] N. Gurumdimma, A. Jhumka, M. Liakata, E. Chuah, and J. C. Browne,
“Towards increasing the error handling time window in large-scale dis-
tributed systems using console and resource usage logs,” in Proceedings
of IEEE ISPA, 2015, pp. 1–10.

[15] ——, “Crude: Combining resource usage data and error logs for accurate
error detection in large-scale distributed systems,” in Proceedings of
IEEE SRDS, 2016, pp. 1–10.

[16] ——, “Towards detecting patterns in failure logs of large-scale dis-
tributed systems.”

[17] J. L. Hammond, T. Minyard, and J. Browne, “End-to-end framework for
fault management for open source clusters: Ranger,” in Proceedings of
ACM TeraGrid, no. 9, 2010.

[18] Z. Zheng, L. Yu, Z. Lan, and T. Jones, “3-dimensional root cause
diagnosis via co-analysis,” in Proceedings of ACM ICAC, 2012, pp.
181–190.

[19] IEEE, IEEE Std 1003.1-2001 Standard for Information Technology —
Portable Operating System Interface (POSIX) Base Definitions, Issue 6.
IEEE Standards, 2001.

[20] T. T. Project, http://sebastien.godard.pagesperso-orange.fr/.
[21] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining.

Addison-Wesley, 2006.
[22] R. E. Walpole, R. H. Myers, and S. L. Myers, Probability and Statistics

for Engineers and Scientists. Prentice Hall International, 1998.
[23] S. Sabato, E. Yom-Tov, A. Tsherniak, and S. Rosset, “Analyzing system

logs: A new view of what’s important,” in 2nd USENIX workshop
on Tackling Computer Systems Problems with Machine Learning Tech-
niques, 2007.

[24] X. Fu, R. Ren, J. Zhan, W. Zhou, Z. Jia, and G. Lu, “Logmaster: Mining
event correlations in logs of large-scale cluster systems,” in Proceedings
of IEEE SRDS, 2012, pp. 1–10.

[25] A. Makanju, A. N. Zincir-Heywood, and E. E. Milios, “Clustering event
logs using iterative partitioning,” in Proceedings of ACM SIGKDD, 2009,
pp. 1255–1264.

[26] J. E. Prewett, “Listening to your cluster with logs,” in 5th LCI Interna-
tional Conference on Linux Clusters, 2004.

[27] R. Vaarandi, “Mining event logs with slct and loghound,” in Proceedings
of IEEE/IFIP NOMS, 2008, pp. 1071–1074.

[28] J. P. Rouillard, “Real-time log file analysis using the simple event
correlator (sec),” in Proceedings of 18th USENIX Conference on System
Administration, 2004, pp. 133–150.

[29] S. Jain, I. Singh, A. Chandra, Z.-L. Zhang, and G. Bronevetsky,
“Extracting the textual and temporal structure of supercomputing logs,”
in Proceedings of IEEE HiPC, 2009, pp. 254–263.

[30] E. Chuah, A. Jhumka, J. C. Browne, B. Barth, and S. Narasimharmuthy,
“Insights into the diagnosis of system failures from cluster log data,” in
Proceedings of EDCC 2015, 2015, pp. 1–8.

